
RFC 9000 and its Siblings: An Overview of QUIC Standards

YaXuan Chen, Benedikt Jaeger∗, Johannes Zirngibl∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: chenyaxuan123@gmail.com, jaeger@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—QUIC was a transport protocol designed by
Google in 2012, aiming to improve traditional transport
protocols, such as TCP. QUIC reduces the handshake latency
and solves the head-of-line blocking. The IETF (Internet
Engineering Task Force) standardized QUIC in 2021 and
continues to improve and extend the QUIC transport pro-
tocol. There are 12 RFCs (Request for Comments) related
to QUIC, which involve the core concepts of QUIC, QUIC’s
extensions, applicability, manageability, and HTTP/3. In this
paper, we describe the core concept of QUIC based on RFC
9000 and outline four more RFCs to provide an overview of
QUIC standards. Furthermore, we discuss which direction
the QUIC working group plans for the future.

Index Terms—Transport protocols; QUIC; HTTP/3;

1. Introduction

With the gradual popularization of the Internet, there
has been increasingly more attention on high-speed and
stable connections. TCP (Transmission Control Protocol)
is the first choice for the developer. However, applications
are limited by using TCP as the underlying transport [1].
TCP needs 3 round-trip time (RTT) for setting up the
first connection from a client to the server. Furthermore,
the head-of-line blocking increases the connection latency
when a packet losses [2]. Moreover, TCP is commonly
implemented in the operating system kernel. Therefore,
the TCP modifications require OS upgrades [3].

QUIC is a new transport protocol designed by Google
in 2012 to replace the traditional HTTPS stack: HTTP/2,
TLS, and TCP [3], as shown in Figure 1. Notably, QUIC
builds on top of UDP and uses a different handshake
mechanism from TCP [2], which combines the transport
and cryptographic handshake and supports the 0-RTT
connection. Furthermore, QUIC solves the head-of-line
blocking using a lightweight data-structuring abstraction,
streams [3], present in Section 3.1. Additionally, QUIC is
implemented in user space, which can be updated without
changing the operating system kernel. Applications like
Facebook, YouTube, and Gmail have supported QUIC.
QUIC is used by 7.6% of all the websites in Novem-
ber 2023 [4]. The proportion of QUIC will continue to
increase in the future.

The IETF QUIC Working Group [5] is responsible for
the maintenance and evolution of QUIC. The first version
of QUIC was standardized in May 2021 as RFC 9000 [6].
There are 12 RFCs related to QUIC until May 2023, as
shown in Table 1. However, the content of all RFCs is

Figure 1: QUIC in the traditional HTTPS stack [3].

too much, and we decided to describe part of them in this
paper, marked in red in Table 1.

The paper is structured as follows: Section 3 describes
the core concepts of QUIC. In Section 4, we present an
overview of QUIC extensions including RFC 9221 [7],
RFC 9368 [8], and RFC 9369 [9]. Furthermore, we present
RFC 9114 [10] about HTTP/3. In Section 5, we discuss
the future directions of QUIC.

2. Related Work

QUIC related RFCs. This paper provides an
overview of QUIC standards and is based on the 12
RFCs [6]–[17].

Core concept of QUIC. Langley et al. in [3]
explain the main features of QUIC, and Cui et al. in [1]
analyze the advantage of QUIC compared to TCP. Sec-
tion 3 are closely related to these works.

3. Core Concepts of QUIC

In this section, we outline the core specifications of
QUIC from RFC 9000 [6], including QUIC streams, con-
nection migration, and flow control. In addition, we ex-
plain how QUIC solves head-of-line blocking. Moreover,
we present the congestion control of QUIC from RFC
9002 [7]. Furthermore, we describe the process of 0-RTT
handshake from RFC 9001 [12].

