
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

NET 2024-04-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2023

August 11, 2023 – March 03, 2024

Munich, Germany

Georg Carle, Stephan Günther, Benedikt Jaeger, Leander SeidlitzEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2023

Munich, August 11, 2023 – March 03, 2024

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger, Leander Seidlitz

Network Architectures
and Services
NET 2024-04-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Winter Semester 2023

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
Boltzmannstraße 3, 85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Leander Seidlitz
Chair of Network Architectures and Services (I8)
E-mail: seidlitz@net.in.tum.de
Internet: https://net.in.tum.de/~seidlitz/

Cataloging-in-Publication Data

Seminar IITM WS 23
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, August 11, 2023 – March 03, 2024
ISBN: 978-3-937201-79-5

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2024-04-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2024-04-1
Series Editor: Georg Carle, Technical University of Munich, Germany
© 2023, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/
https://net.in.tum.de/~seidlitz/

Preface

We are pleased to present to you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Winter Semester 2023. Each semester, the seminar takes place in two
different ways: once as a block seminar during the semester break and once in the course of the semester.
Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks, supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterward present the results to the other course participants.
To improve the quality of the papers, we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar, we award one with the Best Paper Award. For this semester, the
awards were given to Iheb Ghanmi with the paper Extracting Information from Machine Learning Models
and Veronika Bauer with the paper An Overview of the 802.11ax Standard .

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, April 2023

Georg Carle Stephan Günther Benedikt Jaeger Leander Seidlitz

III

https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany
Leander Seidlitz, Technical University of Munich, Germany

Advisors

Jonas Andre (andre@net.in.tum.de)
Technical University of Munich

Max Helm (helm@net.in.tum.de)
Technical University of Munich

Kilian Holzinger (holzinger@net.in.tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Marcel Kempf (kempfm@net.in.tum.de)
Technical University of Munich

Patrick Sattler (sattler@net.in.tum.de)
Technical University of Munich

Johannes Zirngibl (zirngibl@net.in.tum.de)
Technical University of Munich

Leander Seidlitz (seidlitz@net.in.tum.de)
Technical University of Munich

Manuel Simon (simonm@net.in.tum.de)
Technical University of Munich

Markus Sosnowski (sosnowski@net.in.tum.de)
Technical University of Munich

Lion Steger (stegerl@net.in.tum.de)
Technical University of Munich

Florian Wiedner (wiedner@net.in.tum.de)
Technical University of Munich

Lars Wüstrich (wuestrich@net.in.tum.de)
Technical University of Munich

Christoph Schwarzenberg (schwarzenberg@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ws23/seminars/

V

https://net.in.tum.de/teaching/ws23/seminars/

Contents

Block Seminar

Containerized Systems: Difference towards network IO . 1
Raphael Auzinger (Advisor: Florian Wiedner, Jonas Andre)

RFC 9000 and its Siblings: An Overview of QUIC Standards . 5
Yaxuan Chen (Advisor: Benedikt Jaeger, Johannes Zirngibl)

Accelerating QUIC with XDP . 11
Minu Föger (Advisor: Marcel Kempf)

Extracting Information from Machine Learning Models . 17
Iheb Ghanmi (Advisor: Lars Wüstrich)

Probabilistic Network Telemetry . 23
Benjamin Schaible (Advisor: Kilian Holzinger)

Industrial Ethernet: Challenges and Advantages . 29
Moritz Werner (Advisor: Florian Wiedner, Christoph Schwarzenberg)

Seminar

Predictive Modelling for Next API Call Sequence in Content Delivery Networks 35
Galiiabanu Bakirova (Advisor: Markus Sosnowski)

An Overview of the 802.11ax Standard . 41
Veronika Bauer (Advisor: Leander Seidlitz, Jonas Andre)

Link Failure Detection in Computer Networks . 47
Maximilian Brügge (Advisor: Manuel Simon)

ZDNS vs MassDNS: A Comparison of DNS Measurement Tools . 53
Jeremy Thomas Vyacheslaw Dix (Advisor: Johannes Zirngibl, Patrick Sattler)

Survey on Recent Applications of Extreme Value Theory in Networking 59
Jana Nina Friedrich (Advisor: Max Helm)

Network Applications of Trusted Execution Environments . 65
Tim Kruse (Advisor: Florian Wiedner, Marcel Kempf)

LoRaWAN: Current State, Challenges, and Chances . 71
Benjamin Liertz (Advisor: Jonas Andre, Leander Seidlitz)

Covert Communication over ICMP . 77
Georgios Merezas (Advisor: Lars Wüstrich)

Literature Survey: Performance Enhancing Proxies for TCP and QUIC 83
Ahmed Rayen Mhadhbi (Advisor: Lion Steger)

The Path of a Packet Through the Linux Kernel . 89
Alexander Stephan (Advisor: Lars Wüstrich)

VII

Containerized Systems: Difference towards network IO

Raphael Auzinger, Florian Wiedner∗, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: raphael.auzinger@tum.de, {wiedner, andre}@net.in.tum.de

Abstract—Containers create an isolated runtime for applica-
tions alike and have become an integral part of modern cloud
computing. To ensure good isolation and security different
runtime architectures emerged. On one side Linux containers
like runC and on the other micro VM architectures like Kata
Containers, gVisor or Firecracker. These security benefits
sometimes come at the cost of additional overhead and
resource usage. This work combines and compares various
other papers and research which address different architec-
tures and investigate how they influence performance.

Index Terms—containeization, runC, LXD, Kata Container,
gVisor, network performance

1. Introduction

Virtualization and containerization became an impor-
tant tool in the modern age of developing software and
cloud computing. It enables developers to quickly and
easily setup systems on their development environment
without the necessity to start a virtual machine. Contain-
ers can create an environment with all the build tools
included for reproducible builds. They are used to run
CI/CD tests and verify the project. Further, virtualization
enabled cloud service providers to offer not only bare
metal products but also parts of a dedicated machine
with a variety of configuration options. Starting another
virtual private server when the load on a system rises
or running edge functions to provide a service, relays
on this technology. In a cloud environment speed and
efficiency is crucial to reduce latency and energy usage.
This might favor one technology over another. Further,
containers should be isolated from each other to ensure
a secure environment and availability. These two goals
are partly in conflict, as we will explore in the following
sections.

The paper starts with an introduction to the differ-
ent standards and how they influence the runtime ar-
chitectures. In Section 4 the architectures are discussed.
How classic containerization with cgroups and names-
paces evolved and how optimized micro VMs for en-
hanced security, performance and seperation from other
containers. In Section 5 the networking performance of
the different architectures will be compared and analyzed.
Section 6 summarizes the paper and will give an outlook
on further research and details which can be included in
future papers.

2. Related work
This paper is influenced by the research of Wang et

al. [1] who analyzed the performance and isolation of
runC, gVisor and Kata Containers runtime, Cochak et
al. [2], who compared runC and Kata Containers using
Docker and on the work of Kovács [3] in which he
compared Linux Containers, runC with Docker and KVM
virtualization.

3. Containerization Standards
In order to use different runtimes with container im-

ages, two standards were established. The Open Container
Interface Runtime Specification for the underlying runtime
which takes care of execution of a container and the Open
Container Interface Image Specification for container im-
ages. The OCI Runtime Specification defines the behav-
ior and the configuration interface of low-level container
runtimes [4]. Applications like Docker, Kubernetes and
Podman [5] [6] [7] can interface with OCI-RS and
control the containers. Runtimes which support OCI-RS
like runC, LXD, Kata Containers, gVisor and Firecracker
can run images which adhere to the OCI Image Spec. It
defines the structure of a container image and how the
runtime should execute it [8].

Figure 1: The relationship between Docker, CRI-O, con-
tainerd and runc [9]

At level 1. an application like kubernetes commu-
nicates with an underlying runtime at level 2. , which

Seminar IITM WS 23 1 doi: 10.2313/NET-2024-04-1_01

complies to the Container Runtime Interface Specification.
This runtime can now control an OCI image 5. and run it
as a new container at level 6. [10].

4. Container Architectures

New architectures were developed around these stan-
dards to enhance the security of the host system running
containers and to strengthen the isolation between them.
Figure 2 shows where different architectures reside, re-
garding their level of virtualization. On the left no virtual-
ization on a bare metal host system and on the right virtual
machines with fully fledged operating systems. Subsection
4.1 4.2 and 4.3 will get into the details and degree of
virtualization.

Figure 2: Container isolation spectrum [11]

4.1. Linux Containers

Linux Container, runC and Linux Container Daemon
utilize Linux native virtualization methods like cgroups
and namespaces to provide a runtime for containers [12]
[13] [14]. This approach is very lightweight since the host
kernel can be shared with the running container as shown
in Figure 3. However, a shared kernel introduces some

Figure 3: runC virtualization diagram [2]

security concerns if an application escapes the container.

4.2. Sandbox With Multi-purpose Kernel

gVisor tries to solve these security issues and intro-
duces a Sentry and Gofer between the host kernel and a
container as shown in Figure 4. System calls inside the
container are intercepted and processed by gVisor, which
in tern will forward them to the host or abort the call [11].

Figure 4: A schematic diagram of gVisor [15]

gVisor handles most of the network tasks inside netstack,
but still performs some checks on the host [1]. Netstack
is gVisors networking implementation written in Go. All
packet processing is done inside gVisors Sentry, which in
turn reduces the host I/O syscalls and keeps it isolated
from the host networking stack. This virtual networking
needs additional processing power. Further the memory
management of Go adds additional stress to the underlying
system. [15].

4.3. Micro VM Architecture

Kata Containers uses light weight virtual machines to
isolate containers, as can be seen in Figure 5. Kernel func-
tionality is moved to a guest operating system or the host
QEMU process [11]. These operating systems and kernels
are optimized and stripped down to basic functionality
to increase start up times and reduce the attack surface
[16]. By default, the Kata Containers network uses traffic

Figure 5: Kata Containers virtualization diagram [2]

control to transparently connect the veth interface with the
VM network interface [1].

Seminar IITM WS 23 2 doi: 10.2313/NET-2024-04-1_01

5. Network Performance

Wang et al. [1] paper looked at the performance
between runC, Kata Containers and gVisor. His results
are discussed in Subsection 5.1 and are the focus of this
paper. Kovács [3] analyzed the networking behavior of
Docker compared to LXC and KVM in Subsection 5.2.

5.1. runC - Kata Containers - gVisor

The test was carried out on a machine with an Intel
i5-7500 with support for nested virtualization, 8GB RAM
and a 1TB hard drive. Ubuntu 18.04 LTS (5.4.0) Linux
distribution was used as the operating system of choice.
On the system were

• Docker version 20.10.1
• KVM version 2.0.0
• gVisor version 20201030.0
• Kata Containers version 1.12.0-rc0

installed [1]. They did not add any restrictions to the
containers for the networking tests. Netperf [17] was used
to measure network latency and throughput. gVisor was
configured to use the user space netstack instead of the
host stack [1].

In Figure 6 the TCP_STREAM performance is visual-
ized. runC and Kata Containers are close together and only
differ in less than 1%. gVisor has the lowest throughput
of the three [1].

Figure 6: TCP_STREAM network performance [1]

Figure 7 visualizes the TCP_RR, TCP_CRR and
UDP_RR performance. TCP_RR are request response
tests. The time it takes for a response is measured. While a
TCP_CRR test also takes the connection time into account
[17]. Bare metal and runC bandwidth performance is
almost the same. The loss is less than 1%. Further Kata
Containers also looses less than 1% in regard to runC [1]
TCP_CRR and UDP_RR show a higher loss of 18.52%
and 17.23% respectively. gVisor is again the slowest in
terms of network performance. This might be due to its
user space networking stack [1].

Figure 8 shows the result of the TCP and HTTP
throughput and latency measurements [1]. Kata Contain-
ers QEMU TCP and HTTP bandwidth is 1.08% and Kata

Figure 7: TCP_RR, TCP_CRR and UDP_RR performance
[1]

virtiofs 13.12% slower compared to runC. gVisor had the
lowest throughput. Under the hood it uses a double packet
management mechanism at the Sentry stage (netstack)
which leads to the lowest transaction rate and lowest
throughput [1].

5.2. Docker - LXD - KVM

The test was carried out on a Huawei CH121 Blade-
Server with 2x E5-2630 v3 @ 2.40GHz 8Core CPUs
and 128GB DDR4 memory. The server supports nested
virtualization. The host operating system was Ubuntu
16.10. The container images ran Ubuntu 16.04.1 LTS.
IPerf version 3.1.3 was used to measure network perfor-
mance. Another HUAWEI BladeServer CH140 with 2x
E5-2670 v3 @ 2.30GHz with 12 Cores and 128GB DDR4
acted as an IPerf server. The two servers were connected
via a 10GE HUAWEI CX311 Switch. Docker and LXC
were configured with host networking and used the same
physical network card as the host operating system [3].

Figure 9 and 10 visualize the results of the measure-
ments. KVM falls behind Linux Container and runC [3].
The throughput is lower and the standard deviation higher
due to the higher virtualization effort. It uses a hypervisor
and every guest system includes its own guest kernel
and virtual networking [18]. This overhead results in a
performance penalty. In return, it is more secure since it
does not share a kernel with the host OS [18].

6. Conclusion

Each architecture has its drawbacks and benefits. How-
ever, each runtime tries to enhance the security of the host
system and container isolation. These improvements add
layers to the system at the cost of performance.

The research of the cited papers might not reflect the
current state regarding networking speed. The overhead
might be reduced and speed and security increased, since
the projects Kata Containers and gVisor are in active
development. runC also got a lot of updates over the
past view years, which had an impact on security and
networking performance. The results give a rough idea

Seminar IITM WS 23 3 doi: 10.2313/NET-2024-04-1_01

Figure 8: TCP and HTTP network performance of container runtimes (Ethr benchmark) [1]

Figure 9: Corrected IPerf Measurement Results [3]

Figure 10: IPerf Corrected Network Measurements [3]

of what can be expected from the different runtimes, but
should be taken with a grain of salt.

Different container network drivers could also influ-
ence the networking performance gap. Research done by
Cochak et al. [2] gives some interesting insights. He
compared bridged, host, macvlan and overlay modes with
Kata Containers and runC. Some combinations increased
the bandwidth but also increase the latency.

Host system optimization was also ignored in this
paper. A system tuned for networking / memory / storage
performance could lead to higher results or shrink the gap
between some runtime approaches.

References

[1] X. Wang, J. Du, and H. Liu, “Performance and isolation analysis
of runc, gvisor and kata containers runtimes,” Cluster Computing,
vol. 25, no. 2, pp. 1497–1513, Apr 2022. [Online]. Available:
https://doi.org/10.1007/s10586-021-03517-8

[2] H. Z. Cochak, G. P. Koslovski, M. A. Pillon, and C. C. Miers,
“Runc and kata runtime using docker: a network perspective com-
parison,” in 2021 IEEE Latin-American Conference on Communi-
cations (LATINCOM), 2021, pp. 1–6.

[3] Á. Kovács, “Comparison of different linux containers,” 2017
40th International Conference on Telecommunications and
Signal Processing (TSP), pp. 47–51, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2864721

[4] opencontainers.org, “Oci runtime spec
v1.1,” https://opencontainers.org/posts/blog/
2023-07-21-oci-runtime-spec-v1-1/, 2023, online; accessed
25-September-2023].

[5] Docker, “Docker docs,” https://docs.docker.com/, 2023, online; ac-
cessed 25-September-2023].

[6] T. K. Authors, “Kubernetes components,” https://kubernetes.io/
docs/concepts/overview/components/#node-components, 2023, on-
line; accessed 26-September-2023].

[7] P. team, “What is podman?” https://docs.podman.io/en/latest/,
2023, online; accessed 26-September-2023].

[8] opencontainers.org, “Open containers,” https://opencontainers.org/,
2023, online; accessed 25-September-2023].

[9] T. Donohue, “Die unterschiede zwischen
docker, containerd, cri-o und runc,” https://
www.kreyman.de/index.php/others/linux-kubernetes/
232-unterschiede-zwischen-docker-containerd-cri-o-und-runc,
2023, online; accessed 25-September-2023].

[10] ——, “The differences between docker, contain-
erd, cri-o and runc,” https://www.tutorialworks.com/
difference-docker-containerd-runc-crio-oci/, 2023, online;
accessed 25-September-2023].

[11] Anjali, T. Caraza-Harter, and M. M. Swift, “Blending containers
and virtual machines: a study of firecracker and gvisor,”
Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:211828470

[12] linuxcontainers.org, “What’s lxc,” https://linuxcontainers.org/lxc/
introduction/, 2023, online; accessed 25-September-2023].

[13] . C. Ltd., “Run system containers with lxd,” https://ubuntu.com/lxd,
2023, online; accessed 25-September-2023].

[14] opencontainers.org, “runc readme.md,” https://github.com/
opencontainers/runc/blob/main/README.md, 2023, online;
accessed 25-September-2023].

[15] Google, “What is gvisor?” https://gvisor.dev/docs/, 2023, online;
accessed 24-September-2023].

[16] A. W. Services, “Firecracker how it works,” https:
//firecracker-microvm.github.io/#how_it_works, 2023, online;
accessed 26-September-2023].

[17] R. Jones, “netperf,” https://github.com/HewlettPackard/netperf,
2023, online; accessed 26-September-2023].

[18] C. Ltd., “Kvm hypervisor: a beginners’ guide,” https://ubuntu.
com/blog/kvm-hyphervisor, 2023, online; accessed 26-September-
2023].

Seminar IITM WS 23 4 doi: 10.2313/NET-2024-04-1_01

RFC 9000 and its Siblings: An Overview of QUIC Standards

YaXuan Chen, Benedikt Jaeger∗, Johannes Zirngibl∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: chenyaxuan123@gmail.com, jaeger@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—QUIC was a transport protocol designed by
Google in 2012, aiming to improve traditional transport
protocols, such as TCP. QUIC reduces the handshake latency
and solves the head-of-line blocking. The IETF (Internet
Engineering Task Force) standardized QUIC in 2021 and
continues to improve and extend the QUIC transport pro-
tocol. There are 12 RFCs (Request for Comments) related
to QUIC, which involve the core concepts of QUIC, QUIC’s
extensions, applicability, manageability, and HTTP/3. In this
paper, we describe the core concept of QUIC based on RFC
9000 and outline four more RFCs to provide an overview of
QUIC standards. Furthermore, we discuss which direction
the QUIC working group plans for the future.

Index Terms—Transport protocols; QUIC; HTTP/3;

1. Introduction

With the gradual popularization of the Internet, there
has been increasingly more attention on high-speed and
stable connections. TCP (Transmission Control Protocol)
is the first choice for the developer. However, applications
are limited by using TCP as the underlying transport [1].
TCP needs 3 round-trip time (RTT) for setting up the
first connection from a client to the server. Furthermore,
the head-of-line blocking increases the connection latency
when a packet losses [2]. Moreover, TCP is commonly
implemented in the operating system kernel. Therefore,
the TCP modifications require OS upgrades [3].

QUIC is a new transport protocol designed by Google
in 2012 to replace the traditional HTTPS stack: HTTP/2,
TLS, and TCP [3], as shown in Figure 1. Notably, QUIC
builds on top of UDP and uses a different handshake
mechanism from TCP [2], which combines the transport
and cryptographic handshake and supports the 0-RTT
connection. Furthermore, QUIC solves the head-of-line
blocking using a lightweight data-structuring abstraction,
streams [3], present in Section 3.1. Additionally, QUIC is
implemented in user space, which can be updated without
changing the operating system kernel. Applications like
Facebook, YouTube, and Gmail have supported QUIC.
QUIC is used by 7.6% of all the websites in Novem-
ber 2023 [4]. The proportion of QUIC will continue to
increase in the future.

The IETF QUIC Working Group [5] is responsible for
the maintenance and evolution of QUIC. The first version
of QUIC was standardized in May 2021 as RFC 9000 [6].
There are 12 RFCs related to QUIC until May 2023, as
shown in Table 1. However, the content of all RFCs is

Figure 1: QUIC in the traditional HTTPS stack [3].

too much, and we decided to describe part of them in this
paper, marked in red in Table 1.

The paper is structured as follows: Section 3 describes
the core concepts of QUIC. In Section 4, we present an
overview of QUIC extensions including RFC 9221 [7],
RFC 9368 [8], and RFC 9369 [9]. Furthermore, we present
RFC 9114 [10] about HTTP/3. In Section 5, we discuss
the future directions of QUIC.

2. Related Work

QUIC related RFCs. This paper provides an
overview of QUIC standards and is based on the 12
RFCs [6]–[17].

Core concept of QUIC. Langley et al. in [3]
explain the main features of QUIC, and Cui et al. in [1]
analyze the advantage of QUIC compared to TCP. Sec-
tion 3 are closely related to these works.

3. Core Concepts of QUIC

In this section, we outline the core specifications of
QUIC from RFC 9000 [6], including QUIC streams, con-
nection migration, and flow control. In addition, we ex-
plain how QUIC solves head-of-line blocking. Moreover,
we present the congestion control of QUIC from RFC
9002 [7]. Furthermore, we describe the process of 0-RTT
handshake from RFC 9001 [12].

3.1. QUIC Streams

QUIC streams are a lightweight abstraction that pro-
vides a reliable bidirectional bytestream [3]. Streams con-
sist of multiple stream frames encapsulated in a QUIC
packet, as shown in Figure 2. There are two important
values in a stream frame:

Seminar IITM WS 23 5 doi: 10.2313/NET-2024-04-1_02

TABLE 1: Overview of QUIC-related RFCs

RFCs Titel Publication date Content

8999 Version-Independent Properties of QUIC May 2021 Definition of the properties of the QUIC transport protocol.
9000 QUIC: A UDP-Based Multiplexed and Secure Transport May 2021 Description of the core QUIC protocol.
9001 Using TLS to Secure QUIC May 2021 Functionalities of TLS in QUIC.
9002 QUIC Loss Detection and Congestion Control May 2021 Loss detection and congestion control mechanisms for QUIC.
9221 An Unreliable Datagram Extension to QUIC March 2022 QUIC Extension, which supports unreliable datagrams.
9287 Greasing the QUIC Bit August 2022 Definition of the usage of QUIC Bit.
9368 Compatible Version Negotiation for QUIC May 2023 The update of the version negotiation mechanisms for QUIC.
9369 QUIC Version 2 May 2023 Definition of the second version of QUIC.
9308 Applicability of the QUIC Transport Protocol September 2022 Caveats for the developers who want to use QUIC.
9312 Manageability of the QUIC Transport Protocol September 2022 Guidance for network operations to manage QUIC traffic.
9114 HTTP/3 June 2022 The version of HTTP, which uses QUIC as the transport protocol.
9204 QPACK: Field Compression for HTTP/3 June 2022 The mechanismus of QPACK compression.

Figure 2: Structure of a QUIC packet [3].

• Stream ID is a unique 62-bit integer that identifies
the stream. The odd IDs represent client-initiated
streams and even IDs for server-initiated streams.

• Offset represents in which position the transmitted
data should be placed. QUIC packets are encapsu-
lated in UDP packets, and UDP does not transmit
data in order. The unordered stream data can be
placed in the correct stream and position with
stream ID and offset.

Additionally, QUIC also provides unidirectional streams
for different purposes (e.g. the control stream in HTTP/3,
which is introduced in Section 4.4.)

Figure 3: Multiplexing comparison [1].

Stream multiplexing is a method for sending multi-
ple data streams over a single transport connection [1].

Figure 3 provides a comparison of multiplexing:

• HTTP1.1 creates multiple TCP connections for
different resources, as shown in Figure 3a.

• HTTP/2 improves from HTTP1.1 and multiplexes
streams over one TCP connection. However, the
data are transmitted in order with TCP, and when
one packet is lost on one stream, the packets on
other streams are blocked. It leads to head-of-line
blocking, as shown in Figure 3b.

• QUIC allows other streams to continue to re-
ceive packets instead of blocking all streams while
waiting for packet recovery [18] because QUIC
does not require ordered delivery of all packets, as
shown in Figure 3c. Therefore, QUIC eliminates
head-of-line blocking.

3.2. Connection Migration

The NAT routers track the TCP connections with
the 4-tuple (source IP, source port, destination IP, and
destination port). The NAT routers will rebind and change
a source IP or port to the client according to the timeout.
However, the NAT rebinding is more aggressive for UDP
than TCP [3], [19]. Therefore, QUIC introduces a 64-bit
Connection ID as an identifier for each connection, which
is carried by the QUIC packet, as shown in Figure 2.
Endpoints can use Connection ID to track QUIC connec-
tions without checking the 4-tuple [20]. At the beginning
of the QUIC design, the Connection ID aims to avoid the
problem of NAT rebinding. Currently, there is an extension
of QUIC in progress, which supports generating routable
QUIC Connection IDs [21].

3.3. Flow Control

QUIC provides two levels of flow control:

• The stream-level flow control limits the data sent
on each stream. The initial limits of the streams
are set during the handshake. A receiver can in-
crease the limit periodically to accept more data
on the stream by sending MAX_STREAM_DATA
frames.

• The connection-level flow control defines the
total bytes of stream data on all streams, and the
limit of connection is determined according to the
sum of bytes consumed on all streams [6].

Seminar IITM WS 23 6 doi: 10.2313/NET-2024-04-1_02

3.4. Congestion Control

Similar to the TCP, QUIC chooses a pluggable conges-
tion control interface, which at first is Cubic [22], to find
the suitable algorithms. Notably, QUIC provides a differ-
ent environment for congestion control than TCP [1]. To
improve the design of TCP’s sequence number, the QUIC
packet is identified by the unique packet number [3]. The
receiver reassembles the packet according to the stream
offset. This separation of transmission order from delivery
order avoids retransmission ambiguities. Moreover, QUIC
provides more accurate network roundtrip time estimation
with the delay information between when a packet is
received and when the corresponding acknowledgment is
sent [7]. Furthermore, QUIC supports up to 256 ACK
blocks, making QUIC more resilient to reordering and
loss than TCP [3]. Consequently, based on the same
congestion control, QUIC detects and recovers from loss
more efficiently [18].

3.5. 0-RTT Handshake

Figure 4: Timeline of QUIC’s initial 1-RTT handshake,
a subsequent successful 0-RTT handshake, and a failed
0-RTT handshake [3].

The Transport Layer Security (TLS) protocol provides
a secure channel between two communicating peers. Com-
pared to the previous version, TLS 1.3 adds a 0-RTT
mode, saving a round trip at connection setup [23]. TCP
that uses TLS 1.3 establishes a connection with at least
1-RTT. QUIC combines the cryptographic (TLS 1.3) and
transport handshake to minimize the connection establish-
ment time to 0-RTT. There are two types of handshake,
as shown in Figure 4:

• Initial 1-RTT handshake: For the first connec-
tion to the server, the client sends the inchoate
client hello (CHLO) message to the server. The
server sends the reject message back, which con-
tains valuable information for the subsequent con-
nections [3].

• Successful 0-RTT handshake: For the client and
server that had communicated before, the client
can send complete CHLO with the encrypted re-
quest immediately [1].

4. QUIC RFCs

In this section, we discuss QUIC extensions, including
RFC 9221 [13], RFC 9368 [8], and RFC 9369 [9]. Further-
more, we introduce RFC 9114 [10], which standardizes

HTTP/3, a new version of HTTP that uses QUIC as the
transport protocol.

4.1. RFC 9221

RFC 9221 [13] aims to extend QUIC to support the
transmission of unreliable datagrams. The demand for
transmitting unreliable data is increasing in some areas,
such as audio/video streaming, gaming, and real-time
network applications. QUIC is the better choice instead
of UDP with the following advantages:

• QUIC provides a more precise loss recovery mech-
anism and more effective single congestion con-
trol.

• The application can use both a reliable stream and
an unreliable flow within one connection, which
benefits from the reduced handshake latency.

• QUIC provides a single congestion control for
reliable and unreliable data.

Before RFC 9221 was published, Palmer et al. pre-
sented a simple extension to QUIC: ClipStream, used for
video streaming [24]. This extension is designed based on
a simple observation: not all frames in a video encoding
scheme are equally important. ClipStream uses reliable
transport for important frames (e.g. I-Frames) and unre-
liable transport for other frames (e.g. B- and P-Frames).
Notably, ClipStream outperforms TCP and QUIC that not
support the transmission of unreliable datagrams [24].

4.2. RFC 9368

Initially, QUIC does not provide a complete version
negotiation mechanisms. The server can only reject the
request from the client that uses an unacceptable version.
RFC 9368 [8] updates this mechanism and defines the two
types of version negotiation: compatible and incompatible
version negotiation

Compatible version negotiation starts when the
server knows how to parse the client’s first packet, which
contains the list of versions that the client knows its first
packet is compatible with. The server must select one of
these versions it supports as the negotiated version. Sub-
sequently, the server converts the client’s first packet into
the negotiated version and replies to the client. Notably,
version compatibility is not symmetric: A is compatible
with B, but B may not be compatible with A.

Incompatible version negotiation happens if the
server can not parse the client’s first packet. The server
sends a version negotiation packet to the client, which
contains the server’s offered versions. If the client does
not find a version that it supports, the connection will
be aborted. Incompatible version negotiation causes one
more round trip than compatible version negotiation.

4.3. RFC 9369

RFC 9369 [9] defines QUIC version 2 to mitigate
ossification concerns and exercise the version negotiation
mechanisms, which are presented in Section 4.2. QUIC
version 2 provides an example of the minimum changes
necessary to specify a new QUIC version. The differences
with QUIC version 1 are as follows:

Seminar IITM WS 23 7 doi: 10.2313/NET-2024-04-1_02

• Version Field of long headers is 0x6b3343cf,
generated by taking the first four bytes of the
sha256sum of "QUICv2 version number".

• Long header packet types are different.
• Cryptography changes including the salt used to

derive initial keys, HMAC-based key derivation
function (HKDF) labels, and retry integrity tag.

For more details of the changes, we refer the readers
to [9]. QUIC version 2 is not intended to replace version
1 and is compatible with version 1. Notably, a session
ticket or token from a QUIC version 1 connection must
not used to initiate a QUIC version 2 connection, and vice
versa. Moreover, QUIC version 2 provides no different
application functionalities than version 1. Furthermore,
QUIC version 2 has no changes to the security.

4.4. RFC 9114

Figure 5: Protocol stack for different HTTP versions [25].

The Hypertext Transfer Protocol (HTTP), born in the
early 90s, takes a dominant position in web protocols.
Unlike the previous versions, HTTP/3 uses QUIC instead
of TCP as the transport protocol, as shown in Figure 5.
RFC 9114 [10] defines a mapping of HTTP semantics
over QUIC. In this section, we describe how QUIC’s
features are mapped to HTTP/3 including the discovery
of an HTTP/3 endpoint, QUIC streams, and per-stream
flow control.

Discovery of an HTTP/3 endpoint: The server can
announce the client with the Alt-Svc HTTP response
header or the HTTP/2 ALTSVC frame using the "h3"
ALPN token, which represents the availability of HTTP/3.
The server may serve HTTP/3 on any UDP port. After
receiving the Alt-Svc record, the client may establish a
QUIC connection using HTTP/3.

QUIC streams: The stream data containing HTTP
frame are carried by QUIC stream frames (Section 3.1).
QUIC provides bidirectional and unidirectional streams.
Bidirectional streams are only initiated by the client.
Each bidirectional stream handles a pair of HTTP requests
and responses. Unidirectional streams are used for a
range of purposes. Two unidirectional stream types are
defined:

• Control streams aim to manage other streams.
At the beginning of the connection, each side of
the endpoint must initiate a single control stream.
A pair of single bidirectional streams ensures the
performance and stability of data because it allows
endpoints to send data as soon as possible.

• Push stream is designed for the server push fea-
ture introduced in HTTP/2. Server push allows the

server to send resources that the client may need
to the client without the client’s request, as shown
by Stenberg in [26].

Flow control: QUIC provides flexible flow con-
trol. The two levels of flow control, which are men-
tioned in Section 3.3, allow the developer to imple-
ment several mechanisms. The developer can send the
MAX_STREAM_DATA frames in a linear, non-linear, or
dynamic manner based on RTT estimates and application
data consumption rate, as shown by Marx et al. in [27].
The mechanism of the QUIC flow control is still an open
problem and can be improved.

5. Conclusion and Future Work

In this paper, we provide an overview of QUIC and
its related RFCs. QUIC solves the head-of-line blocking.
Furthermore, the connection can survive during the change
of IP and port. Moreover, with the integration of TLS 1.3,
the security is improved, and 0-RTT is facilitated to gain
a faster handshake. Notably, QUIC shows excellent po-
tential in extensibility. For unreliable connections, QUIC
provides more choices for some areas, such as gaming and
video streaming. With the promotion of the compatible
version negotiation, version 2 of the QUIC is standardized,
which provides an example of the new QUIC version.
In Addition, QUIC has desirable features in transport for
HTTP [10].

The IETF QUIC Working Group continues to con-
tribute to the QUIC, and there are five directions:

• The qlog, an extensible high-level schema for a
standardized logging format, is now used for the
QUIC, HTTP/3, and QPACK events.

• Connection migration is going to be improved.
The routable QUIC connection IDs are designed
to route the packets with migrated addresses cor-
rectly.

• Multipath extension aims to enhance the usage
of multiple paths for a single connection.

• Control of delaying of acknowledgments aims
to improve connection and endpoint performance.

• Reliable QUIC stream resets allow sending the
stream data up to a certain byte offset after reset-
ting a stream.

We refer readers for more details to the in-progress docu-
ments [5], authored by the IETF QUIC Working Group.

References

[1] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind, “Innovating
transport with quic: Design approaches and research challenges,”
IEEE Internet Computing, vol. 21, no. 2, pp. 72–76, 2017.

[2] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “QUIC: Better
for what and for whom?” in 2017 IEEE International Conference
on Communications (ICC), 2017, pp. 1–6.

[3] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings
of the conference of the ACM special interest group on data
communication, 2017, pp. 183–196.

[4] [Online]. Available: https://w3techs.com/technologies/details/
ce-quic

Seminar IITM WS 23 8 doi: 10.2313/NET-2024-04-1_02

[5] [Online]. Available: https://quicwg.org/

[6] J. Iyengar and M. Thomson, “RFC 9000 QUIC: A UDP-based
multiplexed and secure transport,” 2021.

[7] J. Iyengar and I. Swett, “RFC 9002: QUIC Loss Detection and
Congestion Control,” 2021.

[8] D. Schinazi and E. Rescorla, “RFC 9368: Compatible Version
Negotiation for QUIC,” 2023.

[9] M. Duke, “RFC 9369: QUIC Version 2,” 2023.

[10] M. Bishop, “RFC 9114: HTTP/3,” 2022.

[11] M. Thomson, “RFC 8999: Version-Independent Properties of
QUIC,” 2021.

[12] M. Thomson and S. Turner, “RFC 9001: Using TLS to secure
QUIC,” 2021.

[13] T. Pauly, E. Kinnear, and D. Schinazi, “RFC 9221: An Unreliable
Datagram Extension to QUIC,” 2022.

[14] M. Thomson, “RFC 9287: Greasing the QUIC Bit,” 2022.

[15] M. Kühlewind and B. Trammell, “RFC 9308 Applicability of the
QUIC Transport Protocol,” 2022.

[16] ——, “RFC 9312 Manageability of the QUIC Transport Protocol,”
2022.

[17] C. Krasic and M. Bishop, “RFC 9204: QPACK: Field Compression
for HTTP/3,” 2022.

[18] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mis-
love, “Taking a long look at QUIC: an approach for rigorous
evaluation of rapidly evolving transport protocols,” pp. 290–303,
2017.

[19] S. Hätönen, A. Nyrhinen, L. Eggert, S. Strowes, P. Sarolahti, and
M. Kojo, “An experimental study of home gateway characteristics,”
in Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, 2010, pp. 260–266.

[20] [Online]. Available: https://blog.cloudflare.com/the-road-to-quic/

[21] [Online]. Available: https://quicwg.org/load-balancers/
draft-ietf-quic-load-balancers.html

[22] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Schef-
fenegger, “CUBIC for fast long-distance networks,” 2018.

[23] E. Rescorla, “Rfc 8446: The transport layer security (tls) protocol
version 1.3,” 2018.

[24] M. Palmer, T. Krüger, B. Chandrasekaran, and A. Feldmann, “The
quic fix for optimal video streaming,” pp. 43–49, 2018.

[25] M. Trevisan, D. Giordano, I. Drago, and A. S. Khatouni, “Mea-
suring HTTP/3: Adoption and performance,” pp. 1–8, 2021.

[26] D. Stenberg, “HTTP2 explained,” pp. 120–128, 2014.

[27] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same standards,
different decisions: A study of QUIC and HTTP/3 implementation
diversity,” pp. 14–20, 2020.

Seminar IITM WS 23 9 doi: 10.2313/NET-2024-04-1_02

Seminar IITM WS 23 10

Accelerating QUIC with XDP

Minu Föger, Marcel Kempf ∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: foeger@in.tum.de, kempfm@net.in.tum.de

Abstract—After the standardization of the new transport
protocol QUIC in 2021, QUIC implementations are increas-
ingly optimizing for performance. Multiple implementations
have started to utilize the eXpress Data Path (XDP) technol-
ogy to speed up QUIC packet processing. XDP is a high-
speed network data path in the Linux kernel based on
the eBPF virtual machine. It allows bypassing the in-kernel
network stack. A similar technique is being developed for
Microsoft Windows. Due to the simplicity of UDP processing
in QUIC, XDP shows great promise for reducing kernel
overhead in QUIC implementations.

Index Terms—Linux, XDP, QUIC

1. Introduction

The transport protocol QUIC has seen increasing
adoption on the Internet, with most modern browsers
supporting QUIC [1]–[3] and with major web applications
being serviced via HTTP/2-over-QUIC or HTTP/3 (e.g.
most Google web applications) [4].

With the rising adoption of QUIC, major QUIC im-
plementations have become more mature and are investing
in performance optimizations. One potential optimization
would be to use kernel bypass mechanisms to speed
up lower-layer network packet processing. Most modern
operating systems (like Linux or Windows) have generic
in-kernel network stacks that usually provide transport
layer abstractions (most prominently the Berkeley socket
abstraction [5]). These network stacks are heavily opti-
mized but are typically designed for high flexibility and
generality. However, in specific cases this generality can
result in inefficiencies [6].

QUIC is built on top of the old UDP protocol, which
is typically implemented inside the kernel network stack
(exposed via the socket API). However, QUIC is designed
to require only minimal packet processing at lower layers,
e.g. IP fragmentation is prohibited by the standard [7].
Therefore, it would be more efficient to perform QUIC-
specific UDP payload extraction on incoming QUIC traffic
than to process it via the generic kernel network stack.
QUIC implementations would thus benefit from kernel
bypass mechanisms. For this reason, multiple QUIC im-
plementations (s2n-quic [8], MsQuic [9]) are currently
starting to utilize the XDP kernel bypass mechanism to
reduce the kernel overhead of their implementations.

There exist multiple techniques for high-speed packet
processing that gain performance by bypassing the ker-
nel network stack. One relatively new mechanism is the
XDP/AF_XDP mechanism [6] that shall be further de-
scribed in Section 2.

A popular alternative is DPDK (Data Plane Develop-
ment Kit), a project facilitating high performance network
I/O via specialized user-space Poll-Mode Drivers that poll
the NIC directly and thus bypass the kernel network stack
[10]. Initially developed by Intel in 2010 and targeting
only the Linux kernel, it today is hosted collaboratively
under the Linux Foundation and is also ported to other op-
erating systems like Windows. DPDK has been optimized
quite heavily over the years, often by taking advantage of
hardware-specific features (especially on Intel hardware).
Therefore, DPDK still remains able to achieve higher
performance than XDP, though at the disadvantage of
being highly invasive [11]–[13] (see also Section 2.6).
There have been academic proposals to utilize DPDK to
accelerate QUIC packet processing, e.g. picoquic-dpdk,
which claims to have improved throughput by a factor of
3 compared to the original picoquic implementation [14].

There are also further kernel bypass mechanisms like
PF_RING ZC, a proprietary module from the PF_RING
project of ntop. PF_RING ZC is a zero copy packet
processing framework that aims to provide a simple and
hardware independent API and thus differs slightly in its
abstraction level from the more low-level XDP and DPDK
[15]. Since release 7.6.0 it has incorporated XDP and
currently is built on top of AF_XDP by default [16].

2. XDP

The eXpress Data Path (XDP) is a subproject of the
IO Visor Project hosted by the Linux Foundation, initially
introduced in the Linux kernel in 2016 [18]. XDP is a
high performance data path in the Linux kernel based
on the eBPF runtime (extended Berkeley Packet Filter).
It acts as an early hook in the Linux network receive
(RX) path that can be used to bypass the kernel network
stack [6]. XDP was initially designed to be a purely in-
kernel mechanism for bypassing the network stack. A
primary use case was DoS mitigation, i.e. the ability to
drop packets from malicious traffic as early as possible.
However, the development of the AF_XDP socket type in
2018 allowed XDP programs to redirect network packets
efficiently to user space. This enabled the development of
high performance networking applications in user space
that bypass the kernel network stack completely [11].

Seminar IITM WS 23 11 doi: 10.2313/NET-2024-04-1_03

Figure 1: Receiving raw layer 2 frames via an AF_XDP socket (figure taken from [17])

2.1. eBPF

XDP builds on top of the extended Berkeley Packet
Filter (eBPF), an extension to the largely deprecated
classical Berkeley Packet Filter (cBPF) [5] in the Linux
kernel. eBPF was initially released in 2014 (cBPF in 1992)
and, like XDP, is part of the IO Visor Project. eBPF is an
in-kernel virtual machine that allows to load and unload
user-defined programs into designated code paths of the
kernel network stack at runtime. The LLVM compiler
backend supports compiling to eBPF bytecode. C (libbpf
[19]) and Rust (aya [20]) libraries allow the programming
of eBPF applications in higher level languages. eBPF pro-
grams have access to kernel networking infrastructure (e.g.
routing tables) via BPF helper functions and are verified
by the kernel on load to ensure program termination and
to enforce in-kernel safety requirements.

The initial use case of BPF was to capture and filter
network packets (e.g. by using tools like tcpdump). This is
usually done via a tc (traffic control) eBPF program (type
BPF_PROG_TYPE_SOCKET_FILTER) that hooks into
either the ingress or egress point of the networking data
path. Such eBPF programs are triggered before classical
netfilter hooks, but after initial processing of the network
stack (queuing, metadata extraction, GRO, etc.) as the
hooks already reside inside the tc (traffic control) layer
of the generic kernel network stack [21].

For high performance packet processing it is however
more desirable to have an even earlier hook on the receive
data path that circumvents the whole network stack. For
such use cases the XDP program type was developed.

2.2. eBPF XDP Programs

An XDP program is a specific type of eBPF program
(type BPF_PROG_TYPE_XDP). Once loaded on a net-
work interface it is triggered directly after the networking
driver has processed an incoming layer 2 frame from
the NIC. It therefore bypasses the kernel network stack
completely, runs before socket buffer allocation or GRO
processing and operates on the raw layer 2 frame in the
receive ring of the network driver (raw xdp_buff instead
of metadata rich sk_buff). XDP programs can only be
hooked to this ingress point of the networking data path
and not to an egress point like with tc eBPF programs. The
XDP program can arbitrarily process (and even modify)

the received frame and eventually exits with a return value
corresponding to a desired action to be triggered:

• XDP_ABORTED: drops the received frame and
throws an eBPF tracepoint exception

• XDP_DROP: drops the received frame silently

• XDP_PASS: passes the received frame on to the
in-kernel network stack

• XDP_TX: transmit the received frame back via
the NIC it arrived on

• XDP_REDIRECT: redirect the received frame to
another NIC or a user space AF_XDP socket

2.3. AF_XDP

AF_XDP is a specific socket type of the Linux Socket
API that can be used to pass raw network packets ef-
ficiently between kernel space and user space via the
fast XDP data path. The AF_XDP socket provides both
receive and transmit semantics (though not via the clas-
sical syscalls). An AF_XDP socket (in user space) can
receive raw layer 2 frames that a separate in-kernel XDP
eBPF program has specifically redirected to it (via the
XDP_REDIRECT action). This process is illustrated in
Figure 1. An AF_XDP socket in user space can addition-
ally transmit raw layer 2 frames out to the kernel that
directly passes them to the networking driver. The socket
type therefore bypasses the generic in-kernel network
stack completely. The user-space application is thus fully
responsible for parsing/processing the raw incoming layer
2 frames (received on the socket) and is also fully re-
sponsible for assembling the raw outgoing layer 2 frames
(transmitted via the socket).

AF_XDP sockets are more complex in usage and
configuration than regular socket types (e.g of type
AF_INET). However, they enable high performance user-
defined networking applications with similar performance
to kernel bypass mechanisms that rely on hardware-
specific user space drivers like DPDK. While AF_XDP
provides a generic Linux interface that works regardless
of hardware support, it only realize its full performance
potential with driver support, e.g to facilitate zero copy
semantics (see the XDP_ZEROCOPY flag) [21].

An AF_XDP socket is associated with the following
data structures that users must configure and interact with:

Seminar IITM WS 23 12 doi: 10.2313/NET-2024-04-1_03

• UMEM: A user-defined buffer of virtual contigu-
ous memory consisting of equally sized frames.
Network packets are passed between kernel space
and user space via this buffer. The UMEM has
two ring buffers associated with it:

– COMPLETION ring: A consumer ring
buffer in which the kernel stores pointers
to UMEM frames when transmission of the
corresponding frames has been completed.

– FILL ring: A producer ring buffer in which
the user space application can store pointers
to UMEM frames that can be filled by the
kernel when receiving on the socket.

• TX ring: A producer ring buffer in which the user
space application can store pointers to UMEM
frames that shall be transmitted by the kernel.

• RX ring: A consumer ring buffer in which the
kernel stores pointers to UMEM frames that were
received on the socket.

