
Network Insights with P4 In-Band Network Telemetry

Sebastian Warter, Sebastian Gallenmüller∗, Kilian Holzinger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: sebastian.warter@tum.de, gallenmu@net.in.tum.de, holzinger@net.in.tum.de

Abstract—Understanding what happens to packets in layer 2
networks is inherently difficult. The transparent nature
of network switches can make the identification of faulty
network components a time-consuming search. The P4 In-
Band Network Telemetry (INT) can help by aggregating
switch telemetry information in the data packets. This paper
explains the concepts of INT in a simple use case where we
want to identify a high-latency link. With the P4 implementa-
tion from the GÉANT project, we demonstrate this scenario
in a virtual network. The evaluation of this experiment shows
that INT is suitable for the use case but has some overhead
in the emulated network.

Index Terms—P4, in-band network telemetry, INT, monitor-
ing

1. Introduction

The operation and administration of large networks
can be a challenging task. For example, assume that we are
dealing with a video conference company network. Such
a network usually has to transmit a considerable amount
of UDP packets with low latency. There is likely also a
monitoring system in place that can detect abnormal high
latencies or low data rates from an end-to-end perspective.

However, this information does not help to identify the
problematic network component. If the network consists
of layer 3 routers, a tool like tracepath can help to
narrow the issue down. Unfortunately, it does not work in
all cases. In complex networks, the routers might handle
the echo request differently than the real traffic without
triggering the problem. The problem might also involve a
layer 2 switch or a link between two switches. They are
transparent to the tracepath tool.

Ideally, we would have a technology that can track
on-demand how regular data packets move through the
switches in a layer 2 network. If a switch sends metadata
to a monitoring system every time it encounters a tracked
packet, we could reconstruct the layer 2 path of each
packet including time information. This approach would
still require a pre-existing identifier in the packets, which
is not always available.

A different approach is to add the metadata to the
packet itself at each switch it passes. The aggregated
metadata then has to be removed from the packet once
it leaves the network. This does not require unique IDs
for every packet.

The second approach can be realized using P4 pro-
grammable switches and the In-Band Network Telemetry
(INT) specification described in Section 2. The following

Section 3 describes how to solve the use case described at
the beginning with INT. In Section 4, we pick a suitable
P4 implementation to create a test setup in Section 5. This
test setup is then evaluated in Section 6 on our use case.

Similar demonstration setups were also described in
related work. For example, Kim et al. briefly described
a simple demonstration setup based on an older INT
specification [1]. Parniewicz et al. described their results
on more complex network environments [2]. This paper
focuses on a simple use case instead.

2. Background

Traditionally, professional network hardware is highly
specialized and has limited configuration possibilities.
Even though this usually means it operates efficiently,
it has the downside that new functionality or protocols
usually require buying expensive new hardware. The P4
ecosystem presented in Subsection 2.1 aims to change that
with a programming language for packet processing. In
order to emulate networks with P4 switches, the mininet
project described in Subsection 2.2 can be used. The
flexibility of P4 also allows to implement more advanced
monitoring systems like the In-band Network Telemetry
(INT) in Subsection 2.3.

2.1. P4

P4 stands for “Programming Protocol-Independent
Packet Processors” and was first described by Bosshart et
al. [3]. It is a programming language for packet processing
that describes detailed steps to perform on incoming net-
work packets. It does not assume the usage of standardized
protocols like IP or TCP, which is usually a prerequisite
for traditional network hardware. Instead, it allows the
programmer to define the header structures themselves.
Due to this flexibility, existing P4-based hardware can also
be used for network protocols that do not exist yet. [3].

The P4 language (more precisely, the 2016 revision
P416) has two essential language constructs. “Parsers”
parse the headers of an incoming packet. They use a
programmer-defined state machine to identify and parse
nested headers. “Control blocks” are imperative programs.
They can use tables to trigger programmer-defined actions
based on the value of header fields. The table entries are
usually not part of the program and are configured by the
control plane at startup or runtime (for example, a routing
table). [4].

The possible actions a switch can perform, and the
processing pipeline itself, is not enforced by P4. Instead,

Seminar IITM SS 23 125 doi: 10.2313/NET-2023-11-1_22



it provides the syntax to describe the capabilities of switch
architectures. For example, a certain switch model might
provide functions to calculate CRC checksums, while
other switch models do not support them. [4].

The reference switch architecture v1model1 is based
on a simple packet processing pipeline with six pre-
defined steps (including ingress/egress pipeline and emit-
ting headers at the end). The P4 project also provides
a software implementation of a switch called “Behavior
Model 2” (“bmv2”) that supports the v1model [5].

