
Containerized Systems: Difference towards network IO

Raphael Auzinger, Florian Wiedner∗, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: raphael.auzinger@tum.de, {wiedner, andre}@net.in.tum.de

Abstract—Containers create an isolated runtime for applica-
tions alike and have become an integral part of modern cloud
computing. To ensure good isolation and security different
runtime architectures emerged. On one side Linux containers
like runC and on the other micro VM architectures like Kata
Containers, gVisor or Firecracker. These security benefits
sometimes come at the cost of additional overhead and
resource usage. This work combines and compares various
other papers and research which address different architec-
tures and investigate how they influence performance.

Index Terms—containeization, runC, LXD, Kata Container,
gVisor, network performance

1. Introduction

Virtualization and containerization became an impor-
tant tool in the modern age of developing software and
cloud computing. It enables developers to quickly and
easily setup systems on their development environment
without the necessity to start a virtual machine. Contain-
ers can create an environment with all the build tools
included for reproducible builds. They are used to run
CI/CD tests and verify the project. Further, virtualization
enabled cloud service providers to offer not only bare
metal products but also parts of a dedicated machine
with a variety of configuration options. Starting another
virtual private server when the load on a system rises
or running edge functions to provide a service, relays
on this technology. In a cloud environment speed and
efficiency is crucial to reduce latency and energy usage.
This might favor one technology over another. Further,
containers should be isolated from each other to ensure
a secure environment and availability. These two goals
are partly in conflict, as we will explore in the following
sections.

The paper starts with an introduction to the differ-
ent standards and how they influence the runtime ar-
chitectures. In Section 4 the architectures are discussed.
How classic containerization with cgroups and names-
paces evolved and how optimized micro VMs for en-
hanced security, performance and seperation from other
containers. In Section 5 the networking performance of
the different architectures will be compared and analyzed.
Section 6 summarizes the paper and will give an outlook
on further research and details which can be included in
future papers.

2. Related work
This paper is influenced by the research of Wang et

al. [1] who analyzed the performance and isolation of
runC, gVisor and Kata Containers runtime, Cochak et
al. [2], who compared runC and Kata Containers using
Docker and on the work of Kovács [3] in which he
compared Linux Containers, runC with Docker and KVM
virtualization.

3. Containerization Standards
In order to use different runtimes with container im-

ages, two standards were established. The Open Container
Interface Runtime Specification for the underlying runtime
which takes care of execution of a container and the Open
Container Interface Image Specification for container im-
ages. The OCI Runtime Specification defines the behav-
ior and the configuration interface of low-level container
runtimes [4]. Applications like Docker, Kubernetes and
Podman [5] [6] [7] can interface with OCI-RS and
control the containers. Runtimes which support OCI-RS
like runC, LXD, Kata Containers, gVisor and Firecracker
can run images which adhere to the OCI Image Spec. It
defines the structure of a container image and how the
runtime should execute it [8].

Figure 1: The relationship between Docker, CRI-O, con-
tainerd and runc [9]

At level 1. an application like kubernetes commu-
nicates with an underlying runtime at level 2. , which

Seminar IITM WS 23 1 doi: 10.2313/NET-2024-04-1_01



complies to the Container Runtime Interface Specification.
This runtime can now control an OCI image 5. and run it
as a new container at level 6. [10].

4. Container Architectures

New architectures were developed around these stan-
dards to enhance the security of the host system running
containers and to strengthen the isolation between them.
Figure 2 shows where different architectures reside, re-
garding their level of virtualization. On the left no virtual-
ization on a bare metal host system and on the right virtual
machines with fully fledged operating systems. Subsection
4.1 4.2 and 4.3 will get into the details and degree of
virtualization.

Figure 2: Container isolation spectrum [11]

4.1. Linux Containers

Linux Container, runC and Linux Container Daemon
utilize Linux native virtualization methods like cgroups
and namespaces to provide a runtime for containers [12]
[13] [14]. This approach is very lightweight since the host
kernel can be shared with the running container as shown
in Figure 3. However, a shared kernel introduces some

Figure 3: runC virtualization diagram [2]

security concerns if an application escapes the container.

4.2. Sandbox With Multi-purpose Kernel

gVisor tries to solve these security issues and intro-
duces a Sentry and Gofer between the host kernel and a
container as shown in Figure 4. System calls inside the
container are intercepted and processed by gVisor, which
in tern will forward them to the host or abort the call [11].

