Probabilistic Network Telemetry

Benjamin Schaible, Kilian Holzinger*
*Chair of Network Architectures and Services
School of Computation, Information and Technology, Technical University of Munich, Germany
Email: b.schaible@tum.de, holzinger@net.in.tum.de

Abstract—With ever increasing demand for large scale com-
puting systems such as data centers, high-speed intercon-
necting networks too are becoming increasingly important.
Measuring these networks is key to detecting and localizing
performance issues. One important metric is packet latency.
However, established network measurement systems are ei-
ther not suitable for estimating packet latencies or introduce
unwanted overhead [1].

In this paper, we discuss three probabilistic approaches
to estimating packet latencies, which were proposed in prior
work: the Lossy Difference Aggregator (LDA), the Lossy Dif-
ference Sketch (LDS) and Reference Latency Interpolation
(RLI). Following that, we compare these approaches against
each other regarding their robustness to packet loss and
reordering, their accuracy and the overhead they introduce.
We come to the conclusion that, under low packet loss,
latency estimates provided by the LDA and LDS are more
accurate than ones provided by RLI.

Index Terms—probabilistic data structures, network mea-
surement, high-speed networks

1. Introduction

With ever increasing demand for large scale computing
systems such as data centers, high-speed interconnecting
networks too are becoming increasingly important. Such
networks may consist of thousands of devices, switches
and routers, making it nearly impossible to predict un-
wanted behavior. Network measurements have therefore
become an essential tool to detect and localize network
performance problems such as bottlenecks.

One of the key metrics measured is packet latency [1]-
[3], which is the amount of time it takes for a packet to
travel from one point to another in a network. Efficiently
measuring packet latencies, however, especially in the
order of microseconds, is a non-trivial matter. Established
systems like NetFlow actively measure packet latencies
by attaching timestamps to a sample of all observed
packets [1]. High sampling rates are required in order for
this to yield accurate average latency estimates, which in
turn imposes a considerable network overhead [1].

In this paper, we discuss three probabilistic approaches
to estimating average packet latencies, which were pro-
posed in priror work. These approaches aim to pro-
vide accurate average latency estimates while remaning
lightweight in terms of network utilization, memory us-
age and computational overhead. Namely, we discuss
the Lossy Difference Aggregator [1] in Section 3.1, the

Seminar IITM WS 23

23

Lossy Difference Sketch [2] in Section 3.2 and Reference
Latency Interpolation [3] in Section 3.3. Following that,
we compare their strengths and weaknesses in Section 4.

2. Probabilistic Data Structures

All of the probabilistic measurement approaches pre-
sented in this paper leverage their own application-specific
data structures, though they share the same core concepts.
We now discuss the most important ideas behind the
probabilistic data structures used.

The data structures we are going to discuss in this
paper are sketches. Sketches are used to estimate various
metrics on streams of data. While they don’t guarantee
exact results, they usually come with a much smaller
overhead when compared to perfectly precise measure-
ments. Instead, they are likely to yield accurate results
and therefore are being referred to as probabilistic.

A sketch usually aggregates some kind of value in a
counter. In our case these values would be packet laten-
cies. However, there usually is an unlikely but catastrophic
occurrence which would destroy the counter, meaning that
the value stored is skewed heavily and can no longer
be used to obtain accurate estimates. In our case, this
occurrence would be packet loss.

To deal with such occurrences, sketches use multiple
counters and distribute samples evenly across them. This
way, such a catastrophic occurrence would only destroy
one of many counters, leaving the rest of them in a usable
state. This even distribution is commonly achieved by
calculating a hash of the sample and mapping that hash to
an index within an array of counters. For example, assume
that our sketch consists of n counters and we wish to insert
the latency of a packet p. We may then calculate an index
with hash(p) mod n. Assuming the hash function used
is uniform, meaning that each hash is produced with the
same probability, this would result in an even distribution
of samples across all n counters. In this paper, we refer
to this technique as hash partitioning.