3.1. QUIC Streams

QUIC streams are a lightweight abstraction that pro-
vides a reliable bidirectional bytestream [3]. Streams con-
sist of multiple stream frames encapsulated in a QUIC
packet, as shown in Figure 2. There are two important
values in a stream frame:

Seminar IITM WS 23 5 doi: 10.2313/NET-2024-04-1_02



TABLE 1: Overview of QUIC-related RFCs

RFCs Titel Publication date Content

8999 Version-Independent Properties of QUIC May 2021 Definition of the properties of the QUIC transport protocol.
9000 QUIC: A UDP-Based Multiplexed and Secure Transport May 2021 Description of the core QUIC protocol.
9001 Using TLS to Secure QUIC May 2021 Functionalities of TLS in QUIC.
9002 QUIC Loss Detection and Congestion Control May 2021 Loss detection and congestion control mechanisms for QUIC.
9221 An Unreliable Datagram Extension to QUIC March 2022 QUIC Extension, which supports unreliable datagrams.
9287 Greasing the QUIC Bit August 2022 Definition of the usage of QUIC Bit.
9368 Compatible Version Negotiation for QUIC May 2023 The update of the version negotiation mechanisms for QUIC.
9369 QUIC Version 2 May 2023 Definition of the second version of QUIC.
9308 Applicability of the QUIC Transport Protocol September 2022 Caveats for the developers who want to use QUIC.
9312 Manageability of the QUIC Transport Protocol September 2022 Guidance for network operations to manage QUIC traffic.
9114 HTTP/3 June 2022 The version of HTTP, which uses QUIC as the transport protocol.
9204 QPACK: Field Compression for HTTP/3 June 2022 The mechanismus of QPACK compression.

Figure 2: Structure of a QUIC packet [3].

• Stream ID is a unique 62-bit integer that identifies
the stream. The odd IDs represent client-initiated
streams and even IDs for server-initiated streams.

• Offset represents in which position the transmitted
data should be placed. QUIC packets are encapsu-
lated in UDP packets, and UDP does not transmit
data in order. The unordered stream data can be
placed in the correct stream and position with
stream ID and offset.

Additionally, QUIC also provides unidirectional streams
for different purposes (e.g. the control stream in HTTP/3,
which is introduced in Section 4.4.)

Figure 3: Multiplexing comparison [1].

Stream multiplexing is a method for sending multi-
ple data streams over a single transport connection [1].

Figure 3 provides a comparison of multiplexing:

• HTTP1.1 creates multiple TCP connections for
different resources, as shown in Figure 3a.

• HTTP/2 improves from HTTP1.1 and multiplexes
streams over one TCP connection. However, the
data are transmitted in order with TCP, and when
one packet is lost on one stream, the packets on
other streams are blocked. It leads to head-of-line
blocking, as shown in Figure 3b.

• QUIC allows other streams to continue to re-
ceive packets instead of blocking all streams while
waiting for packet recovery [18] because QUIC
does not require ordered delivery of all packets, as
shown in Figure 3c. Therefore, QUIC eliminates
head-of-line blocking.

3.2. Connection Migration

The NAT routers track the TCP connections with
the 4-tuple (source IP, source port, destination IP, and
destination port). The NAT routers will rebind and change
a source IP or port to the client according to the timeout.
However, the NAT rebinding is more aggressive for UDP
than TCP [3], [19]. Therefore, QUIC introduces a 64-bit
Connection ID as an identifier for each connection, which
is carried by the QUIC packet, as shown in Figure 2.
Endpoints can use Connection ID to track QUIC connec-
tions without checking the 4-tuple [20]. At the beginning
of the QUIC design, the Connection ID aims to avoid the
problem of NAT rebinding. Currently, there is an extension
of QUIC in progress, which supports generating routable
QUIC Connection IDs [21].

3.3. Flow Control

QUIC provides two levels of flow control:

• The stream-level flow control limits the data sent
on each stream. The initial limits of the streams
are set during the handshake. A receiver can in-
crease the limit periodically to accept more data
on the stream by sending MAX_STREAM_DATA
frames.

• The connection-level flow control defines the
total bytes of stream data on all streams, and the
limit of connection is determined according to the
sum of bytes consumed on all streams [6].