As with all sockets, a user application can wait for
incoming packets or transmission completion by using the
standard polling mechanisms of the Linux kernel (poll(),
select(), epoll()). AF_XDP sockets can therefore be
polled without pinning a whole CPU core to perform
wasteful busy polling as was common in DPDK (however
DPDK also supports event driven polling since version
17.05 [22]). Busy polling can still be performed with
AF_XDP sockets via the SO_BUSY_POLL mechanism of the
Linux socket API. This can be desirable, as busy polling
ensures that AF_XDP applications can run using a single
CPU core. Otherwise, two CPU cores will typically be
used: one for the actual application and one for the RX/TX
NAPI interrupt processing. This degrades performance as
it causes costly coherency traffic between the cores [11].

2.4. XDP-for-Windows

XDP is a Linux technology, however Microsoft has
also introduced an open source XDP implementation for
the Windows operating system in 2022. This "XDP-for-
Windows" implementation is heavily inspired but not a
direct fork of the Linux XDP project [23].

As of September 2023, the implementation does not
support eBPF programs, though the developers are claim-
ing to aim for integration of XDP-for-Windows with the
eBPF-for-Windows project. Instead of eBPF, XDP-for-
Windows currently provides a custom built-in in-kernel
XDP program. This program can not be coded directly
by the user, but can be configured with matching rules
and actions. This built-in XDP program can also be con-
figured to redirect incoming network packets into user-
space AF_XDP sockets (similar to the XDP_REDIRECT
action in Linux XDP). The AF_XDP socket API is fully
supported, but is not fully compatible with the Linux
AF_XDP socket API. The underlying data structures used
are analogous to Linux XDP, with a UMEM buffer and a
TX, RX, COMPLETION, FILL ring buffer.

MsQuic, the QUIC implementation of Microsoft, al-
ready has experimental support for utilizing XDP-for-
Windows in its Windows port [24].

2.5. Caveats of XDP

XDP is a mechanism to bypass the kernel network
stack. Therefore, XDP can only benefit applications that
do not require the functionality provided by the network
stack (e.g. packet filtering for DoS mitigation) or can
implement the functionality in a faster application-specific
way (e.g. minimal UDP payload extraction in QUIC) [21].
Furthermore, an AF_XDP socket is not simply a high
performance socket, but rather a way to pass raw layer
2 frames efficiently between the kernel and user space
applications without having to traverse the kernel network
stack. Unless applications can implement a more efficient
way than the kernel network stack for processing raw layer
2 frames to the desired abstraction that classical sockets
provide (e.g. a TCP byte stream), AF_XDP sockets can
not replace classical socket usage in existing networking
applications. When shortcutting the network stack via
XDP, user applications also need to think about possible
safety and security implications of their custom packet
processing, e.g. if firewalls are bypassed, as the exist-
ing kernel networking mechanisms do not affect traffic
redirected to AF_XDP sockets. For example, the QUIC
implementations described in section 3 that utilize XDP
bypass any classical firewalling on the system. Like all
required functionality that would otherwise be provided
by the kernel network stack, firewalling would have to be
manually re-implemented when using XDP.

2.6. Comparison to DPDK

The main difference to other high speed packet pro-
cessing mechanisms like DPDK is that XDP is highly
integrated with the kernel. This means that XDP can
provide an interface that is integrated into the standard
operating system interfaces like eBPF or the socket API.
XDP programs can also reuse existing networking capabil-
ities of the kernel (e.g. routing tables). A major advantage
compared to DPDK is that XDP facilitates device sharing,
i.e. networking devices used by XDP applications remain
visible/usable to non XDP applications [21]. XDP also
does not require the use of huge pages like DPDK does
[25]. A major drawback of XDP, however, is that it does
not reach the performance of DPDK (e.g. 115 Mpps
reached with DPDK against 100 Mpps reached with XDP
in a packet drop benchmark on five cores [6]). CPU
usage of DPDK was worse than XDP in the past due to
DPDK requiring busy polling, but DPDK has since added
support for event driven polling. Overall, XDP seems to be
better suited in use cases that require minimal invasiveness
and are more hardware agnostic (e.g. classical desktop
applications), whereas DPDK seems to be better suited
for specialized use cases that can tolerate high invasive
measurements to achieve maximal performance (e.g. the
classical DPDK use case of accelerating telecom NFV).

3. QUIC Implementations

The QUIC protocol is designed to replace the widely
used TCP/TLS stack for web traffic. The proposed
HTTP/3 standard is explicitly implemented on top of
QUIC [26]. The protocol was standardized in 2021 with
RFC 9000 [7]. QUIC implementations are still under

Seminar IITM WS 23 13 doi: 10.2313/NET-2024-04-1_03

active development. But as QUIC is increasingly being
adopted on the Internet, they are becoming ever more
mature and are starting to invest more into optimizing
performance. Major QUIC implementations are currently
starting to utilize kernel bypass mechanisms to speed up
their implementations, in particular XDP.

3.1. Concept of XDP Usage in QUIC

Conceptually, XDP is utilized in QUIC implementa-
tions to speed up UDP payload extraction from sockets.
The QUIC protocol is designed to be implemented in
user space instead of inside the kernel (where transport
layer protocols typically are implemented) to allow for
quicker and more flexible development cycles. However,
the QUIC standard mandates a minimal UDP layer un-
derneath QUIC, mainly to enable the traversal of legacy
middleboxes [7].

A lot of the functionality of the generic kernel network
stack is not necessary to process incoming QUIC traffic.
Due to a combination of restrictions in the QUIC standard
and its underlying network stack as well as the behavior
of modern NICs, UDP payloads can be easily extracted
from incoming layer 2 frames.

• Layer 2:
The layer 2 protocol can be assumed to be Ether-
net, since most modern NICs (or their correspond-
ing drivers) will always emit incoming frames in
ethernet format (even if it is received via WLAN
it will wrap the received 802.11 payload into a
"fake" ethernet frame). MAC addresses also do not
need to be checked as networking devices are not
set to promiscuous mode by default. Payloads are
extracted by simply removing the Ethernet header.

• Layer 3:
The layer 3 protocol used almost exclusively on
the Internet is either IPv4 or IPv6. The QUIC
standard forbids IP fragmentation by design [7].
This simplifies payload extraction, since one raw
ethernet frame always holds exactly one UDP
datagram. The IP header only needs to be pro-
cessed minimally: IP addresses and the ECN (ex-
plicit congestion notification) must be stored for
processing in higher layers of QUIC (e.g. connec-
tion migration and congestion control). The IPv4
checksum is not checked to improve performance.
This can be assumed to be safe, since stronger
integrity checks are employed in both lower layers
(e.g. via ethernet CRCs) and higher layers (e.g.
via TLS MAC/AEAD) of the employed QUIC
network stack. IPv6 does not employ a checksum
field for similar reasons [27]. Other fields of the
IP header are also ignored by the examined im-
plementations. Payloads are extracted by simply
removing the IP header.

• Layer 4:
Although QUIC itself implements layer 4 func-
tionality, it builds on top of UDP by design. UDP
is a minimalistic protocol that requires minimal
processing. The ports are noted for processing in
the QUIC connection migration mechanism. The

UDP checksum is not checked to improve perfor-
mance. This can be assumed to be safe for the
same reasons as with IPv4 checksums. Payloads
are extracted by simply removing the UDP header.

These steps can be done via XDP to process the
incoming QUIC traffic on the RX path manually up to
the UDP layer, bypassing the kernel network stack. For
the TX path the process is inverted, however, all fields
must be filled (even those ignored on the RX path) and
all checksums must be computed.

3.2. Specific QUIC Implementations

To the best of the author’s knowledge, currently two
major QUIC implementations exist that utilize XDP:

• MsQuic from Microsoft [9]:
The XDP implementation of MsQuic is currently
(September 2023) under active development. It is
released under "preview support" for the Windows
porting of MsQuic and uses XDP-for-Windows
(Linux is not supported yet) [24]. MsQuic is im-
plemented in C++ and can therefore directly use
the native XDP-for-Windows libraries. The imple-
mentation configures the built-in XDP program of
XDP-for-Windows to redirect incoming traffic to
AF_XDP sockets. The manual packet processing
of UDP frames as described above is performed
completely in user space. Currently the application
supports only busy polling on AF_XDP sockets.
Microsoft claims that by utilizing XDP it can
improve both latency and throughput by ca. 100%
on serialized HTTP requests [28].

• s2n-quic from Amazon AWS [8]:
The XDP implementation of s2n-quic is currently
(September 2023) also under active development
and only available for Linux. s2n-quic is im-
plemented in Rust and uses the aya eBPF/XDP
library. It must wrap Linux C syscalls for use in
Rust. The implementation uses a custom in-kernel
eBPF XDP program to redirect traffic destined
to the correct UDP port into AF_XDP sockets.
The manual packet processing of UDP frames as
described above is then performed in user space.
s2n-quic supports both busy polling and event-
based polling (via the tokio runtime) on AF_XDP
sockets. XDP is not yet fully integrated into the
API, but s2n-quic does provide a full server-client
example ("s2n-quic-qns") that can be configured
to use XDP. AWS does not provide detailed per-
formance analysis but released profiling data in-
dicates a significant reduction of kernel overhead
when using XDP [29].

In addition, there has been an attempt by LiteSpeed
Technologies to add XDP support to their lsquic QUIC
implementation [30]. The design of the implementation is
similar to s2n-quic: it utilizes Linux XDP with a separate
eBPF XDP program that efficiently extracts UDP payloads
and redirects to AF_XDP sockets. LiteSpeed claims that
this gave a 43% improvement in throughput compared to
standard UDP sockets [31]. However, this was only imple-
mented as a proof-of-concept and was never incorporated
into the official lsquic implementation.

Seminar IITM WS 23 14 doi: 10.2313/NET-2024-04-1_03

4. Conclusion and future work

Kernel bypass mechanisms for networking applica-
tions are important tools to facilitate high-performance
packet processing on general purpose processors/operating
systems. XDP is an upcoming technology of this kind. It
allows bypassing the kernel network stack and optionally
passing raw layer 2 frames efficiently between user space
applications and the kernel. Although it is still slower than
its main competitor DPDK, it has the advantage of being
highly integrated with the kernel (e.g. it does not require
user space applications to take full control of the NIC).

Major implementations of the new QUIC transport
protocol have started to utilize the XDP technology to
speed up their implementations by reducing the kernel
overhead of the standard UDP socket API. Due to the
specifics of the QUIC protocol and its underlying network
stack, the extraction of QUIC payloads from its underlying
UDP layer can be done in a minimalistic manner that is
more efficient than the generic kernel network stack. XDP
can leverage this fact and has shown promising results for
improving performance in major QUIC implementations.

References

[1] I. S. David Schinazi, Fan Yang, “Chrome is deploying
HTTP/3 and IETF QUIC,” 2020, accessed: 2023-09-
30. [Online]. Available: https://blog.chromium.org/2020/10/
chrome-is-deploying-http3-and-ietf-quic.html

[2] D. Damjanovic, “QUIC and HTTP/3 Support now
in Firefox Nightly and Beta,” 2021, accessed: 2023-
09-30. [Online]. Available: https://hacks.mozilla.org/2021/04/
quic-and-http-3-support-now-in-firefox-nightly-and-beta

[3] Apple Inc., “Safari 14 Release Notes,” 2020, accessed: 2023-09-30.
[Online]. Available: https://developer.apple.com/documentation/
safari-release-notes/safari-14-release-notes

[4] E. Sy, C. Burkert, H. Federrath, and M. Fischer, “A QUIC Look at
Web Tracking.” Proc. Priv. Enhancing Technol., vol. 2019, no. 3,
pp. 255–266, 2019.

[5] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture.” in USENIX winter,
vol. 46, 1993, pp. 259–270.

[6] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The eXpress Data Path: Fast
Programmable Packet Processing in the Operating System Kernel,”
in Proceedings of the 14th international conference on emerging
networking experiments and technologies, 2018, pp. 54–66.

[7] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[8] Amazon.com, Inc, “s2n-quic Github,” accessed: 2023-09-30.
[Online]. Available: https://github.com/aws/s2n-quic

[9] Microsoft Corporation, “MsQuic Github,” accessed: 2023-09-30.
[Online]. Available: https://github.com/microsoft/msquic

[10] A. LLC, “DPDK White Paper: Myth-Busting DPDK in 2020,” The
Linux Foundation, Tech. Rep., 2020.

[11] M. Karlsson and B. Töpel, “The path to DPDK speeds for
AF_XDP,” in Linux Plumbers Conference, 2018.

[12] E. Freitas, A. T. de Oliveira Filho, P. R. do Carmo, D. F. Sadok, and
J. Kelner, “Takeaways from an experimental evaluation of eXpress
Data Path (XDP) and Data Plane Development Kit (DPDK) under
a Cloud Computing environment,” Research, Society and Develop-
ment, vol. 11, no. 12, pp. e26 111 234 200–e26 111 234 200, 2022.

[13] J. D. Brouer and T. Høiland-Jørgensen, “XDP: challenges and
future work,” in Proc. Linux Plumbers Conference, 2018.

[14] N. Tyunyayev, M. Piraux, O. Bonaventure, and T. Barbette, “A
high-speed QUIC implementation,” in Proceedings of the 3rd
International CoNEXT Student Workshop, 2022, pp. 20–22.

[15] A. Cardigliano, “Positioning PF_RING ZC vs DPDK,” 2017,
accessed: 2023-09-30. [Online]. Available: https://www.ntop.org/
pf_ring/positioning-pf_ring-zc-vs-dpdk/

[16] ntop, “PF_RING 7.6.0 release,” 2020, accessed: 2023-09-
30. [Online]. Available: https://github.com/ntop/PF_RING/releases/
tag/7.6.0

[17] W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff, “Revisiting the open
vswitch dataplane ten years later,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 245–257.

[18] IO Visor Project, “XDP: eXpress Data Path,” accessed: 2023-09-
30. [Online]. Available: https://www.iovisor.org/technology/xdp

[19] Linux Project, “libbpf Github,” accessed: 2023-09-30. [Online].
Available: https://github.com/libbpf/libbpf

[20] Aya Project, “aya Github,” accessed: 2023-09-30. [Online].
Available: https://github.com/aya-rs/aya

[21] M. A. Vieira, M. S. Castanho, R. D. Pacífico, E. R. Santos,
E. P. C. Júnior, and L. F. Vieira, “Fast Packet Processing with
eBPF and XDP: Concepts, Code, Challenges, and Applications,”
ACM Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–36, 2020.

[22] “DPDK Release 17.05,” 2017, accessed: 2023-09-30. [On-
line]. Available: https://doc.dpdk.org/guides/rel_notes/release_17_
05.html

[23] XDP-for-Windows, “Frequently Asked Questions,” accessed:
2023-09-30. [Online]. Available: https://github.com/microsoft/
xdp-for-windows/blob/main/docs/faq.md

[24] Microsoft Corporation, “MsQuic v2.2.0,” 2018, accessed: 2023-
09-30. [Online]. Available: https://github.com/microsoft/msquic/
releases/tag/v2.2.0

[25] N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “Accelerating virtual net-
work functions with fast-slow path architecture using express data
path,” IEEE Transactions on Network and Service Management,
vol. 17, no. 3, pp. 1474–1486, 2020.

[26] M. Bishop, “HTTP/3,” RFC 9114, Jun. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9114

[27] D. S. E. Deering and B. Hinden, “Internet Protocol, Version 6
(IPv6) Specification,” RFC 8200, Jul. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8200

[28] Y. Huang, “Balance Performance in MsQuic and
XDP,” 2022, accessed: 2023-09-30. [Online]. Avail-
able: https://techcommunity.microsoft.com/t5/networking-blog/
balance-performance-in-msquic-and-xdp/ba-p/3627665

[29] C. Bytheway, “PR: feat(s2n-quic-qns): add XDP server #1765,”
2023, accessed: 2023-09-30. [Online]. Available: https://github.
com/aws/s2n-quic/pull/1765

[30] LiteSpeed Technologies Inc, “lsquic github,” accessed: 2023-09-
30. [Online]. Available: https://github.com/litespeedtech/lsquic

[31] R. Perper, “Performance Comparison of QUIC with
UDP and XDP,” 2022, accessed: 2023-09-30. [On-
line]. Available: https://blog.litespeedtech.com/2020/06/01/
performance-comparison-quic-udp-xdp

Seminar IITM WS 23 15 doi: 10.2313/NET-2024-04-1_03

Seminar IITM WS 23 16

Extracting Information from Machine Learning Models

Iheb Ghanmi, Lars Wüstrich∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: iheb.ghanmi@tum.de, wuestrich@net.in.tum.de

Abstract—In the era of data-driven decision-making, ma-
chine learning models, especially neural networks, demon-
strate their capabilities across various domains. However, as
the deployment of these models increases, the vulnerability
of these models to attacks has become a significant concern.
This paper illustrates how attackers can extract sensitive
information from machine learning models, potentially com-
promising the confidentiality of training data. We intro-
duce the fundamentals of neural networks, emphasize the
architecture of Feedforward Neural Networks, and explain
how weights and biases intrinsically store knowledge. We
present two attacks designed to extract information about
the training data from a black-box neural network.

Index Terms—neural networks, adversarial attacks, informa-
tion extraction, privacy

1. Introduction

Machine learning (ML) currently undergoes a trans-
formative evolution. Transitioning from an academic cu-
riosity, it now serves as a pivotal tool in numerous
real-world applications [1]. Present capabilities include
detecting patterns in images [2], decoding nuances of
human language [3], and recognizing intricate auditory
cues [4]. Typically, these models are encapsulated and
operate as “black-boxes”. In this configuration, users ac-
cess the input-output relationships but remain uninformed
about internal operations [5]. This design choice simplifies
user interactions and, crucially, safeguards sensitive data
included in the training datasets [6].

However, the perceived simplicity and security hide
inherent challenges. Our review reveals that over-reliance
on the obscured nature of black-box models for secu-
rity is problematic. Despite their strengths, neural net-
works (NNs) are susceptible to attacks that aim to reveal
information, particularly regarding the data they were
trained on [7]. Most crucially, and as our primary contribu-
tion, we examine various techniques, shedding light on the
inherent weaknesses of these networks, challenging their
perceived invulnerability, and underscoring the urgent
need for better defenses [8].

The remainder of this paper is structured as follows:
Section 2 introduces the basics of NNs, Section 3 defines
our threat model, and Section 4 delves into methods for
information extraction. In Section 5, we explore specific
applications of the attacks within the networking domain,
especially in Intrusion Detection Systems (IDS). We con-
clude with a discussion on future directions.

2. NN Basics

This section introduces concepts related to NNs that
are essential for understanding subsequent discussions for
attacks and defenses. An NN is a computational model
inspired by biological NNs in the human brain. The
primary function of an NN is to receive input, process
it, and provide an output.

2.1. NN Architecture

The architecture of an NN defines its fundamental
structure, detailing how individual components, such as
neurons, are interconnected. This structure plays a pivotal
role in determining the network’s computational capabil-
ities and its ability to learn from data.
Neurons: Neurons are fundamental units in an NN. A
neuron receives multiple inputs, processes them, and gen-
erates a single output. This processing involves a weighted
sum of the inputs, an addition of a bias, and the applica-
tion of an activation function [9].
Activation Functions: These are mathematical functions
that, given an input, determine the output of a neu-
ron. Common activation functions include the sigmoid,
tanh [10], and ReLU (Rectified Linear Unit) [11].
Layers: Typically, we organize NNs in layers [9]. The
three main types of layers are:

Input Layer: This is where the network receives input
from the dataset. Each neuron in this layer corresponds to
one feature in the dataset.

Hidden Layer: These are layers between the input and
output layers and are each composed of multiple neurons.
An NN can have any number of hidden layers, and this
is what makes a network “deep” in deep learning [12].

Output Layer: This layer produces the final prediction
or classification of the network.
Feedforward NNs (FNNs): FNNs represent the most
straightforward artificial NN architecture type [10]. In
FNNs, the data flows in one direction, from the input layer,
through the hidden layers, and to the output layer. There
are no cycles or loops in the network. Figure 1 provides
an overview of such a network.

2.2. Knowledge in NNs

NNs store knowledge as weights and biases. Weights
determine the connection strength between two neurons.
Biases, similar to intercepts in linear equations, allow
neuron output adjustments. During training, the network

Seminar IITM WS 23 17 doi: 10.2313/NET-2024-04-1_04

Figure 1: Overview of a simple example structure of an
FNN of one input layer, two different hidden layers and
one output layer consisting of one neuron. Model was
adapted from [13]

modifies its weights and biases to reduce prediction dis-
crepancies from actual outcomes, typically using back-
propagation and optimization techniques like gradient de-
scent [9]. A common challenge with NNs is their black-
box nature. Although they produce relatively accurate
predictions, explaining the exact reasoning behind spe-
cific decisions remains difficult [14]. The knowledge in
the network is distributed across the NN’s weights and
biases, and it is not always clear how individual weights
contribute to the final decision.

3. Threat Model

This section defines our threat model which consists of
the properties of our target model as well as the attacker’s
capabilities.
Target Model: The target model refers to any trained
machine learning model, particularly those that have been
trained on sensitive datasets, such as medical records
or personal information. These models range from deep
NNs [15] to classification models trained by popular “ma-
chine learning as a service” providers [16].
Attacker Capabilities:
* Model Access: The attacker can access the model,
meaning they can send input data to the model and receive
the corresponding outputs. This does not imply that the
attacker has access to the original training data or any
metadata associated with it.
* Input Data: The attacker can provide any input data
to the model and observe its predictions or classifications.
This allows the adversary to infer information about the
model’s training data or its internal workings.
* Model Queries: The attacker can make unlimited
queries to the model. This means that the attacker can send
an unlimited number of input data points to the model and
observe the corresponding outputs.
Attacker Limitations:
* Black-box Assumption: Although the attacker inter-
acts with the model, they do not have direct access to
the model’s internal parameters, weights, or architecture.
This means that the attacker cannot directly observe or
manipulate the inner workings of the model.

* No Training Data Access: The attacker does not have
access to the original training data or any associated
metadata. This is particularly relevant in scenarios where
the training data is sensitive or confidential.

4. Information Extraction Methods

This section focuses on attacks that aim to extract
information about the training data of the NNs. The goal
is to analyze and compare the methods that were proposed
in the literature. The discussion starts with introducing the
different methods and then comparing them in terms of
their efficiency and accuracy. The section also discusses
the different assumptions that were made by the authors
of the different methods.

In this paper, the focus is on the following meth-
ods: Membership Inference Attacks in Section 4.1 and
Knowledge Extraction Attacks with No Observable Data
in Section 4.2. These represent two possible methods to
extract information about the training data.

4.1. Membership Inference Attacks (MIAs)

Membership Inference is not a singular adversarial
attack but rather represents a broader category of such
attacks. In these attacks, the objective is to determine
whether a specific data point belongs to the training
dataset by interacting with a model via a black-box
method. This method circumvents the need to rely on ex-
plicit statistics or specific details about the target model’s
architecture. Through this technique, the attacker learns
actual information about whether a specific data point is
part of the model’s original training dataset.

In this context, the discussion revolves around the
attack methodology introduced by Shokri et al. [16]. Here,
the authors trained an attack model to distinguish the
target model’s responses based on whether the input data
is part of its original training dataset (see Figure 2).

Membership inference attacks, as explored by Shokri
et al. [16], utilize a technique termed shadow training. In
this approach, multiple shadow models are constructed
to mimic the behavior of the target model. These shadow
models are trained on datasets that closely resemble the
distribution of the target model’s training data (Figure 3).
A salient feature of these shadow models is the attacker’s
awareness of their training datasets, ensuring a clear un-
derstanding of data record membership.

This knowledge facilitates the training of the attack
model using the input-output pairs from these shadow
models. While various strategies can be employed to
generate this data, it’s paramount that the data distribution
aligns closely with that of the target model’s training set.
By contrasting the behavior of the shadow models on
their known training data with their behavior on unfamiliar
inputs, the attack model can discern nuanced differences
in the target model’s responses.

The study highlights that, even without prior assump-
tions about the distribution of the target model’s training
data, and using fully synthetic data for shadow models,
membership inference accuracy can reach up to 90% [16].
Furthermore, the research underscores the potential risks
to datasets, such as those from health care, when used to

Seminar IITM WS 23 18 doi: 10.2313/NET-2024-04-1_04

Figure 2: Overview of the Membership Inference Attack
adapted from [16]. The attack model receives, along with
the class label of the input, the prediction output of the
original target model. A classification is then made to
ascertain whether the input data was part of the original
training dataset.

Figure 3: Overview of the training of shadow mod-
elsadapted from [16]. Shadow training sets are constructed
and used to train each of the models separately. The
datasets share the same format but contain different data
points from similar distributions.

train machine learning models that are publicly accessible.
This method lets an attacker reconstruct the training data,
making the potentially sensitive information available to
them. The efficacy of this method is contingent upon the
number and caliber of the shadow models and the con-
gruence of their training datasets with the target model’s
dataset. For a detailed understanding of the specific train-
ing methodology employed by Shokri et al. for the shadow
models, readers are referred to the original publication.

4.2. Knowledge Extraction Attacks with No Ob-
servable Data

In the paper titled “Knowledge Extraction with No
Observable Data” [15], Yoo et al. present methods for
two scenarios: available and hidden training data. NNs are
parameterized functions designed to approximate arbitrary
functions, specified by training data examples. The archi-
tecture of the network defines its computational structure,
while the parameters or weights determine its specific

Figure 4: Overview of the KEGNET’s operation adapted
from [15]. The generator network G utilizes sampled
variables ŷ and ẑ to produce a fake data point x̂, aim-
ing to mimic the original training data distribution by
minimizing the Kullback-Leibler (KL) divergence. Con-
currently, the decoder network D strives to retrieve the
variable ẑ from x̂ and reconstruct the original input,
minimizing the mean squared error (MSE) between the
original and reconstructed data. Both networks undergo
end-to-end training: G generates data points fed into a
fixed classifier and D, while D extracts a low-dimensional
representation. The iterative training refines both networks
based on discrepancies between generated and original
data and between original and reconstructed inputs.

computations. The paper introduces the concept of “unin-
tended memorization”, where NNs might inadvertently re-
veal out-of-distribution training data, termed as “secrets”.
From this method, the attacker extracts information stored
within the NN itself. The exact nature of this information,
such as the numbers depicted in Figure 5, is open to the
interpretation of the attacker.

For scenarios with available data, Yoo et al. [15] in-
troduce KEGNET (Knowledge Extraction with Generative
Networks). This method aims to move knowledge from
a large NN (known as the teacher network) to a smaller
one (called the student network). The authors designed
KEGNET, especially for scenarios where there is not much
training data or the student model needs to be small.
Figure 4 shows a visual explanation of the KEGNET
process.

However, when the original training data is concealed,
especially in areas such as medicine and defense, the
challenges increase. To solve this, KEGNET uses tools to
create fake data points that can replace the hidden original
training data. The main idea here is that the process of
pulling out knowledge focuses on a small set of data points
within a certain area [15]. This led to the creation of a
generator network, paired with a discriminator network,
to mimic and tell apart data points.

The team tested KEGNET on three datasets from the
UCI Machine Learning Repository. Using a multilayer
perceptron as a classifier and adding Tucker decompo-
sition to all dense layers, the results showed KEGNET did
better than other standard methods. This means an attacker
can use KEGNET to pull knowledge from different NN
designs and various types of training data.

While the main paper shows possible weak points
in hidden models, it does not give a clear method to

Seminar IITM WS 23 19 doi: 10.2313/NET-2024-04-1_04

Figure 5: Visual representation of the artificial data points
generated by the generator network of KEGNET [15].
These data points exemplify how the generator can pro-
duce synthetic data that closely resembles the original
training data. The original teacher network was trained
on the SVHN dataset [17]. Figure adapted from [15].

pull out specific details about the training data. However,
the authors do mention the generator network’s ability to
create data points similar to the original training data. An
example of this can be seen in Figure 5.

In conclusion, Yoo and his team introduce a sig-
nificant advancement in machine learning by crafting a
mechanism that extracts knowledge sans observable data.
Their method, KEGNET, offers a solution for scenarios
constrained by data accessibility due to privacy or confi-
dentiality nuances. KEGNET provides also an opportunity
for attackers to directly extract secrets stored in an NN.

5. Applications in the Networks Domain

In this section, we explore a specific application of
one of the attacks (MIA) introduced in Section 4 within
the networking domain. A prime example where NNs are
extensively used is in Intrusion Detection Systems (IDSs).

5.1. Intrusion Detection Systems

IDSs serve as a cornerstone in the realm of network
security, vigilantly monitoring network traffic to detect
malicious activities [18]. A pivotal aspect of their oper-
ation hinges on the training data, which predominantly
consists of network logs [18]. Figure 6 provides a visual
representation of the core components and functioning of
an IDS.

5.2. Learning Mechanisms of IDS

IDSs derive their efficacy from extensive training on
network logs. These logs capture diverse network activ-
ities, protocols, and communication patterns. By assimi-
lating this data, IDSs not only recognize but also learn
the underlying patterns of regular and anomalous traffic.
This learned knowledge empowers them to swiftly identify
and respond to potential threats, ensuring robust network
security [18].

5.3. Vulnerabilities and Potential Attacks on IDS

IDSs are not impervious to threats. One of the most
potent threats they face is MIAs. These attacks are de-

Figure 6: A schematic representation of an IDS showcas-
ing its core components and their interactions within a
network environment. This model emphasizes the critical
role of IDSs in monitoring network activities, verifying
connection patterns, and analyzing the flow of packets to
detect potential threats. Adapted from [18].

signed to reverse-engineer the data on which the IDS was
trained. By successfully executing an MIA, attackers can
gain information from the system. For instance, they can:
* Pinpoint commonly used services: By analyzing the
network logs, attackers can identify frequently used ports,
such as port 53, which is typically associated with DNS.
* Determine entities running specific services: Through
MIAs, attackers can discern which specific nodes or enti-
ties within the network are responsible for running certain
services, like DNS servers.
* Extract overarching network structure insights: Be-
yond just services, MIAs can provide attackers with a
broader understanding of the network’s layout, its key
entities, and their interrelationships.

5.4. Speculative Implications of MIAs on IDS

The implications of successful MIAs on IDS are not
just limited to information extraction. Armed with the
knowledge obtained from MIAs, skilled attackers can craft
malicious packets that blend seamlessly with regular traf-
fic, evading detection by the IDS. This potential scenario
emphasizes the urgent need for enhanced defenses against
such sophisticated attacks.
Countermeasures: While the primary focus of this paper
is on the vulnerabilities, it is worth noting that the research
community is not standing still. Efforts are being made
to develop defense mechanisms against such attacks, as
seen in [19], which proposes defense strategies based on
gradient differential privacy.

6. Conclusion and future work

In this paper, we described the intricate manner in
which NNs store information. Subsequently, we intro-
duced two distinct methods for knowledge extraction from
NNs when presented as a black box. In the application
of one of these attacks to the networking domain, we
demonstrated their significant implications, particularly
within Intrusion Detection Systems.

Moving forward, more research is imperative on robust
defense mechanisms, interdisciplinary collaboration be-
tween machine learning and cybersecurity, and the devel-
opment of transparent and interpretable NN architectures.

Seminar IITM WS 23 20 doi: 10.2313/NET-2024-04-1_04

Our findings underscore the importance of these areas in
ensuring the security and efficacy of NNs in real-world
applications.

References

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends,
perspectives, and prospects,” Science, vol. 349, no. 6245, pp.
255–260, 2015. [Online]. Available: https://www.science.org/doi/
abs/10.1126/science.aaa8415

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems,
F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
Eds., vol. 25. Curran Associates, Inc., 2012. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[4] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2013, pp.
6645–6649.

[5] W. J. von Eschenbach, “Transparency and the black box problem:
Why we do not trust ai,” Philosophy & Technology, vol. 34, no. 4,
pp. 1607–1622, 2021.

[6] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 1322–1333.
[Online]. Available: https://doi.org/10.1145/2810103.2813677

[7] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction APIs,”
in 25th USENIX Security Symposium (USENIX Security
16). Austin, TX: USENIX Association, Aug. 2016, pp.
601–618. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/tramer

[8] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards
the science of security and privacy in machine learning,” arXiv
preprint arXiv:1611.03814, 2016.

[9] J. A. Anderson, An introduction to neural networks. MIT press,
1995.

[10] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to
multi-layer feed-forward neural networks,” Chemometrics and
Intelligent Laboratory Systems, vol. 39, no. 1, pp. 43–62, 1997.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0169743997000610

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international
conference on machine learning (ICML-10), 2010, pp. 807–814.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol.
521, no. 7553, pp. 436–444, 2015.

[13] A. Rastogi, K. Agarwal, E. Lolon, M. Mayerhofer, and O. Oduba,
“Demystifying data-driven neural networks for multivariate pro-
duction analysis,” in Unconventional Resources Technology Con-
ference, Denver, Colorado, 22-24 July 2019. Unconventional
Resources Technology Conference (URTeC); Society of . . . , 2019,
pp. 2602–2622.

[14] D. Castelvecchi, “Can we open the black box of ai?” Nature News,
vol. 538, no. 7623, p. 20, 2016.

[15] J. Yoo, M. Cho, T. Kim, and U. Kang, “Knowledge
extraction with no observable data,” in Advances in Neural
Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
Eds., vol. 32. Curran Associates, Inc., 2019. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2019/
file/596f713f9a7376fe90a62abaaedecc2d-Paper.pdf

[16] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 3–18.

[17] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.
Ng, “Reading digits in natural images with unsupervised feature
learning,” 2011.

[18] N. Unnisa A, M. Yerva, and K. M Z, “Review on intrusion
detection system (ids) for network security using machine learning
algorithms,” International Research Journal on Advanced Science
Hub, vol. 4, no. 03, pp. 67–74, 2022. [Online]. Available:
https://rspsciencehub.com/article_17618.html

[19] Z. Liu, R. Li, D. Miao, L. Ren, and Y. Zhao, “Membership
inference defense in distributed federated learning based on gra-
dient differential privacy and trust domain division mechanisms,”
Security and Communication Networks, vol. 2022.

Seminar IITM WS 23 21 doi: 10.2313/NET-2024-04-1_04

Seminar IITM WS 23 22

Probabilistic Network Telemetry

Benjamin Schaible, Kilian Holzinger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: b.schaible@tum.de, holzinger@net.in.tum.de

Abstract—With ever increasing demand for large scale com-
puting systems such as data centers, high-speed intercon-
necting networks too are becoming increasingly important.
Measuring these networks is key to detecting and localizing
performance issues. One important metric is packet latency.
However, established network measurement systems are ei-
ther not suitable for estimating packet latencies or introduce
unwanted overhead [1].

In this paper, we discuss three probabilistic approaches
to estimating packet latencies, which were proposed in prior
work: the Lossy Difference Aggregator (LDA), the Lossy Dif-
ference Sketch (LDS) and Reference Latency Interpolation
(RLI). Following that, we compare these approaches against
each other regarding their robustness to packet loss and
reordering, their accuracy and the overhead they introduce.
We come to the conclusion that, under low packet loss,
latency estimates provided by the LDA and LDS are more
accurate than ones provided by RLI.

Index Terms—probabilistic data structures, network mea-
surement, high-speed networks

1. Introduction

With ever increasing demand for large scale computing
systems such as data centers, high-speed interconnecting
networks too are becoming increasingly important. Such
networks may consist of thousands of devices, switches
and routers, making it nearly impossible to predict un-
wanted behavior. Network measurements have therefore
become an essential tool to detect and localize network
performance problems such as bottlenecks.

One of the key metrics measured is packet latency [1]–
[3], which is the amount of time it takes for a packet to
travel from one point to another in a network. Efficiently
measuring packet latencies, however, especially in the
order of microseconds, is a non-trivial matter. Established
systems like NetFlow actively measure packet latencies
by attaching timestamps to a sample of all observed
packets [1]. High sampling rates are required in order for
this to yield accurate average latency estimates, which in
turn imposes a considerable network overhead [1].

In this paper, we discuss three probabilistic approaches
to estimating average packet latencies, which were pro-
posed in priror work. These approaches aim to pro-
vide accurate average latency estimates while remaning
lightweight in terms of network utilization, memory us-
age and computational overhead. Namely, we discuss
the Lossy Difference Aggregator [1] in Section 3.1, the

Lossy Difference Sketch [2] in Section 3.2 and Reference
Latency Interpolation [3] in Section 3.3. Following that,
we compare their strengths and weaknesses in Section 4.

2. Probabilistic Data Structures

All of the probabilistic measurement approaches pre-
sented in this paper leverage their own application-specific
data structures, though they share the same core concepts.
We now discuss the most important ideas behind the
probabilistic data structures used.

The data structures we are going to discuss in this
paper are sketches. Sketches are used to estimate various
metrics on streams of data. While they don’t guarantee
exact results, they usually come with a much smaller
overhead when compared to perfectly precise measure-
ments. Instead, they are likely to yield accurate results
and therefore are being referred to as probabilistic.

A sketch usually aggregates some kind of value in a
counter. In our case these values would be packet laten-
cies. However, there usually is an unlikely but catastrophic
occurrence which would destroy the counter, meaning that
the value stored is skewed heavily and can no longer
be used to obtain accurate estimates. In our case, this
occurrence would be packet loss.

To deal with such occurrences, sketches use multiple
counters and distribute samples evenly across them. This
way, such a catastrophic occurrence would only destroy
one of many counters, leaving the rest of them in a usable
state. This even distribution is commonly achieved by
calculating a hash of the sample and mapping that hash to
an index within an array of counters. For example, assume
that our sketch consists of n counters and we wish to insert
the latency of a packet p. We may then calculate an index
with hash(p) mod n. Assuming the hash function used
is uniform, meaning that each hash is produced with the
same probability, this would result in an even distribution
of samples across all n counters. In this paper, we refer
to this technique as hash partitioning.

3. Measurement Approaches

Consider the following example: Two clients are
exchanging a considerable amount of data via two
switches (Figure 1). Now, let’s say we want to measure
the latency (or “delay”) between these two switches,
for example in order to gain insight into the state of
the network. A simple way to achieve this is to have
both switches attach a timestamp to each packet before

Seminar IITM WS 23 23 doi: 10.2313/NET-2024-04-1_05

dispatching it. The receiving switch may then calculate
the latency by subtracting the packet’s timestamp from its
current time. This also allows one to calculate the average
latency by summing up all measured delays and dividing
by the number of delays measured.

Figure 1: A simple measurement environment

The main problem with this approach is the overhead
in bandwidth usage caused by the timestamps attached to
each packet. Especially in data center networks, where
hundreds of millions of packets are transmitted every
second, even relatively small (32-bit) timestamps would
quickly add up.

Additionally, any difference between clocks of the two
switches will directly add to the error of the measured
latency [1]. Therefore, both switches’s clocks have to be
synchronized tightly in order for the measurement to yield
accurate results [1]. We are assuming microsecond-level
clock synchronization, which may be achieved by making
use of protocols such as IEEE-1588 [4].

We now discuss several probabilistic approaches to es-
timating the average latency between two network points.

3.1. Lossy Difference Aggregator

The Lossy Difference Aggregator (LDA), proposed by
Kompella et al. in [1], is a probabilistic data structure, used
to efficiently estimate the average and standard deviation
of the latency between a sender A and a receiver B. The
sender and receiver may be two network devices such as
routers or switches, or two points within a single network
device [1].

An LDA is used to conduct a one-way measurement,
meaning that it estimates the average latency of packets
being sent from A to B, ignoring packets sent the other
way [1]. If a bi-directional measurement is desired, the
measurement should be conducted twice, once in each
direction.

3.1.1. Basic Idea. We now discuss the basic approach
behind the LDA. Assume that A sends a total of N packets
to B and we wish to measure the average latency of these
packets. Let ai be the time at which the i-th packet was
dispatched from A, and bi the time it was received at B,
with i ∈ {1, . . . , N}. For now, we assume there is no
packet loss. Consequently, the latency of the i-th packet
is bi − ai and the average latency D corresponds to

D =
1

N

N∑

i=1

(bi − ai) (1)

=
1

N

(
N∑

i=1

bi −
N∑

i=1

ai

)
(2)

as described in [1].
Recall the previously discussed approach of attaching

a timestamp to each packet. In this context, A would attach
to each packet its timestamp ai, while B would count the
number of packets it receives and add each packet’s delay
bi − ai to an accumulator. The average delay could then
be calculated using (1).

A Lossy Difference Aggregator allows one to conduct
this type of measurement without the overhead of attach-
ing timestamps to any packet. It operates on periodic time
intervals of length T , with T usually being in the range
from a few hundred milliseconds to a few seconds [1].
When using an LDA, instead of attaching timestamps
to packets, we aggregate them both on the sender and
receiver [1]. Then, at the end of each measurement in-
terval, a control packet containing the sender’s timestamp
aggregate is sent to the receiver and used to calculate the
average latency there [1]. The LDA is the data structure
used to aggregate those timestamps, both at the sender
and receiver [1].

In the context of the current example, consider a sim-
plified LDA consisting of a single timestamp aggregator
and a packet counter. We use one simplified LDA each for
the sender and receiver. At the sender A, the simplified
LDA then stores the sum TS =

∑N
i=1 ai and the amount

of packets sent N . At the receiver B, it stores the sum
TR =

∑R
i=1 bi and the amount of packets received R.

Since we assume no packet loss, N and R are equal. As
shown in [1], we can then transform (2) to use TS and
TR:

D =
1

N
(TR − TS) (3)

Using (3), we are able to calculate the average latency
during a measurement cycle by building timestamp aggre-
gates TS and TR at the sender and receiver respectively
and by transmitting TS to the receiver at the end of the
cycle, assuming that R = N .

3.1.2. Dealing with Packet Loss. The simplified LDA
however has a significant flaw: If even a single packet
sent from A to B is lost, meaning that N > R, the re-
ceiver’s timestamp accumulator becomes unusable for the
remainder of the measurement interval and no meaningful
average delay can be calculated. This is due to the fact that
TS would have aggregated more timestamps than TR and
that it is impossible to recover the original timestamps
aggregated in TS and TR, eliminating the possibility of
calculating the average of a smaller sample [1].

It is possible to mitigate the severity of this problem
by making use of a simple measure proposed in [1]:
Instead of a single accumulator-counter pair, use an array
of m of these pairs, which we call a bank [1]. Then, for
each packet, hash partition between the m accumulator-
counter pairs in order to decide on which one to use [1].
Since this choice must be consistent across the sender
and receiver, both must use the same hash function in
order for this to work [1]. When using such a bank of
m accumulator-counter pairs, a single packet loss would
only corrupt a single one of these pairs while the others
remain usable [1]. The average delay of a subset of all
sampled packets may then be determined by combining
all usable accumulator-counter pairs [1].

Seminar IITM WS 23 24 doi: 10.2313/NET-2024-04-1_05

However, using a bank only allows the LDA to handle
low packet loss rates [1]. A high loss rate, combined
with a high amount of throughput, would still be likely
to quickly corrupt the entire bank [1]. To cope with
this, instead of sampling every packet received, a fixed
sampling probability p can be imposed on the bank with
the goal of reducing the number of potentially unusable
accumulator-counter pairs [1]. Since, in order to maintain
consistency, a packet should be sampled at the receiver if
and only if it was sampled at the sender, it is logical to use
the same sampling rate at both ends [1]. A common hash
function may then be used on each packet in order to apply
this sampling rate [1]. Based on the rate of packet loss,
a suitable sampling rate p, which maximizes the expected
sample size, may then be determined [1].

In a realistic scenario however, the packet loss rate is
usually unknown and prone to change over time [1]. This
can be dealt with by using an array of n banks, each one
tuned to a different packet loss rate through its sampling
rate pi [1]. When using multiple banks, it is advantageous
for those banks to have disjoint sampling sets, meaning
that no packet is ever sampled by more than one bank,
since this opens up the possibility of combining all usable
accumulator-counter pairs across all banks in order to
calculate the average latency from the greatest possible
sample, without the possibility of some packets being
counted multiple times [1]. If the sampling probabilities
p1, . . . , pn were to be powers of 1

2 , disjoint sampling sets
could easily be achieved by hashing each packet to a
bitstring, where each bit has an equal probability of being
0 or 1 [1]. Then, use the number of leading zeroes of the
bitstring to determine which bank, if any, will sample the
packet [1].

3.1.3. The complete Data Structure. The full LDA
consists of an m×n matrix of accumulator-counter pairs.
Each of the n colums represents a separate bank, holding
its own disjoint set of samples [1].

The update procedure when sampling a packet, as
proposed in [1], is:

1) Calculate a uniform hash of the packet.
2) Use the hash and the sampling probabilities

p1, . . . , pn to decide whether the packet should
be sampled and which bank to use in that case.

3) Use the hash to select an accumulator-counter
pair of the chosen bank.

4) Add the timestamp at which the packet was re-
ceived to the timestamp accumulator and incre-
ment the packet counter.

At the end of each measurement interval, the sender’s
LDA is transmitted to the receiver (or vice versa) and
the average latency is estimated [1]. Let TA and TB

be the sum of all usable timestamp accumulators of the
sender’s and receiver’s LDAs respectively [1]. A times-
tamp accumulator-counter pair is considered usable if its
packet counter at the receiver matches the corresponding
one at the sender [1]. Let S be the effective sample
size, which is the sum of all usable packet counters at
the receiver (or the sender) [1]. Following from this, the
average delay estimate D is

D =
1

S
(TB − TA) (4)

as described in [1].

3.2. Lossy Difference Sketch

The Lossy Difference Sketch (LDS) is a probabilistic
data structure proposed by Sanjuas et al. in [2]. It builds on
the basic ideas behind the LDA (Section 3.1) and is meant
to be used to estimate the average packet latency between
a sender and a receiver, while being lightweight in terms
of memory usage and computational overhead. Just as the
LDA, it is used to conduct one-way measurements [2].
However, unlike the LDA, which estimates the average
latency of all packets sent from a sender to a receiver, it
produces per-flow estimates, meaning that a separate la-
tency estimate can be obtained for each flow observed [2].
In this context, we consider a flow a tuple of the source
and destination address, source and destination port and
the protocol [2].

The motivation behind the LDS is based on the ob-
servation that packet latencies might differ considerably
between flows, meaning that average latencies over all
packets may not prove sufficient in order to detect and an-
alyze application-specific network performance issues [3].

