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Abstract—In the era of data-driven decision-making, ma-
chine learning models, especially neural networks, demon-
strate their capabilities across various domains. However, as
the deployment of these models increases, the vulnerability
of these models to attacks has become a significant concern.
This paper illustrates how attackers can extract sensitive
information from machine learning models, potentially com-
promising the confidentiality of training data. We intro-
duce the fundamentals of neural networks, emphasize the
architecture of Feedforward Neural Networks, and explain
how weights and biases intrinsically store knowledge. We
present two attacks designed to extract information about
the training data from a black-box neural network.

Index Terms—neural networks, adversarial attacks, informa-
tion extraction, privacy

1. Introduction

Machine learning (ML) currently undergoes a trans-
formative evolution. Transitioning from an academic cu-
riosity, it now serves as a pivotal tool in numerous
real-world applications [1]. Present capabilities include
detecting patterns in images [2], decoding nuances of
human language [3], and recognizing intricate auditory
cues [4]. Typically, these models are encapsulated and
operate as “black-boxes”. In this configuration, users ac-
cess the input-output relationships but remain uninformed
about internal operations [5]. This design choice simplifies
user interactions and, crucially, safeguards sensitive data
included in the training datasets [6].

However, the perceived simplicity and security hide
inherent challenges. Our review reveals that over-reliance
on the obscured nature of black-box models for secu-
rity is problematic. Despite their strengths, neural net-
works (NNs) are susceptible to attacks that aim to reveal
information, particularly regarding the data they were
trained on [7]. Most crucially, and as our primary contribu-
tion, we examine various techniques, shedding light on the
inherent weaknesses of these networks, challenging their
perceived invulnerability, and underscoring the urgent
need for better defenses [8].

The remainder of this paper is structured as follows:
Section 2 introduces the basics of NNs, Section 3 defines
our threat model, and Section 4 delves into methods for
information extraction. In Section 5, we explore specific
applications of the attacks within the networking domain,
especially in Intrusion Detection Systems (IDS). We con-
clude with a discussion on future directions.

2. NN Basics

This section introduces concepts related to NNs that
are essential for understanding subsequent discussions for
attacks and defenses. An NN is a computational model
inspired by biological NNs in the human brain. The
primary function of an NN is to receive input, process
it, and provide an output.

2.1. NN Architecture

The architecture of an NN defines its fundamental
structure, detailing how individual components, such as
neurons, are interconnected. This structure plays a pivotal
role in determining the network’s computational capabil-
ities and its ability to learn from data.
Neurons: Neurons are fundamental units in an NN. A
neuron receives multiple inputs, processes them, and gen-
erates a single output. This processing involves a weighted
sum of the inputs, an addition of a bias, and the applica-
tion of an activation function [9].
Activation Functions: These are mathematical functions
that, given an input, determine the output of a neu-
ron. Common activation functions include the sigmoid,
tanh [10], and ReLU (Rectified Linear Unit) [11].
Layers: Typically, we organize NNs in layers [9]. The
three main types of layers are:

Input Layer: This is where the network receives input
from the dataset. Each neuron in this layer corresponds to
one feature in the dataset.

Hidden Layer: These are layers between the input and
output layers and are each composed of multiple neurons.
An NN can have any number of hidden layers, and this
is what makes a network “deep” in deep learning [12].

Output Layer: This layer produces the final prediction
or classification of the network.
Feedforward NNs (FNNs): FNNs represent the most
straightforward artificial NN architecture type [10]. In
FNNs, the data flows in one direction, from the input layer,
through the hidden layers, and to the output layer. There
are no cycles or loops in the network. Figure 1 provides
an overview of such a network.

2.2. Knowledge in NNs

NNs store knowledge as weights and biases. Weights
determine the connection strength between two neurons.
Biases, similar to intercepts in linear equations, allow
neuron output adjustments. During training, the network
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Figure 1: Overview of a simple example structure of an
FNN of one input layer, two different hidden layers and
one output layer consisting of one neuron. Model was
adapted from [13]

modifies its weights and biases to reduce prediction dis-
crepancies from actual outcomes, typically using back-
propagation and optimization techniques like gradient de-
scent [9]. A common challenge with NNs is their black-
box nature. Although they produce relatively accurate
predictions, explaining the exact reasoning behind spe-
cific decisions remains difficult [14]. The knowledge in
the network is distributed across the NN’s weights and
biases, and it is not always clear how individual weights
contribute to the final decision.

3. Threat Model

This section defines our threat model which consists of
the properties of our target model as well as the attacker’s
capabilities.
Target Model: The target model refers to any trained
machine learning model, particularly those that have been
trained on sensitive datasets, such as medical records
or personal information. These models range from deep
NNs [15] to classification models trained by popular “ma-
chine learning as a service” providers [16].
Attacker Capabilities:
* Model Access: The attacker can access the model,
meaning they can send input data to the model and receive
the corresponding outputs. This does not imply that the
attacker has access to the original training data or any
metadata associated with it.
* Input Data: The attacker can provide any input data
to the model and observe its predictions or classifications.
This allows the adversary to infer information about the
model’s training data or its internal workings.
* Model Queries: The attacker can make unlimited
queries to the model. This means that the attacker can send
an unlimited number of input data points to the model and
observe the corresponding outputs.
Attacker Limitations:
* Black-box Assumption: Although the attacker inter-
acts with the model, they do not have direct access to
the model’s internal parameters, weights, or architecture.
This means that the attacker cannot directly observe or
manipulate the inner workings of the model.