Seminar IITM WS 23 6 doi: 10.2313/NET-2024-04-1_02



3.4. Congestion Control

Similar to the TCP, QUIC chooses a pluggable conges-
tion control interface, which at first is Cubic [22], to find
the suitable algorithms. Notably, QUIC provides a differ-
ent environment for congestion control than TCP [1]. To
improve the design of TCP’s sequence number, the QUIC
packet is identified by the unique packet number [3]. The
receiver reassembles the packet according to the stream
offset. This separation of transmission order from delivery
order avoids retransmission ambiguities. Moreover, QUIC
provides more accurate network roundtrip time estimation
with the delay information between when a packet is
received and when the corresponding acknowledgment is
sent [7]. Furthermore, QUIC supports up to 256 ACK
blocks, making QUIC more resilient to reordering and
loss than TCP [3]. Consequently, based on the same
congestion control, QUIC detects and recovers from loss
more efficiently [18].

3.5. 0-RTT Handshake

Figure 4: Timeline of QUIC’s initial 1-RTT handshake,
a subsequent successful 0-RTT handshake, and a failed
0-RTT handshake [3].

The Transport Layer Security (TLS) protocol provides
a secure channel between two communicating peers. Com-
pared to the previous version, TLS 1.3 adds a 0-RTT
mode, saving a round trip at connection setup [23]. TCP
that uses TLS 1.3 establishes a connection with at least
1-RTT. QUIC combines the cryptographic (TLS 1.3) and
transport handshake to minimize the connection establish-
ment time to 0-RTT. There are two types of handshake,
as shown in Figure 4:

• Initial 1-RTT handshake: For the first connec-
tion to the server, the client sends the inchoate
client hello (CHLO) message to the server. The
server sends the reject message back, which con-
tains valuable information for the subsequent con-
nections [3].

• Successful 0-RTT handshake: For the client and
server that had communicated before, the client
can send complete CHLO with the encrypted re-
quest immediately [1].

4. QUIC RFCs

In this section, we discuss QUIC extensions, including
RFC 9221 [13], RFC 9368 [8], and RFC 9369 [9]. Further-
more, we introduce RFC 9114 [10], which standardizes

HTTP/3, a new version of HTTP that uses QUIC as the
transport protocol.

4.1. RFC 9221

RFC 9221 [13] aims to extend QUIC to support the
transmission of unreliable datagrams. The demand for
transmitting unreliable data is increasing in some areas,
such as audio/video streaming, gaming, and real-time
network applications. QUIC is the better choice instead
of UDP with the following advantages:

• QUIC provides a more precise loss recovery mech-
anism and more effective single congestion con-
trol.

• The application can use both a reliable stream and
an unreliable flow within one connection, which
benefits from the reduced handshake latency.

• QUIC provides a single congestion control for
reliable and unreliable data.

Before RFC 9221 was published, Palmer et al. pre-
sented a simple extension to QUIC: ClipStream, used for
video streaming [24]. This extension is designed based on
a simple observation: not all frames in a video encoding
scheme are equally important. ClipStream uses reliable
transport for important frames (e.g. I-Frames) and unre-
liable transport for other frames (e.g. B- and P-Frames).
Notably, ClipStream outperforms TCP and QUIC that not
support the transmission of unreliable datagrams [24].

4.2. RFC 9368

Initially, QUIC does not provide a complete version
negotiation mechanisms. The server can only reject the
request from the client that uses an unacceptable version.
RFC 9368 [8] updates this mechanism and defines the two
types of version negotiation: compatible and incompatible
version negotiation

Compatible version negotiation starts when the
server knows how to parse the client’s first packet, which
contains the list of versions that the client knows its first
packet is compatible with. The server must select one of
these versions it supports as the negotiated version. Sub-
sequently, the server converts the client’s first packet into
the negotiated version and replies to the client. Notably,
version compatibility is not symmetric: A is compatible
with B, but B may not be compatible with A.

Incompatible version negotiation happens if the
server can not parse the client’s first packet. The server
sends a version negotiation packet to the client, which
contains the server’s offered versions. If the client does
not find a version that it supports, the connection will
be aborted. Incompatible version negotiation causes one
more round trip than compatible version negotiation.