3.2.1. Basic Idea. Much like an LDA, the LDS estimates
average latencies by aggregating timestamps and compar-
ing them in periodic time intervals [2]. However, in order
to conduct per-flow measurements, it needs to distinguish
between flows. It does so in a probabilistic manner by
hash-partitioning between timestamp accumulator-counter
pairs based on the flow f [2]. Additionally, each times-
tamp accumulator-counter pair also stores a flow digest [2]
in order to detect potential inaccuracies caused by packet
reordering between the sender and receiver [5]. We refer
to a tuple consisting of a timestamp aggregator, packet
counter and flow digest as a bucket [2].

3.2.2. Functionality. The LDS consists of a R×C matrix
of buckets [2]. Each packet is sampled once per row [2].

Sampling Procedure. When sampling a packet, for
each row, an index within that row is determined based
on a hash of the flow f and row index i [2]. Then, the
index is offset by a number up to k, determined by hash
of the full packet, resulting in an even distribution of
samples across k adjacent buckets, k being an adjustable
parameter of the LDS [2]. The bucket at the resulting
index is then updated, meaning that the packet’s times-
tamp is added to the accumulator, the packet count is
incremented and the flow digest is XOR-ed with a hash of
the full packet [2]. Inspired by the LDA, this index shift
is done to reduce the impact of packet loss and, in this
case, packet reordering by distributing samples of a flow
across k different buckets [2]. We note that this allows for
potential collisions between samples of flows [2] and will
discuss how the LDS attempts to find the buckets with
the least interference in order to accurately estimate an
average delay. Further, it is evident that all hash functions
used must be equivalent on the sender and receiver as to
maintain consistency [2].

Estimating Average Delays. In order to estimate the
average latency of a flow f , first select all usable buckets
of the ones samples of f were collected in [2]. A bucket
is considered usable if both its packet count and its flow

Seminar IITM WS 23 25 doi: 10.2313/NET-2024-04-1_05

digest at the sender and receiver match [2]. Then, find
the bucket with the lowest packet count n [2]. We are
assuming this is the one with the least interference from
other flows [2]. Then, from the previously determined set
of usable and related buckets, select those that have sam-
pled at most n(1 +α) packets, where α is a configurable
parameter, and calculate the average latency by combining
them [2]. Reference [2] suggests using a value of 0.1 for
α.

3.3. Reference Latency Interpolation

Reference Latency Interpolation (RLI), proposed by
Lee et al. in [3], is an alternative technique to estimating
per-flow packet latencies between a sender and a receiver.
It leverages the observation that packets belonging to
different flows tend to experience similar latencies when
sent with little delay in between each other [3]. Just
like the previously discussed approaches, RLI is used to
conduct one-way latency measurements [3].

When using RLI, the sender periodically sends a ref-
erence packet holding a timestamp to the receiver and
the receiver then uses the timestamp to calculate the ref-
erence packet’s delay [3]. For every non-reference packet
received, its delay is then estimated using linear interpola-
tion between the previous and the next reference packet’s
delays as well as factoring in the individual packet’s size
and the link capacity [3]. Since a packet’s delay can only
be estimated after another reference packet was received,
all information needed to estimate its delay, namely its
flow identifier and timestamp of its arrival, are stored in
a buffer until the delay can be estimated [3].

It should be mentioned that the decision of when to
inject a reference packet is not straightforward. For exam-
ple, injecting a reference packet every n packets sent could
work well under high network load but might result in too
few packets being injected under low load, lowering the
accuracy of the estimate [3]. Injecting reference packets
in fixed time intervals instead would solve the accuracy
issues for low network load but in turn might result
in too few packets being injected under high load [3].
Reference [3] therefore suggests a combination of both
rules, effectively adapting the injection rate dynamically
based on the network load.

4. Comparison

We now compare the discussed approaches in Table 1.
The properties we are comparing them against are the type
of measurement (overall or per-flow estimate), robustness
against packet loss and reordering, network overhead and
accuracy.

4.1. Robustness

While the LDA and LDS make use of hash partition-
ing in order to deal with packet loss, potentially losing a
portion of their samples, RLI samples every packet that
was not lost [1]–[3]. The LDA assumes packets arrive
in the same order they were sent and has no protection
against packet reordering [1], [5], while the LDS detects
and avoids affected samples [2] and RLI is not affected
by it since it does not aggregate timestamps [3].

TABLE 1: Comparison between LDA, LDS and RLI

Type Measurement Loss Reord. Overh. Acc.

LDA overall + - ++ ++
LDS per-flow + + ++ ++
RLI per-flow ++ ++ + +

Measurement: Overall or per-flow measurement
Loss: Robustness against packet loss
Reord.: Robustness against packet reordering
Overh.: Network overhead
Acc.: Accuracy of measurement/estimate

4.2. Network Overhead

Both the LDA and LDS do not incur any network
overhead during their measurement intervals and transmit
the data structure once at the end of each measurement
interval [1], [2]. Since RLI regularly injects reference
packets, which also affect the forwarding behavior of
routers, we consider its overhead slightly larger [3].

4.3. Accuracy

Evaluations of the LDA and LDS in [1] and [2]
respectively have shown that both suffer a very low mean
relative error under low (< 1%) packet loss. However,
since different flows may interfere with each other within
an LDS, it tends to be more accurate for larger flows
than smaller ones because large flows carry more weight
within their latency estimate [2]. When facing packet
loss rates below 5%, the LDA suffers a reasonably small
mean relative error of 3% to 9% [1]. RLI, on the other
hand, experiences a mean relative error of 10 to 12% for
moderate to high link utilization and around 30% for low
link utilization [3]. A direct comparison between the LDS
and RLI in [2] showed that the LDS outperforms RLI in
terms of accuracy under low (< 1%) packet loss.

5. Conclusion

In this paper, we have discussed three different proba-
bilistic approaches to estimating packet latencies between
two network points. First, we have discussed the basic
idea behind aggregating timestamps and how the Lossy
Difference Aggregator (Section 3.1) leverages it. We then
proceeded with the Lossy Difference Sketch (Section 3.2),
which makes use of the basic ideas behind the LDA,
but estimates per-flow latencies [2]. Finally, we have
looked at Reference Latency Interpolation (Section 3.3),
an alternative approach to estimating per-flow latencies by
interpolating between latencies of reference packets [3].
Following that, we have compared the three approaches
in Section 4, where we have seen that both the LDA and
LDS usually provide more accurate latency estimates than
RLI, though they are less robust against packet loss and
reordering.

References

[1] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese,
“Every microsecond counts: tracking fine-grain latencies with a
lossy difference aggregator,” ACM SIGCOMM Computer Commu-
nication Review, vol. 39, no. 4, pp. 255–266, 2009.

Seminar IITM WS 23 26 doi: 10.2313/NET-2024-04-1_05

[2] J. Sanjuàs-Cuxart, P. Barlet-Ros, N. Duffield, and R. R. Kompella,
“Sketching the delay: tracking temporally uncorrelated flow-level
latencies,” in Proceedings of the 2011 ACM SIGCOMM conference
on Internet measurement conference, 2011, pp. 483–498.

[3] M. Lee, N. Duffield, and R. R. Kompella, “Not all microseconds
are equal: Fine-grained per-flow measurements with reference la-
tency interpolation,” in Proceedings of the ACM SIGCOMM 2010
conference, 2010, pp. 27–38.

[4] J. C. Eidson, M. Fischer, and J. White, “Ieee-1588™ standard for a

precision clock synchronization protocol for networked measure-
ment and control systems,” in Proceedings of the 34th Annual
Precise Time and Time Interval Systems and Applications Meeting,
2002, pp. 243–254.

[5] M. Lee, S. Goldberg, R. R. Kompella, and G. Varghese, “Fine-
grained latency and loss measurements in the presence of reorder-
ing,” in Proceedings of the ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems,
2011, pp. 329–340.

Seminar IITM WS 23 27 doi: 10.2313/NET-2024-04-1_05

Seminar IITM WS 23 28

Industrial Ethernet: Challenges and Advantages

Moritz Werner, Florian Wiedner∗, Christoph Schwarzenberg∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: moritz.werner@tum.de, wiedner@net.in.tum.de, schwarzenberg@net.in.tum.de

Abstract—The IEEE 802.3 Ethernet standard was published
in 1985 and quickly became the predominant standard of
digital traffic in small, local networks all the way up to
the internet itself. Paired with the TCP/UDP IP stack, it is
responsible for nearly all internet traffic, including website-
requests, file transfers and communication in general. Re-
quirements for industrial applications are vastly different
due to physical constraints and software necessities. The goal
of this paper is to describe and categorize some variants of
industrial ethernet protocols (IE), compare their efficiency,
and evaluate their respective advantages and disadvantages.
Due to its frame structure and protocol modalities, Ether-
CAT can reach lower response times than POWERLINK,
Sercos III and PROFINET under normal circumstances.

Index Terms—protocols, ethernet, process control, profinet,
ethercat, sercos III, powerlink, industrial ethernet

1. Introduction

Producing goods and tools is an inherently human
trait. Utilizing steam power in factories was a key mile-
stone in human evolution, often called industry 1.0. The
second generation switched to electrical systems and ma-
chines, industry 3.0 saw the use of simple programmable
controls and computers. We are currently implementing
industry 4.0, combining information and production, phys-
ical and digital entities into a complex interconnected
environment. Incorporating the IEEE 802.3 Ethernet in the
majority of our information exchange was an important
step of standardization, but the abilities it provides are not
viable for use in industrial settings. The most important
requests from manufacturers were “realtime guarantees,
such as a maximum transfer time, a jitter [small fluctuation
in the transmission time accuracy] not exceeding some
threshold, or some guaranteed bandwidth” [1], conditions
the aforementioned standard cannot provide. In turn, many
companies had their own proprietary network solutions,
not suited for interoperability and scalability [2]. This
changed with the introduction of a number of industrial
ethernet protocols, which will be discussed in section 5.
They are based on the principles of a ‘master‘ node, which
can be an ordinary computer providing data and telemetry
for surveillance. This master is responsible for the actua-
tion of several ‘slave‘ nodes, they are themselves control
single machines, receive instructions from the master,
execute them and possibly send information back to the
master. The time needed to send data from the master to
all connected slaves and receive their answers is called
cycle time. Based on its protocol structure, EtherCAT can

provide shorter cycle times than POWERLINK, Sercos III
and PROFINET, which is shown in Section 6.

2. Physical Conditions in Industrial Environ-
ments

Native ethernet works best in well-controlled environ-
ments like offices or data centers. Industrial environments
like factories or power plants have substantially different
working conditions depending on manufacturing steps,
used resources, possible chemicals and desired products,
which affect networking if not sufficiently accounted for.
Controller, machines, sensors and the cabling itself might
be subjected to hazardous environments, high tempera-
tures, dust particles, electromagnetic interference or vi-
brations [3], [4]. The induced loss of packets or wrong
transmissions have to be solved in order to make ethernet
viable in such conditions. Solutions are already available
in the form of distinctive electronics and ethernet cables
with IPX-rating for waterproofing, special isolation and
Twisted Shielded Pair configurations against noise and
interference, as well as industrial connectors between
machine and cable.

3. Requirements of Industrial Ethernet

To implement an industrial ethernet protocol, it has
to fulfill certain requirements dictated by the equipment
on site. Cycle times should be as short as possible to
improve reaction times of important components like mo-
tors, valves or robotic arms. Fluctuations in data trans-
mission speed (jitter) should also be minimized to allow
for more consistent cycle phases, which is very important
for polling-style industrial ethernet like POWERLINK or
PROFINET as they rely on time scheduling for sending
their datagrams [5]. As connecting networks from a simple
control level to the factory floor, enterprise level, and
possibly all the way up to the internet is one of the goals
of industrial ethernet, network security is of high concern
to ensure a safe and reliable production environment.

4. Industrial Ethernet - State of the Art

A study on the usage of industrial ethernet done in
2022 revealed that PROFINET and Ethernet/IP are the
most used protocols with both around 14%, and EtherCAT
at around 11%. IE protocols as a whole are used by 66%
of participants, field bus technologies like DeviceNet or

Seminar IITM WS 23 29 doi: 10.2313/NET-2024-04-1_06

PROFIBUS made up around 27% market share. Interest-
ingly, 7% reported wireless networking as their main mode
of networking [6].

5. Implementations

The following sections describe the functionality of
four different industrial ethernet implementations, their
frame/packet structure and network layouts.

5.1. Ethernet

Ethernet conforming to the IEEE 802.3 standard is
the basis of commercial, office-related and international
digital traffic. It allows for a uniform way of TCP/IP con-
nections, file and mail transfer as well as some implemen-
tations of industrial ethernet, i.e., PROFINET, EtherCAT
or Ethernet/IP.

The ethernet frame as shown in Figure 1 consists of a
few fields [1]: starting with a 7 Byte preamble, followed
by a 1B start of frame field. After that, the destination
and source MACs are addressed with 6B, respectively.
The Ether-Type is transmitted in a 2B field if its value
is above or equal to 1536, or the total frame length if it
is below or equal to 1500. The next one houses between
46B and 1500B of user-data, which can, for example, be
an IP-, ICMP-, or an IE-packet. It is completed by the 4B
long FCS field, which is used to verify the frames correct
transmission.

5.2. PROFINET

Mainly defined by Siemens and supported by
PROFIBUS International, the PROFINET protocol suite
is a group of follow-up protocols to PROFIBUS [2], [5],
[8]. There are currently four classes of PROFINET named
CC-A through CC-D, providing different levels of network
traffic. Class A is for cyclic and acyclic data transfer,
class B builds upon class A and allows for reduced
cycle times and real-time traffic. Following up, class C
enables isochronous traffic while shortening cycle times
even further, and the latest version (CC-D) released in
2019 incorporates time-sensitive-networking [4], [9].

PROFINET uses singular frames addressed to individ-
ual devices in the network, a procedure called individual
frame (IF) [10]. Further developments make use of fast
forwarding, dynamic frame packing and fragmentation of
TCP/IP telegrams to increase throughput and decrease
cycle times down to 31.25µs [5]. However, this cycle
time is not achievable in real world applications, as trans-
mission errors and switches introduce time delays. To
mitigate time losses and decrease network jitter, special
cut-through switches are needed, which unlike normal
managed network switches do not operate in the store-
and-forward mode [1], [8]. Also, both the master and slave
devices need particular hardware in the form of ASICs to
handle the fast processing of data [8].

The PROFINET telegram is made of a few key el-
ements, such as a 2B Frame-ID, the payload itself and
status control-fields, as seen in Figure 2a.

A typical PROFINET cycle has two distinct phases:
first, cyclic real-time data is sent from the master to each

slave device, awaiting the respective answer, followed by
acyclic real-time data used for alarms and non-real-time
data like TCP/IP. Should a slave miss its allocated time
slot for sending data to the master, the information is
simply discarded and the device can try to do so in the next
cycle [5], [8]. PROFINET networks can have a number
of topologies, e.g. line, ring or star [8], and can “Operate
properly and keep temporal guarantees” in the presence of
802.3 compliant node [1]. According to a paper by Prytz
[8] and [5], PROFINET can achieve a network jitter of
1µs and a minimum cycle time of 31.25µs.

This paper will focus on the PROFINET IRT (CC-C)
variant in the evaluation section.

5.3. POWERLINK

Similar to PROFINET, POWERLINK uses individual
frames and a cycle consisting of cyclic and acyclic phases,
but with the added benefit of being completely software-
based. The master/slave designation for network devices is
given in the form of managing nodes (MN) and controlled
nodes (CN) [11], [12].

A POWERLINK telegram contains fields for the mes-
sage type, 8bit each for target and source node, plus a
61B to 1497B payload. Figure 2b shows additional space
reserved at the beginning for the future.

Each cycle starts with the start of cycle (SoC) message
sent via broadcast by the MN to ensure synchronization of
all CNs. In contrast to PROFINET, the MN polls every CN
individually by sending a poll request (PReq) packet and
thus allowing the corresponding slave node to send a poll
response (PRes) to all nodes. Again, PRes packets which
are not received in a given timeframe are disregarded and
the MN moves on to the next CN. To mark the end of
this phase, a start of acyclic (SoA) message is broadcast
and CNs are polled for non-real-time traffic. Finally, the
cycle goes through an idle period and starts all over again.
A paper by Cena et al. [13] simulated the cycle time to
be 1.3ms, while B&R Industrial Automation GmbH [11]
lists it around 100µs.

In principle, POWERLINK supports any topology like
star, ring or daisy-chain for up to 240 devices per net-
work [11].

5.4. EtherCAT

Contrary to PROFINET and POWERLINK, the Ether-
CAT master does not send an individual frame to each
slave, instead a single frame with positional fields directed
at each slave is sent per cycle. The frame passes through
one node after the other and updates its content on the fly
until the last slave is reached, which sends the frame back
to the master using the full-duplex mode of ethernet [14].
This method is called Summation Frame (SF) and allows
for a very basic implementation of the master node, which
can be fully realized in software requiring only standard
ethernet hardware [8], [10]. Slave nodes, however, need
to be able to quickly process the datagram and possibly
change their allocated space along with calculating a new
FCS, therefore they rely on an EtherCAT slave controller
with the necessary hardware capabilities. Up to 65535 de-
vices can be connected to a single EtherCAT segment [14].

Seminar IITM WS 23 30 doi: 10.2313/NET-2024-04-1_06

Preamble SFD
Destination

MAC Address
Source MAC

Address

Ether
Type

Payload FCS

7 1 6 6 2 46 - 1500 4

Figure 1: IEEE 802.3 Ethernet frame fields and their respective sizes in Byte [7]

Frame-ID Payload IOPS IOCS Cycle Counter Data-
Status

Transfer-
Status

2 x y y 2 1 1

(a) PROFINET, field sizes in Byte [10]

Reserved Message Type Target Node Source Node Payload

1b 7b 8b 8b 61B - 1497B

(b) POWERLINK, header fields in bit, data in Byte [11]

Figure 2: A PROFINET IRT frame, and a POWERLINK frame

The frame itself consists of a 2B EtherCAT header
and a number of telegrams addressed to the slaves. Each
telegram starts with a 10B telegram-header, followed by
the actual payload and a 2B working counter as displayed
in Figure 3. This counter is used for telemetry and diag-
nostics, but it can also be deactivated to increase packet
space for user transmissions [10].

There is also the EtherCAT P variant to supply slave
nodes with power and data using the same ethernet cable.
Just like POWERLINK, many network topologies are
feasible with EtherCAT [14]. At the Hannover Messe in
2012, the EtherCAT Technology Group demonstrated an
EtherCAT network with a cycle time of 12.5µs, more than
twice as fast as PROFINET [14].

EtherCat-
Header

Telegram 1 Telegram 2 ... Telegram n

Telegram-
Header

Payload
Working
Counter

2

10 x 2

Figure 3: EtherCAT frame fields, sizes in Byte [10]

5.5. Sercos III

Sercos III is similar to EtherCAT in the way that it
also uses a summation frame method, however the path on
which frames are sent is not limited to a single direction.
Rather, when a slave device is finished with modifying the
frame of the current cycle, it can propagate the changes
to multiple neighboring devices [1].

“Sercos supports direct cross communication, which
enables real-time data exchange between any Sercos de-
vices within one communication cycle” [15].

The real-time data field houses the main master to
slave data transfer as well as any other possible device-
device traffic, independent of the nodes’ role. Slave to

slave communication has its own fields in the frame,
named CC channel connection 1 to n as seen in Fig-
ure 4. Others are used for hot-plugging new devices,
meaning connecting additional nodes without a network
restart. Cycle times can be as low as 31.25µs, just like
PROFINET [1], [15].

In a line configuration, the master sends its telegram
sequentially to the daisy-chained slaves, and the last de-
vice loops it back allowing all devices to see changes
made by all others. A ring topology ensures additional
protection against downtime by redundant cabling, should
errors occur [15]. With nodes using standard 802.3 Ether-
net in the same network, temporal guaranties for telegram
transmission are lost [1].

Sercos
III-Header

Data Field

Hot-plug
field

Service
channel
field

Real-time
data field

M/S
channel
device 1

...
M/S

channel
device n

CC
channel
connec-
tion 1

...

CC
channel
connec-
tion n

6B 40B - 1494B

Figure 4: A Sercos III frame with its data fields [15]

6. Evaluation

As PROFINET IRT and EtherCAT are currently
among the most prevalent IE protocols, most research
papers are only comparing these two. Therefore, this
section will rely on data from the respective developer

Seminar IITM WS 23 31 doi: 10.2313/NET-2024-04-1_06

Figure 5: Relative performance of EtherCAT and PROFINET in a line topolgy network with 50 devices [8]

of POWERLINK and Sercos III, with the request not
to consider the data as scientifically proven. The open-
source POWERLINK manual “Communication Profile
Specification” [11] names a lower bound of 100µs as its
cycle time. Sercos III is specified to have a cycle time
between 31.25µs and 1000µs, depending on the slave
device number, the datagram size per slave, and whether
the cross-device communication is enabled [15].

The following diagrams and data were produced in
papers by Prytz [8] and by Wu and Xie [13]. Prytz
presented a total of six experiment configurations with
payload sizes of 16, 32 and 100B, combined with band-
widths of 100 MBps and 1 Gbps. The paper by Wu and
Xie tested “an industrial NCS [networked control system]
with 5 controlled plants [. . .] deployed with 5 sensors and
5 actuators connected onto the network backbone in a line
topology” [13]. Their proceedings found that using a line
topology, cycle times are shorter for EtherCAT for each
payload size and both bandwidths [8]. The conclusion for
relative performance of EtherCAT and PROFINET in a
line topology is exemplary shown in Figure 5.

The authors have already justified their findings [8],
[13]: EtherCAT being an SF protocol means a single frame
containing all information is sent per cycle; PROFINET
has to send an individual ethernet frame to every node,
creating a lot of overhead and subsequently lowering per-
formance. Especially in use cases with small payloads and
a low number of slave devices, EtherCAT has substantially
better performance than PROFINET, as that configuration
is the most optimal for EtherCAT while simultaneously
being suboptimal for PROFINET. When accounting for
transmission errors, however, IF protocols could achieve a
higher performance compared to SF protocols, depending
on the error rate. As errors in the transmission only affect
single devices, the impact of erroneous transmission is
contained to a single cycle of a single device, instead of
all connected slaves.

7. Conclusion

This paper briefly explained four different industrial
ethernet protocols, compared their approaches to provide
realtime control of various devices and evaluated the

performance of EtherCAT and PROFINET in a number
of situations.

Of course, developers of protocols want to present
their implementations in the best possible way, but their
performances are often more theoretical than actually
achievable. Although cycle times as low as 31.25µs are
impressive, in the case of Sercos III they were achieved in
a network made of only seven devices, not using the slave-
slave communication which made that protocol unique,
with the optimal line topology and without the presence
of any transmission errors [15]. In the author’s opinion,
these conditions are more akin to a lab environment than
an industrial one with physical challenges, as described in
section 2.

Currently, most devices can run successfully on only
a few bytes of process information per cycle, in the future
more data might have to be shared with individual nodes in
ever larger networks, which would make SF protocols less
viable. Advances in faster and more specialized hardware
for IE protocols as well as more streamlined software
will shape the future development of industrial applica-
tions. Although ethernet jumbo frames with up to 9000B
of payload space exist, that might just be not enough
one day. The need to provide both workplace safety for
the personnel on the factory floor and digital security
for appliances arises as connecting previously separated
industrial networks to the corporate structure becomes
more common; some protocols already incorporate such
measures, and a proposal was made by Giehl and Plaga
in their paper [16]. Industrial ethernet forms the backbone
of today’s production systems and will most certainly be
used and improved upon in the future.

References

[1] J.-d. Decotignie, “The many faces of industrial ethernet [past and
present],” IEEE Industrial Electronics Magazine, vol. 3, no. 1, pp.
8–19, 2009.

[2] M. Felser and T. Sauter, “Standardization of industrial ethernet -
the next battlefield?” in IEEE International Workshop on Factory
Communication Systems, 2004. Proceedings., 2004, pp. 413–420.

[3] J. A. Kay, R. A. Entzminger, and D. C. Mazur, “Industrial ethernet-
overview and best practices,” in Conference Record of 2014 Annual
Pulp and Paper Industry Technical Conference, 2014, pp. 18–27.

Seminar IITM WS 23 32 doi: 10.2313/NET-2024-04-1_06

[4] Z. Lin and S. Pearson, “An inside look at industrial ether-
net communication protocols,” https://www.ti.com/lit/wp/spry254b/
spry254b.pdf, 2018, [Online; accessed 30-August-2023].

[5] P. N. e.V., “Profinet - the leading industrial ethernet stan-
dard,” https://www.profibus.com/technology/profinet, [Online; ac-
cessed 22-September-2023].

[6] T. Carlsson, “Industrial networks keep growing de-
spite challenging times,” https://www.hms-networks.
com/news-and-insights/news-from-hms/2022/05/02/
industrial-networks-keep-growing-despite-challenging-times,
[Online; accessed 30-September-2023].

[7] “Ieee standard for ethernet,” IEEE Std 802.3-2022 (Revision of
IEEE Std 802.3-2018), pp. 1–7025, 2022.

[8] G. Prytz, “A performance analysis of ethercat and profinet irt,”
in 2008 IEEE International Conference on Emerging Technologies
and Factory Automation, 2008, pp. 408–415.

[9] I.-S. GmbH, “Profinet conformance class,” https://www.indu-sol.
com/support/glossar/conformance-class/, [Online; accessed 25-
September-2023].

[10] J. Jasperneite, M. Schumacher, and K. Weber, “Limits of increasing
the performance of industrial ethernet protocols,” in 2007 IEEE

Conference on Emerging Technologies and Factory Automation
(EFTA 2007), 2007, pp. 17–24.

[11] B. I. A. GmbH, “Powerlink,” https://www.br-automation.com/en/
technologies/powerlink/, [Online; accessed 26-September-2023].

[12] G. Cena, L. Seno, A. Valenzano, and S. Vitturi, “Performance
analysis of ethernet powerlink networks for distributed control and
automation systems,” Computer Standards & Interfaces, vol. 31,
no. 3, pp. 566–572, 2009, industrial Networking Standards for
Real-time Automation and Control. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0920548908000433

[13] X. Wu and L. Xie, “Performance evaluation of industrial ethernet
protocols for networked control application,” Control Engineering
Practice, vol. 84, pp. 208–217, 2019. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0967066118303691

[14] E. T. Group, “Ethercat - the ethernet fieldbus,” https://ethercat.org/
en/technology.html, [Online; accessed 24-September-2023].

[15] S. I. e.V., “Sercos technology: Proven, easy, fast, open,” https://
www.sercos.org, [Online; accessed 28-September-2023].

[16] A. Giehl and S. Plaga, “Implementing a performant security control
for industrial ethernet,” in 2018 International Conference on Signal
Processing and Information Security (ICSPIS), 2018, pp. 1–4.

Seminar IITM WS 23 33 doi: 10.2313/NET-2024-04-1_06

Seminar IITM WS 23 34

Predictive Modelling for Next API Call Sequence in Content Delivery Networks

Galiiabanu Bakirova, Markus Sosnowski ∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: galiiabanu.bakirova@tum.de, sosnowski@net.in.tum.de

Abstract—Content Delivery Networks (CDNs) play a crucial
role in enhancing user experience by caching frequently
accessed content. However, challenges arise when users re-
quest uncached content, leading to potential disruptions and
impacts on website performance. To address this, researchers
advocate for proactive caching, pre-emptively storing pre-
dicted future requests. This paper explores the application
of a language model to server logs for predicting users’ API
requests. Training the model on logged API calls, we analyze
the potential of language models in gaining insights into
user behavior. Despite challenges with dynamic data, the
model detects recurring patterns and learns API semantics.
While results may vary for sites with dynamic structures,
this approach opens avenues for future improvements, such
as introducing probability thresholds or focusing on specific
API endpoints. Challenges persist, requiring each website
to train its own model based on its API structure. Our ex-
ploration provides valuable insights into the possibilities and
limitations of language model-driven API request prediction.

Index Terms—content delivery networks, api, prediction

1. Introduction

In our rapidly evolving world, website owners often
rely on Content Delivery Networks (CDNs) to speed
up loading times for end-users. Yet, this decision poses
its own set of challenges, including determining which
content to cache on the CDN and minimizing cache misses
[1].

CDNs typically store popular and frequently accessed
content, a strategy that significantly reduces latency and
improves user experience. However, challenges arise when
a user requests content that is not readily available in
the CDN’s cache. In such cases, the CDN must either
retrieve the resource from the origin server or return an
error message to the user. This can lead to disruptions in
the user experience and potentially impact overall website
performance [2].

To address this challenge, researchers have proposed
the idea of predicting users’ next requests and preemp-
tively caching the required resources. In their survey,
Nanopoulos et al. [3] advocated for storing such items
in the cache prior to an explicit request being made. This
approach, known as proactive caching, aims to minimize
the latency associated with fetching resources from origin
servers, ensuring that users enjoy seamless and responsive
online experiences.

Building upon this concept, machine learning models
have emerged as promising tools for predicting users’
next requests. These models can analyze vast amounts
of server logs and historical data to identify patterns and
predict user behavior. This information can then be used
to preload relevant resources in the CDN cache, further
enhancing the user experience and reducing latency. [4]

In this paper, we explore the application of a language
model approach to server logs datasets to gain valuable
insights into user behavior and predict their next API
requests.

2. Background and Related Work

A Content Delivery Networks (CDN) is a network of
servers strategically located around the world that help
deliver web content to users with improved performance
and reduced latency [5]. Websites and online platforms
often utilize CDNs to enhance their services and meet the
growing demands of users.

CDNs work by storing cached copies of web con-
tent, such as images, videos, and static files, on servers
distributed across various geographic locations. When a
user requests content, the CDN automatically directs the
request to the server closest to the user, minimizing the
distance the data needs to travel. This proximity helps
reduce latency and improves the overall loading speed of
web pages [2].

In addition to improving performance, CDNs can
also help mitigate traffic spikes and distribute the load
on servers, ensuring smooth and uninterrupted access to
web content even during periods of high demand. By
offloading the delivery of content to a CDN, websites can
optimize their infrastructure, enhance user experience, and
better handle global traffic [2].

2.1. Web Usage Mining

Colley et al. [6] were some of the first ones interested
in predicting user’s requests. Knowing user’s intentions
can create a seamless user experience, increase conversion
and sales [7] if the users are recommended something they
did not know they needed [8]. In the context of server and
CDNs, knowing user intentions can be used to predict
the user’s next API request and preload the resources.
This would decrease loading time for the users and ensure
effective user interaction. [3]

There are several proposed web usage mining ap-
proaches for working on server logs [9]:

Seminar IITM WS 23 35 doi: 10.2313/NET-2024-04-1_07

• Association rules - the technique for finding the
web pages visited together. One disadvantage of
the associate rules approach is that it does not take
into account the notion of time difference.

• Frequent Sequences - considering ordered time-
sensitive sequences. This technique tries to dis-
cover sequence patterns followed by users.

• Frequent Generalized Sequences - a relaxation of
frequent sequences, that allows to study user’s
navigation in a flexible way. [10]

Gery et al. [9] evaluated the three web usage mining
approaches on datasets of different sizes and discovered
that the Frequent Sequences (FS) performed best in terms
of accuracy. The authors emphasize the suitability of the
FS technique for analyzing time series and propose an
optimal user session time of 25 minutes.

Nigam et al. [11] tried a different approach to pre-
dicting user requests. The research studies the effect of
Markov model depth on the user’s next request predic-
tion. Nigam et al. compare first-, second- and third-order
Markov models for predicting the next web page. They
propose metrics such as model generation time, prediction
time prediction accuracy and coverage for measuring pre-
diction success. In [11] Nigam et al. perform experiments
on three datasets. However, the proposed test datasets only
have between 29 and 92 different pages, which would
correspond to the number of unique API calls.

2.2. Content Delivery Networks Scaling

Content networking is gaining popularity as a go-
to technology because it significantly boosts enterprise
network performance for media-rich content, all while
keeping costs lower compared to traditional methods of
web scaling [12]. As CDNs expand their user base, the
content stored on CDNs becomes very diversified. Each
content category imposes distinct demands on the CDN’s
caching systems. CDN has to introduce various config-
uration parameters in order to be able to serve such a
wide range of content [13], [14]. Manual tuning of these
parameters can be challenging.

With the pursuit of increased efficiency and reduction
of cache misses, some reinforcement learning techniques
to autonomously manage resources were proposed [13],
[15], [16]. Current approaches to caching predominantly
utilize "model-free" reinforcement learning (RL), where
the system embarks on the learning process without
knowledge of the underlying structure, free from any
preconceived notions or biases about the task at hand
[17], [18]. These systems learn decision-making through
first-hand experience, guided by a reward mechanism
that reinforces the right decision-making and encourages
continued exploration of effective strategies.

While model-free RL holds immense promise for op-
timizing caching strategies, the RL community has iden-
tified three major hurdles that need to be addressed:

• Data-Intensive Learning: Model-free RL algo-
rithms typically require vast amounts of training
data, usually in the millions of samples. Accumu-
lating such a large dataset can be time-consuming
and resource-intensive [16].

• Overfitting Vulnerability: Model-free RL algo-
rithms are susceptible to the risk of overfitting to
the train data. This means that they may perform
well on the training set but struggle to generalize
to new and unseen data. In the context of caching,
overfitting could lead to suboptimal caching deci-
sions [19].

• Complex Debugging and Maintenance: Model-
free RL algorithms can be sensitive to hyper-
parameters, which make them extremely difficult
to debug [15], [20].

These challenges pose significant obstacles to the
practical implementation of model-free RL for caching
in CDN servers.

2.3. RNNs for API Requests Analysis

Reddy and Rudra [21] applied RNN for detecting
injections in API requests. They compare three popular
RNN approaches for sequential data analysis: bidirec-
tional Vanilla-RNNs, bidirectional LSTMs and bidirec-
tional gated recurrent units (GRU) for requests classifica-
tion. The obtained results prove the effectiveness of RNN
approach on a API request data. Reddy and Rudra were
able to achieve the accuracy of 97% for the bidirectional
LSTMs and 98,5% for bidirectional GRUs. Arivukarasi
and Antonidoss [22] were also able to exploit natural
language processing (NLP) approach with RNNs to detect
phishing URLs. They achieved the highest accuracy of
98% using RNNs with LSTM layer.

3. Methodology

We applied the language model approach for training
the API request prediction model. In order to train the
language model for predicting the next API call, we used
a recurrent neural network (RNN). RNNs are designed to
work with sequential data and are, therefore, the perfect
choice for processing a series of API requests. A model
was created and trained with the TensorFlow Keras API.
The architecture consists of three layers: Embedding layer,
Long Short-Term Memory (LSTM) layer, and dense layer.
The Long Short-Term Memory layer is the key to captur-
ing long-term dependencies and is suitable for predicting
the next API calls based on several previous calls. The
architecture of the RNN used is depicted in Figure 1.

The embedding layer is responsible for converting the
integer-encoded token (in our case, an API request) into
a dense vector. This step is needed to detect semantic de-
pendencies between API requests and meaningfully model
them in a vector space.

The second layer, LSTM, is responsible for preserving
the cell state and the hidden state of the machine learning
model. [23] It operates on a read-write-forget principle.
The network learns which information is relevant and will
be needed later and which information can be forgotten.
The main advantage of the LSTM layer in contrast to clas-
sical vanilla RNN is that it solves the vanishing/exploding
gradient problem, which appears when passing the gradi-
ent recursively for n steps [24].

The third dense layer outputs probabilities over the
vocabulary, in our case, the whole API request set, for a

Seminar IITM WS 23 36 doi: 10.2313/NET-2024-04-1_07

Figure 1: Architecture of RNN

given number of previous API calls. To achieve probabilis-
tic prediction, the softmax activation function was used.
For the training configuration, we applied a commonly
used categorical cross-entropy as a loss function, adaptive
optimizer Adam, and accuracy as a training metric. We
used early stop approach to avoid overfitting, this method
stops the training process when the accuracy on the valida-
tion set starts plateauing. The number of epochs therefore
was different, between 5 and 20 epochs, dependent on the
window size.

3.1. Data Preprocessing

Due to safety and commercial data considerations,
there are limited real data server log datasets available.
Many research groups opt to use server logs from their
own intranet or record API traffic, creating a server logs
dataset specifically for analytical purposes.

In order to test the proposition of being able to predict
the next user request, we used an open dataset of server
logs of an Iranian online shop, "Online Shopping Store
- Web Server Logs" [25]. The dataset comprises more
than 10 million logs in Common Log Format (CLF)
that Apache uses and contains some valuable information
about website usage [26].

Standard CLF server log looks like this:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]
"GET /apache_pb.gif HTTP/1.0" 200 2326
"http://www.example.com/start.html"
"Mozilla/4.08 [en] (Win98; I ;Nav)"

It contains the client’s IP address, request time,
method used by the client (GET), information on re-
quested resources (/apache_ pb.gif) and the protocol used
(HTTP/1.0). The log also contains the respond status code
(200), size of the object returned to the client (2326) as
well as the referrer and user agent.

For the purposes of demonstrating the idea of pre-
dicting the next user request, users are distinguished by
a client IP address, and the sessions are limited to a 20-
minute time frame. The sliding window technique was
applied to create training and test sets. After testing sev-
eral sizes of the window, the best results were achieved
with window size 4, where the fifth request should be

TABLE 1: Dataset Statistics

Number Number unique Number unique Number identified
entries API requests clients 20-minute sessions

10 364 865 893 045 258 445 352 296

predictable from the previous four. The model was also
trained using window sizes ranging from 2 to 6, but the
larger window sizes led to overfitting and performed worse
on a test dataset.

3.2. Tokenization

Tokenization is the process of converting words into
integers for further model training. We used a custom
tokenizer in order to be able to treat the whole API
request as a single word. The custom tokenizer handles
special characters such as underscores and slashes within
the request to create a meaningful vocabulary. Sequences
are then padded to ensure uniform length of the vectors.

4. Results

In this section, we discuss the initial data and the
obtained results.

In the Table 1 you will find statistical metrics of the
dataset used.

We tested several window sizes to determine the num-
ber of previous requests on which the prediction for the
next API request will be based, ranging from 2 to 6.
Figure 2 shows the accuracy on training and test sets
with regard to window size. The results state that bigger
window sizes, such as 5 or 6, clearly lead to overfitting
since the accuracy difference on both sets becomes more
discrepant. The peak of accuracy on the test set appears
when applying the window size, capturing 3 or 4 requests.
The exact accuracy values can be found in Table 2.

Figure 2: Accuracy on training and test set for different
window size parameter

We only focused on the accuracy metric for the API
request prediction. The resulting model could not over-
come the 24% accuracy on a test set. This might seem
low; however, it is worth mentioning that the website,

Seminar IITM WS 23 37 doi: 10.2313/NET-2024-04-1_07

TABLE 2: Accuracy according to window size

window size Accuracy on training set Accuracy on test set

2 34.27% 19.07%

3 43.05% 23.04%

4 53.16% 24.39%

5 58.33% 24.11%

6 62.86% 22.98%

TABLE 3: Prediction Examples

Prediction Actual

/image/57378/ /image/57124/
productModel/100x100 productModel/100x100

/static/images/ /static/images/
guarantees/warranty.png guarantees/warranty.png

/static/images/amp/blog.png /static/images/amp/blog.png

where the API traffic was recorded, is an online shop, con-
taining large amount of dynamic data. The API requests
themselves often contain product id, product images paths
and other fine-granular details. Here are some examples
of such requests:

/product/30910
/image/15474?name=1387476275_tc16.jpg&wh=200x200

This is, of course, very hard to predict and may be
even impossible considering the continuously changing
online shop assortment. In the training set, the size of the
vocabulary or the token list, in our case the number of
distinct API requests, was about 6000 for the training set
with 300000 requests. The vocabulary size was dependent
on the current batch.

Often, the model would predict the right API endpoint
but fail to guess specific resource ID of the product or
image. You may find an example of this in the first row
of the Table 3.

However, the model shows better performance for the
identified patterns, and dynamic data unrelated APIs such
as return policy or guarantee resources. (See second and
third examples in the Table 3.)

We also tested a hypothesis of building in a thresh-
old on probability predictions, which would only preload
data if the probability was sufficient. Unfortunately, this
strategy failed to satisfy expectations. Instead, the most
often correctly predicted requests were simply the most
frequent ones.

Another suggestion on how to utilize the obtained tool
could be to only restrict the next API request predictions
for certain API endpoints. The most prominent example
would be search endpoint. For the user’s next search pre-
diction, the larger window size would also be applicable
[27].

5. Conclusion and Future Work

In pursuit of our goal to apply a language model
approach to API request prediction, we trained a language
model on a provided set of logged API calls. The vocabu-
lary of the language model consists of all unique recorded

API requests, and the word sequences are modeled based
on user sessions.

Due to the large number of possible API URLs and
dynamic data such as product IDs or image source ID,
our effort did not yield impressive results. However, it
still provided valuable insights into the future possibilities
and limitations of the API request prediction. The model
was able to detect some reoccurring patterns and learn
the semantics of the API endpoint. This approach could
be used for websites with a static structure and a limited
number of API endpoints.

Some possible solutions to the low accuracy problem
could be limiting the model to a certain set of API
dynamic data-insensitive endpoints. The main drawback
remains the fact that each website would have to train its
own machine learning model based on the API structure.

In the future, the idea of successively guessing the next
resource endpoint of the API URL should be examined.
In this approach, the API paths would not be treated
as single tokens but could be split up into hierarchical
resource endpoints. It could exploit the hierarchical URL
path structure.

References

[1] D. S. Berger, “Towards lightweight and robust machine learning
for cdn caching,” in Proceedings of the 17th ACM Workshop
on Hot Topics in Networks, ser. HotNets ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 134–140.
[Online]. Available: https://doi.org/10.1145/3286062.3286082

[2] E. Ghabashneh and S. Rao, “Exploring the interplay between cdn
caching and video streaming performance,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, 2020, pp.
516–525.

[3] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “Effective
Prediction of Web-user Accesses: a Data Mining Approach,” Aug.
2001.

[4] D. S. Berger, “Towards Lightweight and Robust Machine
Learning for CDN Caching,” in Proceedings of the 17th
ACM Workshop on Hot Topics in Networks. Redmond WA
USA: ACM, Nov. 2018, pp. 134–140. [Online]. Available:
https://dl.acm.org/doi/10.1145/3286062.3286082

[5] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and
B. Weihl, “Globally distributed content delivery,” IEEE Internet
Computing, vol. 6, no. 5, pp. 50–58, 2002.

[6] R. Cooley, B. Mobasher, and J. Srivastava, “Web mining:
information and pattern discovery on the World Wide Web,”
in Proceedings Ninth IEEE International Conference on Tools
with Artificial Intelligence. Newport Beach, CA, USA: IEEE
Comput. Soc, 1997, pp. 558–567. [Online]. Available: http:
//ieeexplore.ieee.org/document/632303/

[7] M. A. T. Pratama and A. T. Cahyadi, “Effect of user
interface and user experience on application sales,” IOP
Conference Series: Materials Science and Engineering, vol.
879, no. 1, p. 012133, jul 2020. [Online]. Available: https:
//dx.doi.org/10.1088/1757-899X/879/1/012133

[8] J. B. Schafer, J. Konstan, and J. Riedl, “Recommender systems
in e-commerce,” in Proceedings of the 1st ACM conference on
Electronic commerce, 1999, pp. 158–166.

[9] M. Géry and H. Haddad, “Evaluation of web usage mining
approaches for user’s next request prediction,” in Proceedings of
the 5th ACM international workshop on Web information and
data management. New Orleans Louisiana USA: ACM, Nov.
2003, pp. 74–81. [Online]. Available: https://dl.acm.org/doi/10.
1145/956699.956716

[10] W. Gaul and L. Schmidt-Thieme, “Mining Web Navigation Path
Fragments,” Aug. 2000.

Seminar IITM WS 23 38 doi: 10.2313/NET-2024-04-1_07

[11] B. Nigam, S. Tokekar, and S. Jain, “Evaluation of Models
for Predicting User’s Next Request in Web Usage Mining,”
International Journal on Cybernetics & Informatics, vol. 4,
no. 1, pp. 01–12, Feb. 2015. [Online]. Available: http:
//www.airccse.org/journal/ijci/papers/4115ijci01.pdf

[12] B. Frank, I. Poese, Y. Lin, G. Smaragdakis, A. Feldmann,
B. Maggs, J. Rake, S. Uhlig, and R. Weber, “Pushing cdn-
isp collaboration to the limit,” SIGCOMM Comput. Commun.
Rev., vol. 43, no. 3, p. 34–44, jul 2013. [Online]. Available:
https://doi.org/10.1145/2500098.2500103

[13] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
Management with Deep Reinforcement Learning,” in Proceedings
of the 15th ACM Workshop on Hot Topics in Networks,
ser. HotNets ’16. New York, NY, USA: Association for
Computing Machinery, Nov. 2016, pp. 50–56. [Online]. Available:
https://doi.org/10.1145/3005745.3005750

[14] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter,
“{AdaptSize}: Orchestrating the Hot Object Memory Cache
in a Content Delivery Network,” 2017, pp. 483–498.
[Online]. Available: https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/berger

[15] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup,
and D. Meger, “Deep Reinforcement Learning that Matters,”
Jan. 2019, arXiv:1709.06560 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1709.06560

[16] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver,
“Rainbow: Combining Improvements in Deep Reinforcement
Learning,” Oct. 2017, arXiv:1710.02298 [cs]. [Online]. Available:
http://arxiv.org/abs/1710.02298

[17] M. Lecuyer, J. Lockerman, L. Nelson, S. Sen, A. Sharma, and
A. Slivkins, “Harvesting Randomness to Optimize Distributed
Systems,” in Proceedings of the 16th ACM Workshop on Hot
Topics in Networks. Palo Alto CA USA: ACM, Nov. 2017,
pp. 178–184. [Online]. Available: https://dl.acm.org/doi/10.1145/
3152434.3152435

[18] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and
T. C. Clancy, “Learning distributed caching strategies in
small cell networks,” in 2014 11th International Symposium
on Wireless Communications Systems (ISWCS). Barcelona,
Spain: IEEE, Aug. 2014, pp. 917–921. [Online]. Available:
http://ieeexplore.ieee.org/document/6933484/

[19] “Faulty reward functions in the wild.” [Online]. Available:
https://openai.com/research/faulty-reward-functions

[20] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Repro-
ducibility of benchmarked deep reinforcement learning tasks for
continuous control,” arXiv preprint arXiv:1708.04133, 2017.