* No Training Data Access: The attacker does not have
access to the original training data or any associated
metadata. This is particularly relevant in scenarios where
the training data is sensitive or confidential.

4. Information Extraction Methods

This section focuses on attacks that aim to extract
information about the training data of the NNs. The goal
is to analyze and compare the methods that were proposed
in the literature. The discussion starts with introducing the
different methods and then comparing them in terms of
their efficiency and accuracy. The section also discusses
the different assumptions that were made by the authors
of the different methods.

In this paper, the focus is on the following meth-
ods: Membership Inference Attacks in Section 4.1 and
Knowledge Extraction Attacks with No Observable Data
in Section 4.2. These represent two possible methods to
extract information about the training data.

4.1. Membership Inference Attacks (MIAs)

Membership Inference is not a singular adversarial
attack but rather represents a broader category of such
attacks. In these attacks, the objective is to determine
whether a specific data point belongs to the training
dataset by interacting with a model via a black-box
method. This method circumvents the need to rely on ex-
plicit statistics or specific details about the target model’s
architecture. Through this technique, the attacker learns
actual information about whether a specific data point is
part of the model’s original training dataset.

In this context, the discussion revolves around the
attack methodology introduced by Shokri et al. [16]. Here,
the authors trained an attack model to distinguish the
target model’s responses based on whether the input data
is part of its original training dataset (see Figure 2).

Membership inference attacks, as explored by Shokri
et al. [16], utilize a technique termed shadow training. In
this approach, multiple shadow models are constructed
to mimic the behavior of the target model. These shadow
models are trained on datasets that closely resemble the
distribution of the target model’s training data (Figure 3).
A salient feature of these shadow models is the attacker’s
awareness of their training datasets, ensuring a clear un-
derstanding of data record membership.

This knowledge facilitates the training of the attack
model using the input-output pairs from these shadow
models. While various strategies can be employed to
generate this data, it’s paramount that the data distribution
aligns closely with that of the target model’s training set.
By contrasting the behavior of the shadow models on
their known training data with their behavior on unfamiliar
inputs, the attack model can discern nuanced differences
in the target model’s responses.

The study highlights that, even without prior assump-
tions about the distribution of the target model’s training
data, and using fully synthetic data for shadow models,
membership inference accuracy can reach up to 90% [16].
Furthermore, the research underscores the potential risks
to datasets, such as those from health care, when used to
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Figure 2: Overview of the Membership Inference Attack
adapted from [16]. The attack model receives, along with
the class label of the input, the prediction output of the
original target model. A classification is then made to
ascertain whether the input data was part of the original
training dataset.

Figure 3: Overview of the training of shadow mod-
elsadapted from [16]. Shadow training sets are constructed
and used to train each of the models separately. The
datasets share the same format but contain different data
points from similar distributions.

train machine learning models that are publicly accessible.
This method lets an attacker reconstruct the training data,
making the potentially sensitive information available to
them. The efficacy of this method is contingent upon the
number and caliber of the shadow models and the con-
gruence of their training datasets with the target model’s
dataset. For a detailed understanding of the specific train-
ing methodology employed by Shokri et al. for the shadow
models, readers are referred to the original publication.

4.2. Knowledge Extraction Attacks with No Ob-
servable Data

In the paper titled “Knowledge Extraction with No
Observable Data” [15], Yoo et al. present methods for
two scenarios: available and hidden training data. NNs are
parameterized functions designed to approximate arbitrary
functions, specified by training data examples. The archi-
tecture of the network defines its computational structure,
while the parameters or weights determine its specific

Figure 4: Overview of the KEGNET’s operation adapted
from [15]. The generator network G utilizes sampled
variables ŷ and ẑ to produce a fake data point x̂, aim-
ing to mimic the original training data distribution by
minimizing the Kullback-Leibler (KL) divergence. Con-
currently, the decoder network D strives to retrieve the
variable ẑ from x̂ and reconstruct the original input,
minimizing the mean squared error (MSE) between the
original and reconstructed data. Both networks undergo
end-to-end training: G generates data points fed into a
fixed classifier and D, while D extracts a low-dimensional
representation. The iterative training refines both networks
based on discrepancies between generated and original
data and between original and reconstructed inputs.

computations. The paper introduces the concept of “unin-
tended memorization”, where NNs might inadvertently re-
veal out-of-distribution training data, termed as “secrets”.
From this method, the attacker extracts information stored
within the NN itself. The exact nature of this information,
such as the numbers depicted in Figure 5, is open to the
interpretation of the attacker.