3. Measurement Approaches

Consider the following example: Two clients are
exchanging a considerable amount of data via two
switches (Figure 1). Now, let’s say we want to measure
the latency (or “delay”) between these two switches,
for example in order to gain insight into the state of
the network. A simple way to achieve this is to have
both switches attach a timestamp to each packet before

doi: 10.2313/NET-2024-04-1 05

dispatching it. The receiving switch may then calculate
the latency by subtracting the packet’s timestamp from its
current time. This also allows one to calculate the average
latency by summing up all measured delays and dividing
by the number of delays measured.

Figure 1: A simple measurement environment

The main problem with this approach is the overhead
in bandwidth usage caused by the timestamps attached to
each packet. Especially in data center networks, where
hundreds of millions of packets are transmitted every
second, even relatively small (32-bit) timestamps would
quickly add up.

Additionally, any difference between clocks of the two
switches will directly add to the error of the measured
latency [1]. Therefore, both switches’s clocks have to be
synchronized tightly in order for the measurement to yield
accurate results [1]. We are assuming microsecond-level
clock synchronization, which may be achieved by making
use of protocols such as IEEE-1588 [4].

We now discuss several probabilistic approaches to es-
timating the average latency between two network points.

3.1. Lossy Difference Aggregator

The Lossy Difference Aggregator (LDA), proposed by
Kompella et al. in [1], is a probabilistic data structure, used
to efficiently estimate the average and standard deviation
of the latency between a sender A and a receiver B. The
sender and receiver may be two network devices such as
routers or switches, or two points within a single network
device [1].

An LDA is used to conduct a one-way measurement,
meaning that it estimates the average latency of packets
being sent from A to B, ignoring packets sent the other
way [1]. If a bi-directional measurement is desired, the
measurement should be conducted twice, once in each
direction.

3.1.1. Basic Idea. We now discuss the basic approach
behind the LDA. Assume that A sends a total of [V packets
to B and we wish to measure the average latency of these
packets. Let a; be the time at which the i-th packet was
dispatched from A, and b; the time it was received at B,
with ¢ € {1,..., N}. For now, we assume there is no
packet loss. Consequently, the latency of the i-th packet
is b; — a; and the average latency D corresponds to

1
== Z (bi — as) (1
1 7 N
- (zbz Yo) @
i=1 i=1
Seminar IITM WS 23

24

as described in [1].

Recall the previously discussed approach of attaching
a timestamp to each packet. In this context, A would attach
to each packet its timestamp a;, while B would count the
number of packets it receives and add each packet’s delay
b; — a; to an accumulator. The average delay could then
be calculated using (1).

A Lossy Difference Aggregator allows one to conduct
this type of measurement without the overhead of attach-
ing timestamps to any packet. It operates on periodic time
intervals of length 7', with T' usually being in the range
from a few hundred milliseconds to a few seconds [1].
When using an LDA, instead of attaching timestamps
to packets, we aggregate them both on the sender and
receiver [1]. Then, at the end of each measurement in-
terval, a control packet containing the sender’s timestamp
aggregate is sent to the receiver and used to calculate the
average latency there [1]. The LDA is the data structure
used to aggregate those timestamps, both at the sender
and receiver [1].

In the context of the current example, consider a sim-
plified LDA consisting of a single timestamp aggregator
and a packet counter. We use one simplified LDA each for
the sender and receiver. At the sender A, the simplified
LDA then stores the sum Tg = Zf\; a; and the amount
of packets sent N. At the receiver B, it stores the sum
Tr = Zf;l b; and the amount of packets received R.
Since we assume no packet loss, N and R are equal. As
shown in [1], we can then transform (2) to use Ts and
TRZ

1
D=—(Tr—-T 3
N(r—Ts) 3)
Using (3), we are able to calculate the average latency
during a measurement cycle by building timestamp aggre-
gates Ts and Tk at the sender and receiver respectively
and by transmitting Ts to the receiver at the end of the

cycle, assuming that R = V.

3.1.2. Dealing with Packet Loss. The simplified LDA
however has a significant flaw: If even a single packet
sent from A to B is lost, meaning that N > R, the re-
ceiver’s timestamp accumulator becomes unusable for the
remainder of the measurement interval and no meaningful
average delay can be calculated. This is due to the fact that
Ts would have aggregated more timestamps than Tk and
that it is impossible to recover the original timestamps
aggregated in Ts and TR, eliminating the possibility of
calculating the average of a smaller sample [1].