Figure 4: A schematic diagram of gVisor [15]

gVisor handles most of the network tasks inside netstack,
but still performs some checks on the host [1]. Netstack
is gVisors networking implementation written in Go. All
packet processing is done inside gVisors Sentry, which in
turn reduces the host I/O syscalls and keeps it isolated
from the host networking stack. This virtual networking
needs additional processing power. Further the memory
management of Go adds additional stress to the underlying
system. [15].

4.3. Micro VM Architecture

Kata Containers uses light weight virtual machines to
isolate containers, as can be seen in Figure 5. Kernel func-
tionality is moved to a guest operating system or the host
QEMU process [11]. These operating systems and kernels
are optimized and stripped down to basic functionality
to increase start up times and reduce the attack surface
[16]. By default, the Kata Containers network uses traffic

Figure 5: Kata Containers virtualization diagram [2]

control to transparently connect the veth interface with the
VM network interface [1].

Seminar IITM WS 23 2 doi: 10.2313/NET-2024-04-1_01



5. Network Performance

Wang et al. [1] paper looked at the performance
between runC, Kata Containers and gVisor. His results
are discussed in Subsection 5.1 and are the focus of this
paper. Kovács [3] analyzed the networking behavior of
Docker compared to LXC and KVM in Subsection 5.2.

5.1. runC - Kata Containers - gVisor

The test was carried out on a machine with an Intel
i5-7500 with support for nested virtualization, 8GB RAM
and a 1TB hard drive. Ubuntu 18.04 LTS (5.4.0) Linux
distribution was used as the operating system of choice.
On the system were

• Docker version 20.10.1
• KVM version 2.0.0
• gVisor version 20201030.0
• Kata Containers version 1.12.0-rc0

installed [1]. They did not add any restrictions to the
containers for the networking tests. Netperf [17] was used
to measure network latency and throughput. gVisor was
configured to use the user space netstack instead of the
host stack [1].

In Figure 6 the TCP_STREAM performance is visual-
ized. runC and Kata Containers are close together and only
differ in less than 1%. gVisor has the lowest throughput
of the three [1].

Figure 6: TCP_STREAM network performance [1]

Figure 7 visualizes the TCP_RR, TCP_CRR and
UDP_RR performance. TCP_RR are request response
tests. The time it takes for a response is measured. While a
TCP_CRR test also takes the connection time into account
[17]. Bare metal and runC bandwidth performance is
almost the same. The loss is less than 1%. Further Kata
Containers also looses less than 1% in regard to runC [1]
TCP_CRR and UDP_RR show a higher loss of 18.52%
and 17.23% respectively. gVisor is again the slowest in
terms of network performance. This might be due to its
user space networking stack [1].

Figure 8 shows the result of the TCP and HTTP
throughput and latency measurements [1]. Kata Contain-
ers QEMU TCP and HTTP bandwidth is 1.08% and Kata

Figure 7: TCP_RR, TCP_CRR and UDP_RR performance
[1]

virtiofs 13.12% slower compared to runC. gVisor had the
lowest throughput. Under the hood it uses a double packet
management mechanism at the Sentry stage (netstack)
which leads to the lowest transaction rate and lowest
throughput [1].

5.2. Docker - LXD - KVM

The test was carried out on a Huawei CH121 Blade-
Server with 2x E5-2630 v3 @ 2.40GHz 8Core CPUs
and 128GB DDR4 memory. The server supports nested
virtualization. The host operating system was Ubuntu
16.10. The container images ran Ubuntu 16.04.1 LTS.
IPerf version 3.1.3 was used to measure network perfor-
mance. Another HUAWEI BladeServer CH140 with 2x
E5-2670 v3 @ 2.30GHz with 12 Cores and 128GB DDR4
acted as an IPerf server. The two servers were connected
via a 10GE HUAWEI CX311 Switch. Docker and LXC
were configured with host networking and used the same
physical network card as the host operating system [3].

Figure 9 and 10 visualize the results of the measure-
ments. KVM falls behind Linux Container and runC [3].
The throughput is lower and the standard deviation higher
due to the higher virtualization effort. It uses a hypervisor
and every guest system includes its own guest kernel
and virtual networking [18]. This overhead results in a
performance penalty. In return, it is more secure since it
does not share a kernel with the host OS [18].

6. Conclusion

Each architecture has its drawbacks and benefits. How-
ever, each runtime tries to enhance the security of the host
system and container isolation. These improvements add
layers to the system at the cost of performance.

