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Abstract—After the standardization of the new transport
protocol QUIC in 2021, QUIC implementations are increas-
ingly optimizing for performance. Multiple implementations
have started to utilize the eXpress Data Path (XDP) technol-
ogy to speed up QUIC packet processing. XDP is a high-
speed network data path in the Linux kernel based on
the eBPF virtual machine. It allows bypassing the in-kernel
network stack. A similar technique is being developed for
Microsoft Windows. Due to the simplicity of UDP processing
in QUIC, XDP shows great promise for reducing kernel
overhead in QUIC implementations.

Index Terms—Linux, XDP, QUIC

1. Introduction

The transport protocol QUIC has seen increasing
adoption on the Internet, with most modern browsers
supporting QUIC [1]–[3] and with major web applications
being serviced via HTTP/2-over-QUIC or HTTP/3 (e.g.
most Google web applications) [4].

With the rising adoption of QUIC, major QUIC im-
plementations have become more mature and are investing
in performance optimizations. One potential optimization
would be to use kernel bypass mechanisms to speed
up lower-layer network packet processing. Most modern
operating systems (like Linux or Windows) have generic
in-kernel network stacks that usually provide transport
layer abstractions (most prominently the Berkeley socket
abstraction [5]). These network stacks are heavily opti-
mized but are typically designed for high flexibility and
generality. However, in specific cases this generality can
result in inefficiencies [6].

QUIC is built on top of the old UDP protocol, which
is typically implemented inside the kernel network stack
(exposed via the socket API). However, QUIC is designed
to require only minimal packet processing at lower layers,
e.g. IP fragmentation is prohibited by the standard [7].
Therefore, it would be more efficient to perform QUIC-
specific UDP payload extraction on incoming QUIC traffic
than to process it via the generic kernel network stack.
QUIC implementations would thus benefit from kernel
bypass mechanisms. For this reason, multiple QUIC im-
plementations (s2n-quic [8], MsQuic [9]) are currently
starting to utilize the XDP kernel bypass mechanism to
reduce the kernel overhead of their implementations.

There exist multiple techniques for high-speed packet
processing that gain performance by bypassing the ker-
nel network stack. One relatively new mechanism is the
XDP/AF_XDP mechanism [6] that shall be further de-
scribed in Section 2.

A popular alternative is DPDK (Data Plane Develop-
ment Kit), a project facilitating high performance network
I/O via specialized user-space Poll-Mode Drivers that poll
the NIC directly and thus bypass the kernel network stack
[10]. Initially developed by Intel in 2010 and targeting
only the Linux kernel, it today is hosted collaboratively
under the Linux Foundation and is also ported to other op-
erating systems like Windows. DPDK has been optimized
quite heavily over the years, often by taking advantage of
hardware-specific features (especially on Intel hardware).
Therefore, DPDK still remains able to achieve higher
performance than XDP, though at the disadvantage of
being highly invasive [11]–[13] (see also Section 2.6).
There have been academic proposals to utilize DPDK to
accelerate QUIC packet processing, e.g. picoquic-dpdk,
which claims to have improved throughput by a factor of
3 compared to the original picoquic implementation [14].

There are also further kernel bypass mechanisms like
PF_RING ZC, a proprietary module from the PF_RING
project of ntop. PF_RING ZC is a zero copy packet
processing framework that aims to provide a simple and
hardware independent API and thus differs slightly in its
abstraction level from the more low-level XDP and DPDK
[15]. Since release 7.6.0 it has incorporated XDP and
currently is built on top of AF_XDP by default [16].