[21] S. R. A and B. Rudra, “Evaluation of recurrent neural networks
for detecting injections in api requests,” in 2021 IEEE 11th An-
nual Computing and Communication Workshop and Conference
(CCWC), 2021, pp. 0936–0941.

[22] M. Arivukarasi and A. Antonidoss, “Performance analysis of
malicious url detection by using rnn and lstm,” in 2020 Fourth
International Conference on Computing Methodologies and Com-
munication (ICCMC), 2020, pp. 454–458.

[23] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.
[Online]. Available: https://doi.org/10.1162/neco.1997.9.8.1735

[24] ——, “Long short-term memory,” Neural Comput., vol. 9,
no. 8, p. 1735–1780, nov 1997. [Online]. Available: https:
//doi.org/10.1162/neco.1997.9.8.1735

[25] F. Zaker, “Online Shopping Store - Web Server Logs,” May 2021.
[Online]. Available: https://doi.org/10.7910/DVN/3QBYB5

[26] “Log Files - Apache HTTP Server Version 2.4.” [Online].
Available: https://httpd.apache.org/docs/2.4/logs.html

[27] A. Agarwal, “Predicting the next search keyword using Deep
Learning | by Atul Agar. . . ,” May 2023. [Online]. Available:
https://archive.ph/vGwEV

Seminar IITM WS 23 39 doi: 10.2313/NET-2024-04-1_07

Seminar IITM WS 23 40

An Overview of the 802.11ax Standard

Veronika Bauer, Jonas Andre∗, Leander Seidlitz∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: veronika_andrea.bauer@tum.de, andre@net.in.tum.de, seidlitz@net.in.tum.de

Abstract—By introducing the WLAN standard 802.11ax,
IEEE adjusted Wi-Fi for an era with more users and more
connected devices than ever. New developments regarding
the Internet of Things, as well as an increasing number
of high-density networks, required major improvements
compared to the previous standard 802.11ac. Also called
High Efficiency Wi-Fi 6, 802.11ax enables more users than
ever to be connected to one single access point using new
key technologies like OFDMA and MU-MIMO. Wi-Fi 6
also enhances large distance transmissions and improves
transmission quality. This paper gives an introduction to
the most prominent technologies introduced by Wi-Fi 6 and
examines these changes in comparison to its predecessor Wi-
Fi 5. Nonetheless, there are several shortcomings of Wi-Fi 6
that will likely be addressed by its successor Wi-Fi 7, which
is to be released in 2024.

Index Terms—802.11ax, Wi-Fi 6, High Efficiency Wi-Fi,
ODFMA, BSS-Coloring, MU-MIMO

1. Introduction

Wireless local area networks (WLANs) and cellular
networks are becoming increasingly popular. Cisco [1]
recently estimated that in 2023, three times more devices
were connected to IP networks than there are humans
on earth. Compared to 2018, 15 percent more humans
will have access to the Internet by the end of 2023, as a
study [1] has shown.
With the increasing number of Internet users, the strain
on Wi-Fis also amplifies. Especially high-density wireless
networks face challenges. Users continue to ask for higher
performance and improved user experience. As a response
to these challenges, the Institute of Electrical and Elec-
tronics Engineers (IEEE) has developed 802.11ax, also
known as High Efficiency Wi-Fi or Wi-Fi 6. [2]
Introduced in October 2018, Wi-Fi 6 includes several key
technologies crucial to serving a larger number of devices
and users in high-density networks. [3] Therefore, two
new key technologies are introduced: Orthogonal Fre-
quency Division Multiple Access (OFDMA) and uplink
Multi-User Multiple Input Multiple Output (MU-MIMO).
Both technologies enable many stations to transmit to the
same access point (AP) and vice versa. [4] OFDMA splits
a channel into multiple resource units, which can then
be employed by numerous stations simultaneously. [4]
MU-MIMO uses spatial streams to allow simultaneous
transmissions. [4]
Furthermore, Wi-Fi 6 aims to enhance transmissions over

larger distances and improve transmission quality by in-
troducing new technologies like midambles, which are
symbols added to a transmission for noise reduction. [5]
Compared to its predecessor 802.11ac, also known as
Wi-Fi 5, Wi-Fi 6 comes with many new features regarding
Physical and MAC1 Layers. [2]
Therefore, we will present the changes regarding the
Physical Layer in Section 2 and MAC Layer changes
in Section 3. The new features will be explained one by
one. Section 4 summarizes these features and Section 5
briefly introduces Wi-Fi 6’s successor Wi-Fi 7, which is
supposed to be released in 2024. [7] While this paper
provides only a short explanation of the new changes, a
more in-depth description can be found in the work by
Sankaran et al. [5]. A very recent overview is presented
in the work by Natkaniec et al. [8]. For more in-depth
information on the two most prominent features, MIMO
and OFDMA, readers are referred to the publications by
Yang et al. [9] and Lanante et al. [10].

2. Physical Layer

This section presents the changes introduced by
802.11ax regarding the Physical Layer. First, changes
made to enable the implementation of OFDMA and MU-
MIMO will be explained, namely Resource Units, spacing
and symbol duration, and newly introduced frame formats.
Following, the two modulation schemes, Quadratic Am-
plitude and Dual Carrier modulation, will be introduced.
Then, two new features targeting Internet of Things use
cases, namely Target Wake Time and Midambles, are
presented. In the last subsection, we elucidate changes
regarding the frequency range, data rate, and guard band.

2.1. Resource Unit Allocation

As one major focus of 802.11ax lies on enabling high-
density networks, resource unit allocation helps deal with
large numbers of devices connected to the same access
point: In Wi-Fi 6, the channel bandwidth is divided by
frequency and time. This results in time-frequency blocks
called Resource Units (RU). An access point can assign
RUs to a particular user. Thus, several stations can trans-
mit simultaneously without collisions. This RU allocation
provides the basis for OFDMA. [5]

1. Please note that the extended ISO/OSI model separates the Data
Link Layer into two sublayers, the Media Access Control (MAC) Layer
and the Logical Link Control (LLC) Layer. [6]

Seminar IITM WS 23 41 doi: 10.2313/NET-2024-04-1_08

2.2. Spacing and Symbol Duration

In order to support the use of these Resource Units,
Wi-Fi 6 has a four-times decrease in the interval length
between subcarriers combined with a four-fold increase
in the duration of transmitted symbols. [11] The short-
ened subcarrier interval increases noise sensitivity. To
counter this, symbol duration and guard intervals were
increased. [12], [13]
Guard intervals are defined intervals that are used to
preserve orthogonality between subcarriers. If chosen too
short, intersymbol and intercarrier interference is possi-
ble. [14] To avoid these negative consequences, guard
intervals and symbol duration have been adjusted in
Wi-Fi 6, making the channel more tolerant to jitter, in-
creasing its robustness and transmission efficiency as well
as enhancing throughput. Additionally, less bandwidth is
wasted. [12], [13]

2.3. Frame Formats

To enable OFDMA and MIMO, the Wi-Fi 6 standard
also includes four different physical layer conformance
procedure protocol data unit frame formats (PPDU frame
formats) [5], [8], [13]:

• Single User PPDU: used for transmissions be-
tween only two stations. Wi-Fi 5 already included
this PPDU.

• Extended Range Single User PPDU: for transmis-
sions over large distances between two stations.
This PPDU can only be used without MIMO, as
its main focus is to ensure reliability over a long
distance.

• Multi User PPDU: for downstream transmis-
sions with many users involved. This PPDU is
needed when using downlink MU-MIMO and
MU-OFDMA.

• Trigger based PPDU: used for upstream transmis-
sions involving many users, particularly for uplink
MU-MIMO and MU-OFDMA.

2.4. QAM Modulation

To increase the maximum data rate, 1024 Quadratic
Amplitude Modulation (QAM) has been introduced. It
focuses on use cases with very high channel qualities
where data is transmitted over short distances. Using this
modulation, ten bits can be transmitted simultaneously.
This leads to a potential increase of the available data
rate by 25 percent compared to the maximum data rate
offered by Wi-Fi 5. However, such a high modulation is
susceptible to noise and cannot be applied in low-quality
channels or over larger distances. [5], [12], [13]

2.5. Dual Carrier Modulation

1024 QAM cannot be used across large distances.
Therefore, dual carrier modulation has been included in
Wi-Fi 6. Two subcarriers are modulated using the same
information to create redundancy. The receiver can use

this to deal with decoding errors. This increases the over-
all connection robustness and performance across larger
distances. Using dual carrier modulation comes at a cost:
Only half of the data rate is available, and the modulation
can only be utilized for the transmission of Single User
PPDUs. [5], [12]

2.6. Target Wake Time

As stated by Sankaran et al. [5], one of the main
goals of Wi-Fi 6 was not only to increase throughput
but also have a steady power demand compared to its
predecessor Wi-Fi 5. The target wake time (TWT) can
be used for power saving. Stations can conduct a wake
schedule agreement with their access point. They are only
awake when necessary and otherwise in power safe mode.
Using this feature, a station and an access point agree on
a TWT session period, defining the time period when the
station has to be awake. Within this time frame, the station
can send and receive data. If a station is not needed, it can
go to sleep. This reduces congestion of the used medium
and saves the station’s battery power. [5]
Therefore, this feature is handy when paired with Internet
of Things devices. Multiple devices can be connected to
a network without increasing congestion and decreasing
their battery lifetime. [15]

2.7. Midamble

This feature has been specifically designed for use
cases where a connected object, e.g., a drone, moves with
up to 60 km/h. A midamble is a high-efficiency long
training field (HE-LTF) symbol that can be added to the
PPDU payload. Using this information, a receiver can
improve its channel estimate. A channel estimate describes
the properties of the used channel, like the produced
noise or distortion. These properties can then be used to
remove unwanted noise and make the connection more
reliable. [5], [16]

2.8. Other Changes

Wi-Fi 6 also includes several other noticeable changes
on the Physical Layer [13], [17]:

• Frequency range: While Wi-Fi 5 only offers
5 GHz, Wi-Fi 6 includes 2.4 and 5 GHz. In
combination with 1024 QAM, this increases the
throughput.

• Maximum data rate: 802.11ax features a maxi-
mum data rate of 9.6 Gbps when used with the
maximum number of possible MIMO streams.
Compared to the 6.9 Gbps offered by 802.11ac,
this leads to an approximately 40 percent higher
maximum data rate compared to Wi-Fi 5.

• Guard band: Wi-Fi 6 supports guard bands of
0.8, 1.6, and 3.2 µs, whereas its predecessor only
supports 0.4 and 0.8 µs.

3. MAC Layer

This chapter presents the technologies introduced by
802.11ax that affect the MAC Layer. First, we explain

Seminar IITM WS 23 42 doi: 10.2313/NET-2024-04-1_08

three crucial technologies that are implemented in Wi-Fi 6
to allow spatial reuse. Then, the concept of Multi-BSSIDs
is presented. Last, the two key features of Wi-Fi 6, Up-
link/Downlink MU-MIMO and OFDMA, are elaborated.

3.1. Spatial Reuse

Every station belongs to a basic service set (BSS).
If two BSSs are very close, stations might be able to
detect signals belonging to the respective other BSS as
well. Both access points in both BSS might use the same
channel. Especially in high-density networks, this can lead
to collisions, reduced data rates, and high congestion.
To counter this effect, Wi-Fi 6 implements three distinct
changes working together to enable a distinction between
transmissions belonging to a station’s own BSS (intra-
BSS) and a foreign BSS (inter-BSS). This can be used
to allow parallel transmissions originating from different
BSS. [5], [12]

3.1.1. BSS Network Coloring. According to Sankaran
and Gulasekaran [5], especially high-density networks can
benefit from this new feature. With network coloring, a
PPDU can be classified as either intra-BSS or inter-BSS.
If a PPDU is intra-BSS, the PPDU has been sent by a
station within the same BSS. Inter-BSS PPDUs originate
from stations belonging to a different BSS. By being
able to distinguish between intra- and inter-BSS PPDUs,
stations and APs can recognize PPDUs they do not have
to decode and process. To enable BSS coloring, every
BSS gets assigned a so-called BSS color. A BSS color is
a number between 1 and 63. This number can either be
assigned distributed or centralized. With the centralized
distribution, a third party assigns BSS colors to the access
points. When distributed assignment is chosen, an AP will
select its own color different to those of its neighbors.
APs advertise their BSS color in the designated field
that is part of a beacon frame. Beacon frames are sent
periodically to advertise the presence of a network. If a
station notices a collision of BSS colors, it sends its own
AP a BSS collision event report frame to inform it about
the collision. If the AP then decides to change its BSS
color, it can include a color change announcement in its
next beacon frame. This ensures that all associated stations
are always up to date regarding their BSS color. [5]

3.1.2. NAV Mechanism. As spatial reuse allows to treat
inter- and intra-BSS PPDUs differently, the network al-
location vector (NAV) also has to be split into an intra-
BSS NAV and an inter-BSS NAV. The two NAVs act as
timers that prohibit stations from sending while another
transmission is still ongoing. [5], [18]
With Wi-Fi 5, only one NAV timer was present. If only
one NAV timer would be used in Wi-Fi 6, Contention
Free End Control (CF-End) frames could cancel a NAV,
leading to a malfunction, as this would affect both inter-
and intra-BSS frames. [18] With two NAV timers, sta-
tions can distinguish between inter-BSS and intra-BSS
transmissions and prevent inter-BSS interference. If the
two timers are both zero, a station can lower its back-off
counter. [5] CF-End frames only cancel either the inter-
BSS NAV or intra-BSS NAV. [18] If at least one timer is

unequal to zero, the station has to stay in the idle state to
avoid collisions. [5], [18]

3.1.3. Parameterized Spatial Reuse. As explained by
Mozaffariahrar et al. [12], parameterized spatial reuse
helps to enable parallel transmissions. With Wi-Fi 5, sta-
tions were not able to send during inter-BSS transmissions
even if its sender was so far away that it would not cause
interference. BSS network coloring enables stations to dis-
tinguish between inter-BSS and intra-BSS transmissions.
Parameterized spatial reuse allows stations to cancel the
reception of inter-BSS PPDUs or transmit simultaneously.
If an inter-BSS PPDU has a power level below a previ-
ously determined threshold, a station can treat the medium
as if idle and transmit nonetheless. Furthermore, an AP
can include its acceptable interference level in the trigger
frame. Neighboring APs from different BSSs can then
adopt their BSS such that the valid signals they want to
receive do not interfere. [5], [12]

3.2. Multi-BSSID

According to Sankaran et al. [5], enhanced multi-
BSSID advertisement (EMA) has been developed to re-
duce the overhead created by management frames. Before
Wi-Fi 6, every AP was required to answer probe request
frames with beacon frames and also send such a frame
on a regular basis. This led to problems when multiple
APs were within a very close range which is often the
case in high-density environments like stadiums. Every
time a new device sends a probe request frame, every
AP in range has to answer, leading to a large overhead.
With the newly introduced EMA mode, an AP can dis-
tinguish between transmitted and non-transmitted basic
service set identifiers (BSSIDs) and only answer probe
responses for transmitted BSSIDs. Information about non-
transmitted BSSIDs is attached to the transmitted BSSID
probe response and beacon frames. This aggregation re-
duces management frame overhead in Wi-Fi 6.

3.3. UL/DL MU-MIMO

Uplink/Downlink multi-user multiple-input multiple-
output (UL/DL MU-MIMO) is one of the new key tech-
nologies of Wi-Fi 6. [5], [12]
Using downlink MIMO, APs can transmit to numerous
stations simultaneously. This works by transmitting a
PPDU that combines physical layer conformance proce-
dure service data units (PSDUs) for multiple stations.
Each PSDU is transmitted on a different spatial stream.
A field in the header of the PPDU indicates the associ-
ation identifier of the respective station and its dedicated
spatial stream. APs can choose new recipients and their
streams for every PPDU, fostering flexibility. This feature
was already included in Wi-Fi 5, although Wi-Fi 6 now
supports up to eight spatial streams. [5], [12]
The newly introduced feature uplink MU-MIMO follows
a similar principle. In high-density networks, collisions
occur frequently. Although there are mechanisms like
request-to-send-clear-to-send (RTS-CTS) protection that
aim to prevent collisions, they still occur regularly. Uplink
MU-MIMO aims to counter this by ensuring that numer-
ous stations can transmit at the same time. To arrange

Seminar IITM WS 23 43 doi: 10.2313/NET-2024-04-1_08

a suitable point in time where all stations can transmit
simultaneously, an AP sends a trigger frame. Without this
synchronization, an AP could not decode the transmitted
data easily. Once received, the AP can collectively decode
all spatial streams. [5], [12]

3.4. OFDMA

The second key feature, in addition to UL/DL MU-
MIMO, is orthogonal frequency division multiple access,
short OFDMA. Wi-Fi 5 only offered the usage of or-
thogonal frequency division multiplexing (OFDM). It is
a modulation scheme where a channel is divided into
various subcarriers. Transmissions can be done using the
subcarriers. This spread takes the whole spectrum and only
single users can use OFDM. This increases the collision
likelihood in situations with many connected stations, like
conference halls or universities. [4], [12]
Orthogonal frequency division multiple access (OFDMA),
as presented by Wi-Fi 6, provides a new approach to
enable simultaneous transmissions. It also enables higher
throughput in high-density networks. OFDMA depends on
the allocation of RUs to different stations as described in
section 2.1. By using RUs, OFDMA only affords part of
the spectrum and multiple simultaneous transmissions are
possible, making OFDMA one of the major improvements
for high-density networks. Furthermore, RUs within the
same transmission can have different sizes depending on
the transmitted data. [12], [5]
As was the case for MU-MIMO, OFDMA can be
distinguished between uplink and downlink multi-user
OFDMA. Uplink OFDMA also requires trigger frames.
An AP can send this frame to align the transmission of
multiple stations. The trigger frame also contains informa-
tion about which RUs are assigned to which station. Dif-
fering from uplink MU-MIMO, the different data do not
thwart each other as they are part of different RUs. Once
the AP has received the data, it can send a Multi-STA
BACK frame to acknowledge all RUs of all stations. [4]
Using downlink OFDMA, an AP can send to multiple
stations at the same time. Information about these trans-
missions does not have to be transmitted via control
frames but is included in the PPDU preamble. Again,
RUs are assigned to different stations. The reception of
the data is then simultaneously acknowledged by the par-
ticipating stations using uplink OFDMA. The necessary
trigger frame has been delivered to the stations as part
of the MAC protocol data unit (MPDU) included in the
original PPDU. [4]

4. Conclusion

High Efficiency Wi-Fi 6 includes many new features
that mostly focus on enhancing user experience in high-
density networks. The most prominent features include
OFDMA, MU-MIMO, and Spatial Reuse, including BSS
Network Coloring.
To enable these key features, many other changes were
necessary. For the introduction of OFDMA and MU-
MIMO, RUs had to be included, trigger frames and multi-
user PPDUs to be developed. [5], [8], [13] To allow a four-
times shorter spacing, the symbol duration was decreased
by a factor of four. [12], [13] Spatial reuse relies on

the introduction of two NAV timers, parameterized spatial
reuse and BSS network coloring. With these mechanisms,
stations and APs can easily distinguish between inter- and
intra-BSS transmissions. [12], [5], [18]
Apart from these changes, 802.11ax focuses on provid-
ing higher throughput: 1024 QAM modulation can the-
oretically increase the data rate offered by Wi-Fi 5 by
25 percent. In case 1024 QAM is not possible, dual carrier
modulation can be used to foster connection robustness
and performance. [12], [5], [13] Not only with regard to
dual carrier modulation, Wi-Fi 6 aims to enhance user
experience over larger distances. The Extended Range
single-user PPDU is provided to transmit between two
stations across larger distances where MIMO cannot be
applied. [8], [5], [13] Furthermore, Wi-Fi 6 also introduces
Multi-BSSID to reduce management frame overhead in
high-density networks where APs can distinguish between
transmitted and non-transmitted BSSIDs. [5]
Another focus of Wi-Fi 6 is the Internet of Things: The
introduction of a target wake time is crucial, as many
smart devices require batteries. [15]
Midamble symbols are added to the PPDU payload to
reduce noise and distortion that occur in channels where
objects move. [5]
Overall, Wi-Fi 6 has shown many popular improvements
compared to its predecessor Wi-Fi 5 and upgraded user
experience, especially in high-density networks, while
setting the basis for many IoT applications.

5. Outlook

While Wi-Fi 6 has been highly anticipated, real-world
deployment has shown some shortcomings. It has been
shown, for example, that for single users, Wi-Fi 5 en-
ables a higher throughput over some distances [11] and
it has been noted that Wi-Fi 6 only allows one RU to
be allocated to one station [19]. To address these issues,
IEEE already launched a working group to design its
successor shortly after publishing Wi-Fi 6. 802.11be, also
known to become Wi-Fi 7, is said to be released in
2024. [7], [19], [20] Several innovations that overcome
shortcomings of Wi-Fi 6 have been identified for Wi-Fi 7,
with the most important being:

• OFDMA: Access points should act as schedulers
that allocate spectral resources. This is supposed
to reduce delay. [7], [19]

• QAM: 4096-QAM modulation would allow for
12 bit symbols to be sent at the same time. Com-
pared to the current 1024 QAM, this increases the
data rate by 20 percent. [7]

• Resource Units: RUs are supposed to be enhanced
by allocation schemes to be able to assign mul-
tiple RUs to one station. This is said to en-
hance network throughput when combined with
OFDMA. [7], [19]

• Extended MU-MIMO: Wi-Fi 7 aims to increase
the number of possible spatial streams to 16,
doubling the currently available maximum num-
ber of streams. As this might influence the ac-
curacy of the channel state information nega-
tively, Wi-Fi 7 will likely also include a channel-
sounding method. [19]

Seminar IITM WS 23 44 doi: 10.2313/NET-2024-04-1_08

Up until now, the final draft of Wi-Fi 7 has not been
released and the improvements contained are therefore still
subject to change. If Wi-Fi 7 manages to live up to its
name, Extremely High Throughput, and further facilitates
the use of Internet of Things devices [7], [20], 802.11be
will lead the way forward to a more digitalized world.

References

[1] Cisco, “Cisco Annual Internet Report (2018–2023)
White Paper,” 03 2020, [last accessed 03-March-
2024]. [Online]. Available: https://www.cisco.com/c/en/us/
solutions/collateral/executive-perspectives/annual-internet-report/
white-paper-c11-741490.html

[2] Q. Qu, B. Li, M. Yang, Z. Yan, A. Yang, D.-J. Deng, and K.-C.
Chen, “Survey and Performance Evaluation of the Upcoming Next
Generation WLANs Standard-IEEE 802.11 ax,” Mobile Networks
and Applications, vol. 24, pp. 1461–1474, 2019.

[3] W.-F. Alliance, “Wi-Fi Alliance® introduces Wi-Fi 6,” 10 2018,
[last accessed 03-March-2024]. [Online]. Available: https://www.
wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-6

[4] Y. Daldoul, D.-E. Meddour, and A. Ksentini, “Performance evalu-
ation of OFDMA and MU-MIMO in 802.11 ax networks,” Com-
puter Networks, vol. 182, p. 107477, 2020.

[5] S. G. Sankaran and S. R. Gulasekaran, Wi-Fi 6: Protocol and
Network. Artech House, 2021.

[6] IEEE, “IEEE Standard for Local and Metropolitan Area Networks:
Overview and Architecture,” IEEE Std 802-2014 (Revision to IEEE
Std 802-2001), pp. 1–74, 2014.

[7] Y. A. Qadri, Zulqarnain, A. Nauman, A. Musaddiq, E. Garcia-
Villegas, and S. W. Kim, “Preparing Wi-Fi 7 for Healthcare
Internet-of-Things,” Sensors, vol. 22, no. 16, p. 6209, 2022.

[8] M. Natkaniec and M. Kras, “An Optimization of Network Perfor-
mance in IEEE 802.11 ax Dense Networks,” International Journal
of Electronics and Telecommunications, pp. 169–176, 2023.

[9] H. Yang, D.-J. Deng, and K.-C. Chen, “On energy saving in IEEE
802.11 ax,” IEEE Access, vol. 6, pp. 47 546–47 556, 2018.

[10] L. Lanante and S. Roy, “Performance analysis of the IEEE 802.11
ax OBSS_PD-based spatial reuse,” IEEE/ACM Transactions on
Networking, vol. 30, no. 2, pp. 616–628, 2021.

[11] A. Masiukiewicz, “Throughput comparison between the new HEW
802.11 ax standard and 802.11 n/ac standards in selected distance
windows,” International Journal of Electronics and Telecommuni-
cations, vol. 65, no. 1, pp. 79–84, 2019.

[12] E. Mozaffariahrar, F. Theoleyre, and M. Menth, “A survey of Wi-
Fi 6: Technologies, advances, and challenges,” Future Internet,
vol. 14, no. 10, p. 293, 2022.

[13] M. Natkaniec, Łukasz Prasnal, and M. Szymakowski, “A Per-
formance Analysis of IEEE 802.11ax Networks,” International
Journal of Electronics and Telecommunications, vol. 66, no. 1, pp.
225–230, Jul. 2023.

[14] P. Patil, M. Patil, S. Itraj, and U. Bombale, “IEEE 802.11n:
Joint modulation-coding and guard interval adaptation scheme for
throughput enhancement,” International Journal of Communication
Systems, vol. 33, no. 8, Feb. 2020.

[15] E. Tokhirov and R. Aliev, “Analysis of the differences between
Wi-Fi 6 and Wi-Fi 5,” in E3S Web of Conferences, vol. 402, 2023,
p. 03020.

[16] R. Govil, “Different types of channel estimation techniques used
in MIMO-OFDM for effective communication systems,” Int J Eng
Res Technol (IJERT), vol. 7, no. 07, pp. 271–275, 2018.

[17] M. Chotalia and S. Gajjar, “Performance Comparison of IEEE
802.11 ax, 802.11 ac and 802.11 n Using Network Simulator NS3,”
in International Conference on Computing Science, Communica-
tion and Security. Springer, 2023, pp. 191–203.

[18] F. Wilhelmi, S. Barrachina-Muñoz, C. Cano, I. Selinis, and B. Bel-
lalta, “Spatial reuse in IEEE 802.11 ax WLANs,” Computer Com-
munications, vol. 170, pp. 65–83, 2021.

[19] E. Khorov, I. Levitsky, and I. F. Akyildiz, “Current status and
directions of IEEE 802.11 be, the future Wi-Fi 7,” IEEE access,
vol. 8, pp. 88 664–88 688, 2020.

[20] Á. López-Raventós and B. Bellalta, “Dynamic traffic allocation in
IEEE 802.11 be multi-link WLANs,” IEEE Wireless Communica-
tions Letters, vol. 11, no. 7, pp. 1404–1408, 2022.

Seminar IITM WS 23 45 doi: 10.2313/NET-2024-04-1_08

Seminar IITM WS 23 46

Link Failure Detection in Computer Networks

Maximilian Brügge, Manuel Simon∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: maximilian.bruegge@tum.de, simonm@net.in.tum.de

Abstract—In computer networks, data must be distributed
over long distances, making it susceptible to errors. For this
reason, there are specifically designed mechanisms in place
to facilitate error recovery. This paper presents different
mechanisms of failure detection in networks and classifies
the approaches with respect to different failures types. Ad-
ditionally, it discusses recovery mechanisms and how they
correlate with these failure types, providing a holistic view
of network resilience. This work underscores the importance
of both detecting and effectively recovering from network
failures to ensure uninterrupted operation and reliability.

Index Terms—failure detection, fault detection, computer
networks, mobile networks, wireless networks

1. Introduction

As the digital landscape continues to evolve, networks
have become the backbone of modern communication.
These networks are not only made for data exchange but
are also important to the functioning of applications across
various domains. With their expansion and increased com-
plexity, networks are now more susceptible to various
failure types, ranging from minor transport errors, e.g.
packet loss, to major disruptions [1]. This vulnerability
highlights the importance of robust failure detection and
recovery mechanisms. The ability to immediately and
accurately identify failures is crucial in maintaining the
reliability and efficiency of network systems. The types
of failures encountered in these networks are varied, in-
cluding hardware malfunctions, software bugs, and issues
arising from network topology or design.

The focus of this paper is on selected failure detection
in computer networks which are also considered reactive
approaches. As outlined by Musumeci et al. [2] and Wang
et al. [3], reactive strategies differ from proactive methods
that are aimed at prevention. While proactive measures
aim to prevent service disruptions, reactive approaches
such as failure detection are imperative for initiating im-
mediate recovery procedures. These procedures, crucial
for swiftly repairing or replacing failed components and
thus minimizing downtime, play a vital role in ensuring
network resilience. This paper explores the methods and
strategies employed for detecting failures in networks,
categorizing these based on the types of network failures
and presents appropriate recovery solutions. We inves-
tigate state-of-the-art and evolution of network reliabil-
ity, underlining the challenges and advancements in this
essential field of network management. This exploration

contributes to enhancing the understanding and capabili-
ties of network management, establishing the foundation
for the successful deployment and operation of future-
oriented networks. Specifically, it addresses the critical
need for a very high probability of successful transmis-
sion, a key objective in 5G and 6G networks [4], ensuring
their advanced performance and service continuity.

2. Technical Background

This section primarily focuses on the fundamental
hardware components and essential software elements re-
quired for constructing a computer network. Additionally,
we present various types of failures that can occur within
a computer network.

2.1. Nodes

Peterson et al. [5] define a node as any device that
connects to the network, like a computer or a router. These
devices serve various roles, from running applications to
directing data traffic. Any device capable of transmitting
or receiving data to or from a network is classified as a
node. In the Internet of Things (IoT), a dishwasher, for
instance, could also represent a node within a network.
Each node in a network has a limited amount of memory
and processing capability, which is essential for processing
data and throughput. These nodes are connected to the net-
work via an adapter, which is operated through specialized
software. The interplay between a node’s memory capacity
and its processing speed is a key factor in determining the
overall efficiency of the network.

2.2. Links

Links are the channels that connect nodes, using medi-
ums like cables or wireless space to transmit data. These
media channels carry data in the form of electromagnetic
signals across different frequencies. The physical nature
of these links, whether they are made of fiber optics
or copper wires, plays a significant role in how data is
transmitted and at what speed. The design of these links,
including their capacity to handle data and the method
of encoding information, is fundamental to network func-
tionality [5].

2.3. Cable-Related Failures

Cable-related failures are a special case of link failures
which typically involve optical and copper fiber (i.e. Eth-
ernet), respectively. Optical fiber breaks frequently occur

Seminar IITM WS 23 47 doi: 10.2313/NET-2024-04-1_09

unintentionally at construction sites [1], [6]. Although
these incidents may occasionally be observed by on-site
workers, there are instances where such events go unno-
ticed by anyone [6]. For these cases, a sophisticated and
reliable solution is needed. Another failure type related
to optical fiber is high loss, which can occur during
installation when workers make errors. These may involve
improper fiber bending, contamination of connectors, mis-
handling of tools, or incorrect connections as described by
Fernández et al. [7].

2.4. Wireless Network Failures

Wireless networks present a unique set of failure sce-
narios, distinct from cable-based networks. These failures
are primarily influenced by environmental and physical
aspects of wireless signal transmission and reception.
Interference is a major cause of wireless network failure.
External sources like other electronic devices or physical
obstructions can disrupt signal transmission, leading to
signal degradation or loss as discussed by M. Gast [8].
Additionally, atmospheric conditions such as heavy rain
or fog can also impact signal strength as shown by Os-
ahenvemwen and Omatahunde [9]. Moreover, hardware
failures in wireless network components such as routers,
access points, and base stations can lead to network
outages. Unlike wired networks, where issues might be
localized to specific cable faults, failures in key wireless
components can have a widespread impact, affecting a
large number of users.

Network overload is another critical challenge across
all network types, impacting both wireless and wired
systems. High device density or excessive data traffic can
lead to congestion in any network, potentially causing
service outages or significant performance reduction. This
phenomenon is especially relevant in wireless networks
due to inherent constraints such as limited spectrum and
susceptibility to interference as described by C. Casetti
et al. [10]. They also describe how the network can
become congested, leading to service outages or severe
performance degradation. This is particularly evident in
both mobile and residential wireless networking environ-
ments, where the increasing demand for high-bandwidth
applications strains the network’s capacity.

3. Failure Detection Mechanisms

This section explores mechanisms employed for de-
tecting failures in computer networks. The complexity
and critical nature of networks necessitate robust and
precise methods to swiftly identify and address issues,
ensuring network reliability and efficiency. We delve into
several key technologies and methodologies that have been
developed to detect, analyze, and localize failures.

3.1. Optical Time-Domain Reflectometry

When a fiber break occurs, it can be noticed that no
packets are received by the recipient anymore, while at
the same time the node is also not reachable. This raises
the question of whether the issue is link or node-related.

For monitoring optical fiber, we can use an Optical Time-
Domain Reflectometer (OTDR), which is a leading tech-
nique for monitoring optical networks and was developed
in 1976 by Barnoski and Jensens [11]. They describe how
OTDR operates using Rayleigh scattering, where light
reflects off particles smaller than its wavelength. Using
this method, a pulsed laser sends light into an optical
fiber, creating backscattered light that is detected by a
photodiode. This involves sending multiple light pulses
during a set measurement time and averaging the traces
to enhance accuracy and resolution. The choice of pulse
width and measurement times involves trade-offs: shorter
pulse widths provide higher resolution but may increase
noise and reduce signal visibility due to lower emitted
power [11]. In telecom networks, technicians often bal-
ance these factors, selecting pulse widths that optimize
both resolution and signal clarity. After running a trace
generation, OTDR devices yield time-series data which
can be automatically analyzed or plotted. High peaks or
huge losses in the data usually indicate an error at that po-
sition in the fiber. Figure 1 showcases an exemplary OTDR
trace, highlighting the use of PC and APC connectors, a
power splitter, and Optical Network Units (ONU). This
trace vividly illustrates the backscattered light patterns
generated by the pulsed laser, marked by significant peaks
and troughs. These variations are critical for identifying
faults along the fiber, demonstrating the OTDR’s precision
in fault localization.

Power Splitter
1 : 32

ALM
(OTDR)

ONU#1

ONU#2

ONU#3

PC APC

15km

1m 1m

ONU#4

PC APC
17m 10m 10m

16m

27m

41m

Figure 1: Exemplary OTDR trace using PC and APC
Connectors, Power Splitter, and Optical Network Units
(ONU)

Advantages of OTDR include its high accuracy and
resolution, which allow for precise fault localization. It
also enables non-invasive testing, as faults can be detected
without physically accessing the entire length of the cable.
Additionally, OTDR is versatile, suitable for various fiber
types and lengths, and aids in predictive maintenance by
detecting potential issues early on. However, there are
some disadvantages to using OTDR. As can be seen in
Figure 1, the complexity of OTDR traces requires skilled
interpretation, especially in networks with intricate ar-
chitectures. To counteract this, recent advancements have
been made in interpreting this data. It has been shown that
the characteristics of the different peaks in OTDR traces
can be effectively classified using deep learning [12].
This approach significantly enhances the accuracy and

Seminar IITM WS 23 48 doi: 10.2313/NET-2024-04-1_09

efficiency of fault detection and localization in optical
networks.

3.2. Quality of Transmission

Quality of Transmission (QoT) is a metric in evaluat-
ing the performance and reliability of optical devices in
computer networks. It encompasses the effects of factors
such as device ageing and external environmental changes,
such as temperature variations, which can progressively
degrade transmission quality. Understanding and analyz-
ing QoT is essential for detecting gradual impairments
and implementing timely solutions to ensure sustained net-
work efficiency and effectiveness. S. Barzegar et al. [13]
discuss two of the most used QoT mechanisms which are
discussed in this section.

Bit Error Rate (BER): BER is a measure of the
number of bit errors in a transmitted signal. Vela et al. [14]
classify BER as a critical metric for assessing the signal
quality of optical connections. It becomes particularly rel-
evant in scenarios where signal integrity is compromised
due to various types of failures. E.g., signal overlap occurs
when an optical connection’s spectrum allocation inter-
feres with a neighboring one, often due to inaccuracies in
the central frequency of lasers or filters. Tight filtering is
another issue, arising from misalignments or inaccuracies
in the filter’s central frequency or width. Gradual drift
happens when the optical signal or filter slowly deviates
from its initial central frequency, while cyclic drift is char-
acterized by periodic deviations over time. These failures
can lead to sudden or gradual increases in BER. Detect-
ing and analyzing these variations in BER is crucial for
identifying and addressing the underlying causes of signal
degradation, ensuring the reliability and efficiency of op-
tical network communications. In this context, advanced
algorithms, i.e., BANDO and LUCIDA [14], are proposed
to detect BER degradation and identify failure patterns,
respectively, enhancing the monitoring and management
of optical networks.

Signal-to-Noise Ratio (SNR): The level of a desired
signal in relation to the background noise level is mea-
sured using the SNR. In the work of C. Alkemade et
al. [15] the authors delve into the concept of SNR, which
they define as the ratio of the power of a signal to the
power of the noise and is usually expressed in decibels.
A higher SNR indicates a clearer and less noisy signal,
making it a crucial parameter in optimizing the perfor-
mance of communication and detection systems. Figure 2
illustrates the concept of SNR, depicting how signal power
compares to noise power in a visual format.

3.3. Received Signal Strength Indicator

Received Signal Strength Indicator (RSSI) is a crit-
ical tool used in the realm of wireless networking, par-
ticularly in identifying and managing the stability and
performance of connections like Wi-Fi access points or
mobile networks. According to Y. Chapre et al. [17],
it serves as a valuable mechanism for failure detection.
RSSI measures the power of signals received by a wireless
device. In essence, RSSI measures the signal’s strength at
a specific location and time. The strength of the received
signal is primarily determined by the distance between

Figure 2: Signal-to-Noise Ratio [16]

the transmitter and the receiver. However, it is not just
about distance; various factors can influence RSSI values,
making it a dynamic and sensitive measure. For instance,
Wi-Fi networks operating in densely populated areas often
experience decreased RSSI values due to interference
from multiple nearby routers transmitting on the same
or overlapping channels. In a typical IEEE 802.11b/g/n
network [18], extensive measurements are taken to an-
alyze these factors affecting RSSI. This analysis helps
in understanding the reliability and performance of the
network under various conditions. The effectiveness of
RSSI as a failure detection mechanism lies in its ability
to provide a real-time snapshot of the network’s signal
strength. By continuously monitoring RSSI values, net-
work administrators can quickly identify and address areas
with weak signals, ensuring optimal network performance
and reliability.

4. Recovery Mechanisms

It is not only crucial to identify network failures but
also to address them, ensuring continued network oper-
ation. Following the presentation of link failure mecha-
nisms in computer networks, this section shifts focus to
recovery techniques and strategies. Rapid recovery is es-
sential to maintain the network’s reliability and efficiency.
We will discuss various technologies and methods that
support seamless network operations even after disrup-
tions.

4.1. Lightpath Re-Routing

Lightpath re-routing in optical networks, particularly
those utilizing dense wavelength division multiplexing
(DWDM) and optical switches, is a process for ensuring
efficient and reliable network operations, as explored by
Bouillet et al. [19] in their research. These networks
manage service requests through an online routing al-
gorithm that dynamically decides the best routing paths
based on current network information. The challenge lies
in maintaining service continuity, especially given the
high connection rates of these networks, which can reach
tens of Terabits per second. Two restoration strategies are
employed in these networks: end-to-end dedicated mesh
protection and shared mesh restoration. The dedicated
mesh approach uses predefined backup paths that are
diverse from the primary paths, ensuring that both do
not fail simultaneously. This method requires significant
capacity, as backup paths are often longer than primary

Seminar IITM WS 23 49 doi: 10.2313/NET-2024-04-1_09

TABLE 1: Overview of all discussed detection mechanisms

Detection Mechanism Hardware
Level

Failure Types Recovery Mechanisms Literature

Optical Time Domain Reflectometry (3.1) Optical
Fiber/Devices

Optical fiber bend, break,
loss

Lightpath Re-Routing (4.1) [11], [12], [19]

Quality of Transmission (3.2) Link Signal degradation, noise
interference

Lightpath Re-Routing (4.1) [13]–[15], [19]

Received Signal Strength Indicator (3.3) Link Interference, Distance, Ob-
structions, Malfunction

Dynamic Channel Assign-
ment (4.2)

[17], [18], [20]

paths. However, it offers the advantage of immediate
restoration due to the permanence of the backup paths.
In contrast, shared mesh restoration allows backup paths
to share capacity, provided the primary paths are mutually
diverse. This approach saves more space in the network
but is slower to recover, as it requires additional steps
to establish a backup route. The length and number of
hops of the backup path can influence the restoration time,
posing a trade-off between cost and recovery latency.

4.2. Dynamic Channel Assignment

In Wireless Local Area Networks (WLANs), a chan-
nel refers to a specific frequency range in the radio
spectrum for wireless communication. Figure 3 illustrates
the 2.4GHz Wi-Fi channel band, highlighting the avail-
able channels within this spectrum. Strategically select-
ing Access Point (AP) channels is crucial for enhancing
network performance, especially in dense environments
where overlapping frequencies may cause interference.
This overlap leads to interference and network congestion,
adversely affecting network functionality. The impact of
interference is closely monitored using the RSSI (c.f.
Section 3.3). Advanced channel assignment algorithms
aim to minimize the impact of interference. By focus-
ing on reducing the interference impact, these algorithms
can significantly improve data transmission quality and
overall network reliability. The effectiveness of advanced
algorithms, such as Wi-5, has been demonstrated through
real-world evaluations. [20]

Figure 3: 2.4GHz Wi-Fi Channel Band [21] based on
D. Coleman et al. [22]

5. Conclusion and Future Work

This paper has presented an overview of various
link failure detection mechanisms in computer networks,
emphasizing the significance and applicability of each
method under different failure scenarios. The detailed
analysis, as summarized in Table 1, provides a clear com-
parison of these mechanisms, highlighting the involved
hardware, failure types and their possible recovery.

The advancements in technologies such as deep learn-
ing, as mentioned, offer promising avenues for enhancing

the efficiency and accuracy of these detection methods.
This paper has underscored the importance of selecting
appropriate detection mechanisms based on the specific
nature of the potential failures, a decision critical for main-
taining the robustness and reliability of optical networks.
Future research may focus on the integration of artificial
intelligence and machine learning to further refine these
detection methods, potentially automating the process and
providing more nuanced insights into network health and
integrity. The evolving landscape of optical network tech-
nology continues to present new challenges and opportu-
nities, making ongoing research and development in this
field necessary.

References

[1] Spiegel, “Bauarbeiten offenbar Ursache von IT-
Ausfall bei der Lufthansa,” Februrary 15, 2023,
Accessed: February 29, 2024. [Online]. Available:
https://www.spiegel.de/wirtschaft/unternehmen/lufthansa-bagger-
kappt-kabel-bauarbeiten-offenbar-ursache-von-it-ausfall-a-
bb48b9e6-3c5b-4f22-9726-75de334525bc

[2] F. Musumeci, C. Rottondi, G. Corani, S. Shahkarami, F. Cugini,
and M. Tornatore, “A tutorial on machine learning for failure man-
agement in optical networks,” Journal of Lightwave Technology,
vol. 37, no. 16, pp. 4125–4139, 2019.

[3] D. Wang, C. Zhang, W. Chen, H. Yang, M. Zhang, and A. P. T.
Lau, “A review of machine learning-based failure management in
optical networks,” Science China Information Sciences, vol. 65,
no. 11, p. 211302, 2022.

[4] A. Gupta, X. Fernando, and O. Das, “Reliability and availability
modeling techniques in 6g iot networks: A taxonomy and survey,”
in 2021 International Wireless Communications and Mobile Com-
puting (IWCMC), 2021, pp. 586–591.

[5] L. L. Peterson and B. S. Davie, Computer networks: a systems
approach. Elsevier, 2007.

[6] M. Illidge, “Construction causes major cable break in
Johannesburg — and almost no-one knew,” October 11,
2023, Accessed: February 29, 2024. [Online]. Available:
https://mybroadband.co.za/news/fibre/510900-construction-
causes-major-cable-break-in-johannesburg-and-almost-no-one-
knew.html

[7] M. P. Fernández, L. A. B. Rossini, J. P. Pascual, and
P. A. C. Caso, “Enhanced fault characterization by using a
conventional otdr and dsp techniques,” Opt. Express, vol. 26,
no. 21, pp. 27 127–27 140, Oct 2018. [Online]. Available:
https://opg.optica.org/oe/abstract.cfm?URI=oe-26-21-27127

[8] M. Gast, 802.11 wireless networks: the definitive guide. " O’Reilly
Media, Inc.", 2002.

[9] A. O. Osahenvemwen and B. E. Omatahunde, “Impacts of
weather and environmental conditions on mobile communication
signals,” Journal of Advances in Science and Engineering,
vol. 1, no. 1, pp. 33–38, Apr. 2018. [Online]. Available:
http://www.sciengtexopen.org/index.php/jase/article/view/8

[10] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang,
“TCP westwood: end-to-end congestion control for wired/wireless
networks,” Wireless Networks, vol. 8, pp. 467–479, 2002.

Seminar IITM WS 23 50 doi: 10.2313/NET-2024-04-1_09

[11] M. K. Barnoski and S. M. Jensen, “Fiber waveguides: a novel
technique for investigating attenuation characteristics,” Appl. Opt.,
vol. 15, no. 9, pp. 2112–2115, Sep 1976. [Online]. Available:
https://opg.optica.org/ao/abstract.cfm?URI=ao-15-9-2112

[12] M. Brügge, J. Müller, S. K. Patri, S. Jansen, J. Zou, S. Althoff,
and K.-T. Förster, “Live demonstration of ML-based PON charac-
terization and monitoring,” in 2023 Optical Fiber Communications
Conference and Exhibition (OFC), 2023, pp. 1–3.