It is possible to mitigate the severity of this problem
by making use of a simple measure proposed in [1]:
Instead of a single accumulator-counter pair, use an array
of m of these pairs, which we call a bank [1]. Then, for
each packet, hash partition between the m accumulator-
counter pairs in order to decide on which one to use [1].
Since this choice must be consistent across the sender
and receiver, both must use the same hash function in
order for this to work [1]. When using such a bank of
m accumulator-counter pairs, a single packet loss would
only corrupt a single one of these pairs while the others
remain usable [1]. The average delay of a subset of all
sampled packets may then be determined by combining
all usable accumulator-counter pairs [1].

doi: 10.2313/NET-2024-04-1 05

However, using a bank only allows the LDA to handle
low packet loss rates [1]. A high loss rate, combined
with a high amount of throughput, would still be likely
to quickly corrupt the entire bank [1]. To cope with
this, instead of sampling every packet received, a fixed
sampling probability p can be imposed on the bank with
the goal of reducing the number of potentially unusable
accumulator-counter pairs [1]. Since, in order to maintain
consistency, a packet should be sampled at the receiver if
and only if it was sampled at the sender, it is logical to use
the same sampling rate at both ends [1]. A common hash
function may then be used on each packet in order to apply
this sampling rate [1]. Based on the rate of packet loss,
a suitable sampling rate p, which maximizes the expected
sample size, may then be determined [1].

In a realistic scenario however, the packet loss rate is
usually unknown and prone to change over time [1]. This
can be dealt with by using an array of n banks, each one
tuned to a different packet loss rate through its sampling
rate p; [1]. When using multiple banks, it is advantageous
for those banks to have disjoint sampling sets, meaning
that no packet is ever sampled by more than one bank,
since this opens up the possibility of combining all usable
accumulator-counter pairs across all banks in order to
calculate the average latency from the greatest possible
sample, without the possibility of some packets being
counted multiple times [1]. If the sampling probabilities
D1, . -.,Pn Were to be powers of %, disjoint sampling sets
could easily be achieved by hashing each packet to a
bitstring, where each bit has an equal probability of being
0 or 1 [1]. Then, use the number of leading zeroes of the
bitstring to determine which bank, if any, will sample the
packet [1].

3.1.3. The complete Data Structure. The full LDA
consists of an m X n matrix of accumulator-counter pairs.
Each of the n colums represents a separate bank, holding
its own disjoint set of samples [1].

The update procedure when sampling a packet, as
proposed in [1], is:

1) Calculate a uniform hash of the packet.

2) Use the hash and the sampling probabilities
P1,-..,Pn to decide whether the packet should
be sampled and which bank to use in that case.

3) Use the hash to select an accumulator-counter
pair of the chosen bank.

4) Add the timestamp at which the packet was re-

ceived to the timestamp accumulator and incre-
ment the packet counter.

At the end of each measurement interval, the sender’s
LDA is transmitted to the receiver (or vice versa) and
the average latency is estimated [1]. Let T4 and Tp
be the sum of all usable timestamp accumulators of the
sender’s and receiver’s LDAs respectively [1]. A times-
tamp accumulator-counter pair is considered usable if its
packet counter at the receiver matches the corresponding
one at the sender [1]. Let S be the effective sample
size, which is the sum of all usable packet counters at
the receiver (or the sender) [1]. Following from this, the
average delay estimate D is

1

D=z (Tg —Ta) “

Seminar IITM WS 23

25

as described in [1].

3.2. Lossy Difference Sketch

The Lossy Difference Sketch (LDS) is a probabilistic
data structure proposed by Sanjuas et al. in [2]. It builds on
the basic ideas behind the LDA (Section 3.1) and is meant
to be used to estimate the average packet latency between
a sender and a receiver, while being lightweight in terms
of memory usage and computational overhead. Just as the
LDA, it is used to conduct one-way measurements [2].
However, unlike the LDA, which estimates the average
latency of all packets sent from a sender to a receiver, it
produces per-flow estimates, meaning that a separate la-
tency estimate can be obtained for each flow observed [2].
In this context, we consider a flow a tuple of the source
and destination address, source and destination port and
the protocol [2].