2. XDP

The eXpress Data Path (XDP) is a subproject of the
IO Visor Project hosted by the Linux Foundation, initially
introduced in the Linux kernel in 2016 [18]. XDP is a
high performance data path in the Linux kernel based
on the eBPF runtime (extended Berkeley Packet Filter).
It acts as an early hook in the Linux network receive
(RX) path that can be used to bypass the kernel network
stack [6]. XDP was initially designed to be a purely in-
kernel mechanism for bypassing the network stack. A
primary use case was DoS mitigation, i.e. the ability to
drop packets from malicious traffic as early as possible.
However, the development of the AF_XDP socket type in
2018 allowed XDP programs to redirect network packets
efficiently to user space. This enabled the development of
high performance networking applications in user space
that bypass the kernel network stack completely [11].
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Figure 1: Receiving raw layer 2 frames via an AF_XDP socket (figure taken from [17])

2.1. eBPF

XDP builds on top of the extended Berkeley Packet
Filter (eBPF), an extension to the largely deprecated
classical Berkeley Packet Filter (cBPF) [5] in the Linux
kernel. eBPF was initially released in 2014 (cBPF in 1992)
and, like XDP, is part of the IO Visor Project. eBPF is an
in-kernel virtual machine that allows to load and unload
user-defined programs into designated code paths of the
kernel network stack at runtime. The LLVM compiler
backend supports compiling to eBPF bytecode. C (libbpf
[19]) and Rust (aya [20]) libraries allow the programming
of eBPF applications in higher level languages. eBPF pro-
grams have access to kernel networking infrastructure (e.g.
routing tables) via BPF helper functions and are verified
by the kernel on load to ensure program termination and
to enforce in-kernel safety requirements.

The initial use case of BPF was to capture and filter
network packets (e.g. by using tools like tcpdump). This is
usually done via a tc (traffic control) eBPF program (type
BPF_PROG_TYPE_SOCKET_FILTER) that hooks into
either the ingress or egress point of the networking data
path. Such eBPF programs are triggered before classical
netfilter hooks, but after initial processing of the network
stack (queuing, metadata extraction, GRO, etc.) as the
hooks already reside inside the tc (traffic control) layer
of the generic kernel network stack [21].

For high performance packet processing it is however
more desirable to have an even earlier hook on the receive
data path that circumvents the whole network stack. For
such use cases the XDP program type was developed.

2.2. eBPF XDP Programs

An XDP program is a specific type of eBPF program
(type BPF_PROG_TYPE_XDP). Once loaded on a net-
work interface it is triggered directly after the networking
driver has processed an incoming layer 2 frame from
the NIC. It therefore bypasses the kernel network stack
completely, runs before socket buffer allocation or GRO
processing and operates on the raw layer 2 frame in the
receive ring of the network driver (raw xdp_buff instead
of metadata rich sk_buff). XDP programs can only be
hooked to this ingress point of the networking data path
and not to an egress point like with tc eBPF programs. The
XDP program can arbitrarily process (and even modify)

the received frame and eventually exits with a return value
corresponding to a desired action to be triggered:

• XDP_ABORTED: drops the received frame and
throws an eBPF tracepoint exception

• XDP_DROP: drops the received frame silently

• XDP_PASS: passes the received frame on to the
in-kernel network stack

• XDP_TX: transmit the received frame back via
the NIC it arrived on

• XDP_REDIRECT: redirect the received frame to
another NIC or a user space AF_XDP socket

2.3. AF_XDP

AF_XDP is a specific socket type of the Linux Socket
API that can be used to pass raw network packets ef-
ficiently between kernel space and user space via the
fast XDP data path. The AF_XDP socket provides both
receive and transmit semantics (though not via the clas-
sical syscalls). An AF_XDP socket (in user space) can
receive raw layer 2 frames that a separate in-kernel XDP
eBPF program has specifically redirected to it (via the
XDP_REDIRECT action). This process is illustrated in
Figure 1. An AF_XDP socket in user space can addition-
ally transmit raw layer 2 frames out to the kernel that
directly passes them to the networking driver. The socket
type therefore bypasses the generic in-kernel network
stack completely. The user-space application is thus fully
responsible for parsing/processing the raw incoming layer
2 frames (received on the socket) and is also fully re-
sponsible for assembling the raw outgoing layer 2 frames
(transmitted via the socket).