[13] S. Barzegar, M. Ruiz, A. Sgambelluri, F. Cugini, A. Napoli, and
L. Velasco, “Soft-failure detection, localization, identification, and
severity prediction by estimating QoT model input parameters,”
IEEE Transactions on Network and Service Management, vol. 18,
no. 3, pp. 2627–2640, 2021.

[14] A. P. Vela, M. Ruiz, F. Fresi, N. Sambo, F. Cugini, G. Meloni,
L. Potì, L. Velasco, and P. Castoldi, “BER degradation detection
and failure identification in elastic optical networks,” Journal of
Lightwave Technology, vol. 35, no. 21, pp. 4595–4604, 2017.

[15] C. Alkemade, W. Snelleman, G. Boutilier, B. Pollard,
J. Winefordner, T. Chester, and N. Omenetto, “A review
and tutorial discussion of noise and signal-to-noise ratios in
analytical spectrometry—i. fundamental principles of signal-to-
noise ratios,” Spectrochimica Acta Part B: Atomic Spectroscopy,
vol. 33, no. 8, pp. 383–399, 1978. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0584854778800494

[16] Hollyland, “All about signal to noise ratio,” https:
//www.hollyland.com/blog/tips/signal-to-noise-ratio, 10 2023,
Accessed: February 29, 2024.

[17] Y. Chapre, P. Mohapatra, S. Jha, and A. Seneviratne, “Received
signal strength indicator and its analysis in a typical wlan system
(short paper),” in 38th Annual IEEE Conference on Local Com-
puter Networks, 2013, pp. 304–307.

[18] “IEEE standard for information technology– local and metropoli-
tan area networks– specific requirements– part 11: Wireless lan
medium access control (mac)and physical layer (phy) specifications
amendment 5: Enhancements for higher throughput,” IEEE Std
802.11n-2009 (Amendment to IEEE Std 802.11-2007 as amended
by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std
802.11y-2008, and IEEE Std 802.11w-2009), pp. 1–565, 2009.

[19] E. Bouillet, J.-F. Labourdette, R. Ramamurthy, and S. Chaudhuri,
“Lightpath re-optimization in mesh optical networks,” IEEE/ACM
Transactions on Networking, vol. 13, no. 2, pp. 437–447, 2005.

[20] A. Raschellà, M. Mackay, F. Bouhafs, and B. I. Teigen, “Evaluation
of channel assignment algorithms in a dense real world wlan,” in
2019 4th International Conference on Computing, Communications
and Security (ICCCS), 2019, pp. 1–5.

[21] EnGenius Technologies, Inc., “Your Go-To-Guide for
Channel & Transmit Power on Wi-Fi Networks (Part
2),” https://www.engeniustech.com/wp-content/uploads/2017/10/
blog_nov1.jpg, 10 2017, Accessed: February 29, 2024.
[Online]. Available: https://www.engeniustech.com/go-guide-
channel-transmit-power-wi-fi-networks-2/

[22] D. D. Coleman and D. A. Westcott, Cwna: certified wireless
network administrator official study guide: exam Pw0-105. John
Wiley & Sons, 2012.

Seminar IITM WS 23 51 doi: 10.2313/NET-2024-04-1_09

Seminar IITM WS 23 52

ZDNS vs MassDNS: A Comparison of DNS Measurement Tools

Jeremy Dix, Patrick Sattler∗, Johannes Zirngibl∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: jeremy.dix@tum.de, sattler@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—The DNS is an ever-growing essential part of
today’s Internet. Its ability to function well is crucial for
the Internet’s stability and maintainability. To ensure that,
the DNS needs to incorporate scalable and high-performing
technologies. Active DNS measurement on a large-scale basis
plays a critical role in developing these technologies. ZDNS
and MassDNS are two frameworks that provide toolsets for
performing such DNS measurements while taking different
approaches to accomplish this task. This paper describes
and compares these frameworks and their features in detail
and provides an overview of their respective resolution
accuracy. Most notably, it shows that both tools incorpo-
rate features, e.g., for internal recursion and lookup chain
exposure (ZDNS) or subdomain enumeration (MassDNS). It
demonstrates that, while both frameworks have a similar
accuracy under the same circumstances, MassDNS tends to
experience more timeouts in general. The paper aims to
help researchers and other interested parties choose the right
tool for their use case by better understanding their specific
capabilities.

Index Terms—dns, networking, performance, benchmark,
measurement, zdns, massdns

1. Introduction

Nowadays, the World Wide Web is bigger than ever
before. According to the Domain Name Industry Brief, it
currently comprises about 359.3 million domain names [1]
and is exponentially growing each year. The Domain
Name System (DNS) is critical for accommodating this
vast number of domains and is integral to the Internet’s
infrastructure. Its primary purpose is to convert human-
readable domain names into IP addresses.

Due to its fast growth [1], the DNS requires highly
performing, scalable, and secure technologies to keep up
with the increasing demand. In particular, the field of
active DNS measurement is crucial for conducting the nec-
essary research to create these technologies. For example,
a research team at the University of Twente published a
paper that describes the importance of extensive active
DNS measurement and its challenges, e.g., the burdens
imposed on the DNS by daily scans [2].

For conducting research involving active DNS mea-
surement, there is a need for high-performance tools that
can perform domain name resolution on a large scale. Two
such recently developed tools that are actively being used
for DNS research are ZDNS and MassDNS.

ZDNS is a command line tool implemented in Go [3],
created by Durumeric et al. at Stanford University as part

of the ZMap Project [4]. In contrast, MassDNS is a single-
threaded DNS stub resolver written in C, created by Birk
Blechschmidt, a security engineer at Deutsche Telekom,
and Quirin Scheitle, a former researcher at the Technical
University of Munich [5].

Comparing these two tools is particularly interesting,
as their feature set, purpose, and commitment to deliver-
ing high resolution speeds are very alike. MassDNS, for
instance, promises a speed of up to 350.000 lookups per
second [5]. However, while these toolsets have the same
primary purpose, they still differ in functionality, usability,
resolution accuracy, and scalability. Depending on the use
case, this might lead to one tool performing better. Hence,
this paper compares both tools w.r.t. the latter properties
to determine their suitability for specific use cases.

2. Related Work

ZDNS and MassDNS mainly contribute to the field
of active DNS measurement. Joint research projects like
TIDE [6] or OpenINTEL [7] are significant contributors
to this research area as well. OpenINTEL measures more
than 252 million domains every day, thus precisely log-
ging the state of the DNS over time [7]. The University
of Twente, as well as research organizations like SIDN
Labs [8], SURFnet [9], and NLnet Labs [10] are all
major contributors to OpenINTEL, as well as other active
DNS measurement research projects (e.g., [2], [11], [12]).
Notably, another DNS measurement platform, Censys
Search [13], uses ZDNS for its DNS measurements [3].
MassDNS is also used in various DNS measurement
research projects, e.g., [14] or [15].

The ZDNS developers themselves published a paper in
2022 in which ZDNS is compared to other DNS tools [3].
The paper explains ZDNS’ properties, highlights its per-
formance in large-scale domain resolution, and indicates
possible use cases.

Apart from ZDNS and MassDNS, several other tools
exist that were created by research teams for inter-
nal measurements in the context of various research
projects [2], [16]. Additionally, there are several Linux
tools with similar purposes, e.g., domain information
groper (dig) [17], or nslookup [18]. However, in contrast
to the frameworks presented in this paper, these solu-
tions/tools are generally not published, preventing other
scientists from using them in their research projects, or
they are not optimized for large-scale DNS measurements.

Lastly, tools like ZDNS and MassDNS typically rely
on third-party recursive resolvers, like Unbound [19] or
the Cloudflare public resolver (1.1.1.1) [20] to resolve

Seminar IITM WS 23 53 doi: 10.2313/NET-2024-04-1_10

domain names. These resolvers provide the necessary
infrastructure for communication with the name servers
in the DNS.

3. General Comparison

This chapter gives a comprehensive overview of both
tools’ features, compares their usability and implementa-
tion, and lists some of their approaches to fault mitigation.
Table 1 summarizes both tools’ most significant proper-
ties.

TABLE 1: Feature and property overview.

Feature ZDNS MassDNS

Number of fully supported record types 70 11
Supported L4 protocols UDP, TCP UDP
Concurrency method Goroutines epoll
Built-in resolver ✓ -
Iterative lookups ✓ ✓
Lookup chain exposure ✓ -
Additionally queried record types A, CNAME PTR
Native subdomain enumeration support - ✓
JSON output ✓ ✓

3.1. Feature Overview

Both tools serve the purpose of resolving domain
names by querying various resource record types. How-
ever, while ZDNS fully supports a total of 70 DNS record
types [21], MassDNS only supports the 11 most com-
monly used types for its human-readable output formats:
A, AAAA, CAA, CNAME, DNAME, MX, NS, SRV, PTR, SOA, and
TXT [5].

Moving on, ZDNS features its own standalone caching
recursive resolver library [22], which is built upon the
DNS library by Miek Gieben [23]. It consists of all DNS
resource record types, including the records from the DNS
Security Extensions (DNSSEC) [22].

ZDNS’ Built-in Resolver. While MassDNS exclu-
sively relies on third-party recursive resolvers to perform
DNS queries, ZDNS also has a built-in iterative resolver. It
makes use of the aforementioned library for its operation.
According to the developers of ZDNS, an advantage of
this resolver is its ability to circumvent potential rate limits
by public resolvers when querying with high concurrency.
This resolver also performs local recursion, which exposes
internal DNS procedures to the user, enabling them to
conduct more detailed research. Moreover, the resolver
includes a selective response cache. It minimizes the cache
entry size by only buffering Name Server (NS) and glue
records. By leveraging this technique, it prevents excessive
disposal of cache entries while reducing the number of
needed queries and helping the resolver with subsequent
recursion. [3]

Still, when comparing the performance of ZDNS’
iterative resolver to public resolvers like Cloudflare, it can
be seen that public resolvers are better suited for large-
scale lookups of billions of domains. This is due to bigger
caches, and thus better resolution accuracy with bigger
scale [3]. Therefore, for large-scale lookups, both tools
depend on external recursive resolvers to reach their full
potential.

ZDNS’ Lookup Modules. ZDNS encompasses sev-
eral lookup modules, namely mxlookup and alookup [21].
These modules can automatically perform additional
queries when processing Mail Exchange and Canonical
Name records in addition to looking up the records speci-
fied in the original query. The mxlookup module is able to
automatically perform additional A record lookups when
querying for MX records, while the alookup module can
interpret CNAME records and query their contents.

MassDNS’ Python Scripts. MassDNS has several
distinctive features as well. A couple of Python scripts
expand the use cases of MassDNS, particularly with re-
gard to reconnaissance scanning. For instance, a script for
automatically resolving previously queried PTR records
named ptr.py enables the user to efficiently perform
Reverse DNS [24].

In addition, the script subbrute.py allows for brute-
force subdomain enumeration with MassDNS [5]. It works
similarly to SubBrute, a high-performance DNS query
spider, which can perform DNS record and subdomain
enumeration [25]. MassDNS includes several more sub-
domain enumeration scripts, e.g., the script ct.py which
uses the crt.sh Identity Search to scrape for Certificate
Identity logs and extract subdomains from them [26].
These scripts present an advantage of MassDNS, as their
functionality in enumerating subdomains is useful for
reconnaissance scans and penetration tests, which are
performed for detecting potential security risks or vul-
nerabilities of domains.

3.2. Usability Comparison

Both DNS frameworks provide the user with various
CLI options for setting basic DNS lookup parameters, like
the timeout time and query retry count.

ZDNS additionally has the option to use the built-
in iterative resolver via setting the --iterative flag,
but also an option to enable UDP socket recycling (see
Section 3.3), as well as options for choosing specific
transport layer protocols or lookup modules. [21]

In contrast, most notably, MassDNS has an option to
unset the DNS Recursion Desired (RD) bit via setting
the --norecurse flag [5]. This option enables the user to
perform non-recursive lookups, and thus makes it easier
to carry out DNS cache snooping [27] or subdomain
enumeration (see Section 3.1).

Output. Further considering the output, there are
several similarities and differences in its format and ver-
bosity. MassDNS incorporates a total of 5 different out-
put formats: domain list output, simple text output, full
text output, binary output, and Newline Delimited JSON
(NDJSON) output [5], [28]. The simple text output can
be controlled by a total of 10 advanced options for high
customization [5]. It is important to note that out of
these output options, only the binary output conserves
the whole DNS response data consisting of all received
records [5]. All other formats only preserve the record
types mentioned in Section 3.1. Most notable, however, is
the JSON output format. It outputs all response packets as
JSON objects in the output style of dig, which are easily
programmatically interpretable, thus enabling researchers
to parse their results efficiently.

Seminar IITM WS 23 54 doi: 10.2313/NET-2024-04-1_10

ZDNS, on the other hand, only features output in
JSON, whereby different output verbosities exist: short,
normal, long, and trace. These verbosities can be further
customized through the --include-fields option. [21]

The ZDNS’ trace feature is particularly interesting,
as it can display the whole lookup chain/trace of every
request when performing internal recursion. It lists the
responses of all name servers of the trace, starting from
the root name server [3]. The dig tool has a similar
feature, which can be used via the +trace argument [17].
MassDNS, on the other hand, lacks an analogous feature.

In conclusion, although MassDNS supports more out-
put options than ZDNS, the most significant output variant
for further processing, namely the JSON output method,
is supported by both tools. However, in ZDNS, this output
format is customizable, whereas in MassDNS, it is not.

3.3. Implementation Differences

The performance and reliability of each tool highly
rely on its implementation. For this reason, key imple-
mentation aspects of both tools are compared below.

ZDNS and MassDNS both rely on different forms of
concurrency when executing queries. ZDNS uses Gorou-
tines, i.e., lightweight threads, for looking up names in
parallel. Each Goroutine is assigned a UDP socket, which
sends and receives DNS packets. By default, ZDNS reuses
its UDP sockets, meaning they are used repeatedly for dif-
ferent lookups until program termination. This improves
ZDNS performance and scalability, as the creation of new
sockets for each new query is circumvented. [3]

MassDNS, on the other hand, does not use threads
in its C implementation. It instead utilizes the epoll
I/O event notification facility together with a self-
written hashmap implementation to carry out concurrent
queries [29], [5]. MassDNS creates one UDP socket per
--bind-to entry and then assigns all sockets to the epoll
instance [5]. The hashmap respectively stores the domain
name queries that are supposed to be processed next,
so that the epoll instance can take the next batch of
domain names and use an available socket to execute
the lookups. Additionally, MassDNS can be run utilizing
multiple processes. However, it then operates using a
shared-nothing architecture [5], meaning that queries are
not synced between processes, and the outputs of each
process are stored in different files.

As mentioned above, both tools utilize UDP sockets
for their lookups, but ZDNS also allows for the use of
TCP sockets. A disadvantage of using the latter is that
it negatively affects performance, as TCP sockets do not
allow for reusability. [21]

3.4. Fault Mitigation Approaches

ZDNS and MassDNS share one big issue; they both
can overwhelm DNS servers and experience rate limiting
by public resolvers when run with high concurrency. To
resolve this issue, both tools provide an option to use
multiple resolvers for querying.

ZDNS offers this feature via its --name-servers op-
tion [21]. However, as described in Section 3.1, the latter
issue can be avoided entirely by using ZNDS’ built-in
resolver.

MassDNS offers a similar feature to use multiple
resolvers via its --resolvers option [5]. Besides that, for
dodging IPv6 resolver rate-limiting, MassDNS provides
the --rand-src-ipv6 <your_ipv6_prefix> option [5].
This option allows MassDNS to pick from a specified
subnet of source IPv6 addresses for each lookup, thus
effectively evading rate limits by some IPv6 resolvers.
Other than that, there is no other option to minimize the
load on DNS servers when using MassDNS except to
manually decrease the hashmap size or lower the retry
count from the default 50 [5].

4. Performance Evaluation

The performance of each tool in successfully resolving
domain names is crucial for assessing the capabilities of
both frameworks. It is evaluated by comparing each tool’s
resolution accuracy and fallibility. Furthermore, the Top
Level Domains (TLDs) of the domain names resolved
exclusively by one of the tools, but not the other, are
compared to demonstrate either tool’s effectiveness when
querying for domain names with specific TLDs.

4.1. Resolution Accuracy Comparison

The resolution accuracy of ZDNS and MassDNS was
compared by querying for A and AAAA records of a custom
dataset containing all domain names from the Cloudflare
(CF) Radar Top 1 Million (1 009 126 domain names on
11-30-2023) [30] and the Chrome User Experience Re-
port (CrUX) (995 207 distinct domain names on 11-30-
2023) [31]. These domain lists were chosen because they
are both publicly available and contain the most visited,
i.e., most resolved domains of the Internet.

Both tools were tested once using the Unbound recur-
sive resolver, while ZDNS was also tested using the CF
public resolver. The CF resolver was additionally chosen
for ZDNS, as, according to the ZDNS developers’ scans,
ZDNS overall works best when paired with CF [3]. The
built-in ZDNS iterative resolver was not tested, as Mass-
DNS does not feature a native resolver, thus rendering a
comparison inequitable.

Inherently, MassDNS uses 10 000 concurrent lookups.
However, due to ZDNS only using 1000 Goroutines by
default [21], MassDNS was tested with a hashmap size
of both 10 000 and 1000 to provide a more balanced
comparison. To minimize resolver overload, ZDNS was
tested using its default retry count of 1, while MassDNS’
retry count was lowered from 50 to 3.

Success Rates. The success rates discussed below
were achieved by ZDNS and MassDNS using the Un-
bound resolver and a concurrency level of 1000 lookups.
Figure 1 depicts the encountered error codes while query-
ing for A records using the aforenamed parameters.

First, considering the CF Radar query results, it be-
came apparent that, regardless of whether A or AAAA
records were queried, MassDNS had a slightly higher res-
olution success rate than ZDNS. For instance, MassDNS
successfully resolved 96.54% of A record queries, whereas
ZDNS resolved 96.51% of queries with success. In the
CrUX scan results, while ZDNS excelled in resolution
accuracy this time, the success rates of both tools were
also quite similar, but they both encountered a higher

Seminar IITM WS 23 55 doi: 10.2313/NET-2024-04-1_10

number of errors. In the case of A records being queried,
MassDNS had a slightly lower success rate of 95.39%,
while ZDNS marginally outperformed MassDNS with a
success rate of 95.49%.

In conclusion, the results show that, under equivalent
circumstances, both tools have a similar accuracy. Which
tool gets a slight advantage depends on the queried domain
list. However, as seen in Section 4.2, there is a major
disparity in accuracy when tweaking the tools’ parameters.

Error Comparison. Examining the status/error
codes in Figure 1 reveals some more interesting aspects.
When scanning the CrUX list, both tools encountered
about twice as many SERVFAILS and NXDOMAIN errors as
they did while querying the CF Radar list.

Concerning TIMEOUT encounters, each time, MassDNS
experienced more timeouts than ZDNS. For instance,
while resolving the CF Radar A records, MassDNS ex-
perienced 988 more timeouts than ZDNS. The timeout
difference is even more significant when looking at the
CrUX A record lookup results, where it amounts to 1420.
Considering that MassDNS only timed out 4973 times
in this scan, this represents a timeout increase of about
28.55% when compared to ZDNS.

ZDNS
(CF Radar)

MassDNS
(CF Radar)

ZDNS
(CrUX)

MassDNS
(CrUX)

0

10000

20000

30000

40000

A
m

ou
n
t

of
er

ro
rs

10655

20953
12060

14165

21405

34733

2852
2824

6188 6198

35260 34910

44859
45904

9693 10681

3553
4973

TIMEOUT

NXDOMAIN

MAXRETRIES

REFUSED

SERVFAIL

Figure 1: Comparison of A record query errors. The
MassDNS specific MAXRETRIES status code encompasses
SERVFAIL and REFUSED errors.

Resolved Domain Name Comparison. The domain
names that both tools resolved successfully were mostly
similar. For both domain lists, the similarity percentage
when querying A records amounted to about 99.76%.

However, when analyzing the domain names each tool
resolved exclusively, some noteworthy aspects became
visible. Table 2 depicts the TLDs where ZDNS and Mass-
DNS exhibited the most notable disparities in success-
ful resolutions. The table shows that ZDNS performed
slightly better when resolving .com domain names. The
tool resolved 853 domains which MassDNS could not
successfully query. In fact, ZDNS excelled when resolving
domain names for all TLDs listed in Table 2 except when
querying .ru domains. In this case, MassDNS outper-
formed ZDNS by uniquely resolving an additional 569
domain names.

TABLE 2: Number of TLDs either tool resolved exclu-
sively across all A record queries.

TLD ZDNS MassDNS

.com 853 352

.ru 223 792

.jp 589 153

.net 199 61

.info 130 55

.club 128 39

Total 2622 1929

4.2. Additional Findings

ZDNS paired with CF. Scanning the aforemen-
tioned domain lists (see Section 4.1) with ZDNS in com-
bination with the CF public resolver revealed that ZDNS
performs more effectively with it than with the Unbound
resolver. For instance, the success rate rose from 96.54%
to a near-perfect 99.26% when querying the CF Radar list
for A records. This result underlines that ZDNS is more
performant when paired with Cloudflare [3].

Timeouts in MassDNS. Running the previously pre-
sented scans with MassDNS using its default hashmap
size of 10K revealed an interesting aspect regarding the
times MassDNS experienced timeouts. For example, when
scanning the CF Radar list for A records, MassDNS en-
countered 72 148 timeouts when using 10K concurrent
lookups, which are 61 467 more timeouts than in the scan
presented in Figure 1. In other words, MassDNS encoun-
tered around six times as many timeouts when performing
10K concurrent queries compared to only 1000 parallel
lookups. A similar outcome was observed when scanning
the CrUX list.

This behavior implies that MassDNS overwhelms
name servers when querying with its default concurrency,
which leads to timeouts that stem from rate limits. This
notably adversely affects MassDNS’ success rate in ev-
ery scan. For instance, when scanning the CF Radar
for A records, the success rate decreased from 96.51%
to 90.66%. According to Durumeric et al., MassDNS’
success rate drops even further to about 65% when using
45K concurrent lookups [3].

5. Conclusion and Outlook

ZDNS and MassDNS are both capable tools for pure
large-scale domain name resolution.

ZDNS is highly preferable when reliability and exten-
sibility are the priority. Its main advantage is that it offers
a well-rounded, feature-rich package. Different properties,
such as support for numerous record types, advanced DNS
lookup modules, and a built-in resolver for, e.g., analyzing
lookup chains, make it a versatile instrument suitable for
intricate DNS analysis.

MassDNS is a more fitting choice if runtime takes
priority over reliability. Its exceptionally high default
concurrency rate renders it highly suitable for fast bulk
queries. However, MassDNS’ extensive parallelism comes
at the expense of reduced reliability as the timeout rate
increases. Nevertheless, MassDNS offers a variety of use
cases, especially in the fields of reconnaissance scanning,

Seminar IITM WS 23 56 doi: 10.2313/NET-2024-04-1_10

penetration testing, and Reverse DNS. The Python scripts
that MassDNS features are highly beneficial for applica-
tions in these areas.

Both tools plan to implement new features and combat
their shortcomings in the future. While ZDNS plans to
extend its functionality by adding support for DNS over
HTTPS and DNS over TLS [3], MassDNS aims to imple-
ment more adaptable concurrency mechanisms to prevent
overwhelming resolvers, as well as more reconnaissance
features, e.g., wildcard record detection [5]. These im-
provements will make both tools even more suitable for
their respective use cases.

References

[1] DNIB, “The domain name industry brief quarterly report,” https://
dnib.com/articles/the-domain-name-industry-brief-q3-2023, Tech.
Rep., 2023, [Online; accessed 1-March-2024].

[2] R. van Rijswijk-Deij, M. Jonker, A. Sperotto, and A. Pras, “A
High-Performance, Scalable Infrastructure for Large-Scale Active
DNS Measurements,” IEEE Journal on Selected Areas in Commu-
nications, vol. 34, no. 6, pp. 1877–1888, 2016.

[3] L. Izhikevich, G. Akiwate, B. Berger, S. Drakontaidis,
A. Ascheman, P. Pearce, D. Adrian, and Z. Durumeric,
“ZDNS: A Fast DNS Toolkit for Internet Measurement,” in
Proceedings of the 22nd ACM Internet Measurement Conference,
ser. IMC ’22. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 33–43. [Online]. Available:
https://doi.org/10.1145/3517745.3561434

[4] The ZMap Team, “The ZMap Project,” https://zmap.io/, 2024,
[Online; accessed 1-March-2024].

[5] B. Blechschmidt and Q. Scheitle, MassDNS, https://github.com/
blechschmidt/massdns, [Online; accessed 1-March-2024].

[6] S. Meng, L. Liu, and V. Soundararajan, “Tide: Achieving
Self-Scaling in Virtualized Datacenter Management Middleware,”
in Proceedings of the 11th International Middleware Conference
Industrial Track, ser. Middleware Industrial Track ’10. New York,
NY, USA: Association for Computing Machinery, 2010, pp. 17–22.
[Online]. Available: https://doi.org/10.1145/1891719.1891722

[7] OpenINTEL, “Openintel,” https://openintel.nl/, 2024, [Online; ac-
cessed 1-March-2024].

[8] SIDN Labs, “About SIDN Labs,” https://www.sidnlabs.nl/en/
about-sidnlabs, 2024, [Online; accessed 1-March-2024].

[9] SURF, “About SURF,” https://www.surf.nl/en/about, 2024, [On-
line; accessed 1-March-2024].

[10] NLnet Labs, “About,” https://nlnetlabs.nl/about/, 2024, [Online;
accessed 1-March-2024].

[11] R. Sommese, M. Jonker, J. van der Ham, and G. C. M. Moura,
“Assessing e-Government DNS Resilience,” in 2022 18th Interna-
tional Conference on Network and Service Management (CNSM),
2022, pp. 118–126.

[12] R. Sommese, G. C. M. Moura, M. Jonker, R. van Rijswijk-Deij,
A. Dainotti, K. C. Claffy, and A. Sperotto, “When Parents and
Children Disagree: Diving into DNS Delegation Inconsistency,” in
Passive and Active Measurement, A. Sperotto, A. Dainotti, and
B. Stiller, Eds. Cham: Springer International Publishing, 2020,
pp. 175–189.

[13] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A.
Halderman, “A Search Engine Backed by Internet-Wide Scanning,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY,
USA: Association for Computing Machinery, 2015, pp. 542–553.
[Online]. Available: https://doi.org/10.1145/2810103.2813703

[14] J. Zirngibl, P. Sattler, and G. Carle, “A First Look at SVCB
and HTTPS DNS Resource Records in the Wild,” in 2023 IEEE
European Symposium on Security and Privacy Workshops, Jul.
2023.

[15] L. Degani, F. Bergadano, S. Mirheidari, F. Martinelli, and
B. Crispo, “Generative adversarial networks for subdomain enu-
meration,” 04 2022, pp. 1636–1645.

[16] J. Mao, M. Rabinovich, and K. Schomp, “Assessing Support
for DNS-over-TCP in the Wild,” in Passive and Active
Measurement: 23rd International Conference, PAM 2022, Virtual
Event, March 28-30, 2022, Proceedings. Berlin, Heidelberg:
Springer-Verlag, 2022, pp. 487–517. [Online]. Available: https:
//doi.org/10.1007/978-3-030-98785-5_22

[17] Internet Systems Consortium, Inc., dig - Linux man page, https:
//linux.die.net/man/1/dig, [Online; accessed 1-March-2024].

[18] A. Cherenson, nslookup - Linux man page, https://linux.die.net/
man/1/nslookup, [Online; accessed 1-March-2024].

[19] NLnetLabs, Unbound, https://github.com/NLnetLabs/unbound,
[Online; accessed 1-March-2024].

[20] Cloudflare, “What is 1.1.1.1?” https://www.cloudflare.com/
learning/dns/what-is-1.1.1.1/, 2024, [Online; accessed 1-March-
2024].

[21] Z. Durumeric, P. Pearce, D. Adrian, S. Kalscheuer, and B. Van-
derSloot, ZDNS, https://github.com/zmap/zdns, [Online; accessed
1-March-2024].

[22] B. Blechschmidt and Q. Scheitle, Alternative (more granular)
approach to a DNS library (fork), https://github.com/zmap/dns,
[Online; accessed 1-March-2024].

[23] M. Gieben, Alternative (more granular) approach to a DNS library,
https://github.com/miekg/dns, [Online; accessed 1-March-2024].

[24] Cloudflare, “What is reverse DNS?” https://www.cloudflare.com/
learning/dns/glossary/reverse-dns/, 2024, [Online; accessed 1-
March-2024].

[25] The Rook, subdomain-bruteforcer (SubBrute), https://github.com/
TheRook/subbrute, [Online; accessed 1-March-2024].

[26] R. Stradling, “crt.sh Certificate Search,” https://crt.sh/, [Online;
accessed 1-March-2024].

[27] O. Farnan, J. Wright, and A. Darer, “Analysing Censorship Cir-
cumvention with VPNs Via DNS Cache Snooping,” in 2019 IEEE
Security and Privacy Workshops (SPW), 2019, pp. 205–211.

[28] T. Hoeger, C. Dew, F. Pauls, and J. Wilson, NDJSON - Newline
delimited JSON, https://github.com/ndjson/ndjson-spec, [Online;
accessed 1-March-2024].

[29] epoll - Linux man page, https://linux.die.net/man/7/epoll, [Online;
accessed 1-March-2024].

[30] Cloudflare Radar, “Top 1000000 Domains,” https://radar.cloudflare.
com/domains, 2023, [Online; accessed 30-November-2023].

[31] Google, “Overview of CrUX,” https://developer.chrome.com/docs/
crux/, 2023, [Online; accessed 30-November-2023].

Seminar IITM WS 23 57 doi: 10.2313/NET-2024-04-1_10

Seminar IITM WS 23 58

Survey on Recent Applications of Extreme Value Theory in Networking

Jana Nina Friedrich, Max Helm∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: jana.friedrich@tum.de, helm@net.in.tum.de

Abstract—The statistical model Extreme Value Theory (EVT)
predicts extreme events, e.g., extreme latencies in network-
ing. This paper summarizes recent applications of EVT in
networking from 2022 to 2023 to provide an overview of the
current state of the field. The selected nine papers cover the
application areas of Flow-Level Tail Latency, Ultra-Reliable
Low Latency Communication, Dynamic Service Chaining,
Mobile Edge Computing and Root Cause Location. EVT is
a powerful method to improve various services, especially for
those who need ultra-reliability. However, EVT has limita-
tions. The biggest ones are that the quality of EVT depends
on the data volume used, the confidence level employed in
the distribution fitting, and the approach used for return
level calculation.

Index Terms—extreme value theory, recent applications in
networking, literature review, survey

1. Introduction

Extreme Value Theory (EVT) is a statistical method
typically used to predict extreme events and model the
data’s tail behavior. Its application areas are wide-ranging,
from natural catastrophes to engineering. Recent appli-
cations, especially in networking, are of interest due to
their considerable potential for utilization. Therefore, this
paper summarizes the most relevant papers from 2022 to
2023. In order to estimate which works are relevant, the
citation and viewing numbers, as well as the standing
of the publisher, were taken into account. Papers that
do not actively incorporate EVT in their methodology,
such as those employing it merely for validating their
proposed systems (e.g., Chaccour et al. [1]) or relying
solely on an EVT-based model (e.g., Pan et al. [2]), are
excluded from consideration. This paper first introduces
EVT to establish a foundational understanding and then
presents the summaries of the selected papers. The papers
cover the application areas of Flow-Level Tail Latency
(Chapter 3.1.), Ultra-Reliable Low Latency Communica-
tion (Chapter 3.2.), Dynamic Service Chaining (Chapter
3.3.), Mobile Edge Computing (Chapter 3.4.), and Root
Cause Location (Chapter 3.5.). Some application areas
summarize more than one paper. In the end, the paper
concludes with its own take on the field.

2. Understanding Extreme Value Theory

As described by Coles in [3], EVT has grown into an
essential statistical model for applied sciences over the last

few years. EVT models the tail distribution of empirically
collected data and can even be used to predict future
extreme events. The characteristic feature of extreme value
analysis aims to quantify the stochastic behavior of a pro-
cess at extremely large or small levels. The extreme value
analysis typically requires an estimate of the probability of
extreme events that surpass the already observed events.
The following subsections present two commonly used
distribution approaches of EVT.

2.1. Generalized Extreme Value Distribution

The Generalized Extreme Value (GEV) distribution
combines the distribution families of Gumbel, Fréchet and
Weibull. Using the combination is more effective than
computing which distribution fits the dataset the best. The
combined distribution is shown in Equation (1). [3]

G(z) = exp

{
−
[
1 + ϵ

(
z − µ

σ

)−1
ϵ

]}
(1)

Equation (1) has three parameters. µ describes the loca-
tion, σ the scale and ϵ the tail. By analyzing ϵ through in-
ference, the data autonomously identifies the most suitable
tail behavior, eliminating the need for subjective a priori
judgments regarding the adoption of a specific extreme
value family. Additionally, the uncertainty in the inferred
value of ϵ quantifies the lack of certainty about which of
the original three distribution families is most appropriate
for a given dataset. GEV is used to model the distribution
of block maxima. It separates the data into blocks of
the same length and fits the GEV to the resulting set of
block maxima. The choice of block size becomes critical
when applying this model to any dataset. This decision
involves balancing bias and variance. Smaller blocks may
lead to poor model approximation, while larger blocks
increase estimation variance. There are different methods
to estimate the parameters of GEV. The most common is
likelihood-based. However, by employing the likelihood-
based method, a challenge arises around the regularity
condition. This condition is essential for ensuring the
validity of typical asymptotic properties linked to the
maximum likelihood estimator. This challenge emerges
from the GEV model because the endpoints of the distri-
bution are functions of the parameter values. In the next
subsection, another EVT approach solves this problem. [3]

2.2. Generalized Pareto Distribution

Focusing solely on modeling block maxima is an inef-
ficient approach to extreme value analysis when additional

Seminar IITM WS 23 59 doi: 10.2313/NET-2024-04-1_11

data on extremes is accessible. [3]
As described by Haan et al. [4], the Generalized Pareto

Distribution (GPD) uses the Peaks over Threshold (PoT)
approach instead. PoT categorizes all data points surpass-
ing a chosen threshold as part of the tail. Equation (2)
and (3) describe the GPD approach.

H(z) = 1−
(
1 +

ϵz

x

)−1
ϵ

(2)

x = σ + ϵ (y − µ) (3)

GPD has the same three parameters as GEV. y is the
selected threshold. Altering the block size, even if it
remains large, would impact the GEV parameters but
not GPD. ϵ remains constant to block size changes, and
the computation of x in Eq. (3) also remains unaffected.
Variations in µ and σ are self-compensating. The GPD
distribution, once fitted, has various applications. One
possibility is to compute the return level corresponding
to a given return period. This calculated value represents
the extreme event. On average, an extreme event occurs
once during that period. [3]

3. Recent Applications in Networking

The following subsections summarize nine different
papers. Each summary consists of, when deemed nec-
essary, a brief introduction to the topic, followed by an
exposition of the proposed contributions of the discussed
paper. Then, this paper explains the methodology used to
make these contributions and presents the research results.
All nine papers apply the EVT as shown in Figure 1.
The papers first collect and filter data and then assess
whether the collected data is suitable for the application
of the EVT. Subsequent subsections discuss the criteria
for applying the EVT. The papers gather additional data
if the criteria are not met. On the other hand, if they are
satisfied, the parameters of the EVT (such as the threshold
value for the GPD approach) are calculated. Finally, the
papers validate and apply their EVT model.

3.1. Flow-Level Tail Latency

This subsection summarizes the paper of
Helm et al. [5].

Requirements at the end-to-end latency can be used
in service-level agreements for communication networks
and can, therefore, influence network planning and flow
admission. These latencies can be measured and used
as input for models, like EVT, to predict extreme la-
tency occurings. The paper uses the PoT approach for
100 networks with random topologies, flow specifics and
configurations to show that EVT can be applied to large
datasets. The authors use 14 billion latency and jitter
values from the measurements of Wiedner et al. [6].
Then, the EVT model is derived from the first 5 % of
the data and validated on the remaining 95 %. Flow-
level models outperform network-level models for high
percentiles, suggesting that EVT models are more suitable
at the flow-level when focusing on high percentiles of the
tail. In addition, these models have a lower relative error of
percentile values compared to network-level models. This
result indicates their superior suitability despite having

Collect data

Filter data

EVT ap-
plicable?

Calculate EVT
parameter

Model
validated?

Apply model

Yes

No

Yes

No

Figure 1: Overview flow of how to use EVT

less data. The accuracy of predictions ranges from 75 %
to 85 % for twenty- and twofold time horizons. Two times
the time refers to a duration corresponding to two times
of the given horizon. The calculation is similar for twenty
times. The paper forecasts tail latency quantiles at the
flow-level with median absolute percentage errors between
0.7 % to 16.8 %. However, there are limitations to EVT.
It depends on the volume of data, the confidence level of
the distribution fitting, and the return level calculation. In
addition, EVT is only applicable if the data is identically
distributed and stationary. The authors use the Augmented
Dickey-Fuller (ADF) test to ensure stationary. While in
their setup, most flow latencies are stationary, this is not
a general assumption.

3.2. Ultra-Reliable Low Latency Communica-
tions

This subsection summarizes the four papers from
Mehrnia et al. [7]–[10]. These papers build on each other
and use previous proofed results.

Ultra-Reliable Low Latency Communications
(URLLC) is vital for 5th generation communication
networks. An accurate channel modeling is needed
since URLLC has a strict packet error rate and latency
requirements. The paper [7] introduces a wireless
channel modeling methodology based on EVT. The
methodology involves deriving the parameters of the
tail distribution by fitting the GPD to independent and
identically distributed (i.i.d.) samples. To obtain these
samples, the authors use declustering methods, Auto-
Regressive Integrated Moving Average, and Generalized

Seminar IITM WS 23 60 doi: 10.2313/NET-2024-04-1_11

Auto-Regressive Conditional Heteroskedasticity. After
applying EVT, the mean residual life and parameter
stability methods determine the optimum threshold. Next,
the algorithm Minimum Sample Size Determination
specifies the stopping condition to calculate the minimum
required number of samples. Lastly, probability plots such
as Probability/Probability (PP) and Quantile/Quantile
(QQ) validate the channel tail model. The proposed
framework requires significantly fewer samples than the
conventional extrapolation-based approach. In addition, it
fits the empirical data in the lower tail better.

The authors in [8] introduce a framework based on
EVT to compute the optimal transmission rate in Ultra-
Reliable Communication (URC). The authors consider a
URC system that encounters fading, leading to dimin-
ished received power values. The system consists of a
transmitter and receiver, sending packets over an unknown
stationary channel. First, GPD represents the channel. The
received power samples convert through declustering to
i.i.d samples. These samples fit the GPD to the lower tail,
and PP and QQ plots validate the Pareto model. Next,
the optimal transmission rate is estimated. The function
that selects the rate uses Pareto parameters. Finally, an
evaluation of the error probability verifies the selected rate.
The proposed framework outperforms traditional meth-
ods regarding reliability. Traditional methods use average
statistic channel models. Moreover, because of the usage
of the GPD threshold, the number of samples needed to
achieve a certain reliability could be minimized.

In [9], a novel EVT-based framework is proposed
to estimate the optimal transmission rate as well as the
confidence interval on a small number of samples. The
system model consists of one transmitter and one receiver
communicating over a channel. The ADF test checks if
the channel is stationary. If not, all factors that cause
time variation of the GPD parameters are determined and
collected as a sequence. This sequence is split into as
many groups as needed, making each group stationary.
The fixed transmission power is known in advance. First,
the transmitter sends a packet to the receiver over an
unknown channel. Then, the tail distribution is estimated
by applying a modeling methodology based on EVT on
the channel. Therefore, the statistics fit GPD to obtain
power values surpassing the provided threshold. Moreover,
the confidence intervals of wrong conclusions are derived
for various numbers of samples. The intervals correspond
to different probabilities. Lastly, the paper assesses the
transmission rate by using EVT. Thus, the intervals of
the Pareto parameters from different sample sizes are
incorporated to achieve the desired error probability in
URC. The paper validates its proposed framework with
data collected in different sizes in a car engine. The
targeted error probability is even met with limited data
known.

As described in [10], the statistical method Multivari-
ate Extreme Value Theory (MEVT) models the relation of
rare events based on multidimensional limiting relations.
MEVT is a further development of EVT and has additional
functions like modeling dependence structures and joint
distribution of several extreme events. The authors of [10]
base their proposed channel modeling methodology on
MEVT. The channel is for systems using Multiple Input
Multiple Output (MIMO)-URC for efficiently deriving the

lower tail statistic in multiple dimensions. The received
signal powers are the data for these statistics. To validate
the proposed methodology, the paper focuses on the bi-
variante or two-dimensional case. Before MEVT can be
applied, the collected data converts into a sequence of
i.i.d samples. Therefore, the above-introduced modeling
of paper [7] is applied. Next, MEVT fits the GPD to the
tail distribution to find optimal thresholds. Afterward, the
Fréchet transformation is applied to each data sequence.
Then, between the Fréchet sequences, the dependency
factor is estimated. Next, two approaches are employed
to fit Bi-Variate GPD (BGPD) to the joint distribution.
The approaches used are the logistical distribution and the
Poisson point process. Lastly, a mean constraint assess-
ment validates the fitted BGPD model. The methodology
is tested using one transmitter and two receivers in a car
engine and compared to conventional models based on
extrapolation. The proposed method performs significantly
better in accurately modeling multiple dimensions events
in URC.

3.3. Dynamic Service Chaining

This subsection summarizes the paper of
Qin et al. [11].

Physical Machines (PMs) host Virtual Machines
(VMs). VMs run software-based Virtual Network Func-
tions (VNFs), which are enabled by Network Function
Virtualizations (NFVs). The most essential requirement
for service function chaining is guaranteeing ultra-reliable
services. The existing research concentrates on average
inter-failure time and repair downtime to define the reli-
ability of VNFs. Due to uncertain PM failures, this does
not fully capture the stochastic nature of VNF failure.
The paper proposes a Dynamic Service Chaining (DSC)
framework to examine the high-order statistics and prob-
ability of VNF failure time threshold deviation. The GPD
approach of EVT characterizes the threshold deviation
statistics with a low occurrence probability. The Poisson-
Bernstein de la Harpe (PBdH) theorem describes extreme
cases of PM failure time. A two-timescale VNF frame-
work for mapping/remapping handles uncertain PM fail-
ure. The primary remapping framework works at a large
timescale using matching theory. The optimal backup
VNF framework operates at a smaller timescale. The
algorithm used to find this backup effectively reduces
computational complexity and balances switching costs
and reliability. In addition, the backup needs to be selected
beforehand. Simulation of the proposed DSC validates
the PBdH. The randomly generated network topology is
based on 20 nodes and 40 links. Other parameters are
normalized. The numerical results show that using EVT
to characterize extreme events improves service reliability
compared to average-based schemes.

3.4. Mobile Edge Computing

This subsection summarizes first the paper of
Liu et al. [12] and then of Ji et al. [13].

Traditional cloud computing has its resources pooled
centrally. Mobile Edge Computing (MEC) has an ad-
vantage compared to traditional approaches because it

Seminar IITM WS 23 61 doi: 10.2313/NET-2024-04-1_11

provides computing services close to the server. The au-
thors address the challenges of offloading mission-critical
tasks in MEC networks with Non-Orthogonal Multiple
Access (NOMA). The network of the paper consists of
a server and two sensor nodes, which supply the server
with data. The server computes latency-sensitive tasks
and works after the first-come, first-served principle. The
overall error probability is characterized by the derivation
of the Finite Blocklength (FBL) communication reliability
and latency violation error probability through the GPD
approach of EVT. The framework minimizes errors by
jointly allocating the communication phase, the compu-
tation phase, and the user transmits power within strin-
gent delay and energy constraints. The modified Block
Coordinate Descent method addresses the non-convex
problem by optimizing the time duration or proving the
problem by characterizing the joint convexity of FBL
error probability. Numerical simulations confirm the near-
optimal performance of the proposed approach. Moreover,
the paper’s proposed framework outperforms the NOMA
scheme with infinite blocklength solutions and the time-
division multiple access scheme.

The authors in [13] address the issue of energy-
efficient computation offloading in MEC systems on mo-
bile applications with sequential or parallel module depen-
dencies. First, the authors model mobile applications as
Directed Acyclic Graphs. By considering the parent and
children set of each computation module, the execution
dependency gets handled. Then, the GEV approach of
EVT is applied to explicitly address uncertainties and limit
the occurrence probability of extreme events. Afterward,
a newly developed ϵ-bounded algorithm, based on the
column generation technique and with theoretical opti-
mality guarantees, solves the offloading problem energy-
efficiently. ϵ is the tail of the GEV model, and the optimal
offloading policy is when ϵ is 0. Tools like Smart Diag-
noses, tPacketCapture, WiFi SNR and PETrA were used to
measure and record statistics. The result is a computation
scheme outperforming other state-of-the-art schemes, such
as Hermes and JSCO, in experiments conducted on an
Android platform. The proposed scheme consistently has
the lowest energy consumption as long as ϵ is smaller
than 0.05. When this happens, the local device can save
up to 50 % of energy. The cause for this is that JSCO
neglects to account for uncertainties inherent in dynamic
radio channels with queueing delays. In contrast, Hermes
introduces additional energy consumption attributed to
communication overhead resulting from the continuous
probing of the channel.

3.5. Root Cause Location

This subsection summarizes the paper of
Yang et al. [14].

The increasing complexity of online services can lead
to significant losses when abnormalities occur. The root
cause location is vital to guarantee the stable operation
of online services. Therefore, the paper proposes a lo-
cation method based on Prophet and Kernel Density Es-
timation (ProphetKdeRCL). ProphetKdeRCL consists of
two stages. The first stage is the abnormal detection of
performance indicators. This stage introduces the Prophet
Mutation Point Updating (PMPU) algorithm. The Prophet

model fits trend items better, and the timing anomaly
detection gets more accurate through the usage of an
improved version of EVT. PMPU solves the problems of
existing methods since it can detect irregularities in the
lowest range. The second stage locates the root cause of
abnormal indicators and uses two algorithms. One is an
anomaly degree measurement algorithm based on a Kernel
Density Estimation. The second one is a time window-
based causality analysis algorithm. This algorithm ana-
lyzes latency dependency via an intermediate structure
and a time window. The effectiveness of the proposed
algorithm is validated through testing and evaluations of
the public time series, the microservice application system
fault detection, and root cause location datasets.