The motivation behind the LDS is based on the ob-
servation that packet latencies might differ considerably
between flows, meaning that average latencies over all
packets may not prove sufficient in order to detect and an-
alyze application-specific network performance issues [3].

3.2.1. Basic Idea. Much like an LDA, the LDS estimates
average latencies by aggregating timestamps and compar-
ing them in periodic time intervals [2]. However, in order
to conduct per-flow measurements, it needs to distinguish
between flows. It does so in a probabilistic manner by
hash-partitioning between timestamp accumulator-counter
pairs based on the flow f [2]. Additionally, each times-
tamp accumulator-counter pair also stores a flow digest [2]
in order to detect potential inaccuracies caused by packet
reordering between the sender and receiver [5]. We refer
to a tuple consisting of a timestamp aggregator, packet
counter and flow digest as a bucket [2].

3.2.2. Functionality. The LDS consists of a R x C' matrix
of buckets [2]. Each packet is sampled once per row [2].

Sampling Procedure. When sampling a packet, for
each row, an index within that row is determined based
on a hash of the flow f and row index i [2]. Then, the
index is offset by a number up to k, determined by hash
of the full packet, resulting in an even distribution of
samples across k adjacent buckets, k being an adjustable
parameter of the LDS [2]. The bucket at the resulting
index is then updated, meaning that the packet’s times-
tamp is added to the accumulator, the packet count is
incremented and the flow digest is XOR-ed with a hash of
the full packet [2]. Inspired by the LDA, this index shift
is done to reduce the impact of packet loss and, in this
case, packet reordering by distributing samples of a flow
across k different buckets [2]. We note that this allows for
potential collisions between samples of flows [2] and will
discuss how the LDS attempts to find the buckets with
the least interference in order to accurately estimate an
average delay. Further, it is evident that all hash functions
used must be equivalent on the sender and receiver as to
maintain consistency [2].

Estimating Average Delays. In order to estimate the
average latency of a flow f, first select all usable buckets
of the ones samples of f were collected in [2]. A bucket
is considered usable if both its packet count and its flow

doi: 10.2313/NET-2024-04-1 05

digest at the sender and receiver match [2]. Then, find
the bucket with the lowest packet count n [2]. We are
assuming this is the one with the least interference from
other flows [2]. Then, from the previously determined set
of usable and related buckets, select those that have sam-
pled at most n(1 + «) packets, where « is a configurable
parameter, and calculate the average latency by combining
them [2]. Reference [2] suggests using a value of 0.1 for
.

3.3. Reference Latency Interpolation

Reference Latency Interpolation (RLI), proposed by
Lee et al. in [3], is an alternative technique to estimating
per-flow packet latencies between a sender and a receiver.
It leverages the observation that packets belonging to
different flows tend to experience similar latencies when
sent with little delay in between each other [3]. Just
like the previously discussed approaches, RLI is used to
conduct one-way latency measurements [3].

When using RLI, the sender periodically sends a ref-
erence packet holding a timestamp to the receiver and
the receiver then uses the timestamp to calculate the ref-
erence packet’s delay [3]. For every non-reference packet
received, its delay is then estimated using linear interpola-
tion between the previous and the next reference packet’s
delays as well as factoring in the individual packet’s size
and the link capacity [3]. Since a packet’s delay can only
be estimated after another reference packet was received,
all information needed to estimate its delay, namely its
flow identifier and timestamp of its arrival, are stored in
a buffer until the delay can be estimated [3].

It should be mentioned that the decision of when to
inject a reference packet is not straightforward. For exam-
ple, injecting a reference packet every n packets sent could
work well under high network load but might result in too
few packets being injected under low load, lowering the
accuracy of the estimate [3]. Injecting reference packets
in fixed time intervals instead would solve the accuracy
issues for low network load but in turn might result
in too few packets being injected under high load [3].
Reference [3] therefore suggests a combination of both
rules, effectively adapting the injection rate dynamically
based on the network load.

4. Comparison

We now compare the discussed approaches in Table 1.
The properties we are comparing them against are the type
of measurement (overall or per-flow estimate), robustness
against packet loss and reordering, network overhead and
accuracy.