4.3. RFC 9369

RFC 9369 [9] defines QUIC version 2 to mitigate
ossification concerns and exercise the version negotiation
mechanisms, which are presented in Section 4.2. QUIC
version 2 provides an example of the minimum changes
necessary to specify a new QUIC version. The differences
with QUIC version 1 are as follows:

Seminar IITM WS 23 7 doi: 10.2313/NET-2024-04-1_02



• Version Field of long headers is 0x6b3343cf,
generated by taking the first four bytes of the
sha256sum of "QUICv2 version number".

• Long header packet types are different.
• Cryptography changes including the salt used to

derive initial keys, HMAC-based key derivation
function (HKDF) labels, and retry integrity tag.

For more details of the changes, we refer the readers
to [9]. QUIC version 2 is not intended to replace version
1 and is compatible with version 1. Notably, a session
ticket or token from a QUIC version 1 connection must
not used to initiate a QUIC version 2 connection, and vice
versa. Moreover, QUIC version 2 provides no different
application functionalities than version 1. Furthermore,
QUIC version 2 has no changes to the security.

4.4. RFC 9114

Figure 5: Protocol stack for different HTTP versions [25].

The Hypertext Transfer Protocol (HTTP), born in the
early 90s, takes a dominant position in web protocols.
Unlike the previous versions, HTTP/3 uses QUIC instead
of TCP as the transport protocol, as shown in Figure 5.
RFC 9114 [10] defines a mapping of HTTP semantics
over QUIC. In this section, we describe how QUIC’s
features are mapped to HTTP/3 including the discovery
of an HTTP/3 endpoint, QUIC streams, and per-stream
flow control.

Discovery of an HTTP/3 endpoint: The server can
announce the client with the Alt-Svc HTTP response
header or the HTTP/2 ALTSVC frame using the "h3"
ALPN token, which represents the availability of HTTP/3.
The server may serve HTTP/3 on any UDP port. After
receiving the Alt-Svc record, the client may establish a
QUIC connection using HTTP/3.

QUIC streams: The stream data containing HTTP
frame are carried by QUIC stream frames (Section 3.1).
QUIC provides bidirectional and unidirectional streams.
Bidirectional streams are only initiated by the client.
Each bidirectional stream handles a pair of HTTP requests
and responses. Unidirectional streams are used for a
range of purposes. Two unidirectional stream types are
defined:

• Control streams aim to manage other streams.
At the beginning of the connection, each side of
the endpoint must initiate a single control stream.
A pair of single bidirectional streams ensures the
performance and stability of data because it allows
endpoints to send data as soon as possible.

• Push stream is designed for the server push fea-
ture introduced in HTTP/2. Server push allows the

server to send resources that the client may need
to the client without the client’s request, as shown
by Stenberg in [26].

Flow control: QUIC provides flexible flow con-
trol. The two levels of flow control, which are men-
tioned in Section 3.3, allow the developer to imple-
ment several mechanisms. The developer can send the
MAX_STREAM_DATA frames in a linear, non-linear, or
dynamic manner based on RTT estimates and application
data consumption rate, as shown by Marx et al. in [27].
The mechanism of the QUIC flow control is still an open
problem and can be improved.

5. Conclusion and Future Work

In this paper, we provide an overview of QUIC and
its related RFCs. QUIC solves the head-of-line blocking.
Furthermore, the connection can survive during the change
of IP and port. Moreover, with the integration of TLS 1.3,
the security is improved, and 0-RTT is facilitated to gain
a faster handshake. Notably, QUIC shows excellent po-
tential in extensibility. For unreliable connections, QUIC
provides more choices for some areas, such as gaming and
video streaming. With the promotion of the compatible
version negotiation, version 2 of the QUIC is standardized,
which provides an example of the new QUIC version.
In Addition, QUIC has desirable features in transport for
HTTP [10].