4. Conclusion

Extreme Value Theory is a robust statistical method
for predicting occurring extreme events and tail behavior
modeling. The focus of this survey paper is on the most
recent applications in networking from 2022 to 2023.
This paper excludes papers that only build on EVT-
based models or EVT for validating the paper’s proposed
methodology. First, this paper establishes an understand-
ing of EVT. Therefore, it explains the distributions of
Generalized Extreme Value and the Generalized Pareto
Distribution in detail. Second, the nine selected papers
are summarized. Each summary consists of the contribu-
tion of the paper, used methodologies, and key findings.
Table 1 gives an overview of all discussed papers. Each
line represents one of the nine papers. The order is the
same as the papers are summarized in this paper. The
Approach column shows that EVT’s GPD approach is
preferred over the GEV approach. All papers validate their
EVT-based approaches and evaluate that their approach
is superior to traditional ones in the discussed scenarios.
They prove that accurate extreme event modeling and
improving reliability predictions are possible. Therefore,
they test their approach through virtual simulations or in
the real world. None of the papers published their data
to replicate their tests, and none have a Reproducibility
Badge from the Association for Computing Machinery.
Nevertheless, EVT has limitations, but only [5] highlights
them. The quality of the EVT depends on factors such
as the data volume, the confidence level employed in
the distribution fitting, and the approach to return level
calculation. Another weakness of EVT is that it can
only be applied if the data is identically distributed and
stationary. The data and used communication channels
have to be either tested for stationary or assumed to
be stationary, which leads to more calculation effort and
complex systems. In conclusion, it can be said that EVT
is a powerful tool to model and predict extreme values
if the right approach is selected, the data is optimally
fitted, and enough meaningful data volume is available.
If not, EVT increases the system complexity and delivers
wrong predictions. EVT is especially useful in the field of
telecommunication since the demand for a method that can
handle computation-intensive and latency-critical tasks is
met.

Seminar IITM WS 23 62 doi: 10.2313/NET-2024-04-1_11

TABLE 1: Overview table of all summarized papers

Paper Approach Validated Tested

Helm et al. [5] GPD Yes Virtual
Mehrnia et al. [7] GPD Yes Real-World
Mehrnia et al. [8] GPD Yes Real-World
Mehrnia et al. [9] GPD Yes Real-World
Mehrnia et al. [10] BGPD Yes Real-World
Qin et al. [11] GPD Yes Virtual
Liu et al. [12] GPD Yes Virtual
Ji et al. [13] GEV Yes Real-World
Yang et al. [14] improved EVT Yes Virtual

References

[1] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, and P. Popovski,
“Can terahertz provide high-rate reliable low-latency communica-
tions for wireless vr?” IEEE Internet of Things Journal, vol. 9,
no. 12, pp. 9712–9729, 2022.

[2] C. Pan, Z. Wang, H. Liao, Z. Zhou, X. Wang, M. Tariq, and S. Al-
Otaibi, “Asynchronous federated deep reinforcement learning-
based urllc-aware computation offloading in space-assisted vehic-
ular networks,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 7, pp. 7377–7389, 2023.

[3] S. Coles, An Introduction to Statistical Modeling of Extreme Values.
Springer London, 2001.

[4] F. Haan, Extreme Value Theory. Springer New York, NY, 2010.

[5] M. Helm, F. Wiedner, and G. Carle, “Flow-level tail latency estima-
tion and verification based on extreme value theory,” in 2022 18th
International Conference on Network and Service Management
(CNSM), 2022, pp. 359–363.

[6] F. Wiedner, M. Helm, S. Gallenmüller, and G. Carle, “Hvnet:
Hardware-assisted virtual networking on a single physical host,”
2022.

[7] N. Mehrnia and S. Coleri, “Wireless channel modeling based on
extreme value theory for ultra-reliable communications,” IEEE
Transactions on Wireless Communications, vol. 21, no. 2, pp.
1064–1076, 2022.

[8] ——, “Extreme value theory based rate selection for ultra-reliable
communications,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 6, pp. 6727–6731, 2022.

[9] ——, “Incorporation of confidence interval into rate selection
based on the extreme value theory for ultra-reliable communi-
cations,” in 2022 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit), 2022, pp.
118–123.

[10] ——, “Multivariate extreme value theory based channel modeling
for ultra-reliable communications,” IEEE Transactions on Wireless
Communications, pp. 1–1, 2023.

[11] S. Qin, M. Liu, and G. Feng, “Dynamic service chaining for ultra-
reliable services in softwarized networks,” IEEE Transactions on
Network and Service Management, vol. 20, no. 3, pp. 3585–3595,
2023.

[12] Z. Liu, Y. Zhu, Y. Hu, P. Sun, and A. Schmeink, “Reliability-
oriented design framework in noma-assisted mobile edge comput-
ing,” IEEE Access, vol. 10, pp. 103 598–103 609, 2022.

[13] T. Ji, C. Luo, L. Yu, Q. Wang, S. Chen, A. Thapa, and P. Li,
“Energy-efficient computation offloading in mobile edge comput-
ing systems with uncertainties,” IEEE Transactions on Wireless
Communications, vol. 21, no. 8, pp. 5717–5729, 2022.

[14] Y. Yang, Y. Sun, Y. Long, J. Mei, and P. Yu, “Root cause location
based on prophet and kernel density estimation,” IEEE Transac-
tions on Network and Service Management, vol. 20, no. 2, pp.
904–917, 2023.

Seminar IITM WS 23 63 doi: 10.2313/NET-2024-04-1_11

Seminar IITM WS 23 64

Network Applications of Trusted Execution Environments

Tim Kruse, Florian Wiedner∗, Marcel Kempf∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: tim.kruse@tum.de, wiedner@net.in.tum.de, kempfm@net.in.tum.de

Abstract—As the interest in security in the networking com-
munity steadily increases, so does the interest in applying
Trusted Execution Environments (TEE). However, despite
the increased usage of TEEs, there is little information on
how they are actually employed. To shed more light on an
important tool for securing networking and its applications,
we will present usages of the technology with a focus on
networking. We found several proposals to utilize TEEs for
networking applications in research, such as TrustedGate-
way, where the entire traffic is routed through the TEE.
There are usages that enhance privacy by encrypting and
decrypting data directly in the TEE. Finally, there are uses
in cloud computing. We find that the usage of TEEs in
networking applications is not that common at this time
but seems to be a topic of active research.

Index Terms—trusted execution environment, cloud comput-
ing, networking

1. Introduction

Security in software products is of increasing impor-
tance, with bad actors aiming to gain access to data.
There are many approaches to fortify different services
and programs running on the network. One of these ap-
proaches is to employ Trusted Execution Environments
(TEE), which aim to separate selected processes from the
other parts of the machine. The processes are isolated
from the system, which ensures that neither their code
and data nor their execution can be compromised. Since
the world is very connected, we want to survey the usage
of TEEs to find how widely and for what purpose they
are used in scientific projects in networking or networked
applications. We will also determine whether there are any
approaches that use TEEs in such a context in the field.
For these approaches, we will show what the impact of
the inclusion of a TEE is, with a focus on networking
aspects, such as the impact on performance, e.g., latency
or bandwidth, that can be expected. In this paper, we
will first give a brief explanation of TEE, which will be
followed by a summary of some interesting and diverse
applications of TEEs in the space of networking and
distributed systems. One interesting approach is to utilize
a TEE to secure a gateway, which is called TrustedGate-
way. In this approach, all packets are passed through the
TEE to applications in the cloud space. Other approaches
use TEEs as a privacy-preserving measure. Since TEEs are
present in most architectures these days, as Intel, AMD,
and ARM have implemented them in hardware, their use
will most likely continue to increase as the formation of

the Confidential Computing Consortium (CCC) seems
to indicate. The three manufacturers, as well as large
companies in the cloud space, such as Microsoft and
Google, are a part of this organization. We will first start
with an outlook on related work in Section 2, which will
give an overview of what TEEs are and also provide some
information on the CCC. This will be followed by Section
3, where we will showcase applications that we found,
such as TrustedGateway, which runs all traffic through a
TEE. We will also take a look at applications that utilize
a TEE to provide privacy. We will give information about
the current usage of TEEs in cloud computing. In Section
4, a summary of the usages we found will be given,
alongside our opinion on which topics warrant further
research interest.

2. Related Work

In this section, we will present key components that
will be relevant to this survey in order to enable the reader
to follow the applications and reasons for their usage.
Furthermore, we provide a starting point to conduct further
research into the field.

2.1. Trusted Execution Environment

A TEE is a tamper-resistant software environment that
is part of the processor. It aims to provide trust that a piece
of code is executed as it should. According to Sabt et al.
[1], it relies on a chain of trust that is established during
the boot process in order to ensure that the environment
can establish the authenticity and confidentiality of the
code executed within it. Furthermore, the TEE provides
integrity protection and an attestation mechanism to pro-
vide proof for the execution. Both the TEE and the rich
environment, which houses the operating system, run on
a separation kernel to isolate them from each other. To
establish the TEE, Sabt et al. [1] propose the following
five key building blocks, as shown in Figure 1:

• Secure Boot Ensures that if code is modified, it
is detected and the chain of trust is seen as bro-
ken, provides a Trusted Computing Base (TCB),
which encompasses all security-critical hardware
and software of a system

• Secure Scheduling Provides Scheduling to ensure
that the rich environment is responsive

• Inter-Environment Communication Exchanges
data between the rich environment and the TEE

Seminar IITM WS 23 65 doi: 10.2313/NET-2024-04-1_12

 Root of Trust (TCB)

Trusted Execution Environment

Boot

I/O Storage

Inter-Environment
Communication

Applications

Rich Environment

Inter-Environment
Communication

Applications

Separation Kernel Scheduling

Figure 1: Building Blocks of a TEE, adapted from [1]

• Secure Storage Utilizes authenticated encryption,
can only be used by the TEE

• Trusted I/O Path Provides trust for the peripher-
als to ensure that their input is not changed

There are many different TEEs available at this time,
but the most important ones are Intel SGX [2], and its
extension Intel TDX [3], AMD’s SEV [4], and ARM’s
TrustZone [5]. The first two are mostly found in devices
such as servers and PCs, while the ARM implementation
is found in mobile phones and commodity gateways,
among others [6]. These products are in continuous devel-
opment as attack vectors are found over time. This led to
the extension of Intel SGX with Intel TDX. The products
are dependent on specific hardware, which leads to issues
with the portability of code, as the interfaces differ be-
tween vendors. This resulted in efforts to standardize these
interfaces [7], though different approaches, such as Open-
TEE [8], which offers a virtual TEE to develop code and
compile it for different TEEs, were also developed. TEEs
aim to shield from all software and hardware attacks,
but there are some attack vectors that exist despite these
efforts, such as side-channel attacks, as shown by Wang
et al. [9]. Despite that, the number of applications for
TEEs seems to be ever-increasing, as research by Geppert
et al. [10] shows. They tried to ascertain use cases and
challenges for the use of TEEs, with a focus on cloud
computing use cases.

2.2. Confidential Computing

In 2019, the Confidential Computing Consortium was
created to advance the security of user data in the cloud
[11], to describe different means to ensure the security
and privacy of programs and data by utilizing TEE, as
outlined in their report [12]. One of their aims is to provide
secure and private ways to allow multiple physical nodes
to compute tasks, as is common in the cloud space, for
which they use TEEs to provide confidentiality as well as
integrity. The consortium consists of large companies in
the space. Key among them are the big hardware vendors
Intel, AMD, and ARM, together with cloud operators such
as Microsoft and Google [13]. They have outlined multiple
use cases in their paper [12], which they want to employ
to improve the security and privacy of "data in use" [12].

They aim to utilize the advantages of TEEs not only for
normal cloud operations but also to facilitate the increased
use of multi-party computation. This is aimed at data that
can not be given to another party due to privacy concerns.
In this setup, computation can still be done efficiently
without compromising the data’s security and privacy.

3. Applications of TEE in Networking

In the following section, we will give an overview of
some of the uses of TEEs in a networking context.

3.1. TrustedGateway

One application by Schwarz [6] aims to increase the
security of gateways. They deem the security of com-
modity gateways under threat, since most gateways have
an increasing number of additional, less secure services
running that offer services like FTP or a VPN into the
network guarded by the gateway. Since it is possible to
compromise the gateway via these additional services,
these attack vectors could be used to compromise the
core tasks of the gateway, as described in their paper.
As a solution to this problem, they move all network
traffic through a TEE. To achieve their goal, they im-
plemented the minimum needed for securely networking
traffic through the ARM TrustZone TEE. In order to keep
performance as good as possible and limit the amount of
TCB required, they only implemented switching, routing,
and the firewall into the TEE.

3.1.1. Design of TrustedGateway. Schwarz [6] proposes
two parts to realize their goal. The first is a networking
utility called NetTrug, which performs the networking
tasks. The second is called ConfigService, which is used
to configure NetTrug. Since we are primarily interested
in networking and not secure policy configuration, we
will focus on the NetTrug utility. The entire project is
implemented using Open-TEE (OP-TEE). It is com-
posed of two major parts, a partial networking driver
we trust and its untrusted counterpart running in the rich
environment. The second part is the I/O workers, which
remove the need for context switches by handling network
interrupts. NetTrug is the only application of the system
that has direct access to the network interface cards (NIC),
which are then considered trusted interfaces. There can
be untrusted interfaces, but these will still have to run
through NetTrug. The traffic is filtered by a stateful L3/L4
firewall, in their case NPF [14], but the utility itself has no
complete protocol stack. To make the filtering transparent
for the applications running in the rich environment, a
virtual network interface card (VNIC), which is based on
virtio-net and virtio-mmio, with input and output queues,
is used to connect NetTrug to the rich environment. To
prevent spoofing from both a system or outside attacker,
the following mechanism is in place: The IP addresses
for all NICs are static. Whenever a packet is sent or
received, the MAC address of the NIC is used. This limits
inbound traffic as well, as only traffic sent to one of the IP
addresses of the TrustedGateway is accepted. The network
stack deployed in the TEE is minimal. It offers Address
Resolution Protocol (ARP) resolution for itself and also
checks the traffic for ARP spoofing attacks originating

Seminar IITM WS 23 66 doi: 10.2313/NET-2024-04-1_12

from both the rich environment and an outside attacker.
It also replaces the MAC for the VNIC, which it swaps
into the destination spot when forwarding the traffic. Since
NetTrug does not offer an IP or UDP stack, to keep the
TCB small, it also does not offer DHCP or DNS services,
and the NIC’s IP addresses are statically assigned. The
security of the configuration of NetTrug must also be en-
sured, as otherwise, the entire effort would be for naught.
This is done by the second part of the TrustedGateway,
the ConfigService. It is an OP-TEE application, which
is binary-signed, integrity-checked, and protected against
version rollbacks. In order to protect it against attackers, it
only allows trusted devices to configure it, which is done
by the HTTPS client in the TEE. This client only performs
the TLS portion, while the TCP portion is performed in the
rich environment. It also utilizes custom request headers
to avoid cross-site request forgery attacks. There is a
master certificate that is uploaded at a physically attached
interface when first configuring the service, and the service
itself creates one when it is first started. The master admin
is the only entity that can add or remove further admin
certificates. Within this utility, it is possible to define rules
for the firewall or assign different IP addresses for the
NICs.

3.1.2. Performance of TrustedGateway. Schwarz poses
in their paper [6] that due to TrustedGateway extracting
only the strictly necessary services into the trusted envi-
ronment, the TCB required is reduced compared to a full
stack in an operating system, as it offers less functionality.
This, in turn, reduces the likelihood of vulnerabilities.
Furthermore, the performance impact of the setup on a
TCP connection was measured. To have a comparable
baseline setup for experimentation, they disabled NIC
offloading, as it is not implemented in TrustedGateway.
They set up three different experiments using iPerf3 [15],
with the first two running a receiver (1) and a sender
(2) in the gateway’s rich environment, respectively. The
third experiment was set up such that the gateway had to
forward the traffic to a host outside the network connected
to the gateway or receive traffic through the gateway.
The key performance metrics they observed were the
network throughput, the network latency, and the over-
head of the firewall inside the TEE. In experiment (1),
they noticed that the throughput was roughly 90% of the
normal throughput with 385 Mbit/s, with experiment (3)
delivering roughly the same results. In experiment (2),
in some cases, higher throughput than the baseline of
369 Mbit/s could be observed. In experiment (3), the
performance with the sender inside the network was at
around 93% of the baseline, which equates to 236 Mbit/s,
and when receiving, reached between 101.9% - 103.5%
of the baseline with 221 Mbit/s. The firewall overhead
was also observed in the same experiment setup and was
in the range of 0.5% to 1%, though the baseline value
is not mentioned, besides the result being called small.
The author attributes it to NPF’s static code. Another very
important metric was latency overhead, as it is critical for
low-latency networked applications, such as phone calls.
To test the latency in a user-like manner, they loaded
different websites from the Tranco List [16], which is
a list of websites that should be used in research, as
they are aimed to be hardened against manipulation. The

latency overhead was around 3.4% on average, peaking at
4.95%, though no baseline latency is given. The latency
is attributed to the TrustedGateway workers having to be
woken up, which the author tried to avoid by employing
an idle grace period. To evaluate low latency performance,
they sent ping packets from a host inside the network to
an outside host via the gateway. In this case, the aver-
age overhead was even lower, with around 2.7%, which
equates to 0.37ms of added latency when utilizing the
TrustedGateway compared to the stock setup. The config
service is also responsive despite the fact that it runs in
both the rich and trusted execution environment, with a
load time of around 1-2 seconds. Since the TCB is rather
small, with around 110k lines of code (LOC), rather than
the 4523k LOC included in the router’s default operating
system, including both the OP-TEE and its cryptography
library, the memory it needs is fairly small, with 32 MB
of which 20 MB are for trusted user apps, which could
offer other functionalities. This small code base should
increase security, as larger code bases are more susceptible
to issues simply due to their size. Overall, the usage of
a TEE for this purpose seems sensible, especially given
the fact that dedicated gateways are expensive, and this
allows for secure operation of the main purpose, namely
forwarding and protecting the network behind it.

3.2. TEE for Privacy

Since TEEs can provide confidentiality for the data
that they use as well as prove the integrity of their
computation, they are very useful for maintaining privacy.
Multiple proposals in the networking space, therefore,
utilize TEEs to provide privacy. We are going to focus on
two specific applications that show the breadth that TEEs
can be used for. In the first section, we are going to present
a TEE utilized by Risdianto et al. [17] to deploy traffic
policies across organizations. The second section focuses
on the use to provide secure communication between
Android devices which was proposed by Wang et al. [18].

3.2.1. TEE-based Collaborative Traffic Policy. Since
traffic between a company’s different sites tends to be
forwarded via the same routers and firewalls, there is a
possibility for policies to erroneously direct traffic via a
public link rather than a preferred private link. In order to
alleviate this problem and also allow different companies
to collaborate in a manner that does not require them to
exchange their policies, Risdianto et al. [17] propose the
use of a TEE-based approach. They aim to use it for pro-
grammable network switches, as are in use at many larger
commercial operations. They propose a way to compile
their policies such that the result can be combined with an
organization’s own rules. Both parties need to input their
data into the enclave, which refers to SGX’s per-program
TEE space, and then the data can be exchanged via an
SSL connection. Each connection is only usable once and
unidirectional, meaning that party A’s enclave transfers
its policy to B’s enclave, and B’s transfers it to A’s. Both
sides can then compile their policies into rules. During
this phase, there are also two steps to check for overlaps
between the rules. The first part is the inter-policy check,
which checks for exact matches between the rules. The
second portion is an intra-policy check, which employs

Seminar IITM WS 23 67 doi: 10.2313/NET-2024-04-1_12

a binary trie to find overlapping addresses and discards
addresses such as 0.0.0.0/0 as they can lead to leaks. The
rules are then compiled such that they can be installed on
a P4 switch, which is a software-defined network device
that can be programmed to perform on all layers of the
network stack using the language P4 [19].
The use of a TEE in this case is very interesting as
it allows for secure multi-party computation, enabling a
shared configuration without exposing your own policies
to a less trusted party. According to Risdianto et al. [17], it
does not have an impact on the performance of the routers
and firewalls, as this process only aims at the compilation
of rules rather than the actual operation. It also requires the
use of P4 routers. Furthermore, it makes use of the remote
attestation mechanism of SGX, as the policy compilation
is done in the TEE, which can be used to prove that
the same configuration was used by both parties. This
has the major advantage of making it simpler to create
a communication link between two organizations. It is,
however, important to add that several parts of SGX have
been proven to be vulnerable to attacks, even the remote
attestation, as summarized by Fei et al. [20].

3.2.2. TEE-Based Communication on Android. In the
second approach, Wang et al. [18] propose means to have a
secure communication channel between Android devices,
for which they leverage ARM’s TEE called Trustzone.
In order to secure communication between parties, each
device uses the Elliptic-Curve Diffie-Hellman (ECDH)
key agreement to create keys, which are stored inside the
TEEs and never leave them, to ensure that they can not
be exposed. The system is separated into two parts inside
the TEE, namely the key sender and the key receiver.
The key sender facilitates the public key generation and
the generation of the digital signature that is used to
provide integrity proof for the session key negotiation
messages. The key receiver is responsible for the public
key authentication, the session key generation, and key
storage. Both entities run in OP-TEE OS and are involved
in sending and receiving operations. Whenever a user
wants to send something to another party, they first type
the data in the rich environment, then send the data into the
TEE to encrypt it using the appropriate keying material,
which was negotiated before. Then, the encrypted message
is sent to the other party, which can only decrypt the data
in the TEE.
It is important to note that in their paper Wang et al.
[18] did not actually implement the networked portion.
Therefore, their performance analysis is not necessarily
correct, but they did analyze the amount of time that their
additional measures took and estimated the networking
portion. The ECDH key agreement took around 0.563s,
from which they assumed the transmission to take place
with 128KB/s, which results in a total transmission time
of 0.059s. However, this does not need to take place each
time two parties want to communicate, as the keys can be
kept for a longer time frame. Their method of handling
encryption with a TEE also has an impact on performance
compared to the standard Android Keystore technology
[21], but with an impact of around 11%, it should be man-
ageable as the agreement does not need to be performed
each time the two parties communicate. Wang et al. [18]
pose that the advantage of this approach is that there is

no need for a trusted third party while still allowing two
parties to ensure the integrity and confidentiality of their
communication. The TEE also decreases the risk of the
key being stolen, which can be a problem in Keystore, as
it stores the keys in a file. Overall, the performance of an
application is worse if a TEE is employed, as it requires
additional communication within a system, but it provides
more security.

3.3. Usage of TEE in the Cloud

Another interesting use of a TEE is one that seems
at the center of the CCC: The usage of TEEs in cloud
applications. Since "the cloud" refers to a large distributed
system that handles computation to offload tasks from
a local device, it is important that they can maintain
the confidentiality of their data as well as authenticate
that they processed it correctly. The three largest cloud
providers, AWS [22], Azure [23], and Google Cloud [24],
all offer services that give you access to a TEE. For both
Microsoft and Google, who are part of the CCC, this
is offered under confidential computing, with Microsoft
offering customers access to VMs with Intel SGX and
AMD SEV. However, the access to the TDX extension
is limited at this point. Google, on the other hand, only
offers SEV [25]. Both, however, also offer other types
of confidential computing, which offer different pieces to
ensure secure operation. Amazon offers its own service
that is built on top of Intel and AMD processors, as well
as its own architecture, Graviton. Intel TDX itself is also
built on top of SGX but is meant to offer capabilities that
enable cloud computation. Cheng et al. [26] have offered
an overview of the TDX technology. Intel TDX is built
for cloud computation, as it runs on top of Intel VT, their
virtualization technology. In the work by Geppert et al.
[10], they offer multiple use cases for TEEs in the cloud,
such as the ability to move data from on-site into the cloud
while maintaining protection. Another case is multi-party
computation, where the parties need to be able to rely
on each other to have computed correctly, which can be
proven by the attestation mechanisms offered by TEEs.
Overall, the usefulness of TEEs in cloud applications
seems very high, and they must be in use, as the three
biggest cloud providers offer them to their customers.
However, it is important to note that there is little actual
data on the manner in which TEEs are actually used in
cloud applications.

4. Conclusion

In this paper, we aimed to give a broad overview of
how networking and networked applications are realized
in the context of TEEs. We showed different avenues, from
directly running the network traffic through the TEE in the
case of TrustedGateway to using it as a means to enhance
privacy from both a network administration perspective
and to secure messages between two Android devices. We
also gave an overview of the current state of TEEs in the
cloud space, where we showed that they seem to be in
demand as the major operators offer services but could not
find concrete data on the subject. In summary, there is a
lot of interest in the technology, though mostly as a means
to increase privacy, for which TEEs are very well suited.

Seminar IITM WS 23 68 doi: 10.2313/NET-2024-04-1_12

However, there is not a lot of information about how to
create applications that use networking directly in the TEE
without leveraging the rich environment to perform the
Network I/O. Nonetheless, this area is interesting, and the
TrustedGateway approach offers a good idea of how that
could be done. Since it is a highly specific application, it
remains to be seen if the approach can be used in other
cases as well. In future research, it would be interesting
to see if more applications take an approach similar to the
one employed by TrustedGateway and how the usage of
TEEs in cloud applications develops.

References

[1] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted Execution
Environment: What It is, and What It is Not,” in 2015 IEEE
Trustcom/BigDataSE/ISPA. IEEE, 2015.

[2] Intel, “Intel® Software Guard Extensions (Intel®
SGX),” 15/11/2023. [Online]. Available: https:
//www.intel.com/content/www/us/en/architecture-and-technology/
software-guard-extensions.html

[3] ——, “Intel® Trust Domain Extensions (Intel® TDX),”
04/11/2023. [Online]. Available: https://www.intel.com/content/
www/us/en/developer/tools/trust-domain-extensions/overview.html

[4] AMD, “AMD Secure Encrypted Virtualization (SEV),”
15/11/2023. [Online]. Available: https://www.amd.com/en/
developer/sev.html

[5] Arm Ltd., “TrustZone for Cortex-A – Arm®,”
16/11/2023. [Online]. Available: https://www.arm.com/
technologies/trustzone-for-cortex-a

[6] F. Schwarz, “TrustedGateway: TEE-Assisted Routing and Firewall
Enforcement Using ARM TrustZone,” in Proceedings of the 25th
International Symposium on Research in Attacks, Intrusions and
Defenses, ser. RAID ’22. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 56–71.

[7] GlobalPlatform, “Specifications Archive - GlobalPlatform,”
15/11/2023. [Online]. Available: https://globalplatform.wpengine.
com/specs-library/?filter-committee=tee&utm_source=iseepr&
utm_medium=Website&utm_campaign=TEE

[8] B. McGillion, T. Dettenborn, T. Nyman, and N. Asokan, “Open-
TEE – An Open Virtual Trusted Execution Environment,” in 2015
IEEE Trustcom/BigDataSE/ISPA. IEEE, 2015.

[9] J. Wang, Y. Cheng, Q. Li, and Y. Jiang, “Interface-Based
Side Channel Attack Against Intel SGX.” [Online]. Available:
https://arxiv.org/pdf/1811.05378.pdf

[10] T. Geppert, S. Deml, D. Sturzenegger, and N. Ebert, “Trusted exe-
cution environments: Applications and organizational challenges,”
Frontiers in Computer Science, vol. 4, p. 930741, 2022.

[11] Redmondmag, “Confidential Computing Consortium Formed
To Protect Processed Data – Redmondmag.com,” 05/12/2023.
[Online]. Available: https://redmondmag.com/articles/2019/08/21/
confidential-computing-consortium.aspx

[12] Confidential Computing Consortium, “Confidential
computing: Hardware-based trusted execution for
applications and data v1.3,” 11/2022. [Online]. Available:
https://confidentialcomputing.io/wp-content/uploads/sites/10/2023/
03/CCC-A-Technical-Analysis-of-Confidential-Computing-v1.3_
unlocked.pdf

[13] “Members – Confidential Computing Consortium,” 15/11/2023.
[Online]. Available: https://confidentialcomputing.io/about/
members/

[14] GitHub, “rmind/npf: NPF: packet filter with stateful inspection,
NAT, IP sets, etc,” 05/12/2023. [Online]. Available: https:
//github.com/rmind/npf

[15] V. Gueant, “iPerf - The TCP, UDP and SCTP network bandwidth
measurement tool,” 26/02/2024. [Online]. Available: https://iperf.fr

[16] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Kor-
czynski, and W. Joosen, “Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation,” in Proceedings 2019
Network and Distributed System Security Symposium. Internet
Society, 2019.

[17] A. C. Risdianto and E.-C. Chang, “TEE-Based Privacy-Preserve
in Collaborative Traffic Policy Compilation for Programmable
Devices,” in Proceedings of the 2021 ACM International Workshop
on Software Defined Networks & Network Function Virtualization
Security, ser. SDN-NFV Sec’21. New York, NY, USA: Associa-
tion for Computing Machinery, 2021, pp. 19–22.

[18] Y. Wang, W. Gao, X. Hei, I. Mungwarama, and J. Ren, “Inde-
pendent credible: Secure communication architecture of Android
devices based on TrustZone,” in 2020 International Conferences
on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and So-
cial Computing (CPSCom) and IEEE Smart Data (SmartData) and
IEEE Congress on Cybermatics (Cybermatics), 2020, pp. 85–92.

[19] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87–95, 2014.

[20] S. Fei, Z. Yan, W. Ding, and H. Xie, “Security Vulnerabilities of
SGX and Countermeasures,” ACM Computing Surveys, vol. 54,
no. 6, pp. 1–36, 2022.

[21] Google, “Android Enterprise Security Paper 2023,” Google, 2023.

[22] Amazon Web Services, Inc., “Nitro Enclaves,” 01/12/2023. [On-
line]. Available: https://aws.amazon.com/ec2/nitro/nitro-enclaves/

[23] Microsoft, “Azure confidential computing products,” 01/12/2023.
[Online]. Available: https://learn.microsoft.com/en-us/azure/
confidential-computing/overview-azure-products

[24] Google Cloud, “Confidential Computing | Google Cloud,”
01/12/2023. [Online]. Available: https://cloud.google.com/
confidential-computing

[25] ——, “Confidential Computing concepts,” 01/12/2023. [On-
line]. Available: https://cloud.google.com/confidential-computing/
confidential-vm/docs/about-cvm

[26] P.-C. Cheng, W. Ozga, E. Valdez, S. Ahmed, Z. Gu, H. Jamjoom,
H. Franke, and J. Bottomley, “Intel TDX Demystified: A Top-Down
Approach,” 2023.

Seminar IITM WS 23 69 doi: 10.2313/NET-2024-04-1_12

Seminar IITM WS 23 70

LoRaWAN – Current State, Challenges, and Chances

Benjamin Liertz, Jonas Andre, Leander Seidlitz∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: benjamin.liertz@tum.de, advisor@net.in.tum.de

Abstract—
Currently used Internet of Things (IoT) devices mostly

use WLAN, Bluetooth, and Zigbee, limiting the communica-
tion range and battery life. LoRaWAN is a new low-power,
long-range wireless technology that enables battery-powered
IoT devices with a lifetime of more than 10 years. This paper
aims to give a good understanding of what LoRaWAN is and
how it works. Particular attention is paid to performance in
terms of flexibility and power efficiency. The modulation
technology is also analyzed in more detail, which enables
demodulation with a Signal to Noise Ratio (SNR) of less
than -22 dB and a range of up to 15 km. Finally, the biggest
problem of LoRaWAN, the scalability problem, is discussed,
and current research is presented.

Index Terms—internet of things (iot), modulation, medium
access control (mac), aloha, lora, lorawan

1. Introduction

Most of today’s IoT devices use WLAN, Bluetooth,
and Zigbee, limiting the communication range to about
100m [1]. Another problem most devices share is their
high power consumption, making battery-powered devices
last only for a few years at best. Battery-powered long-
range IoT devices would enable many new applications,
especially in smart agriculture, smart cities, and industry
4.0.

Low Power Wide Area Networks (LPWAN) were
introduced to address this issue. LoRaWAN is a rela-
tively new LPWAN and stands for Long Range Wide
Area Network [2]. Compared to short-range transmission
standards, LoRaWAN is designed for wide-area coverage,
low energy consumption, and cost-effective deployment of
End Devices (EDs) [2], [3]. There are also other LPWANs
like SigFox and Weightless. Still, LoRaWAN is often of
greater interest because of its open business model and
ability to constantly optimize time on air (ToA), energy
consumption, and data rate. This reduces the deployment
cost even further and creates a network that can adapt to
the environment, while optimizing the battery life of the
EDs [2], [4].

This paper presents a profound overview of Lo-
RaWAN and its capabilities. Additionally, we will analyze
LoRaWAN’s performance regarding flexibility, energy ef-
ficiency, and scalability.

Section 2 gives an introduction to LoRaWAN and its
network architecture. LoRaWAN’s modulation technique
is explained in Section 3. Section 4 describes the dif-
ferent device classes of LoRaWAN. In Section 5, the

performance of LoRaWAN is analyzed. Finally, section 6
presents the scalability problem of LoRaWAN and current
research.

2. Introduction to LoRaWAN

Two of LoRaWAN’s key characteristics are high power
efficiency and long transmission range. This enables
battery-powered devices to last more than 10 years and a
range of up to 15 km away from the next LoRa Gateway
(GW) [1], [4]. Today, LoRaWAN is used worldwide in
applications like reindeer tracking in Finland, smart fire
alarms and fire detectors, smart bus schedule signs, and a
city-wide network in Canada [5].

2.1. LoRaWAN vs. LoRa

LoRa and LoRaWAN are separate elements of the
LoRa network, each associated with a different layer in
the protocol stack [5].

LoRa, residing at the physical layer, is a wireless
modulation technique that employs a variant of the Chirp
Spread Spectrum modulation, providing the long-range
communication link between the GWs and the EDs [1],
[5].

LoRaWAN builds on top of LoRa. It defines a com-
munication protocol and a system architecture for the
LoRa network, specifying the Medium Access Control
(MAC). As MAC, the ALOHA principle is used so EDs
can initiate uplinks whenever they want, enabling the
EDs to go into sleep mode the rest of the time to save
power. The LoRa Alliance standardizes LoRaWAN, an
open specification in contrast to the proprietary LoRa
radio frequency modulation, which Semtech Corporation
owns [2], [6], [7]. The protocol works in the unlicensed,
worldwide, industrial, scientific, and medical (ISM) bands,
so there is no licensing fee, but the devices have to follow
the ISM rules [5]. The LoRaWAN protocol also manages
routing, access control, and data encryption for EDs [7].

2.2. LoRaWAN Network

A LoRaWAN Network is a star-of-star network con-
sisting of multiple network elements:

• The nodes of the star-of-stars topology are the
LoRaWAN EDs, like temperature sensors or ac-
tuators such as valves. They are often battery-
powered and use the LoRa radio frequency mod-
ulation to communicate with GWs [1], [5].

Seminar IITM WS 23 71 doi: 10.2313/NET-2024-04-1_13

Figure 1: Typical LoRaWAN Network, Source: [8]

• GWs function as LoRa access points for EDs,
forwarding all packages from the EDs to the Net-
work Server (NS) to which they are connected via
WLAN, Ethernet, or Cellular [5].

• At the core of every LoRaWAN network lies the
NS. It is the hub of the star-of-star topology
managing the entire network, from the connection
between the GWs and EDs to the applications [1].

• The application server, lying in the backend, han-
dles all the data generated by the EDs providing
application-level services [1], [5].

• The Join Server manages the Over-the-Air acti-
vation process of adding ED to the LoRaWAN
network [5].

3. LoRa Modulation and Demodulation

LoRa utilizes a patented modulation technique by
Semtech known as Chirp Spread Spectrum. This technique
encodes the data signal onto a chirp signal, a tone with
a linearly increasing or decreasing frequency over time
[1], [3]. The modulation technique spreads the modulated
signal over a wide band beyond the original signal’s
bandwidth, making the signal less sensitive to selective
frequency fluctuations [1], [2]. The modulation technique
allows the demodulation of signals for an SNR even below
-22dB, a link budget of up to 157dB, and a receiver
sensitivity of just -137 dBm [1], [9], [10].

3.1. Modulation

For digital modulation schemes, a finite set of symbols
is required. A flexible parameter of LoRa is the spreading
factor (SF), which can be seen as the chirp rate and will be
analyzed in section 5. LoRa utilizes 2SF different symbols,
with each symbol carrying 2SF bits of information. In
LoRa, a symbol is encoded with a cyclically shifted chirp,
so the modulation technique is also called frequency shift
chirp modulation [11].

The transmitted waveform c(nTs + kT) for a symbol
s(nTs) in LoRa is defined as:

c(nTs + kT) =
√

1
2SF · exp

(
j2π

[
(s(nTs) + k) mod 2SF

]
k
2SF

)

(1)
Here, s(nTs) represents the symbol number and k incre-
ments for each sample both take values in {0,1,...,2SF−1}.
T = 1

BW is the sample duration, and Ts = 2SF · T is the
symbol duration [11]. In the following, s(nTs) = q is
used for the symbol to be transmitted.

The formula shows that q can be seen as the starting
frequency of the waveform. The modulo operation ensures
that when the chirp reaches the end of the bandwidth, it
starts again at the beginning, rising until frequency q is
reached again. So, different starting frequencies represent
different symbols, as seen in Figure 2.

Figure 2: cyclically shifted up-chirp of symbol 96,
Adapted from: [3]

3.2. Demodulation

Here, the challenge is in identifying the symbol that
was transmitted. The idea is to compare the received signal
r(nTs+kT) with the ideal symbols and pick the one with
the highest correlation. Correlation is a mathematical way
of measuring the similarity between two signals and is
defined as the dot product of the two signals, described
with the formula:

2SF−1∑

k=0

r(nTs + kT)

√
1

2SF exp

(
−j2π

(
(q + k) mod 2SF) k

2SF

)

(2)
So, to find the correct symbol for a received LoRa

symbol, 2SF similarity checks have to be performed. Each
similarity check would need 2SF multiplications and 2SF

additions, making it very inefficient, especially for higher
SFs. To overcome this problem, we use a mathematical
trick and add +k−k to the exponential function, allowing
us to separate the +k term:

exp

(
−j2π

(
(q + k) mod 2SF + k − k

) k

2SF

)

=exp

(
−j2π

k2

2SF

)
· exp

(
−j2π

(
(q + k) mod 2SF − k

) k

2SF

)

=exp

(
−j2πk2

1

2SF

)
· exp

(
−j2πqk

1

2SF

)

(3)
In Equation 3 the following observations can be made:

• exp
(
−j2πk2 1

2SF

)
does not depend on q anymore

and is a simple down chirp.
• exp

(
−j2πqk 1

2SF

)
is a pure sinusoidal waveform

where the frequency depends on q.

The correlation can now be rewritten as:
∑2SF−1

k=0 r(nTs + kT) exp
(
−j2π k2

2SF

)√
1
2SF exp

(
−j2πqk 1

2SF

)
(4)

Demodulation of the signal becomes:

1) Multiplying the received signal r with the down
chirp of the base signal, converting the chirp into
a single-frequency tone, representing the trans-
mitted symbol.

2) Performing correlation with the bank of frequen-
cies depending on q, This is functionally the same
as performing the Fast Fourier Transform and
picking the symbol with the highest peak.

Seminar IITM WS 23 72 doi: 10.2313/NET-2024-04-1_13

This method of demodulating the signal is much more
efficient than using the dot product. It’s a key reason why
LoRa is known for its power efficiency. [11], [12]

4. Device Classes

A problem with LPWANs is the conflict between
lower power consumption and network downlink latency
[5]. LoRaWAN addresses this problem by allowing the
EDs to act according to one of the three classes: A, B,
and C [2].

4.1. Class A

This device class includes all LoRaWAN EDs, as the
name implies. So, every ED acts like a Class A device but
can implement additional behavior to become a Class B
or C device. Class A devices prioritize power efficiency
and are, thereby, normally battery-powered.

Following an uplink transmission to the GW, Class
A devices open two short downlink windows (RX1 and
RX2) before entering a low-power sleep mode [1]. While
Class A devices offer good power efficiency, downlink
communications from the server must wait until the next
uplink from the ED, introducing latency [5]. So this Class
is optimal for low-power sensors focused on uplink, which
are by now most of all LoRaWAN EDs and are thereby
well studied [2].

4.2. Class B

Class B devices, also typically battery-powered, begin
as Class A devices and negotiate with the network server
to switch to Class B mode [2]. In addition to the uplink
transmission and downlink windows RX1 and RX2, Class
B devices open extra receive windows called ping slots
at scheduled times without significantly increasing power
consumption [1], [13]. To do so, the EDs and the GW
synchronize their time via beacons broadcasted every 128
seconds from the GW to all EDs in range. This gives
the NS opportunities to initiate a downlink, drastically
reducing the downlink access delay compared to Class A
and providing a perfect solution for actuators or sensors
requiring command interventions [2].

To avoid systematic collisions and problems of over-
hearing messages between Class B EDs, the NS calculates
a ping offset for each ED and every beacon period. It is
a pseudo-random offset added to the start of the first ping
slot in the beacon period, so Class B EDs have their ping
slots at different times [2].

Class B devices themselves provide a trade-off be-
tween low downlink access delay and low packet loss
with lower power consumption. The number of ping slots
opened by the end of each beacon period is called the
ping number and can be chosen from the ED [2]. A low
ping number reduces lost packets and power consumption
due to fewer collisions and more sleep time, perfect for
ED in large LoRa networks prioritizing power efficiency.
A higher ping number enables low access delay while
increasing the power consumption, well-suited for ED
needing lower latency. However, there is a tipping point
for higher ping numbers where the access delay and packet

loss ratio rises with the number of EDs due to more
collisions caused by the increased network load [2].

Other advantages of Class B devices over Class A
devices are that they significantly reduce packet loss of
downlink traffic and can receive firmware over the air way
more efficiently [2], [13].

Despite potential benefits, real-world implementations
of Class B devices remain limited, because there is only
an unmaintained buggy version available, necessitating
further study and development [2].

4.3. Class C

Unlike A and B, Class C devices listen continuously,
sacrificing power efficiency for constant availability. The
device’s receive windows remain open until the subse-
quent uplink transmission, ensuring uninterrupted commu-
nication availability. Therefore, the power consumption is
relatively high, so Class C EDs are by default not battery-
powered [1].

5. Performance

5.1. Time on Air

The ToA is the time it takes to transmit a message
between the ED and the GW and is defined by the SF, the
bandwidth, and the message size. A longer ToA results in
higher power consumption because the ED has to transmit
longer. Additionally, a higher ToA and the duty cycle
limits of 1% in the ISM band result in a longer block
duration, which is the time the ED has to wait until it
can transmit again, which is especially critical for the
GWs [7], [11], [14]. The MAC layer of LoRaWAN using
ALOHA does not play well with a longer ToA because it
increases the probability of collisions and retransmissions,
resulting in a lower Packet Delivery Ratio (PDR) [2]. All
in all, the ToA is a critical factor in the performance of
LoRaWAN and should be as short as possible [7].

5.2. Spreading Factor

One parameter that appears all the time is the SF and,
thereby, has a significant influence on the performance of
LoRa. LoRa defines six orthogonal SFs, enabling simulta-
neous non-conflicting transmission on the same channel.
The SF are defined as SF = {7, 8, 9, 10, 11, 12}, resulting
in 2SF possible symbols [1], [2].

Increasing the SF by one also halves the rate at which
the chirp changes its frequency, resulting in a halved
data rate, as can be seen in Equation 1. A lower chirp
rate additionally results in a higher receiver sensitivity
and is less susceptible to noise and interference [15]. So,
increasing the SF results in a higher receiver sensitivity,
a higher ToA, and a lower data rate. Comparing SF7 and
SF12, SF12 can typically still be demodulated with an
SNR of -22 dB, while SF7 requires an SNR of -7 dB.
However, SF12 has a ToA of 32 times the ToA of SF7
and a typical data rate of 0.3kbit/s compared to 5.5kbit/s of
SF7 [9]. The choice of the SF enables a trade-off between
good range/robustness and short ToA/high throughput [3].

Seminar IITM WS 23 73 doi: 10.2313/NET-2024-04-1_13

5.3. Adaptive Data Rate (ADR)

One problem with LPWANs is the conflict between
lower power consumption and wide range. A long trans-
mission range also requires more energy in LoRaWAN,
either caused by higher transmission power or a higher
SF [7]. LoRaWAN’s solution for this conflict is the ADR
algorithm, which the NS performs. ADR tries for every
ED to determine the proper communication parameters to
enable reliable communication while prioritizing low en-
ergy consumption. This is done by dynamically adjusting
the SF to the lowest SF possible while still maintaining
a stable connection between the GW and the ED. A
lower SF reduces the receiver sensitivity and the ToA, so
transmissions have a lower power consumption and are
less likely to collide [1]. ADR decision is based on the
estimated link margin, calculated by measuring the SNR
over the last few uplinks [16].

Each ED can decide on its own if it wants to use ADR
or can only activate it if it detects transmission problems
or deactivate it if the connection to the GW is stable.
This enables LoRaWAN networks to adapt to changes
in network infrastructure and to varying path loss, which
allows EDs like battery-powered GPS trackers [4].

Current research has shown that LoRaWAN’s imple-
mentation of ADR is not yet perfect. It was proposed
to use a more sophisticated algorithm considering other
objectives like scalability and throughput [17]. In [4],
ADR was optimized to increase power efficiency by up to
25% and the packet success rate by nearly 7%. ADR can
also cause problems even in small LoRaWAN networks
where a few EDs have communication problems. Their SF
and ToA will rise through the ADR algorithm, increasing
communication problems and leading to network degra-
dation, in which, ultimately, everyone uses SF12 [17].
The authors in [17] describe a different SF-management
technique to avoid this problem, increasing the PDR up
to 470%.