AF_XDP sockets are more complex in usage and
configuration than regular socket types (e.g of type
AF_INET). However, they enable high performance user-
defined networking applications with similar performance
to kernel bypass mechanisms that rely on hardware-
specific user space drivers like DPDK. While AF_XDP
provides a generic Linux interface that works regardless
of hardware support, it only realize its full performance
potential with driver support, e.g to facilitate zero copy
semantics (see the XDP_ZEROCOPY flag) [21].

An AF_XDP socket is associated with the following
data structures that users must configure and interact with:
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• UMEM: A user-defined buffer of virtual contigu-
ous memory consisting of equally sized frames.
Network packets are passed between kernel space
and user space via this buffer. The UMEM has
two ring buffers associated with it:

– COMPLETION ring: A consumer ring
buffer in which the kernel stores pointers
to UMEM frames when transmission of the
corresponding frames has been completed.

– FILL ring: A producer ring buffer in which
the user space application can store pointers
to UMEM frames that can be filled by the
kernel when receiving on the socket.

• TX ring: A producer ring buffer in which the user
space application can store pointers to UMEM
frames that shall be transmitted by the kernel.

• RX ring: A consumer ring buffer in which the
kernel stores pointers to UMEM frames that were
received on the socket.

As with all sockets, a user application can wait for
incoming packets or transmission completion by using the
standard polling mechanisms of the Linux kernel (poll(),
select(), epoll()). AF_XDP sockets can therefore be
polled without pinning a whole CPU core to perform
wasteful busy polling as was common in DPDK (however
DPDK also supports event driven polling since version
17.05 [22]). Busy polling can still be performed with
AF_XDP sockets via the SO_BUSY_POLL mechanism of the
Linux socket API. This can be desirable, as busy polling
ensures that AF_XDP applications can run using a single
CPU core. Otherwise, two CPU cores will typically be
used: one for the actual application and one for the RX/TX
NAPI interrupt processing. This degrades performance as
it causes costly coherency traffic between the cores [11].

2.4. XDP-for-Windows

XDP is a Linux technology, however Microsoft has
also introduced an open source XDP implementation for
the Windows operating system in 2022. This "XDP-for-
Windows" implementation is heavily inspired but not a
direct fork of the Linux XDP project [23].

As of September 2023, the implementation does not
support eBPF programs, though the developers are claim-
ing to aim for integration of XDP-for-Windows with the
eBPF-for-Windows project. Instead of eBPF, XDP-for-
Windows currently provides a custom built-in in-kernel
XDP program. This program can not be coded directly
by the user, but can be configured with matching rules
and actions. This built-in XDP program can also be con-
figured to redirect incoming network packets into user-
space AF_XDP sockets (similar to the XDP_REDIRECT
action in Linux XDP). The AF_XDP socket API is fully
supported, but is not fully compatible with the Linux
AF_XDP socket API. The underlying data structures used
are analogous to Linux XDP, with a UMEM buffer and a
TX, RX, COMPLETION, FILL ring buffer.

MsQuic, the QUIC implementation of Microsoft, al-
ready has experimental support for utilizing XDP-for-
Windows in its Windows port [24].

2.5. Caveats of XDP

XDP is a mechanism to bypass the kernel network
stack. Therefore, XDP can only benefit applications that
do not require the functionality provided by the network
stack (e.g. packet filtering for DoS mitigation) or can
implement the functionality in a faster application-specific
way (e.g. minimal UDP payload extraction in QUIC) [21].
Furthermore, an AF_XDP socket is not simply a high
performance socket, but rather a way to pass raw layer
2 frames efficiently between the kernel and user space
applications without having to traverse the kernel network
stack. Unless applications can implement a more efficient
way than the kernel network stack for processing raw layer
2 frames to the desired abstraction that classical sockets
provide (e.g. a TCP byte stream), AF_XDP sockets can
not replace classical socket usage in existing networking
applications. When shortcutting the network stack via
XDP, user applications also need to think about possible
safety and security implications of their custom packet
processing, e.g. if firewalls are bypassed, as the exist-
ing kernel networking mechanisms do not affect traffic
redirected to AF_XDP sockets. For example, the QUIC
implementations described in section 3 that utilize XDP
bypass any classical firewalling on the system. Like all
required functionality that would otherwise be provided
by the kernel network stack, firewalling would have to be
manually re-implemented when using XDP.