4.1. Robustness

While the LDA and LDS make use of hash partition-
ing in order to deal with packet loss, potentially losing a
portion of their samples, RLI samples every packet that
was not lost [1]-[3]. The LDA assumes packets arrive
in the same order they were sent and has no protection
against packet reordering [1], [5], while the LDS detects
and avoids affected samples [2] and RLI is not affected
by it since it does not aggregate timestamps [3].

Seminar IITM WS 23

26

TABLE 1: Comparison between LDA, LDS and RLI

Type Measurement Loss Reord. Overh. Acc.
LDA overall + ++ ++
LDS per-flow + ++ ++
RLI per-flow ++ ++ + +

Measurement: Overall or per-flow measurement
Loss: Robustness against packet loss

Reord.: Robustness against packet reordering
Overh.: Network overhead

Acc.: Accuracy of measurement/estimate

4.2. Network Overhead

Both the LDA and LDS do not incur any network
overhead during their measurement intervals and transmit
the data structure once at the end of each measurement
interval [1], [2]. Since RLI regularly injects reference
packets, which also affect the forwarding behavior of
routers, we consider its overhead slightly larger [3].

4.3. Accuracy

Evaluations of the LDA and LDS in [1] and [2]
respectively have shown that both suffer a very low mean
relative error under low (< 1%) packet loss. However,
since different flows may interfere with each other within
an LDS, it tends to be more accurate for larger flows
than smaller ones because large flows carry more weight
within their latency estimate [2]. When facing packet
loss rates below 5%, the LDA suffers a reasonably small
mean relative error of 3% to 9% [1]. RLIL, on the other
hand, experiences a mean relative error of 10 to 12% for
moderate to high link utilization and around 30% for low
link utilization [3]. A direct comparison between the LDS
and RLI in [2] showed that the LDS outperforms RLI in
terms of accuracy under low (< 1%) packet loss.

5. Conclusion

In this paper, we have discussed three different proba-
bilistic approaches to estimating packet latencies between
two network points. First, we have discussed the basic
idea behind aggregating timestamps and how the Lossy
Difference Aggregator (Section 3.1) leverages it. We then
proceeded with the Lossy Difference Sketch (Section 3.2),
which makes use of the basic ideas behind the LDA,
but estimates per-flow latencies [2]. Finally, we have
looked at Reference Latency Interpolation (Section 3.3),
an alternative approach to estimating per-flow latencies by
interpolating between latencies of reference packets [3].
Following that, we have compared the three approaches
in Section 4, where we have seen that both the LDA and
LDS usually provide more accurate latency estimates than
RLI, though they are less robust against packet loss and
reordering.

References

[1] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese,
“Every microsecond counts: tracking fine-grain latencies with a
lossy difference aggregator,” ACM SIGCOMM Computer Commu-
nication Review, vol. 39, no. 4, pp. 255-266, 2009.

doi: 10.2313/NET-2024-04-1 05

(2]

(3]

[4]

J. Sanjuas-Cuxart, P. Barlet-Ros, N. Duffield, and R. R. Kompella,
“Sketching the delay: tracking temporally uncorrelated flow-level
latencies,” in Proceedings of the 2011 ACM SIGCOMM conference
on Internet measurement conference, 2011, pp. 483-498.

M. Lee, N. Duffield, and R. R. Kompella, “Not all microseconds
are equal: Fine-grained per-flow measurements with reference la-
tency interpolation,” in Proceedings of the ACM SIGCOMM 2010
conference, 2010, pp. 27-38.

J. C. Eidson, M. Fischer, and J. White, “Teee-1588™ standard for a

Seminar IITM WS 23

27

(5]

precision clock synchronization protocol for networked measure-
ment and control systems,” in Proceedings of the 34th Annual
Precise Time and Time Interval Systems and Applications Meeting,
2002, pp. 243-254.

M. Lee, S. Goldberg, R. R. Kompella, and G. Varghese, “Fine-
grained latency and loss measurements in the presence of reorder-
ing,” in Proceedings of the ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems,
2011, pp. 329-340.

doi: 10.2313/NET-2024-04-1 05