5.4. Energy Consumption

The energy consumption of LoRaWAN ED only de-
pends on the ToA and transmission power, while the sleep
current of the microcontroller of the ED can be neglected
with µA at 3.3V in [7]. In [7], it was possible to only
use 2.9mJ for a 23-byte transmission with SF7, band-
width 125kHz, and a transmission power of 3dBm. For
comparison, a standard 16850 Li-Ion battery with 3250
mAh has a capacity of about 43200000 mJ. To achieve the
lowest power consumption, the following actions should
be taken:

• Avoid using Semtech’s PA Boost function, which
increases the transmission power, for savings of
up to 50% [7].

• Reduce the transmitter supply voltage. In [7], this
was possible to lower the voltage from 3.3V to
just 1.9V without reducing the transmission power,
resulting in additional savings of 55%.

• Use newer generation transmitters [7].
• When higher transmission ranges are needed, the

transmission power should be increased before
raising the SF because of the significant negative
impact of the SF on the ToA [7].

• Use smaller payload sizes and limit the amount of
transmissions [1].

This shows that LoRaWAN is very power efficient and
can be used for battery-powered devices with a lifetime
of more than 10 years and is way more efficient than
other standards like WIFI which uses about 90% more
energy [1], [7], [18]. Another advantage of the low power
consumption of LoRaWAN is that this allows to power
the EDs using renewable energy sources, such as solar
energy [18].

6. Scalability Problem

Scalability is a crucial aspect of IoT networks, and
LoRa faces challenges due to its use of the ALOHA
principle [1]. The ALOHA principle is a simple protocol
where the EDs can transmit whenever they want, resulting
in a high probability of collisions and retransmissions.
This is especially a problem for LoRaWAN because of
the long ToA and the duty cycle limits of the ISM band,
resulting in a long block duration for the EDs and GWs
[2].

Studies on the scalability of LoRa networks consis-
tently suggest challenges in scaling, with notable sensi-
tivity to increased network load [1]. This sensitivity man-
ifests in a decrease in the packet delivery ratio (PDR) and
an increase in network load due to retransmissions, pri-
marily caused by collisions [2]. Simulations in [19] have
shown that only 120 users per antenna can cause a PDR
of only 90%. Classical collision avoidance mechanisms
commonly used in wireless networks, such as Listen-
Before-Talk using Channel Activity Detection (CAD) and
closed-loop collision avoidance prove ineffective for LoRa
due to specific characteristics, as discussed in [16].

6.1. Challenges in Existing Solutions

Attempts to address scalability challenges have en-
countered difficulties. Adaptive Data Rate (ADR) exhibits
long convergence times, making handling increases in
network density impractical. Enabling LoRaWAN’s ac-
knowledgment mode heavily increases network load and
decreases the PDR of most nodes [2], [20]. Efforts to adapt
well-known carrier sensing approaches for LoRa networks
face reliability issues, particularly with Semtech’s CAD,
which becomes unreliable at distances less than 400 me-
ters in dense urban environments. Slotted ALOHA or
TDMA-like scheduling, while effective in low-density
scenarios, struggle to scale due to high synchronization
requirements and duty-cycle limitations [21].

6.2. Potential Solutions and Improvements

There are several strategies and improvements to mit-
igate the scalability challenges in LoRa networks:

• Directional antennas and multiple base stations
can be advantageous in reducing communication
interference [3].

• A new acknowledgment mode involving acknowl-
edgment messages only for every N-received mes-
sage and an instant message if a lost packet was

Seminar IITM WS 23 74 doi: 10.2313/NET-2024-04-1_13

detected. This method was able to increase the
PDR but not for all locations [20].

• Peer-to-peer mode, where nodes suffering from
low PDR communicate with neighboring nodes
for data forwarding, can overcome communication
path issues. However, this may increase power
consumption and only works if a neighbor in the
range has a good connection to a GW [20].

• CANL LoRa, an open-loop collision avoidance
mechanism employing a Listen-Before-Talk strat-
egy, outperforms classical carrier sensing ap-
proaches in dense LoRa networks, as demonstrated
in extensive simulations [16].

7. Conclusion

This paper provided insight into the functionality of
LoRaWAN and its performance. LoRaWAN is a powerful
LPWAN and stands out with its modulation technique and
flexibility, which enables long-range communication with
low power consumption, making it especially interesting
for battery-powered EDs. LoRaWAN opens up many new
possibilities for IoT devices, even if nearly only Class
A devices are used today. Class B devices would make
LoRaWAN even more attractive for actuators and partly
solve LoRaWAN’s scalability problem. ADR is a powerful
tool to optimize the energy consumption of LoRaWAN
EDs, but it is not perfect and can also not solve the scala-
bility problem, which is the biggest problem of LoRaWAN
and needs to be solved to enable the full potential of
LoRaWAN.

References

[1] P. S. Cheong, J. Bergs, C. Hawinkel, and J. Famaey,
“Comparison of LoRaWAN classes and their power consumption,”
in 2017 IEEE Symposium on Communications and Vehicular
Technology (SCVT). IEEE, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/8240313/

[2] H. E. Elbsir, M. Kassab, S. Bhiri, and M. H. Bedoui, “Evaluation
of LoRaWAN Class B efficiency for downlink traffic,” in 2020
16th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). IEEE, pp. 105–110.
[Online]. Available: https://ieeexplore.ieee.org/document/9253405/

[3] Z. J. R. Kamoona and M. Ilyas, “Investigating the Performance of
LoRa Communication for Nominal LoRa and Interleaved Chirp
Spreading LoRa,” in 2022 International Conference on Artificial
Intelligence of Things (ICAIoT). IEEE, pp. 1–7. [Online].
Available: https://ieeexplore.ieee.org/document/10121818/

[4] A. Ilarizky, A. Kurniawan, E. P. Subagyo, R. Harwahyu,
and R. F. Sari, “Performance Analysis of Adaptive Data
Rate Scheme at Network-Server Side in LoRaWAN Network,”
in 2021 2nd International Conference on ICT for Rural
Development (IC-ICTRuDev). IEEE, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/9656523/

[5] M. Abid Ali Khan, H. Ma, S. Muhammad Aamir, A. Baris Cekderi,
M. Ahamed, and A. Abdo Ali Alsumeri, “Performance of Slotted
ALOHA for LoRa-ESL Based on Adaptive Backoff and Intra
Slicing,” in 2022 6th International Conference on Communication
and Information Systems (ICCIS). IEEE, pp. 169–173. [Online].
Available: https://ieeexplore.ieee.org/document/9998155/

[6] A. Griva, A. D. Boursianis, S. Wan, P. Sarigiannidis,
G. Karagiannidis, and S. K. Goudos, “Performance Evaluation of
LoRa Networks in an Open Field Cultivation Scenario,” in 2021
10th International Conference on Modern Circuits and Systems
Technologies (MOCAST). IEEE, pp. 1–5. [Online]. Available:
https://ieeexplore.ieee.org/document/9493416/

[7] E. Bäumker, A. Miguel Garcia, and P. Woias, “Minimizing
power consumption of LoRa ® and LoRaWAN for low-
power wireless sensor nodes,” vol. 1407, no. 1, p.
012092. [Online]. Available: https://iopscience.iop.org/article/10.
1088/1742-6596/1407/1/012092

[8] LoRa and LoRaWAN: Technical overview | DEVELOPER
PORTAL. [Online]. Available: https://lora-developers.semtech.
com/documentation/tech-papers-and-guides/lora-and-lorawan/

[9] C. Bouras, V. Kokkinos, and N. Papachristos, “Performance
evaluation of LoraWan physical layer integration on IoT devices,”
in 2018 Global Information Infrastructure and Networking
Symposium (GIIS). IEEE, pp. 1–4. [Online]. Available: https:
//ieeexplore.ieee.org/document/8635715/

[10] Z. Xu, S. Tong, P. Xie, and J. Wang, “From demodulation
to decoding: Toward complete lora phy understanding and
implementation,” ACM Trans. Sen. Netw., vol. 18, no. 4, jan 2023.
[Online]. Available: https://doi.org/10.1145/3546869

[11] L. Vangelista, “Frequency Shift Chirp Modulation: The LoRa
Modulation,” vol. 24, no. 12, pp. 1818–1821. [Online]. Available:
http://ieeexplore.ieee.org/document/8067462/

[12] P. Edward, A. Muhammad, S. Elzeiny, M. Ashour,
T. Elshabrawy, and J. Robert, “Enhancing the Capture
Capabilities of LoRa Receivers,” in 2019 International
Conference on Smart Applications, Communications and
Networking (SmartNets). IEEE, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/9069790/

[13] Y. Shiferaw, A. Arora, and F. Kuipers, “LoRaWAN Class B Mul-
ticast Scalability.”

[14] European Telecommunications Standards Institute (ETSI), “ETSI
EN 300 220-2 V3.2.1: Short Range Devices (SRD) operating
in the frequency range 25 MHz to 1 000 MHz; Part
2: Harmonised Standard for access to radio spectrum for
non specific radio equipment,” ETSI, Tech. Rep., 2018.
[Online]. Available: https://www.etsi.org/deliver/etsi_en/300200_
300299/30022002/03.02.01_60/en_30022002v030201p.pdf

[15] M. El-Aasser, T. Elshabrawy, and M. Ashour, “Joint spreading
factor and coding rate assignment in lorawan networks,” in 2018
IEEE Global Conference on Internet of Things (GCIoT), 2018, pp.
1–7.

[16] G. Gaillard and C. Pham, “CANL LoRa: Collision Avoidance by
Neighbor Listening for Dense LoRa Networks,” in 2023 IEEE
Symposium on Computers and Communications (ISCC). IEEE,
pp. 1293–1298. [Online]. Available: https://ieeexplore.ieee.org/
document/10218282/

[17] L. Casals, C. Gomez, and R. Vidal, “The SF12 Well in LoRaWAN:
Problem and End-Device-Based Solutions,” vol. 21, no. 19, p.
6478. [Online]. Available: https://www.mdpi.com/1424-8220/21/
19/6478

[18] A. Kurtoglu, J. Carletta, and K.-S. Lee, “Energy consumption in
long-range linear wireless sensor networks using LoRaWan and
ZigBee,” in 2017 IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS). IEEE, pp. 1163–1167.
[Online]. Available: http://ieeexplore.ieee.org/document/8053135/

[19] M. C. Bor, U. Roedig, T. Voigt, and J. M. Alonso, “Do lora low-
power wide-area networks scale?” in Proceedings of the 19th ACM
International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, ser. MSWiM ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 59–67.
[Online]. Available: https://doi.org/10.1145/2988287.2989163

[20] S.-Y. Wang and T.-Y. Chen, “Increasing LoRaWAN Application-
Layer Message Delivery Success Rates,” in 2018 IEEE Symposium
on Computers and Communications (ISCC). IEEE, pp. 00 148–
00 153. [Online]. Available: https://ieeexplore.ieee.org/document/
8538457/

[21] N. Kouvelas, R. V. Prasad, N. Yazdani, and D. E. Lucani, “np-
cecada: Enhancing ubiquitous connectivity of lora networks,” in
2021 IEEE 18th International Conference on Mobile Ad Hoc and
Smart Systems (MASS), 2021, pp. 374–382.

Seminar IITM WS 23 75 doi: 10.2313/NET-2024-04-1_13

Seminar IITM WS 23 76

Covert Communication over ICMP

Georgios Merezas, Lars Wüstrich∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: georgios.merezas@tum.de, wuestrich@net.in.tum.de

Abstract—In the ever-expanding landscape of the internet,
robust security measures are critical components of any
modern technology. As our dependence on digital networks
continues to grow, so does the sophistication of malicious ac-
tors seeking to exploit vulnerabilities that arise in all complex
systems. One of the many tools of these malicious actors is
ICMP tunneling, a method used for the establishment of
hidden channels within network environments. These chan-
nels allow hidden and unfiltered communication of infected
machines with potential attackers. The paper explores the
structure of ICMP packets and how it facilitates them to
tunnel TCP connections. Furthermore, it examines some
existing applications of ICMP tunneling, like botnets. Finally,
it proposes some countermeasures to ICMP tunneling.

Index Terms—ICMP tunneling, covert channels, botnets

1. Introduction

In the increasingly interconnected world that we live
in, the internet has become an integral part of our lives.
As everything in our lives becomes digitalized, the interest
of malicious actors in stealing and exploiting digital data
also increases. Command and Control (CnC) techniques
are used to send commands and receive data from in-
fected machines, which allows an attacker to continuously
communicate with them [1]. This can be lucrative when
one can steal business secrets or mine digital currency on
compromised devices [2]. State actors, too, have a use for
remote access to machines, either to spy or to launch Dis-
tributed Denial of Service (DDoS) attacks against foreign
businesses as a form of economic protectionism [3].

One way to achieve remote access to a host and keep
the communication hidden is to use ICMP tunneling [4].
This paper should provide insight into cybersecurity chal-
lenges that were first reported in 1997 [4] [5]. Addi-
tionally, it should highlight how simple network status
messages can be exploited in unintended ways. The con-
tribution of this paper is: (a) an explanation of ICMP
tunneling, (b) an exploration of its applications, (c) a
summary of existing proposals to prevent ICMP tunneling.

Section 2, introduces ICMP and ICMPv6, with their
standard use cases. In Section 3, we first explain how
ICMP tunneling works and then outline its capabilities.
In Section 4, existing applications of ICMP tunneling are
explored. Section 5, introduces preventative measures to
combat ICMP tunneling.

2. Background

Internet Protocol (IP) is a network layer protocol,
that forms the basis of the Internet. It is used to transmit
IP packets globally between hosts. An IP packet consists
of an IP header and IP data. IP data, i.e. the content that is
transmitted by a given packet, is appended after the header
(encapsulated within the IP packet). Such data is for
example ICMP or higher layer protocols. The IP header
specifies the source and destination addresses, if it is a
fragment, packet length, and other packet information. [6]

User Datagram Protocol (UDP) is a simple transport
layer protocol. It specifies the source and destination ports
of the datagram and a checksum for error detection. The
ports of UDP can be used to multiplex the communication
between two IP hosts. The only feature of UDP that can
be used for data loss, is the fact that error messages about
IP packets are sent when a packet is lost in transit. [7]

Transmission Control Protocol (TCP) is a widely
implemented transport layer protocol. Similar to UDP
it has ports for multiplexing and a checksum for error
detection. However, TCP has a distinct advantage over
UDP in that it builds the connection at the start of the com-
munication and destroys it at the end. Most importantly,
during the communication, it acknowledges segments it
has received (a segment being sent as an IP packet). This
feature builds the basis for congestion and flow control.
When the sender does not have enough acknowledgments
for the segments that have already been sent, it starts send-
ing them at a slower rate to avoid possible congestion in
the network between it and the receiver. When the sender
receives an acknowledgment for a fragment that was sent
too long ago or does not receive an acknowledgment in
some predetermined time, it tries to resend it. This means
that a TCP connection is reliable, and can fail only when
a packet can never reach its destination, e.g. in the event
of a complete network shutdown. [8]

Internet Control Message Protocol (ICMP) is a
network layer protocol part of the IP suite. It is primarily
used for error reporting and the exchange of control
information. ICMP messages are encapsulated within IP
packets as if they were a higher-level transport protocol,
like TCP or UDP. However, they are an integral part of
IP and are processed as a special case. Unlike TCP and
UDP, ICMP packets do not specify ports. [9]
ICMP is used by network utilities like ping [10] to send
ICMP Echo Requests and receive corresponding ICMP
Echo Reply messages. It is used to test if a host is reach-
able on an IP network. Another utility, traceroute [11],
sends out many IP packets after each other, incrementing

Seminar IITM WS 23 77 doi: 10.2313/NET-2024-04-1_14

their Time-To-Live (TTL). The TTL is decremented by
each router on the path to the destination. When the TTL
of a packet reaches 0, the last reached router sends an
ICMP Time Exceeded message to the sender. This way,
the utility maps the path between the source machine and
a remote host.
An ICMP messages consist of a header and content sec-
tions. The header is 4 bytes (B) long. It contains the type
(1B), the code (1B), and the checksum (2B). The type
specifies if the ICMP message is an ICMP Echo Request,
an ICMP Echo Reply, an ICMP Time Exceeded message,
etc. The code provides further information about the type,
e.g., why time was exceeded. The checksum is used for
error checking. The content section varies depending on
the type and code of the ICMP message, and it has no
preset length.
ICMPv6 is the version of ICMP used in conjunction with
IPv6. It serves similar purposes to ICMP in IPv4, except
for some enhancements to adapt to the features of IPv6.
For example, ICMPv6 has Neighbor Discovery Protocol
(NDP) instead of the ARP protocol in IPv4. ARP is used
to find the Layer 2 address of devices whose Layer 3 (IP)
address is known. NDP has the same functionality, in ad-
dition to many other improvements. Another example is an
ICMPv6 Packet Too Big message. It exists because only
the sender of the IPv6 packet can fragment it, whereas
IPv4 packets can be fragmented by any router on the way
to the destination.
Because the principal idea and structure of ICMPv6 is the
same as ICMPv4, in this paper the explained principles of
ICMP tunneling will be relevant for both IPv4 and IPv6
communication.

3. ICMP Tunneling

ICMP tunneling can be accomplished with any type of
ICMP message [4]. Most tools use ICMP Echo Request
or ICMP Echo Reply packets, which are normally used to
test host reachability. This makes it hard to filter against
malicious uses and, therefore, very appropriate to use for
hidden communication. [12]

Figure 1: ICMP Echo Request and Reply as defined in
RFC792 [9]

3.1. Prerequisites

The structure of ICMP allows for varied length data
after the header for type 0 (Echo Reply) and type 8 (Echo
Request) ICMP packets, as can be seen in Figure 1. This
is defined in RFC792 [9] to allow for flexible network
testing. For example, big ICMP Echo Request packets can
be sent to test network load [4]. There are no specifications
for the type of content in the data section of ICMP Echo

Request/Reply packets. This enables malicious actors to
use ICMP to transmit data to infected machines with
a smaller network footprint that may go unnoticed by
firewalls and other detection tools [12].

For ICMP tunneling to work, root access is
needed [13]. For more rudimentary programs than the ones
discussed further, root access is not always necessary. The
main prerequisite is that the tunneling program is installed
on the device that will be used for communication. This
can be either because it was infected by a malicious actor,
or due to the user of the machine wishing to hide their
communication from the local system administrator.

3.2. How it works

Using ICMP Echo Request and Reply packets, a mali-
cious attacker can embed information into the data section
and achieve communication. An infected machine can
listen for incoming requests and read the data that was
sent. It can then confirm with an ICMP Echo Reply that
the message was received.

3.2.1. Functional principle. ICMP tunneling does not
work out of the box simply by using kernel sockets. A
separate program needs to be written to facilitate this
communication. Such a program should be able to embed
the required content into ICMP packets and send them. It
then should be able to listen for incoming ICMP packets
and read the content of those participating in the disguised
communication. It should also be able to process the
embedded data and continue communicating.

An example of a program that communicates using
ICMP tunneling can embed TCP/UDP content into the
data section of ICMP Echo Request/Reply packets. As
most programs are already created to work with either
TCP or UDP, the two main transport layer protocols, such
an implementation can have wide applications.

It can be designed as a tool that intercepts some
program’s outgoing packets or all packets on some port. It
then translates them into ICMP Echo Request packets by
embedding each transport layer part of the packet into
the data section, before sending it out. The same tool
on the infected machine listens for ICMP Echo Requests
with certain predefined features that mark it as a tunneled
connection (e.g. a specific predefined Identifier). Then,
it intercepts the ICMP packet, extracts the TCP/UDP
content, and sends that to a process on the same ma-
chine. Thus, a TCP/UDP packet is transmitted between
two machines with ICMP. Essentially, such a tool has
the implementation of a kernel socket with the addition
of embedding the packet into an ICMP Echo Request.
Ptunnel [13] is a program that uses this concept. [12]

This type of ICMP tunneling requires administrative
or root privileges to be able to run. The aforementioned
ICMP tunneling tool Ptunnel, for example, requires root
access to be able to use raw sockets, i.e., without speci-
fying if they are TCP or UDP [13]. This makes it harder
to achieve the end goal, but not overall impossible.

3.2.2. Multiplexing. Figure 1 shows that ICMP Echo
Request/Reply packets contain an Identifier and a Se-
quence Number. These can mark a packet as a tunneled
connection, as mentioned previously. Additionally, they

Seminar IITM WS 23 78 doi: 10.2313/NET-2024-04-1_14

can be used to multiplex the communication, i.e., have
parallel streams that contain data for different purposes.
The hosts that are performing the communication can
match an incoming ICMP Echo Reply to an ICMP Echo
Request they made and, therefore, know which stream this
packet belongs to. Usually, ICMP Echo Request/Reply
communication already happens this way in, for example,
the ping utility.

Additionally, embedding UDP/TCP content in the data
section can lead to more parallel streams. For example,
one could treat the Identifier concatenated with the source
port of UDP as the ‘source’ and the Sequence Number
concatenated with the destination port of UDP as the
‘destination’. The ports of UDP and TCP are 2B or 16
bits long [8] [7], and so are the Identifier and Sequence
Number (see Fig. 1). In such a scheme, the port numbers
could go up to 2(16+16) or 232, instead of just 216 as they
are in TCP and UDP. Such high numbers would allow for
greater multiplexing capabilities.

3.3. Capabilities

While ICMP packets are similar to UDP and TCP,
they have distinct features that impact the quality of the
communication between hosts. In this analysis, we assume
that the ICMP communication is performed using ICMP
Echo Request and ICMP Echo Reply packets that embed
UDP or TCP into the data section, which can be seen in
Figure 1.

3.3.1. Payload size. The size of an ICMP Echo Request
or Reply packet, outside artificial size restrictions that may
be imposed by the OS or a firewall, is only limited by
the size of the IP packet that it is part of. For Ethernet
communication, the Maximum Transmission Unit (MTU)
size is typically 1500B [14]. The MTU defines the largest
possible size for the contents of the Ethernet frame, i.e.,
the maximum size of a single IP packet. The IP packet
itself has a minimum header size of 20B [6]. A TCP
header has a minimum size of 20B [8], while UDP is only
8B [7]. That means the maximum content size for TCP
is 1460B and for UDP 1472B. With the addition of the
ICMP header between the IP and TCP/UDP headers, the
maximum content size is reduced by 4B. Additionally, due
to the use of ICMP Echo Request/Reply packets, we need
to account for the 4B of the Identifier and the Sequence
Number. So, the final content that we can transmit has
a size of 1452B for a tunneled TCP packet and 1464B
for a tunneled UDP packet. This is only 8B less than the
standard TCP/UDP communication.

3.3.2. Reliability. ICMP packets do not differ signifi-
cantly from UDP packets. They both lack flow or con-
gestion control, unlike TCP. The ports of UDP can be
simulated with the Identifier and Sequence Number of
ICMP Echo Request/Reply packets. However, they have
one major difference. ICMP error messages are not sent
about other ICMP messages to prevent “the infinite regress
of messages about messages, etc.” [9]. This has conse-
quences for the reliability of ICMP communication. If an
ICMP message is lost, the sender will never be notified
about it and, therefore, cannot retry.

In the given schema, we do not have normal ICMP
Echo Request/Reply packets. By embedding TCP or UDP
content into the data section, we can use features of these
transport layer protocols that can affect the reliability of
the communication. If we use UDP, we do not achieve
more reliability because UDP does not have mechanisms
for tracking sent and received segments. If we embed TCP,
we can use its features to create a unique, reliable ICMP
communication protocol.

The reliability features of TCP explained in Section 2
can be implemented by an ICMP tunneling tool to make
the connection reliable. This transmission channel has
the disadvantage of not receiving error messages when
packets inevitably get lost in transit. Otherwise, it acts just
like a standard TCP connection. That is because usual IP
communication does not guarantee that a control message
is returned in case an IP packet is not delivered [9]. Some
failure needs to happen twice for the sender to not retry
to send a packet after it fails: when sending the IP packet
and when the ICMP error packet is sent back. In our case,
only one failure needs to occur for a packet to be lost. This
means that packets are resent more often, and the average
segment rate is lower.

4. Applications

The use of ICMP tunneling for communication has
the advantage of being hard to detect and filter against
by firewalls and Intrusion Detection Systems (IDS) [12].
Logically, most applications of ICMP tunneling are those
that should not be detected by third parties or are per-
formed by malicious actors. These are so-called covert
channels.

A covert channel is a communication channel that
is “not intended for information transfer at all” [15].
Therefore, applications that can or do use ICMP tunneling
use it as a covert channel.

A prime example of a covert channel is communi-
cation with a backdoor on an infected system. This can
provide complete access to the system without the firewall
blocking the channel. A more subtle covert channel would
be having an infected computer with software that sends
out stolen confidential data at random intervals [4].

4.1. Botnets

One of the ways that malicious actors use covert
channels is for CnC communication of botnets [1]. Botnets
are networks of infected computers that each run one or
more bots. They are created and controlled by a botmaster
who issues commands to these bots. These bots were
usually centrally controlled using the IRC messaging pro-
tocol [16]; nowadays, botnets are more often deployed as
peer-to-peer networks due to more sophisticated detection
methods and to avoid having one point of failure. These
collections of infected computers can communicate with
each other, perform DDoS attacks, and send spam. They
can also allow the attacker to have remote access to all of
the affected devices. Some examples of BotNets include
Mirai [17] [18], Mariposa [19], and others. [20] [21]

A botnet that uses ICMP tunneling is Pingback. Un-
like the discussed implementation, the malware does not
embed TCP into ICMP for communicating, rather it has

Seminar IITM WS 23 79 doi: 10.2313/NET-2024-04-1_14

its own data in ICMP Echo Request packets, as can be
seen in Figure 2. The malware is hidden inside a malicious
oci.dll file. This file is normally loaded with two other
.dll files by the msdtc Windows service. This service
loads an ODBC library to support Oracle databases. The
library tries to load three Oracle ODBC DLLs, one of
which is the oci.dll. When the malware is running, it
listens for ICMP Echo Request packets with sequence
numbers 1234, 1235 or 1236, and can execute shell com-
mands remotely. [22]

Figure 2: Pingback data struct, published in [22]

4.2. Data theft

Another use of covert channels is the breach of data
confidentiality. An attacker can extract data from a ma-
chine and send it out over a covert channel by infecting
it. Thus, private and confidential data is stolen without
any detection by the user or the network administrator.
This application is particularly harmful when it comes to
state actors performing espionage on foreign governmental
organizations [3]. Similarly, businesses can commit illegal
economic espionage and acquire business secrets to gain
a competitive market advantage. Criminal organizations
can steal private information and blackmail its owners into
paying them ransom.

A practical application is Cobalt Strike [23], a com-
mercial remote access tool that is used to “execute tar-
geted attacks and emulate the post-exploitation actions of
advanced threat actors.“ Amongst many features, it has
the capability to communicate with ICMP.

4.3. Integrated systems

Covert channels can also infiltrate integrated systems
that were previously offline [24]. For example, systems
in self-driving cars, or Internet of Things (IoT) devices,
like home assistants or security cameras. These networks
are based on the IP suite and are, therefore, vulnerable
to ICMP tunneling, amongst other covert channels. Their
cybersecurity is usually much more lax than that of more
sophisticated systems. This is due to their widespread use
allowing for greater possibilities of social engineering, and
the hardware vulnerabilities arising from the lesser focus
on security during their development [25]. Attacks against
them include the threat of spying through cameras and
microphones. More dangerous threats have the horrible
potential of ending multiple peoples’ lives if the attacker
can gain unrestricted access to the mechanical controls of
a car.

5. Prevention

There are preventative measures that limit the pos-
sibilities for communication using an ICMP tunnel [4].
Each one of them can be circumvented, or sometimes, a

measure can disrupt the normal user [4]. A sensible com-
bination of them can prevent all but the most sophisticated
attacks.

The main prerequisite for ICMP tunneling is the vari-
able data of ICMP Echo Request/Reply packets, both
in content and in length. Operating systems have preset
lengths and content for the ICMP Echo Request packets
that they generate. For example, Linux has a standard data
section length of 56B for ICMP Echo Requests, while
Windows has 32B [5]. An IDS can filter against all ICMP
packets that do not match the content of these two stan-
dards. Thus, the attacker needs to fragment the data into
more ICMP packets to pass the filter. Sometimes, though,
such a filter is disruptive. Big ICMP Echo Request packets
are helpful to test whether a network is capable of carrying
them [4]. Inspecting large packets for suspicious content
is even more difficult, especially if the covert channel uses
encryption. Determining if something is encrypted is not
always a fail-safe method [4].

Another way to limit the communication over ICMP
packets is to have stateful firewalls or NAT devices [4].
These track all ICMP traffic. If an ICMP Echo Request
is sent, the identifier and sequence number are saved.
Only a matching ICMP Echo Reply is let through to
the original host. Other firewalls create their own ICMP
packets that mirror the ones sent out by the host but with
their own data. If they receive an ICMP Echo Reply, they
then create an ICMP Echo Reply that matches the ICMP
Echo Request sent by the host. This effectively disrupts
the communication channel.

There also exists a proposal for a kernel module that
scans ICMP packets for any malicious content [4]. This
solution was proposed with the assumption that stateful
firewalls are too resource-heavy to be implemented on
personal machines. It was tested on 2003 hardware and
had acceptable performance at the time. Nowadays, it
should have very minimal overhead.

Another complex proposal is presented by Sayadi [5].
The detection includes two stages. In stage 1, the follow-
ing three steps are performed on an ICMP packet: (a) the
packet is checked for preset Linux and Windows lengths,
(b) the method tries to match the packet against only one
existing ICMP Echo Requests, (c) it is checked if there is
an absence of a spike of ICMP messages. If all checks,
performed after each other, succeed, then the message is
regarded as normal. If either of the three points fails, then
Stage 2 is triggered. Stage 2 tries to randomly pattern
match against the standard Linux and Windows content.
If it fails, the message is regarded as part of a covert
channel.

The evolving field of machine learning can also be
used to filter out covert channels in ICMP [26]. The pro-
posal by Cho [27] is a promising new addition to existing
tunneling prevention methods that use machine learning.
Their algorithm has a 99.9% accuracy in detecting covert
channels, an improvement over older proposals [28], [29].

All of the above methods have different approaches to
dealing with a tunneled ICMP connection. The proposals
on machine learning are promising, and their universality
needs to be explored further [26]. A balanced approach
of defensive methods needs to be taken, as at-scale im-
plementation of machine learning results in many false
positives [26].

Seminar IITM WS 23 80 doi: 10.2313/NET-2024-04-1_14

6. Conclusion

ICMP tunneling is used for establishing covert chan-
nels on IP networks. Using fact that data of the ICMP
Echo Request/Reply packets is not standardised in general,
a tool can embed its own content into ICMP packets.
An example application can embed TCP content, thus
trasmiting TCP packets without the network administra-
tors observing it. This connection can be multiplexed
using fields of the ICMP Echo Request/Reply header and
the TCP ports. The reliability of such a communication
is comparable to normal TCP, with the packet rate being
slightly slower and dependent on the rate of packet loss.

Since ICMP tunneling is used to hide communication
on networks, a tunneled connection between two hosts
results in a covert channel. Applications that make use
of covert channels can use ICMP tunneling to achieve it.
Some existing examples include botnets, like Pingback,
and remote access backdoors, like Cobalt Strike.

There are proposed theoretical solutions to prevent
ICMP tunneling, but practical applications are lacking.
Many proposals exist that have been tested in simulated
environments and perform very well. The field of machine
learning also has a lot of promising research, which how-
ever still needs to be practically implemented on a wide
scale. Further research of practical applications of these
preventative measures and how they can be effectively
combined together has to be conducted, to ensure that
ICMP tunneling is not a threat to modern networks.

References

[1] D. D. Jovanović and P. V. Vuletić, “Analysis and Characterization
of IoT Malware Command and Control Communication,” in 2019
27th Telecommunications Forum (TELFOR), 2019, pp. 1–4.

[2] H. Dhayal and J. Kumar, “Botnet and P2P Botnet Detection
Strategies: A Review,” in 2018 International Conference on Com-
munication and Signal Processing (ICCSP), 2018, pp. 1077–1082.

[3] J. Ford and H. S. Berry, “Leveling Up Survey of How Nation States
Leverage Cyber Operations to Even the Playing Field,” in 2023
11th International Symposium on Digital Forensics and Security
(ISDFS), 2023, pp. 1–5.

[4] A. Singh, O. Nordström, C. Lu, and A. L. M. dos Santos, “Ma-
licious ICMP Tunneling: Defense against the Vulnerability,” in
Information Security and Privacy, 8th Australasian Conference,
ACISP 2003, 2003, pp. 226–236.

[5] S. Sayadi, T. Abbes, and A. Bouhoula, “Detection of Covert Chan-
nels Over ICMP Protocol,” in 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA),
2017, pp. 1247–1252.

[6] J. Postel, “Internet Protocol,” RFC 791, Sep. 1981. [Online].
Available: https://www.rfc-editor.org/info/rfc791

[7] J. Postel, “User Datagram Protocol,” RFC 768, Aug. 1980.
[Online]. Available: https://www.rfc-editor.org/info/rfc768

[8] W. Eddy, “Transmission Control Protocol (TCP),” RFC 9293, Aug.
2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9293

[9] J. Postel, “Internet Control Message Protocol,” RFC 792, Sep.
1981. [Online]. Available: https://www.rfc-editor.org/info/rfc792

[10] “ping(8) - Linux man page,” https://linux.die.net/man/8/ping, [On-
line; accessed 2024-03-02].

[11] “traceroute(8) - Linux man page,” https://linux.die.net/man/8/
traceroute, [Online; accessed 2024-03-02].

[12] K. Stokes, B. Yuan, D. Johnson, and P. Lutz, “ICMP Covert
Channel Resiliency,” in Technological Developments in Network-
ing, Education and Automation, K. Elleithy, T. Sobh, M. Iskander,
V. Kapila, M. A. Karim, and A. Mahmood, Eds. Dordrecht:
Springer Netherlands, 2010, pp. 503–506.

[13] D. Stødle, “Ping Tunnel,” https://www.cs.uit.no/~daniels/
PingTunnel/, 2004, [Online; accessed 2023-12-17].

[14] “IEEE Standard for Ethernet,” IEEE Std 802.3-2022 (Revision of
IEEE Std 802.3-2018), pp. 1–7025, 2022.

[15] B. W. Lampson, “A Note on the Confinement Problem,” Commun.
ACM, vol. 16, no. 10, p. 613–615, oct 1973. [Online]. Available:
https://doi-org.eaccess.tum.edu/10.1145/362375.362389

[16] J. Govil and J. Govil, “Criminology of BotNets and their detection
and defense methods,” in 2007 IEEE International Conference on
Electro/Information Technology, 2007, pp. 215–220.

[17] “Mirai BotNet Source Code,” https://github.com/jgamblin/
Mirai-Source-Code, 2016, [Online; accessed 2024-02-27].

[18] G. Gallopeni, B. Rodrigues, M. Franco, and B. Stiller, “A Prac-
tical Analysis on Mirai Botnet Traffic,” in 2020 IFIP Networking
Conference (Networking), 2020, pp. 667–668.

[19] P. Sinha, A. Boukhtouta, V. H. Belarde, and M. Debbabi, “Insights
from the analysis of the Mariposa botnet,” in 2010 Fifth Interna-
tional Conference on Risks and Security of Internet and Systems
(CRiSIS), 2010, pp. 1–9.

[20] M. Singh, M. Singh, and S. Kaur, “TI-16 DNS Labeled Dataset
for Detecting Botnets,” IEEE Access, vol. 11, pp. 62 616–62 629,
2023.

[21] “List of Botnets,” https://netacea.com/glossary/list-of-botnets/,
2021, [Online; accessed 2024-02-27].

[22] L. Macrohon and R. Mendrez, “Pingback: Backdoor At The End Of
The ICMP Tunnel,” https://www.trustwave.com/en-us/resources/
blogs/spiderlabs-blog/backdoor-at-the-end-of-the-icmp-tunnel/,
2021, [Online; accessed 2024-02-27].

[23] “Cobalt Strike,” https://attack.mitre.org/versions/v11/software/
S0154/, 2017, [Online; accessed 2024-02-27].

[24] A. Ondov and P. Helebrandt, “Covert Channel Detection Methods,”
in 2022 20th International Conference on Emerging eLearning
Technologies and Applications (ICETA), 2022, pp. 491–496.

[25] W. Iqbal, H. Abbas, M. Daneshmand, B. Rauf, and Y. A. Bangash,
“An In-Depth Analysis of IoT Security Requirements, Challenges,
and Their Countermeasures via Software-Defined Security,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 10 250–10 276, 2020.

[26] Z. Sui, H. Shu, F. Kang, Y. Huang, and G. Huo, “A
Comprehensive Review of Tunnel Detection on Multilayer
Protocols: From Traditional to Machine Learning Approaches,”
Applied Sciences, vol. 13, no. 3, 2023. [Online]. Available:
https://www.mdpi.com/2076-3417/13/3/1974

[27] D. Cho, D. Thuong, and N. Dung, “A Method of Detecting
Storage Based Network Steganography Using Machine Learning,”
Procedia Computer Science, vol. 154, pp. 543–548, 2019,
proceedings of the 9th International Conference of Information
and Communication Technology [ICICT-2019] Nanning, Guangxi,
China January 11-13, 2019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1877050919308555

[28] A. N. Mahajan and I. Shaikh, “Detect covert channels in TCP/IP
header using Naive Bayes,” International Journal of Computer
Science and Mobile Computing, vol. 4, pp. 881–883, 2015.

[29] T. Sohn, J. Seo, and J. Moon, “A study on the covert chan-
nel detection of TCP/IP header using support vector machine,”
in Information and Communications Security: 5th International
Conference, ICICS 2003, Huhehaote, China, October 10-13, 2003.
Proceedings 5. Springer, 2003, pp. 313–324.

Seminar IITM WS 23 81 doi: 10.2313/NET-2024-04-1_14

Seminar IITM WS 23 82

Literature Survey: Performance Enhancing Proxies for TCP and QUIC

Ahmed Rayen Mhadhbi, Lion Steger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: ge95saq@tum.de, stegerl@net.in.tum.de

Abstract—Transmission Control Protocol (TCP), the dom-
inating transport protocol in the Internet, was originally
mainly designed for wired networks where packet loss is
mostly due to congestion. Deploying standard TCP in hy-
brid networks leads to a performance degradation due to
the wireless link characteristics. To deal with this issue,
intermediary nodes on the network path called Performance
Enhancing Proxies (PEPs) were designed. In this paper, we
first survey PEPs for TCP to assess their relevance in the
current research. We then focus on current PEP approaches
for QUIC, a new transport protocol incompatible with
TCP PEPs. We find practical approaches that benefit the
performance of QUIC and discuss their limitations mostly
regarding scalability and security.

Index Terms—performance enhancing proxies, satellite net-
works, tcp, quic, masque

1. Introduction

TCP is a transport layer protocol that provides a
reliable connection-oriented ordered data transfer while
offering mechanisms for flow and congestion control [1].
It was originally designed mainly for wired networks
where packet losses are mostly due to network congestion.
Standard TCP interprets packet losses always as conges-
tive and reduces the data transfer rate unnecessarily in case
of high Bit Error Rate (BER) which leads to a significant
performance degradation.

This unwanted behavior is observed in networks that
contain both wired and wireless connections, called hybrid
networks. The wireless section is in particular charac-
terized by a high BER. TCP has to adapt to the dif-
ferent needs of these networks to provide the required
performance. To this end, several enhancement approaches
have been proposed: Wireless TCP variants that introduce
modifications to the standard protocol were designed and
tailored for the specific needs of the different wireless
networks [2]. Other approaches introduced intermediary
middleboxes on the network path called Performance
Enhancing Proxies (PEPs) [3]. The common approach
is to split the TCP connection transparently into two
independent connections. Congestion and error control can
therefore be tailored for the specific characteristics of each
connection.

The development of QUIC [4] as a secure transport
protocol based on end-to-end encryption of not only the
payload but also most of the control information renders
transparent PEPs useless, since they rely on the inspec-
tion of unencrypted TCP headers for their functionality.

However, the benefits of connection splitting for perfor-
mance enhancement motivate the exploration of PEPs for
QUIC [5].

In this paper, we first provide a general overview of
the challenges posed by hybrid networks, an explanation
of PEPs’ functionality and QUIC. We then investigate
TCP PEPs. Finally, we present, analyze and discuss the
limitations of different approaches to QUIC PEPs gleaned
from the current research.

2. Background

We first provide a general overview of the challenges
posed by hybrid networks, an explanation of PEPs’ func-
tionality and QUIC.

2.1. Problems of Wireless Networks

There are various wireless network architectures. We
mention for instance satellite networks and cellular net-
works. Despite the challenges posed by their specific
needs, all wireless networks face the problem of high BER
since thy use air as transmission medium and are therefore
more prone to random factors, such as bad weather con-
ditions and the mobility of end users [2]. In cellular net-
works, a base station interconnects the wired fast network
and the wireless mobile network to provide internet access
for mobile users. Such infrastructure is characterized by
frequent handoffs and low wireless bandwidth. Satellite
networks are of paramount importance in today’s internet
communication. They provide connectivity for ships [6],
planes, users in less populated areas and in times of disas-
ter. Traditional geostationary (GEO) satellites are widely
used despite the rising of new technologies such as Low
Earth Orbit (LEO) satellites. Staying at an altitude of
35’786km, GEO satellite communication results in a high
round trip time (RTT) of about 600 ms leading, coupled
with local packet losses, to drastic goodput degradation.
PEPs, which we introduce in the following are, among
other approaches [7], deployed to tackle this problem.

2.2. Performance Enhancing Proxies

PEPs are intermediary nodes on the communication
path designed to improve the performance of TCP [3].
They can operate at link layer, transport layer and ap-
plication layer. At transport layer, PEPs split the TCP
connection in two separate connections: The first one is
terminated at the PEP and the new one is established

Seminar IITM WS 23 83 doi: 10.2313/NET-2024-04-1_15

from the PEP to the server or another PEP. They can
be deployed as integrated PEPs: A single PEP splitting
the connection or distributed PEPs: Two PEPs isolate the
link between them. Connection splitting leads to a shorter
RTT for both connections which increases the TCP sender
transmission rate as the time to get acknowledgements
gets shorter. It also enables the PEP to apply congestion
and error control tailored for the specific needs of the net-
work segment providing significant performance gains in
wireless networks [3]. Despite their wide deployment [8]
and advantages, connection-splitting PEPs violate the end-
to-end semantics of TCP and contribute to the ossification
of the transport layer [9] [10]: Their functionality is based
on assumptions about TCP headers and the protocol op-
erations so a new update to the protocol becomes difficult
since it requires a modification of their design when they
are already deployed in the Internet.

2.3. QUIC

QUIC is a transport protocol originally developed by
Google [4] and standardized by the IETF [11]. It is based
on the end-to-end encryption of not only the payload but
also most of the control information [12]. Some of its
main advantages are facilitating the process of rolling
out updates due to its user space implementation, stream
multiplexing to support multiple streams within a single
connection avoiding the head-of-line blocking of TCP,
reducing handshake overhead by making use of 0-RTT
and circumventing the ossification of the protocol, being
based on UDP traffic [4].

3. TCP PEPs

In this section, we will investigate PEPs for TCP. We
first succinctly present a number of approaches we do not
consider to be recent. We then focus on more recent ideas.

3.1. Overview of PEP Implementations

The benefits of PEPs performing connection splitting
have been investigated in multiple environments. XCP-
PEP [13] is a transparent PEP that leverages the eXplicit
Control Protocol (XCP), developed as a new congestion
control mechanism [14] to enhance performance over a
satellite link. Experiments showed a fast end-to-end link
utilization and a quick fairness convergence when deploy-
ing XCP-PEP in high latency networks such as satellite
networks. HTTPPEP [15] is another PEP example that
provides a faster web browsing experience when using a
satellite based network by applying protocol and trans-
port layer optimizations coupled with data compression.
In mobile systems such as Long Term Evolution (LTE)
networks, performance gains in web browsing and video
streaming using PEPs have been observed [16]. We focus
on some of the ideas in the following.

3.2. TCP Performance Enhancement over Satel-
lite Networks

Satellite networks pose several challenges to TCP
given their characteristics. PEPs were employed among

other approaches to improve TCP performance over satel-
lite networks. PEPsal was developed by Caini et al. [17] as
the first open source integrated splitting approach available
for Linux OS under the GNU GPL license. It is a TCP PEP
approach that improves the performance of the satellite
connection by employing TCP Hybla, a TCP enhancement
scheme specifically designed for the needs of satellite
networks [18]. Evaluating PEPsal in the presence of con-
gestion and link losses showed performance gains. Some
of the results can be attributed to using TCP Hybla on the
satellite segment [17]. Although PEPsal is not a recent
TCP PEP, we highlight its relevance and wide usage in
research.

3.3. Translation between Network Architectures

The deployment of new network architectures to solve
the issues faced by the current TCP/IP architecture due to
the exponential growth of data traffic is met by the inflex-
ibility of the internet infrastructure [19]. To circumvent
this issue, the idea of translating between the existing
architecture and a new one was thoroughly investigated
by Ciko et al. [20], introducing a Performance Enhancing
Proxy for Deploying Network Architectures (PEP-DNA).

PEP-DNA is the first TCP PEP developed with the
goal of enabling sending data from TCP/IP applications
along a network path with a different underlying archi-
tecture and in the other direction translating traffic to be
compatible with the TCP/IP architecture. It is fully imple-
mented in kernel space to be deployed on Linux. It has
been tested for the translation in a TCP-TCP connection,
between TCP and Recursive InterNetwork Architecture
(RINA) [21] as well as between TCP and an Information
Centric Networking (ICN) architecture [22].

The performance evaluation of PEP-DNA showed its
efficiency and scalability achieving good throughput with
low CPU and memory utilization. These results make
the deployment of new network architectures a realistic
objective. Future work should investigate the possibility
of PEP-DNA supporting other protocols besides TCP,
rendering the proxying explicit to allow a consent based
translation and using dynamic proxying mechanisms [20].