2.6. Comparison to DPDK

The main difference to other high speed packet pro-
cessing mechanisms like DPDK is that XDP is highly
integrated with the kernel. This means that XDP can
provide an interface that is integrated into the standard
operating system interfaces like eBPF or the socket API.
XDP programs can also reuse existing networking capabil-
ities of the kernel (e.g. routing tables). A major advantage
compared to DPDK is that XDP facilitates device sharing,
i.e. networking devices used by XDP applications remain
visible/usable to non XDP applications [21]. XDP also
does not require the use of huge pages like DPDK does
[25]. A major drawback of XDP, however, is that it does
not reach the performance of DPDK (e.g. 115 Mpps
reached with DPDK against 100 Mpps reached with XDP
in a packet drop benchmark on five cores [6]). CPU
usage of DPDK was worse than XDP in the past due to
DPDK requiring busy polling, but DPDK has since added
support for event driven polling. Overall, XDP seems to be
better suited in use cases that require minimal invasiveness
and are more hardware agnostic (e.g. classical desktop
applications), whereas DPDK seems to be better suited
for specialized use cases that can tolerate high invasive
measurements to achieve maximal performance (e.g. the
classical DPDK use case of accelerating telecom NFV).

3. QUIC Implementations

The QUIC protocol is designed to replace the widely
used TCP/TLS stack for web traffic. The proposed
HTTP/3 standard is explicitly implemented on top of
QUIC [26]. The protocol was standardized in 2021 with
RFC 9000 [7]. QUIC implementations are still under
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active development. But as QUIC is increasingly being
adopted on the Internet, they are becoming ever more
mature and are starting to invest more into optimizing
performance. Major QUIC implementations are currently
starting to utilize kernel bypass mechanisms to speed up
their implementations, in particular XDP.

3.1. Concept of XDP Usage in QUIC

Conceptually, XDP is utilized in QUIC implementa-
tions to speed up UDP payload extraction from sockets.
The QUIC protocol is designed to be implemented in
user space instead of inside the kernel (where transport
layer protocols typically are implemented) to allow for
quicker and more flexible development cycles. However,
the QUIC standard mandates a minimal UDP layer un-
derneath QUIC, mainly to enable the traversal of legacy
middleboxes [7].

A lot of the functionality of the generic kernel network
stack is not necessary to process incoming QUIC traffic.
Due to a combination of restrictions in the QUIC standard
and its underlying network stack as well as the behavior
of modern NICs, UDP payloads can be easily extracted
from incoming layer 2 frames.

• Layer 2:
The layer 2 protocol can be assumed to be Ether-
net, since most modern NICs (or their correspond-
ing drivers) will always emit incoming frames in
ethernet format (even if it is received via WLAN
it will wrap the received 802.11 payload into a
"fake" ethernet frame). MAC addresses also do not
need to be checked as networking devices are not
set to promiscuous mode by default. Payloads are
extracted by simply removing the Ethernet header.

• Layer 3:
The layer 3 protocol used almost exclusively on
the Internet is either IPv4 or IPv6. The QUIC
standard forbids IP fragmentation by design [7].
This simplifies payload extraction, since one raw
ethernet frame always holds exactly one UDP
datagram. The IP header only needs to be pro-
cessed minimally: IP addresses and the ECN (ex-
plicit congestion notification) must be stored for
processing in higher layers of QUIC (e.g. connec-
tion migration and congestion control). The IPv4
checksum is not checked to improve performance.
This can be assumed to be safe, since stronger
integrity checks are employed in both lower layers
(e.g. via ethernet CRCs) and higher layers (e.g.
via TLS MAC/AEAD) of the employed QUIC
network stack. IPv6 does not employ a checksum
field for similar reasons [27]. Other fields of the
IP header are also ignored by the examined im-
plementations. Payloads are extracted by simply
removing the IP header.