The IETF QUIC Working Group continues to con-
tribute to the QUIC, and there are five directions:

• The qlog, an extensible high-level schema for a
standardized logging format, is now used for the
QUIC, HTTP/3, and QPACK events.

• Connection migration is going to be improved.
The routable QUIC connection IDs are designed
to route the packets with migrated addresses cor-
rectly.

• Multipath extension aims to enhance the usage
of multiple paths for a single connection.

• Control of delaying of acknowledgments aims
to improve connection and endpoint performance.

• Reliable QUIC stream resets allow sending the
stream data up to a certain byte offset after reset-
ting a stream.

We refer readers for more details to the in-progress docu-
ments [5], authored by the IETF QUIC Working Group.

References

[1] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, “Innovating
transport with quic: Design approaches and research challenges,”
IEEE Internet Computing, vol. 21, no. 2, pp. 72–76, 2017.

[2] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “QUIC: Better
for what and for whom?” in 2017 IEEE International Conference
on Communications (ICC), 2017, pp. 1–6.

[3] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings
of the conference of the ACM special interest group on data
communication, 2017, pp. 183–196.

[4] [Online]. Available: https://w3techs.com/technologies/details/
ce-quic

Seminar IITM WS 23 8 doi: 10.2313/NET-2024-04-1_02



[5] [Online]. Available: https://quicwg.org/

[6] J. Iyengar and M. Thomson, “RFC 9000 QUIC: A UDP-based
multiplexed and secure transport,” 2021.

[7] J. Iyengar and I. Swett, “RFC 9002: QUIC Loss Detection and
Congestion Control,” 2021.

[8] D. Schinazi and E. Rescorla, “RFC 9368: Compatible Version
Negotiation for QUIC,” 2023.

[9] M. Duke, “RFC 9369: QUIC Version 2,” 2023.

[10] M. Bishop, “RFC 9114: HTTP/3,” 2022.

[11] M. Thomson, “RFC 8999: Version-Independent Properties of
QUIC,” 2021.

[12] M. Thomson and S. Turner, “RFC 9001: Using TLS to secure
QUIC,” 2021.

[13] T. Pauly, E. Kinnear, and D. Schinazi, “RFC 9221: An Unreliable
Datagram Extension to QUIC,” 2022.

[14] M. Thomson, “RFC 9287: Greasing the QUIC Bit,” 2022.

[15] M. Kühlewind and B. Trammell, “RFC 9308 Applicability of the
QUIC Transport Protocol,” 2022.

[16] ——, “RFC 9312 Manageability of the QUIC Transport Protocol,”
2022.

[17] C. Krasic and M. Bishop, “RFC 9204: QPACK: Field Compression
for HTTP/3,” 2022.

[18] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mis-
love, “Taking a long look at QUIC: an approach for rigorous
evaluation of rapidly evolving transport protocols,” pp. 290–303,
2017.

[19] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and
M. Kojo, “An experimental study of home gateway characteristics,”
in Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, 2010, pp. 260–266.

[20] [Online]. Available: https://blog.cloudflare.com/the-road-to-quic/

[21] [Online]. Available: https://quicwg.org/load-balancers/
draft-ietf-quic-load-balancers.html

[22] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Schef-
fenegger, “CUBIC for fast long-distance networks,” 2018.

[23] E. Rescorla, “Rfc 8446: The transport layer security (tls) protocol
version 1.3,” 2018.

[24] M. Palmer, T. Krüger, B. Chandrasekaran, and A. Feldmann, “The
quic fix for optimal video streaming,” pp. 43–49, 2018.

[25] M. Trevisan, D. Giordano, I. Drago, and A. S. Khatouni, “Mea-
suring HTTP/3: Adoption and performance,” pp. 1–8, 2021.

[26] D. Stenberg, “HTTP2 explained,” pp. 120–128, 2014.

[27] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same standards,
different decisions: A study of QUIC and HTTP/3 implementation
diversity,” pp. 14–20, 2020.

Seminar IITM WS 23 9 doi: 10.2313/NET-2024-04-1_02