3.4. Multi-Domain Congestion Control

Applying different congestion control mechanisms op-
timized for the different domains in hybrid networks
leads to a performance improvement. The concept of
Multi-Domain Congestion Control (MDCC) [23] could be
achieved through the deployment of transparent connec-
tion splitting PEPs that apply an appropriate Congestion
Control (CC) for each connection. However, traditional
PEPs introduce a processing overhead and contribute to
the ossification of the transport layer. Approaches apply-
ing end-to-end encryption render transparent PEPs im-
practical. In order to deploy PEPs without violating the
end-to-end semantics, Middlebox Cooperation Protocols
(MCPs) [24] propose the idea of middleboxes sharing ex-
plicit useful information to the endpoints that can be safely
ignored. Based on this concept, Mihály et al. [25] devel-
oped a lightweight PEP (LwPEP) that supports MDCC,
overcoming the additional communication and processing

Seminar IITM WS 23 84 doi: 10.2313/NET-2024-04-1_15

overhead and circumventing the problem of transport ossi-
fication without modification at the client side. LwPEP en-
abled the design of a MDCC showing performance gains
in LTE [25] and mmWave 5G Networks [26]. LwPEP
supports both TCP and QUIC traffic [26].

4. QUIC PEPs

Figure 1: MASQUE proxy setup with QUIC tunnel-
ing [27])

We first start by addressing the fundamental question
of whether exploring the possibilities for QUIC PEPs is
justifiable in terms of potential performance gains. Kosek
et al. [5] investigated this question for satellite networks
using both GEO and LEO satellites, comparing QUIC vs.
TCP and HTTP/3 vs HTTP/1.1 with and without PEPs.

Evaluating the performance regarding goodput over
time showed a better performance when using PEPs
for both GEO and LEO scenarios with different link
loss rates, especially with higher RTTs and lower loss
rates. Analysing the web performance also demonstrated
a real performance gain using QUIC PEPs in GEO orbits.
These promising results motivate the further exploration
of QUIC PEPs. However, the used implementation in [5]
is a proof-of-concept: The developed proxy for connec-
tion splitting operates on clear data, thereby violating the
principle of end-to-end encryption. We therefore present
the following practical possibilities for QUIC PEPs with
the common goal of preserving end-to-end encryption. For
each discussed concept, we highlight the important points,
give an overview of the implementation and discuss the
limitations.

4.1. Explicit User-consent based Proxying

Motivation: As transparent PEPs are incompatible
with QUIC, explicit proxying should be investigated.
In this context, we introduce Multiplexed Application
Substrate over QUIC Encryption (MASQUE) [28].
It is a QUIC proxying protocol that defines a new
HTTP CONNECT extension to enable a tunneled QUIC
connection between a client and a proxy, as illustrated
by Figure 1: An end-to-end connection over the proxy
encapsulated in an outer QUIC tunnel connection.
By using MASQUE, the client can explicitly request
forwarding of UDP and IP traffic towards a specific
server. The proxy receives packets from the client
wrapped in an outer QUIC tunnel connection, unwraps
them and sends them to the target server. The proxy
operates in the other direction as well by encapsulating
received packets from the server and relaying them to
the client. MASQUE replaces transparent PEPs that

operate transparently with explicit user-consent based
proxying [28] and provides web proxying without
interception and end-to-end security problems which
some HTTP based explicit proxies deployed in access
networks might suffer from [29].

Implementation: MASQUE is still under
development. The IETF MASQUE working group
developed two specifications for defining a new method
to proxy UDP in HTTP. The first is using CONNECT UP
HTTP method [30] to create a tunnel to a proxy server
over the HTTP request stream to enable sending tunneled
UDP payloads using HTTP datagrams to the proxy. The
second specification [31] describes two ways of data
transmission: using QUIC datagrams [32] for unreliable
data transfer called datagram mode or using datagrams
encoded as CAPSULE frames [30], a new HTTP type
frame, for reliable transmission called stream mode.

Evaluation: The impact of using QUIC based
MASQUE proxying on QUIC performance has been
studied by Kühlewind et al. in [28] based on a
modified version of aioquic, a QUIC and HTTP/3
python implementation supporting HTTP datagrams and
CAPSULE frames for HTTP/3 and modifiable packet
sizes and congestion control for QUIC. Experiments
show a reduction in overhead and transmission time for
increasing packet sizes which increases performance.
Investigating the impact of RTTs and nested congestion
control shows that with increased RTT, lower transmission
times are generally observed in datagram mode compared
to stream mode with the Reno CC algorithm showing
better performance than Cubic or no CC. A significant
improvement in transmission time is witnessed in stream
mode for high loss rates with low delays on the link
between the client and the proxy advocating the use of
reliable streams in MASQUE proxying for lossy local
links [28].

Discussion: The evaluation of MASQUE proxying
suggests the potential loss recovery benefits of using
stream mode for reliable data transmissions over wireless
networks characterized by high non-congestive loss rates.
Their work introduces the possibility of having simple
link layer loss recovery mechanisms while offering ex-
plicit reliable data transfer with loss recovery when an
application needs it. However, these promising results are
limited by the used python based setup which is not
optimized for performance. Further work using different
stacks and emulation setups is required for better perfor-
mance evaluation. Furthermore, security problems have to
be considered when employing MASQUE proxying since
it does not inspect the sent packets, therefore opening the
possibility of malicious packets and replay attacks.

4.2. Combining Performance and Security

Motivation: GEO satellites suffer from long delays
which negatively impact the performance and security
of the satellite link. To deal with this issue, PEPs are
employed by ISPs. The problem with PEPs is that they
operate on clear data, thus raising security concerns
for the satellite link. On the other hand, employing

Seminar IITM WS 23 85 doi: 10.2313/NET-2024-04-1_15

approaches that support encryption, for instance VPN,
is incompatible with PEP as the latter have to inspect
clear TCP headers. The trade-off between performance
and security is the crux of the problem in satellite
communication motivating the development of QPEP
by Pavur et al. [33]. QPEP is a new hybrid protocol
between traditional PEP and VPN aiming to enhance
the performance of secure satellite traffic making use of
QUIC.

Figure 2: Simplified QPEP distributed architecture [33])

Implementation: Figure 2 illustrates the basic
QPEP architecture. It is implemented as a transparent
distributed PEP: The client establishes a persistent
QUIC tunnel with the server for multiplexed and
encrypted QUIC connection and maps incoming TCP
connections to unique QUIC streams. It selectively
terminates TCP connections discarding spurious ACKs
and sends only relevant data converted to QUIC packets
via the tunnel. We note that currently there is only an
available TCP/IP stack implementation for tunneling [33].

Evaluation: QPEP was tested in simulations in [33]
showing better performance than traditional PEPs. These
promising results motivated the evaluation of its perfor-
mance in a real world environment over commercially
available satellite links by Huwyler et al. [34]. The metrics
for measurements are goodput by measuring the download
speed at the client side with varying payload sizes and
Page Load Time (PLT) as an important metric for good
user web experience.

An evaluation of different scenarios was conducted:
Plain connection with neither performance enhancement
nor security support, PEPsal as the only publicly
available PEP, OpenVPN as an encrypted protocol and
QPEP. Regarding goodput, QPEP outperformed all
scenarios in a setup where the GEO provider proprietary
PEP was not activated. Activating it did not enhance
QPEP throughput in contrast to the other scenarios.
Overall, QPEP attained higher goodput than OpenVPN
especially in case of low payload sizes. The differences
in PLTs between the different scenarios were less
pronounced in the real testbed compared to the simulated
one. QPEP outperformed OpenVPN in the setup with
activated provider PEP improving PLT. Without it QPEP
demonstrated the best performance among all protocols.
Overall, QPEP proved its performance benefits over
traditional PEPs and OpenVPN.

Discussion: The results obtained are limited by the
"black box" nature of the provider networks causing cer-
tain ambiguities in the explanation of QPEP performance
in specific scenarios. Further parameter tuning for the
satellite link could help gain more insight into the per-

formance benefits of QPEP [35]. Further work regarding
the collaboration with different GEO providers and testing
QPEP for LEO networks should be pursued.

4.3. Secure Middlebox Insertion in QUIC Con-
nections

Motivation: QUIC with its end-to-end encryption
opposes the idea of splitting the end-to-end connection
to inspect or modify the exchanged information for
performance enhancement purposes. A possible QUIC
enhancement idea consists in the selective and controllable
exposure of information to intermediary nodes in the
network to allow the conscious insertion of middleboxes
by the endpoints without violating the security of the
communication. This idea is introduced by Kosek et al.
as Secure Middlebox Assisted QUIC (SMAQ) [36].

Implementation and Evaluation of SMAQ: SMAQ
inserts middleboxes that preserve the end-to-end security
aspects while simultaneously being capable of adjusting
certain functional aspects of QUIC to improve the perfor-
mance. As illustrated in Figure 3 a state handover mecha-
nism enables the endpoint to share its protocol state with
an inserted middlebox by sharing the necessary keying
material. This enables splitting of the end-to-end connec-
tion in two independent connections using an enhanced
QUIC connection migration mechanism coupled with
an added encryption layer during the QUIC handshake.
SMAQ also supports the use of multiple middleboxes
through transitive state handover. We direct the reader
to [36] for a detailed design description.

In the same paper, a study case was conducted with
SMAQ to use distributed PEPs in a QUIC satellite connec-
tion with both GEO and LEO satellite orbits. To evaluate
the performance, a PEP optimized SMAQ using Hybla-
Westwood [18] [37] as CC algorithm was compared to an
end-to-end QUIC connection using NewReno w.r.t Bulk
Download measured by the bytes received by the client
over several time intervals and web performance measured
by PLT. The results showed an overhead of a bit more than
one RTT for SMAQ-PEP connection setup, an increase of
bytes received with higher loss compared to normal QUIC
and an overall better performance with higher RTT, loss
rate, and byte transfer sizes.

Figure 3: Overview of SMAQ design [36])

Discussion: Using SMAQ raises important security
concerns. Its design is based on the assumption that
middleboxes are trusted to manipulate and modify the
connection violating the principles of privacy, integrity
and authenticity. The current design only supports state
handover started by the client and only during QUIC
handshake which limits the potential performance ben-
efits. Future work addressing these limitations should be
pursued.

Seminar IITM WS 23 86 doi: 10.2313/NET-2024-04-1_15

5. Conclusion and Future Work

Performance enhancing proxies are an important tool
to enhance TCP performance in hybrid networks. In this
survey we first investigate current PEP approaches for
TCP. Although the number of open source PEP implemen-
tations is limited, we were able to find novel approaches
in the current research. We investigate TCP performance
enhancement over satellite networks presenting an older
approach widely used in research. We discuss the idea
of translating between different network architectures to
enable the deployment of new architectures. We also
introduce novel approaches for Multi-Domain Congestion
Control. We then focus on exploring PEP possibilities for
QUIC. We discuss interesting concepts such as explicit
user-consent based proxying, combining the conflicting
goals of performance and security in satellite networks,
inserting middleboxes in a QUIC connection without vio-
lating the end-to-end security. Overall, the discussed ideas
show promising performance gains for QUIC. However,
they are limited by the used implementations that raise
problems of scalability and security. Future work should
further investigate these ideas while dealing with the
mentioned limitations.

References

[1] W. Eddy, “Transmission Control Protocol (TCP),” RFC 9293, Aug.
2022. [Online]. Available: https://www.rfc-editor.org/info/rfc9293

[2] Y. Tian, K. Xu, and N. Ansari, “TCP in wireless environments:
problems and solutions,” IEEE Communications Magazine, vol. 43,
no. 3, pp. S27–S32, 2005, publisher: IEEE. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/1404595/

[3] J. Griner, J. Border, M. Kojo, Z. D. Shelby, and G. Montenegro,
“Performance Enhancing Proxies Intended to Mitigate Link-
Related Degradations,” RFC 3135, Jun. 2001. [Online]. Available:
https://www.rfc-editor.org/info/rfc3135

[4] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey,
J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti,
R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi,
“The QUIC Transport Protocol: Design and Internet-Scale
Deployment,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. Los Angeles
CA USA: ACM, Aug. 2017, pp. 183–196. [Online]. Available:
https://dl.acm.org/doi/10.1145/3098822.3098842

[5] M. Kosek, H. Cech, V. Bajpai, and J. Ott, “Exploring Proxying
QUIC and HTTP/3 for Satellite Communication,” in 2022 IFIP
Networking Conference (IFIP Networking). IEEE, 2022, pp. 1–9.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9829773/

[6] J. Pavur, D. Moser, M. Strohmeier, V. Lenders, and I. Martinovic,
“A tale of sea and sky on the security of maritime VSAT
communications,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1384–1400. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9152624/

[7] I. F. Akyildiz, G. Morabito, and S. Palazzo, “TCP-Peach:
a new congestion control scheme for satellite IP networks,”
IEEE/ACM Transactions on networking, vol. 9, no. 3, pp.
307–321, 2001, publisher: IEEE. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/929853/

[8] R. Zullo, A. Pescapé, K. Edeline, and B. Donnet, “Hic sunt
proxies: Unveiling proxy phenomena in mobile networks,” in
2019 Network Traffic Measurement and Analysis Conference
(TMA). IEEE, 2019, pp. 227–232. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/8784678/

[9] G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grin-
nemo, P. Hurtig, N. Khademi, M. Tuxen, M. Welzl, D. Damjanovic,
and S. Mangiante, “De-Ossifying the Internet Transport Layer: A
Survey and Future Perspectives,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 1, p. 619, 2017. [Online]. Avail-
able: https://www.academia.edu/78032520/De_Ossifying_the_
Internet_Transport_Layer_A_Survey_and_Future_Perspectives

[10] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda, “Is it still possible to extend TCP?” in
Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference. Berlin Germany: ACM, Nov. 2011,
pp. 181–194. [Online]. Available: https://dl.acm.org/doi/10.1145/
2068816.2068834

[11] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[12] M. Bishop, “HTTP/3,” RFC 9114, Jun. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9114

[13] A. Kapoor, A. Falk, T. Faber, and Y. Pryadkin, “Achieving
faster access to satellite link bandwidth,” in Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer and
Communications Societies., vol. 4. IEEE, 2005, pp. 2870–2875.
[Online]. Available: https://ieeexplore.ieee.org/abstract/document/
1498578/

[14] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for
high bandwidth-delay product networks,” in Proceedings of the
2002 conference on Applications, technologies, architectures, and
protocols for computer communications. Pittsburgh Pennsylvania
USA: ACM, Aug. 2002, pp. 89–102. [Online]. Available:
https://dl.acm.org/doi/10.1145/633025.633035

[15] P. Davern, N. Nashid, C. J. Sreenan, and A. Zahran, “HTTPEP:
A HTTP performance enhancing proxy for satellite systems,”
International Journal of Next-Generation Computing, vol. 2,
no. 3, pp. 242–256, 2011, publisher: Citeseer. [Online]. Avail-
able: https://citeseerx.ist.psu.edu/document?repid=rep1&type=
pdf&doi=137fd719d5aa77145b38397bbd5effb6de3ee1c9

[16] V. Farkas, B. Héder, and S. Nováczki, “A Split Connection TCP
Proxy in LTE Networks,” in Information and Communication
Technologies, R. Szabó and A. Vidács, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, vol. 7479, pp. 263–274, series
Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-32808-4_24

[17] C. Caini, R. Firrincieli, and D. Lacamera, “PEPsal: a Performance
Enhancing Proxy for TCP satellite connections.”

[18] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement
for heterogeneous networks,” International Journal of Satellite
Communications and Networking, vol. 22, no. 5, pp. 547–566,
Sep. 2004. [Online]. Available: https://onlinelibrary.wiley.com/doi/
10.1002/sat.799

[19] M. Handley, “Why the Internet only just works,” BT Technology
Journal, vol. 24, no. 3, pp. 119–129, Jul. 2006. [Online].
Available: http://link.springer.com/10.1007/s10550-006-0084-z

[20] K. Ciko, M. Welzl, and P. Teymoori, “PEP-DNA: A Performance
Enhancing Proxy for Deploying Network Architectures,” in
2021 IEEE 29th International Conference on Network Protocols
(ICNP), Nov. 2021, pp. 1–6, iSSN: 2643-3303. [Online]. Available:
https://ieeexplore.ieee.org/document/9651953/

[21] D. John, “Patterns in network architecture: a return to fundamen-
tals,” 2007.

[22] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,” IEEE
Communications Magazine, vol. 50, no. 7, pp. 26–36, 2012,
publisher: IEEE. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/6231276/

[23] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe, “Open
research issues in Internet congestion control,” 2011. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6077

[24] B. Trammell, M. Kühlewind, E. Gubser, and J. Hildebrand,
“A new transport encapsulation for middlebox cooperation,”
in 2015 IEEE Conference on Standards for Communications
and Networking (CSCN). IEEE, 2015, pp. 187–192. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/7390442/

Seminar IITM WS 23 87 doi: 10.2313/NET-2024-04-1_15

[25] A. Mihály, S. Nádas, S. Molnár, Z. Krämer, R. Skog,
and M. Ihlar, “Supporting multi-domain congestion control
by a lightweight pep,” in 2017 International Conference on
Internet of Things, Embedded Systems and Communications
(IINTEC). IEEE, 2017, pp. 105–110. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8325922/

[26] Z. Kramer, S. Molnar, M. Pieska, and A. Mihaly, “A
Lightweight Performance Enhancing Proxy for Evolved Protocols
and Networks,” in 2020 IEEE 25th International Workshop on
Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD). Pisa, Italy: IEEE, Sep. 2020, pp. 1–6.
[Online]. Available: https://ieeexplore.ieee.org/document/9209304/

[27] Z. Krämer, M. Kühlewind, M. Ihlar, and A. Mihály, “Cooperative
performance enhancement using QUIC tunneling in 5G cellular
networks,” in Proceedings of the Applied Networking Research
Workshop. Virtual Event USA: ACM, Jul. 2021, pp. 49–
51. [Online]. Available: https://dl.acm.org/doi/10.1145/3472305.
3472320

[28] M. Kühlewind, M. Carlander-Reuterfelt, M. Ihlar, and M. Wester-
lund, Evaluation of QUIC-based MASQUE proxying, Dec. 2021,
pages: 34.

[29] D. Perino, M. Varvello, and C. Soriente, “ProxyTorrent: Untangling
the Free HTTP(S) Proxy Ecosystem,” in Proceedings of the 2018
World Wide Web Conference on World Wide Web - WWW
’18. Lyon, France: ACM Press, 2018, pp. 197–206. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3178876.3186086

[30] D. Schinazi, “The CONNECT-UDP HTTP Method,” Internet
Engineering Task Force, Internet-Draft draft-ietf-masque-connect-
udp-04, Jul. 2021, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-masque-connect-udp/04/

[31] D. Schinazi and L. Pardue, “Using Datagrams with HTTP,”
Internet Engineering Task Force, Internet-Draft draft-ietf-masque-
h3-datagram-03, Jul. 2021, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-masque-h3-datagram/03/

[32] T. Pauly, E. Kinnear, and D. Schinazi, “An Unreliable Datagram
Extension to QUIC,” RFC 9221, Mar. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9221

[33] J. Pavur, M. Strohmeier, V. Lenders, and I. Martinovic, “QPEP:
An Actionable Approach to Secure and Performant Broadband
From Geostationary Orbit,” in Proceedings 2021 Network
and Distributed System Security Symposium. Virtual: Internet
Society, 2021. [Online]. Available: https://www.ndss-symposium.
org/wp-content/uploads/ndss2021_4A-1_24074_paper.pdf

[34] J. Huwyler, J. Pavur, G. Tresoldi, and M. Strohmeier, “QPEP in
the Real World: A Testbed for Secure Satellite Communication
Performance,” in Proceedings 2023 Workshop on Security of
Space and Satellite Systems. San Diego, CA, USA: Internet
Society, 2023. [Online]. Available: https://www.ndss-symposium.
org/wp-content/uploads/2023/06/spacesec2023-239792-paper.pdf

[35] L. Thomas, E. Dubois, N. Kuhn, and E. Lochin, “Google
QUIC performance over a public SATCOM access,” International
Journal of Satellite Communications and Networking, vol. 37,
no. 6, pp. 601–611, Nov. 2019. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/10.1002/sat.1301

[36] M. Kosek, B. Spies, and J. Ott, “Secure Middlebox-Assisted
QUIC,” in 2023 IFIP Networking Conference (IFIP Networking).
IEEE, 2023, pp. 1–9. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/10186363/

[37] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and
R. Wang, “TCP westwood: Bandwidth estimation for enhanced
transport over wireless links,” in Proceedings of the 7th annual
international conference on Mobile computing and networking.
Rome Italy: ACM, Jul. 2001, pp. 287–297. [Online]. Available:
https://dl.acm.org/doi/10.1145/381677.381704

Seminar IITM WS 23 88 doi: 10.2313/NET-2024-04-1_15

The Path of a Packet Through the Linux Kernel

Alexander Stephan, Lars Wüstrich∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: alexander.stephan@tum.de, wuestrich@net.in.tum.de

Abstract—Networking stacks are the backbone of communi-
cation and information exchange. This paper investigates the
TCP/IPv4 and UDP/IPv4 network stack of Linux, the most
common server OS. We describe a trace of the most critical
networking functions of the Linux kernel 5.10.8. Although
Linux networking code documentation exists, it is often out-
dated or only covers specific aspects like the IP or TCP layer.
We address this holistically, covering a packet’s egress and
ingress path through the Linux networking stack. Moreover,
we highlight intricacies of the implementation and present
how the Linux kernel realizes networking protocols. Our
paper can serve as a basis for performance optimizations,
security analysis, network observability, or debugging.
Index Terms—linux kernel, network stack, packet processing

1. Introduction
Nowadays, almost everything is networked, from a

personal computer to a fridge [1]. Although networking
is essential for modern computing, few know the com-
plexity of getting a packet to and from a wire. Given the
prevalence of Linux-based servers [2], [3], it is common
for packets to traverse through the Linux network stack.
However, understanding the intricacies of the complex
packet processing within Linux takes time and effort.
Nevertheless, this knowledge is often critical as it aids
performance optimizations, security analysis, debugging,
and network observability.

We base our investigation of the ingress and egress
packet path on version 5.10.8 of the Linux kernel1. It
is well-documented, stable, and contains modern features
such as a Just-in-time (JIT) compiler for Berkely Packet
Filters [4]. Primarily, we make observations on the kernel
source code, which we link to referenced kernel symbols.

Although Linux kernel networking is becoming more
diverse, e. g., with the addition of Multipath TCP [5], most
traffic utilizes the standard TCP and UDP protocol stack.
Moreover, despite the acceleration in IPv6 adoption, most
devices still communicate over IPv4 [6]. Hence, we limit
this analysis to TCP/IPv4 and UDP/IPv4.

The remainder of the paper has the following structure:
Firstly, we compare this paper with existing literature in
Section 2. Then, in Section 3, we explain the design of
the general Linux networking stack and the sk_buff data
structure. In Section 4, we inspect the intricacies of both
the ingress and egress packet paths. Finally, in Section 5,
we briefly summarize the most important findings.

1. https://elixir.bootlin.com/linux/v5.10.8/source

2. Related Work

We evaluated literature on the Linux network stack to
the best of our knowledge. While doing so, we made the
following observations.

Outdated Linux kernel versions. More elaborate
papers emerged in the 2000s, using Linux kernel version
2 or 3 [7]–[9]. Although the implementation of older
protocols in the network stack is stable, much time has
passed. Therefore, we investigate possible deviations.

Fragmented Information. Many papers focus on spe-
cific layers, most commonly the TCP and IP implemen-
tation [10]–[13]. Others determine the causes of network
overhead [14], [15]. A holistic view is lacking in those
cases. In particular, even when authors describe the path
of a packet throughout multiple layers [7]–[10], they omit
UDP—in contrast to this paper.

Although there is a talk covering the whole ingress
and egress path for Linux version 5 [16], it is high-level,
mainly giving an intuition. Hence, we aim for a middle
ground between detailed layer-specific information and
high-level network stack tracing.

3. Background

We assume a basic familiarity with Linux and net-
working. However, we briefly describe essential Linux
networking concepts relevant throughout the packet path.

3.1. Linux Networking Stack

Socket (INET)

TCP UDP

IPv4

Ethernet

Network Card

TX RX

Figure 1: Depiction of the technologies used in the stan-
dard TCP/IP and UDP/IP stack in Linux, from user space
to the wire.

As shown in Figure 1, a socket either passes a packet
to the user space application or receives a packet from
the implementation of the transport layer protocol, i. e.,
TCP or UDP. The IP layer then routes the packets to
the network layer. Below this layer, Linux allows filtering

Seminar IITM WS 23 89 doi: 10.2313/NET-2024-04-1_16

traffic via firewall rules. The network interface card (NIC)
forwards the packets that it receives from the receive (RX)
buffer to the kernel and transmits packets read from the
transmit (TX) buffer.

3.2. Socket Buffers (sk_buff)

The kernel saves packets in C structures called
sk_buff. Almost all functions along the packet path inter-
act with it. sk_buff tracks packet metadata and maintains
a start and end pointer to packet data in memory [17].
Using references to packet data allows for efficient packet
modification by adjusting the pointers, e. g., when strip-
ping a header away. Furthermore, sk_buff structures
can be shared efficiently between different processes us-
ing memory references [17]. Consequently, cloning a
packet is also efficient since only the metadata has to be
copied [17], assuming a read-only workload. We show this
in Figure 2. These properties of sk_buff form the basis
of efficient packet processing on Linux.

sk buff 1

interface

protocol

head

data

tail

sk buff 2

interface

protocol

head

data

tail

Ethernet IP TCP Payload

Figure 2: Two simplified sk_buff structures point to
different locations within the same packet buffer. head
marks the padded start of the buffer while tail points
to the end of the actual packet data. data points to the
currently processed header.

4. Packet Flow

Here, we are interested in both the ingress and egress
paths. Both paths operate independently.

4.1. Egress Path
Firstly, we analyze the egress path, i. e., how Linux

sends packets—from a user space application to the NIC
as shown in Figure 3. Essentially, the egress side con-
structs the protocol headers, pushing them to sk_buff
structures, which it sends out.

4.1.1. Socket Layer. All starts with a socket that
has an associated domain, e. g., AF_UNIX, AF_XDP, or,
in our case, AF_INET for IPv4. A system call wrap-
per function like write() or sendto() enables us to
send data over the socket, e. g., as provided by the
GNU C library [18]. In the context of this paper, we
choose write(filedescriptor, buffer, length) to
avoid unnecessary complexity. Writing to a file descriptor
is a prime example of the UNIX philosophy Everything
is a file since a file descriptor abstracts the socket [19].

For sockets, write() invokes the sock_sendmsg()
function. It obtains the socket struct sock from the

Application

TCPIP Layer

Ring
Buffer

User
Space

Driver

Kernel
Space

NIC

Socket Write Queue

Kernel Memory
Packet

#1

Packet
#2

Packet
#3

Packet
#4

write()

de
v_

qu
eu

e_
xm

it
()

D
M

A

qdisc

ip_queue
_xmit()

TX

tcp_send_msg()

Figure 3: Egress path of a packet in case of TCP as
described in Section 4.1 (adopted from [10]).

file descriptor provided by the user space application.
Generally, sockets operate on socket control messages
containing the process’s Process ID (PID), User ID (UID),
and Group ID (GID) [19]. sock_sendmsg() retrieves this
control message from the task_struct, a Linux data
structure that contains this information for the calling
process. With this information, sock_sendmsg() typically
passes the packet through Linux Security Modules (e. g.,
SELinux) to filter traffic.

Finally, it calls the corresponding transport layer
handler, in our case TCP or UDP, via the macro
INDIRECT_CALL_INET. The macro autonomously chooses
the corresponding IPv4 or IPv6 variant of the transport
protocol entry function, depending on the protocol speci-
fied in sk_prot, a field of the sk_buff.

4.1.2. Transport Layer. Here, we arrive at the IPv4
related entry functions, tcp_sendmsg() for TCP and
udp_sendmsg() for UDP.
TCP. tcp_sendmsg() first waits for TCP connection
establishment. Then, it allocates sk_buff structures for
the segments and enqueues them to the socket write
queue, as shown in Figure 3. tcp_sendmsg() also
guarantees adherence to the Maximum Segment Size
(MSS). After processing the queue, the kernel in-
vokes tcp_write_queue_tail(). It also builds the TCP
header and pushes the data from the user space into
the sk_buff. If the data fits into the existing buffer,
skb_add_data_nocache() is used. Otherwise, it cre-
ates new buffers, which is more expensive. It then sets
the transport_header pointer to the beginning of this
header. Next, it builds the network layer protocol header
as specified in the socket options, e. g., IPv4 for AF_INET.
tcp_write_xmit() guarantees that the kernel holds back
data in case of congestion control restrictions. It also sets
retransmission timers, i. e., resends the packet if it does
not receive an ACK in time. Finally, tcp_transmit_skb()
reads the write queue containing previously constructed
segments and passes them to the network layer via the
queue_xmit() function specified in the socket.
UDP. Similarly, there is udp_sendmsg(). Again, the func-
tion writes to the socket write queue. Next, the function
waits until there are no pending frames for the UDP data-
gram. As before, the function builds the header, setting
the destination port and the other fields.

Seminar IITM WS 23 90 doi: 10.2313/NET-2024-04-1_16

There are corking and non-corking cases: cork-
ing describes waiting for frames to batch mul-
tiple UDP datagrams. Non-corking implies build-
ing sk_buff directly. After constructing the data-
gram, ip_route_output_flow() routes the packet and
builds the network layer protocol header. Lastly,
ip_append_data() creates an IP packet that combines
multiple UDP datagrams. Overall, simplicity and absence
of locking endorse that the UDP implementation is more
performant than its TCP counterpart.

4.1.3. IP Layer. IP processing starts with the func-
tion __ip_queue_xmit(). Firstly, the function determines
the route to the destination. If a route is already in
sk_buff->_skb_refdst, it skips the routing process. In
this case, the function builds the header immediately.
However, if there is no destination, the routing process
continues. It determines the destination from the socket
field of the sk_buff, that, e. g., is set if the socket pre-
viously received an IP packet. If this is not possible, it
queries the routing cache, called Forwarding Information
Base (FIB)—a table that is generated from the IP routing
table. Eventually, if there is still no route, it returns
host unreachable and stops the processing. Otherwise, the
kernel builds the IP header if it finds a route.

Now, ip_options_build() is called to set IP op-
tions. It marks the beginning of the header with the
network_header field of the sk_buff. Next, it triggers
the LOCAL_OUT stage of the Linux firewall mechanism
netfilter. Afterward, dst_output() calls the actual
routing function via a function pointer.

Then, the kernel calls the ip_output() routing func-
tion for the most common unicast packet. As the routing
is complete, this stage is called POST_ROUTING. It updates
the packet metadata and calls the NF_INET_POST_ROUTING
hook. It sets sk_buff metadata and invokes netfilter once
again. Furthermore, it fragments the packet if it exceeds
the maximum length (Maximum Transmission Unit).

Then, after passing the packet through the NF_
INET_LOCAL_OUT hook, ip_output() calls ip_finish_
output(). It increments the counters for multicast and
broadcast packets. It also checks that the sk_buff has
enough space for the MAC header. The destination MAC
address is either cached or determined by the neighbor
output function neigh_resolve_output(). The latter uti-
lizes the Address Resolution Protocol (ARP) [20]. In case
there is no ARP reply, it queues the packet again. After
obtaining the MAC address, the kernel constructs the
Ethernet header, adding it to the sk_buff.

4.1.4. Ethernet Layer. Firstly, dev_queue_xmit() sets
the mac_header field in the sk_buff, which is then passed
to tc_egress(). It queues the packet in the queueing
discipline (qdisc) [21]. As long as the NIC buffer is filled,
__qdisc_run() dequeues the packets from the buffer. Af-
ter some post-processing in validate_xmit_skb(), e. g.,
calculating the Ethernet checksum or adding VLAN tags,
the kernel calls ndo_start_xmit, and consequently, adds
the packet to the TX ring of the NIC. Eventually, the
NIC’s queue may be full. In this case, the kernel stops
the qdisc [21] and queues sk_buff. Finally, it maps the
packet to a fixed location in memory for Direct Mem-
ory Access (DMA) after adding more sk_buff metadata.

dev_direct_xmit allows circumventing the qdisc [21],
directly writing the packet to the TX ring of the NIC.
eXpress Data Path (XDP) [22] is a use case of this.
Eventually, the function notifies the NIC via an interrupt
to end the processing and frees the sk_buff.

4.2. Ingress Path

Now, we trace the path of a packet that arrives at
the NIC until a user space application reads it through a
socket, see Figure 4. Most notably, it analyzes the headers
to determine the following function call and strips them.

Application

TCPIP Layer

Ring
Buffer

User
 Space

Driver

Kernel
Space

Socket Receive Queue

Kernel Memory

Packet
#1

Packet
#2

Packet
#3

Packet
#4

read()

ip_rcv()

tcp_v4_rcv()

ne
ti
f_

rc
v_
sk

b(
)

Pointer Receive List

IRQ

NIC

RX

Figure 4: Ingress path of a packet in case of TCP as
described in Section 4.2 (adopted from [10]).

4.2.1. Ethernet Layer. After verifying and optionally ze-
roing the Ethernet checksum and applying a MAC address
filter, the NIC copies the packet to the system’s memory
via DMA. Then, it notifies the operating system via an
interrupt and indicates the location of the packet data.
With this, the operating system can allocate an sk_buff.
Now, the kernel inserts metadata into the sk_buff, like
the protocol field (Ethernet), the receiving interface,
and the packet type, in our case, IP.

At this stage, the kernel knows the start of the Ethernet
header, so it sets the mac_header field to the beginning of
the sk_buff. Finally, it removes the Ethernet header from
the sk_buff before it passes it further up the network
stack. Next, the packet arrives in netif_receive_skb().
The function clones sk_buff and forwards it to the virtual
TAP interface. The TAP interface enables communication
between Virtual Machines (VMs) and the host within
the same network. Another important case here is for-
warding VLAN-tagged packets to the VLAN interface.
Furthermore, when the interface has a physical master,
i. e., it is a virtual interface or part of a network bridge,
rx_handler() steals the packet. rx_handler() also sets
the network_header field of the sk_buff. Finally, it calls
the IPv4 protocol handler function ip_rcv().

4.2.2. IP Layer. The Ethernet layer passes the packet to
the IP layer via the function ip_rcv(). Again, ip_rcv()
inspects the MAC address and drops foreign ones. Then,
the version, length, and checksum fields are verified.
Next, the function sets the transport_header field of
the sk_buff. It also applies netfilter’s PRE_ROUTING
rule. It implements the filter by forwarding the packet
to the NF_INET_PRE_ROUTING hook. The hook gets a

Seminar IITM WS 23 91 doi: 10.2313/NET-2024-04-1_16

pointer to the ip_rcv_finish() function that it calls
after completion. If a network layer master device is
registered, it passes the sk_buff to its handler. It calls
ip_route_input_noref(), which reads the IP header
from the sk_buff. Next, the kernel processes IP options
via ip_rcv_options(). Afterward, it calls the previously
selected routing function via dst_input(). There are
three options for routing a packet:
1) ip_forward: This function activates for packets not

addressed to the current machine. It proceeds by for-
warding the packet without additional processing.

2) ip_local_deliver(): If we are the final receiver of
the packet (localhost), the kernel does not forward the
packet but passes it up the networking stack.

3) ip_mr_input(): This function is for multicast packets,
i. e., addressed to a multicast address.

As we are mainly interested in how a packet is handled
at the final receiver, taking all layers into account, we
continue with ip_local_deliver(). Most importantly,
this function takes care of IP fragmentation by calling
ip_defrag(), queueing packets until receiving all frag-
ments. Afterward, the event NF_INET_LOCAL_IN triggers,
which in return calls ip_local_deliver_finish(), strip-
ping the IP header from the sk_buff. Finally, it passes
the packet from the IP to the TCP/UDP layer via the
dst_input() function to the tcp_v4_rcv() or function.
It determines the corresponding protocol handler by in-
specting the header pointing to the sk_buff.

4.2.3. Transport Layer. Now, we inspect the counterpart
of the egress TCP and UDP functions.
TCP. First, the segment arrives at the transport layer func-
tion tcp_ipv4_recv() with the sk_buff header pointer
moved to the start of the TCP or UDP header. Then,
it validates the transport header via pskb_may_pull(),
validating the TCP checksum. As before, it removes
the TCP header from the sk_buff. To pass the packet
further, it locates the corresponding TCP socket via
__inet_lookup_skb(). It writes the packet to the socket
receive queue (see Figure 4) and signals that new data
is available, e. g., via SIGIO or SIGURG. This notification
mechanism allows for efficient polling of sockets. As for
the egress, the kernel maintains the TCP state machine
during packet processing. e. g., it processes no new packets
for TCP connections terminated via a TCP_CLOSING.

We briefly highlight two important cases dur-
ing processing: TCP_NEW_SYN_RECV and TCP_TIME_WAIT.
TCP_NEW_SYN_RECV means that there is a new connection.
In this case, the kernel refuses the connection at TCP level
via tcp_filter(). During TCP_TIME_WAIT, the kernel
discards any further TCP segments.

Furthermore, there is a slow and a fast path. The
slow path contains more error checks and lookups. In
contrast, the fast path is optimized for speed, not allowing
introspection and traffic analysis. With the slow path,
we wait until the state machine is at TCP_ESTABLISHED
in tcp_v4_do_rcv(). Once updated, tcp_v4_do_rcv()
calls tcp_rcv_established(), which processes packets
both in the fast and slow paths. It also validates that
sequence numbers are ascending. The fast path copies the
packet directly to the user space. The kernel always tries to
use the fast path, if possible. But when, e. g., establishing

a TCP connection, this not possible since the kernel has
to track the new connection.

After handling the TCP state machine and choosing
the path, the kernel enqueues the packet into the socket
queue so the user program can read it (see Figure 4).

Since TCP is very complex, covering further aspects
is beyond this paper’s scope. However, [7], [10], [11]
describe it in more detail.
UDP. Compared to TCP, the implementation of UDP
is less complex. It starts with udp_rcvmsg() called via
dst_input() in the IP layer. First, the function calls
__skb_recv_udp() to read the datagram from the socket
with a previously calculated offset. In particular, it contin-
uously tries to read a sk_buff from the socket, eventually
stopping when a new UDP datagram arrives. The check-
sum of the datagram is then validated. Then, the function
copies the destination IP and UDP port to map the data-
gram to the correct socket. Consequently, it consumes the
UDP datagram via skb_consume_udp(). Finally, it adjusts
the peek offset, handles reference counters, and frees the
sk_buff via __consume_stateless_skb().

4.2.4. Socket Layer. Here, the kernel collects the new
data written to a TCP or UDP socket via the read()
function from a socket, dequeuing the packet from the
socket receive queue (see Figure 4). To match the use
of IPv4 in the egress, we use an AF_INET receiving
socket. The function sys_recv() enables this, first calling
sys_recvfrom() to look up the socket. Then, it calls
sock_recvmsg() to read from the socket and passes
the received message through Linux Security Modules,
similar to the egress. For IPv4, inet_recvmsg() calls
either tcp_recvmsg() or udp_recvmsg(). They dequeue
the packet’s content and write it to a userspace buffer,
e. g., an array on the heap. Finally, they free the sk_buff.

5. Conclusion

Socketsys_send() sys_recv()

Applicationwrite() read()

UDPudp_sendmsg() udp_recvmsg()

IPip_queue_xmit() ip_rcv()

Ethernetdev_queue_xmit() netif_receive_skb()

Wire

Figure 5: An overview of the most important functions in
both egress and ingress for UDP, as described in Section 4.

This paper presented how a packet traverses the Linux
kernel for TCP/IPv4 and UDP/IPv4. Figure 5 illustrates a
recap of the packet egress and ingress path, highlighting
the most important functions of each layer. Moreover, we
described the intricacies of packet processing, including
routing, filtering, and queuing mechanisms employed by

Seminar IITM WS 23 92 doi: 10.2313/NET-2024-04-1_16

the Linux kernel. Furthermore, we have seen how the
different layers in the kernels communicate. By lever-
aging this knowledge, network administrators and de-
velopers can make informed decisions when optimizing
network performance, designing security measures, or
troubleshooting networking issues.

Overall, the observed changes to the existing literature
are primarily enhancements rather than rewrites, e. g.,
refactorings or security improvements. A prime example is
the choice of initial sequence numbers for TCP. For secu-
rity reasons, the kernel authors revised the underlying hash
algorithm multiple times [23]. The conservative changes
make sense, as the protocols remain mostly untouched
while the impact of errors is high. Performing a similar
analysis for Multipath TCP or QUIC is future work.

References

[1] T.-H. Lee, S.-W. Kang, T. Kim, J.-S. Kim, and H.-J. Lee, “Smart
Refrigerator Inventory Management Using Convolutional Neural
Networks,” in 2021 IEEE 3rd International Conference on Artifi-
cial Intelligence Circuits and Systems (AICAS), 2021, pp. 1–4.

[2] W3Techs. (2019) Usage Statistics of Operating Systems for
Websites. https://w3techs.com/technologies/overview/operating_
system. [Online; accessed 02-December-2023].

[3] ——. (2019) Usage Statistics of Unix for Websites. https://w3techs.
com/technologies/details/os-unix. [Online; accessed 02-December-
2023].

[4] J. Corbet. (2011) A JIT for Packet Filters. https://lwn.net/Articles/
437981/. [Online; accessed 02-December-2023].

[5] C. Paasch and O. Bonaventure, “Multipath TCP,” Commun.
ACM, vol. 57, no. 4, p. 51–57, apr 2014. [Online]. Available:
https://doi.org/10.1145/2578901

[6] M. T. Hossain, “A Review on IPv4 and IPv6: A
Comprehensive Survey,” 01 2022, International Intercon-
nect Technology Conference (IITC). [Online]. Available:
https://doi.org/10.13140/RG.2.2.18673.61284

[7] J. Crowcroft and I. Phillips, TCP/IP and Linux Protocol Implemen-
tation: Systems Code for the Linux Internet. USA: John Wiley &
Sons, Inc., 2001.

[8] A. Chimata, “Path of a Packet in the Linux Kernel Stack,” 01
2005. [Online]. Available: https://www.cs.dartmouth.edu/~sergey/
netreads/path-of-packet/Network_stack.pdf

[9] C. Guo and Z. Shaoren, “Analysis and Evaluation of the TCP/IP
Protocol Stack of Linux,” vol. 1, 02 2000, pp. 444–453 vol.1.

[10] Helali Bhuiyan and Mark E. McGinley and Tao Li and
Malathi Veeraraghavan, “TCP Implementation in Linux : A Brief
Tutorial,” 2008. [Online]. Available: https://api.semanticscholar.
org/CorpusID:14676835

[11] Antti Jaakkola, “Implementation of Transmission Control Protocol
in Linux,” 2012. [Online]. Available: https://wiki.aalto.fi/download/
attachments/70789052/linux-tcp-review.pdf

[12] F. U. Khattak. (2012) IP Layer Implementation of Linux
Kernel Stack. [Online]. Available: https://wiki.aalto.fi/download/
attachments/70789059/linux-kernel-ip.pdf

[13] M. C. Wenji Wu, “The Performance Analysis of Linux Network-
ing - Packet Receiving,” 2006, 15th International Conference on
Computing in High Energy and Nuclear Physics (CHEP 2006).

[14] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal,
“Understanding Host Network Stack Overheads,” in Proceedings of
the 2021 ACM SIGCOMM 2021 Conference, ser. SIGCOMM ’21.
New York, NY, USA: Association for Computing Machinery,
2021, p. 65–77. [Online]. Available: https://doi.org/10.1145/
3452296.3472888

[15] M. Abranches, O. Michel, and E. Keller, “Getting Back What
Was Lost in the Era of High-Speed Software Packet Processing,”
in Proceedings of the 21st ACM Workshop on Hot Topics in
Networks, ser. HotNets ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 228–234. [Online]. Available:
https://doi.org/10.1145/3563766.3564114

[16] J. Benc, “The Network Packet’s Diary: A Kernel Journey,” 2018,
devcon.cz 2018.

[17] The kernel development community. struct sk_buff. https:
//docs.kernel.org/networking/skbuff.html. [Online; accessed 02-
December-2023].

[18] G. Foundation. (2023) The GNU C Library Reference Manual.
https://sourceware.org/glibc/manual/2.38/html_mono/libc.html#
Transferring-Data. [Online; accessed 05-December-2023].

[19] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX
System Programming Handbook, 1st ed. USA: No Starch Press,
2010.

[20] “An Ethernet Address Resolution Protocol: Or Converting Network
Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware,” RFC 826, Nov. 1982. [Online]. Available:
https://www.rfc-editor.org/info/rfc826

[21] tc - traffic control utility, Linux Documentation Project, December
2023, https://man7.org/linux/man-pages/man8/tc.8.html.

[22] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The eXpress Data Path:
Fast Programmable Packet Processing in the Operating System
Kernel,” in Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 54–66. [Online]. Available: https://doi.org/10.
1145/3281411.3281443

[23] F. Gont and S. Bellovin, “Defending Against Sequence Number
Attacks,” RFC 6528, Feb. 2012. [Online]. Available: https:
//www.rfc-editor.org/info/rfc6528

Seminar IITM WS 23 93 doi: 10.2313/NET-2024-04-1_16

ISBN 978-3-937201-79-5

9 783937 201795

ISBN 978-3-937201-79-5
DOI 10.2313/NET-2024-04-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Containerized Systems: Difference towards network IO
	RFC 9000 and its Siblings: An Overview of QUIC Standards
	Accelerating QUIC with XDP
	Extracting Information from Machine Learning Models
	Probabilistic Network Telemetry
	Industrial Ethernet: Challenges and Advantages
	Predictive Modelling for Next API Call Sequence in Content Delivery Networks
	An Overview of the 802.11ax Standard
	Link Failure Detection in Computer Networks
	ZDNS vs MassDNS: A Comparison of DNS Measurement Tools
	Survey on Recent Applications of Extreme Value Theory in Networking
	Network Applications of Trusted Execution Environments
	LoRaWAN: Current State, Challenges, and Chances
	Covert Communication over ICMP
	Literature Survey: Performance Enhancing Proxies for TCP and QUIC
	The Path of a Packet Through the Linux Kernel