The research of the cited papers might not reflect the
current state regarding networking speed. The overhead
might be reduced and speed and security increased, since
the projects Kata Containers and gVisor are in active
development. runC also got a lot of updates over the
past view years, which had an impact on security and
networking performance. The results give a rough idea

Seminar IITM WS 23 3 doi: 10.2313/NET-2024-04-1_01



Figure 8: TCP and HTTP network performance of container runtimes (Ethr benchmark) [1]

Figure 9: Corrected IPerf Measurement Results [3]

Figure 10: IPerf Corrected Network Measurements [3]

of what can be expected from the different runtimes, but
should be taken with a grain of salt.

Different container network drivers could also influ-
ence the networking performance gap. Research done by
Cochak et al. [2] gives some interesting insights. He
compared bridged, host, macvlan and overlay modes with
Kata Containers and runC. Some combinations increased
the bandwidth but also increase the latency.

Host system optimization was also ignored in this
paper. A system tuned for networking / memory / storage
performance could lead to higher results or shrink the gap
between some runtime approaches.

References

[1] X. Wang, J. Du, and H. Liu, “Performance and isolation analysis
of runc, gvisor and kata containers runtimes,” Cluster Computing,
vol. 25, no. 2, pp. 1497–1513, Apr 2022. [Online]. Available:
https://doi.org/10.1007/s10586-021-03517-8

[2] H. Z. Cochak, G. P. Koslovski, M. A. Pillon, and C. C. Miers,
“Runc and kata runtime using docker: a network perspective com-
parison,” in 2021 IEEE Latin-American Conference on Communi-
cations (LATINCOM), 2021, pp. 1–6.

[3] Á. Kovács, “Comparison of different linux containers,” 2017
40th International Conference on Telecommunications and
Signal Processing (TSP), pp. 47–51, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2864721

[4] opencontainers.org, “Oci runtime spec
v1.1,” https://opencontainers.org/posts/blog/
2023-07-21-oci-runtime-spec-v1-1/, 2023, online; accessed
25-September-2023].

[5] Docker, “Docker docs,” https://docs.docker.com/, 2023, online; ac-
cessed 25-September-2023].

[6] T. K. Authors, “Kubernetes components,” https://kubernetes.io/
docs/concepts/overview/components/#node-components, 2023, on-
line; accessed 26-September-2023].

[7] P. team, “What is podman?” https://docs.podman.io/en/latest/,
2023, online; accessed 26-September-2023].

[8] opencontainers.org, “Open containers,” https://opencontainers.org/,
2023, online; accessed 25-September-2023].

[9] T. Donohue, “Die unterschiede zwischen
docker, containerd, cri-o und runc,” https://
www.kreyman.de/index.php/others/linux-kubernetes/
232-unterschiede-zwischen-docker-containerd-cri-o-und-runc,
2023, online; accessed 25-September-2023].

[10] ——, “The differences between docker, contain-
erd, cri-o and runc,” https://www.tutorialworks.com/
difference-docker-containerd-runc-crio-oci/, 2023, online;
accessed 25-September-2023].

[11] Anjali, T. Caraza-Harter, and M. M. Swift, “Blending containers
and virtual machines: a study of firecracker and gvisor,”
Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:211828470

[12] linuxcontainers.org, “What’s lxc,” https://linuxcontainers.org/lxc/
introduction/, 2023, online; accessed 25-September-2023].

[13] . C. Ltd., “Run system containers with lxd,” https://ubuntu.com/lxd,
2023, online; accessed 25-September-2023].

[14] opencontainers.org, “runc readme.md,” https://github.com/
opencontainers/runc/blob/main/README.md, 2023, online;
accessed 25-September-2023].

[15] Google, “What is gvisor?” https://gvisor.dev/docs/, 2023, online;
accessed 24-September-2023].

[16] A. W. Services, “Firecracker how it works,” https:
//firecracker-microvm.github.io/#how_it_works, 2023, online;
accessed 26-September-2023].

[17] R. Jones, “netperf,” https://github.com/HewlettPackard/netperf,
2023, online; accessed 26-September-2023].

[18] C. Ltd., “Kvm hypervisor: a beginners’ guide,” https://ubuntu.
com/blog/kvm-hyphervisor, 2023, online; accessed 26-September-
2023].

Seminar IITM WS 23 4 doi: 10.2313/NET-2024-04-1_01