• Layer 4:
Although QUIC itself implements layer 4 func-
tionality, it builds on top of UDP by design. UDP
is a minimalistic protocol that requires minimal
processing. The ports are noted for processing in
the QUIC connection migration mechanism. The

UDP checksum is not checked to improve perfor-
mance. This can be assumed to be safe for the
same reasons as with IPv4 checksums. Payloads
are extracted by simply removing the UDP header.

These steps can be done via XDP to process the
incoming QUIC traffic on the RX path manually up to
the UDP layer, bypassing the kernel network stack. For
the TX path the process is inverted, however, all fields
must be filled (even those ignored on the RX path) and
all checksums must be computed.

3.2. Specific QUIC Implementations

To the best of the author’s knowledge, currently two
major QUIC implementations exist that utilize XDP:

• MsQuic from Microsoft [9]:
The XDP implementation of MsQuic is currently
(September 2023) under active development. It is
released under "preview support" for the Windows
porting of MsQuic and uses XDP-for-Windows
(Linux is not supported yet) [24]. MsQuic is im-
plemented in C++ and can therefore directly use
the native XDP-for-Windows libraries. The imple-
mentation configures the built-in XDP program of
XDP-for-Windows to redirect incoming traffic to
AF_XDP sockets. The manual packet processing
of UDP frames as described above is performed
completely in user space. Currently the application
supports only busy polling on AF_XDP sockets.
Microsoft claims that by utilizing XDP it can
improve both latency and throughput by ca. 100%
on serialized HTTP requests [28].

• s2n-quic from Amazon AWS [8]:
The XDP implementation of s2n-quic is currently
(September 2023) also under active development
and only available for Linux. s2n-quic is im-
plemented in Rust and uses the aya eBPF/XDP
library. It must wrap Linux C syscalls for use in
Rust. The implementation uses a custom in-kernel
eBPF XDP program to redirect traffic destined
to the correct UDP port into AF_XDP sockets.
The manual packet processing of UDP frames as
described above is then performed in user space.
s2n-quic supports both busy polling and event-
based polling (via the tokio runtime) on AF_XDP
sockets. XDP is not yet fully integrated into the
API, but s2n-quic does provide a full server-client
example ("s2n-quic-qns") that can be configured
to use XDP. AWS does not provide detailed per-
formance analysis but released profiling data in-
dicates a significant reduction of kernel overhead
when using XDP [29].

In addition, there has been an attempt by LiteSpeed
Technologies to add XDP support to their lsquic QUIC
implementation [30]. The design of the implementation is
similar to s2n-quic: it utilizes Linux XDP with a separate
eBPF XDP program that efficiently extracts UDP payloads
and redirects to AF_XDP sockets. LiteSpeed claims that
this gave a 43% improvement in throughput compared to
standard UDP sockets [31]. However, this was only imple-
mented as a proof-of-concept and was never incorporated
into the official lsquic implementation.
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4. Conclusion and future work

Kernel bypass mechanisms for networking applica-
tions are important tools to facilitate high-performance
packet processing on general purpose processors/operating
systems. XDP is an upcoming technology of this kind. It
allows bypassing the kernel network stack and optionally
passing raw layer 2 frames efficiently between user space
applications and the kernel. Although it is still slower than
its main competitor DPDK, it has the advantage of being
highly integrated with the kernel (e.g. it does not require
user space applications to take full control of the NIC).

Major implementations of the new QUIC transport
protocol have started to utilize the XDP technology to
speed up their implementations by reducing the kernel
overhead of the standard UDP socket API. Due to the
specifics of the QUIC protocol and its underlying network
stack, the extraction of QUIC payloads from its underlying
UDP layer can be done in a minimalistic manner that is
more efficient than the generic kernel network stack. XDP
can leverage this fact and has shown promising results for
improving performance in major QUIC implementations.
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