For scenarios with available data, Yoo et al. [15] in-
troduce KEGNET (Knowledge Extraction with Generative
Networks). This method aims to move knowledge from
a large NN (known as the teacher network) to a smaller
one (called the student network). The authors designed
KEGNET, especially for scenarios where there is not much
training data or the student model needs to be small.
Figure 4 shows a visual explanation of the KEGNET
process.

However, when the original training data is concealed,
especially in areas such as medicine and defense, the
challenges increase. To solve this, KEGNET uses tools to
create fake data points that can replace the hidden original
training data. The main idea here is that the process of
pulling out knowledge focuses on a small set of data points
within a certain area [15]. This led to the creation of a
generator network, paired with a discriminator network,
to mimic and tell apart data points.

The team tested KEGNET on three datasets from the
UCI Machine Learning Repository. Using a multilayer
perceptron as a classifier and adding Tucker decompo-
sition to all dense layers, the results showed KEGNET did
better than other standard methods. This means an attacker
can use KEGNET to pull knowledge from different NN
designs and various types of training data.

While the main paper shows possible weak points
in hidden models, it does not give a clear method to
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Figure 5: Visual representation of the artificial data points
generated by the generator network of KEGNET [15].
These data points exemplify how the generator can pro-
duce synthetic data that closely resembles the original
training data. The original teacher network was trained
on the SVHN dataset [17]. Figure adapted from [15].

pull out specific details about the training data. However,
the authors do mention the generator network’s ability to
create data points similar to the original training data. An
example of this can be seen in Figure 5.

In conclusion, Yoo and his team introduce a sig-
nificant advancement in machine learning by crafting a
mechanism that extracts knowledge sans observable data.
Their method, KEGNET, offers a solution for scenarios
constrained by data accessibility due to privacy or confi-
dentiality nuances. KEGNET provides also an opportunity
for attackers to directly extract secrets stored in an NN.

5. Applications in the Networks Domain

In this section, we explore a specific application of
one of the attacks (MIA) introduced in Section 4 within
the networking domain. A prime example where NNs are
extensively used is in Intrusion Detection Systems (IDSs).

5.1. Intrusion Detection Systems

IDSs serve as a cornerstone in the realm of network
security, vigilantly monitoring network traffic to detect
malicious activities [18]. A pivotal aspect of their oper-
ation hinges on the training data, which predominantly
consists of network logs [18]. Figure 6 provides a visual
representation of the core components and functioning of
an IDS.

5.2. Learning Mechanisms of IDS

IDSs derive their efficacy from extensive training on
network logs. These logs capture diverse network activ-
ities, protocols, and communication patterns. By assimi-
lating this data, IDSs not only recognize but also learn
the underlying patterns of regular and anomalous traffic.
This learned knowledge empowers them to swiftly identify
and respond to potential threats, ensuring robust network
security [18].

5.3. Vulnerabilities and Potential Attacks on IDS

IDSs are not impervious to threats. One of the most
potent threats they face is MIAs. These attacks are de-

Figure 6: A schematic representation of an IDS showcas-
ing its core components and their interactions within a
network environment. This model emphasizes the critical
role of IDSs in monitoring network activities, verifying
connection patterns, and analyzing the flow of packets to
detect potential threats. Adapted from [18].

signed to reverse-engineer the data on which the IDS was
trained. By successfully executing an MIA, attackers can
gain information from the system. For instance, they can:
* Pinpoint commonly used services: By analyzing the
network logs, attackers can identify frequently used ports,
such as port 53, which is typically associated with DNS.
* Determine entities running specific services: Through
MIAs, attackers can discern which specific nodes or enti-
ties within the network are responsible for running certain
services, like DNS servers.
* Extract overarching network structure insights: Be-
yond just services, MIAs can provide attackers with a
broader understanding of the network’s layout, its key
entities, and their interrelationships.

5.4. Speculative Implications of MIAs on IDS

The implications of successful MIAs on IDS are not
just limited to information extraction. Armed with the
knowledge obtained from MIAs, skilled attackers can craft
malicious packets that blend seamlessly with regular traf-
fic, evading detection by the IDS. This potential scenario
emphasizes the urgent need for enhanced defenses against
such sophisticated attacks.
Countermeasures: While the primary focus of this paper
is on the vulnerabilities, it is worth noting that the research
community is not standing still. Efforts are being made
to develop defense mechanisms against such attacks, as
seen in [19], which proposes defense strategies based on
gradient differential privacy.

6. Conclusion and future work

In this paper, we described the intricate manner in
which NNs store information. Subsequently, we intro-
duced two distinct methods for knowledge extraction from
NNs when presented as a black box. In the application
of one of these attacks to the networking domain, we
demonstrated their significant implications, particularly
within Intrusion Detection Systems.

Moving forward, more research is imperative on robust
defense mechanisms, interdisciplinary collaboration be-
tween machine learning and cybersecurity, and the devel-
opment of transparent and interpretable NN architectures.
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Our findings underscore the importance of these areas in
ensuring the security and efficacy of NNs in real-world
applications.
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