2.2. Mininet

Developing P4 applications using real hardware is
difficult. The hardware is usually expensive and difficult to
reset to a clean state or to debug. For developing systems
with P4-based switches, a virtual network setup is more
convenient. Although such an emulated network fails to
reflect real networks accurately, it can be a valuable tool
for network experiments [6].

A popular tool for creating virtual networks is mininet.
It is based on Linux’s built-in virtualization capabilities
for network interfaces. Similar to container solutions like
Docker, each virtual host is represented by a process with
virtual network interfaces. This way, hosts in a mininet
network can efficiently run normal applications. Switches
in a mininet network are OpenFlow-compatible software
implementations. [7].

The mininet command-line interface directly supports
the creation of simple, pre-defined network topologies.
Once it is running, it offers commands to inspect the
topology and run normal shell commands on the virtual
hosts. This way, the network settings of hosts can be
configured using normal Linux commands. If more com-
plex topologies are required, they can be defined using an
object-oriented Python API. [7].

In order to test P4 applications in mininet, the
OpenFlow-based switch can be replaced with a bmv2
switch. The P4 ecosystem offers the tool p4app for this
purpose. It is a convenient tool that can compile a P4
program, start a mininet topology, and configure the tables
on the switches. Because it is based on docker containers,
it offers a development environment with all necessary
tools without using resource-hungry alternatives like vir-
tual machines. [8].

2.3. P4 In-band Network Telemetry (INT)

Understanding what happens in layer 2 networks is
inherently difficult. The switches in the network are, by
design, supposed to be transparent to network traffic. This
means in practice, that it is not directly possible to know
which path a specific packet took through a network or
how individual links affect the total latency. With sophis-
ticated hardware, it is usually possible to access additional
information like packet rates. Unfortunately, they only
allow us to guess what is happening in the network.

To improve insights into networks, the P4 work-
ing group specified a protocol called “In-band network
telemetry (INT)”. It is designed to track the visited

1. https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

TABLE 1: INT Hop-by-hop header, adapted from [9]

0 1 2 3

Version Flags Reserved Hop ML Remaining Cnt

Instruction Bitmap Reserved

Last hop INT metadata

. . .

First hop INT metadata

switches and their states of any packet flow in a P4-
based network. For this purpose, INT allows storing the
instruction to collect telemetry and the switch states in the
already existing data packets. [9].

In INT 1.0, the instruction to collect telemetry origi-
nates from an “INT source” switch. It injects the header
in Table 1 into the forwarded packets. In particular, it sets
bits in the “Instruction Bitmap” which correspond to the
information that should be collected. This switch and all
“INT transit hop” switches can append their own state
to this header while forwarding the packet. Eventually,
an “INT sink” switch removes the header and sends the
collected data to a monitoring system. The report format
is not specified in INT 1.0. [9]

The collected metadata usually includes information
like device identifiers or timestamps. This information can
then be used to visualize the layer 2 path of packets. It
also allows to calculate the link and switch latencies from
timestamps in the metadata.

The previously described setup is called “INT-MD”
in the most recent version 2.1 of INT. The new version
also adds two additional modes. In “INT-MX” mode, the
telemetry is sent directly to the monitoring system by each
switch instead of appending it to the header. This avoids
packets that grow too large and exceed the MTU. The
“INT-XD” mode works similarly, but the switches do not
create an INT header and use built-in instructions to send
telemetry. [10].

3. A Simple Monitoring Use Case

In order to illustrate the potential of INT, this paper
demonstrates its benefits in a simple use case. We assume
that a network operator wants to localize latency issues in
a layer 2 network. With traditional tooling, this would be
difficult because layer 2 switches are usually transparent
to network traffic.

This problem can be solved with a simple INT setup.
In this setup, each monitored packet aggregates a history
of switch states as it passes the network. When the packet
leaves the network, this information is sent to a monitor-
ing system. The monitoring system can then be used to
analyze the data. In our use case, it can calculate latencies
for each link based on the INT timestamp differences.

To demonstrate this in practice, we create a virtual test
network. It uses

• mininet to create three bmv2 switches and two
hosts

• P4 code to create and process the INT headers
• a simple INT-MD configuration with one INT

source, one INT transit hop, and one INT sink

Seminar IITM SS 23 126 doi: 10.2313/NET-2023-11-1_22



TABLE 2: INT switch implementations

Name bmv2 INT version (mode) working
documentation

joshi × 1.0/2.1 (all) not tested
ONOS ✓ 1.0 (MD) ×
GÉANT ✓ 1.0 (MD) ✓

TABLE 3: INT collector implementations

Name Backend Works on
Linux 5.19

INTCollector InfluxDB, Prometheus ×
GÉANT InfluxDB ✓

• node ids, ingress timestamps, and egress times-
tamps, and

• a monitoring system that can collect and visualize
the INT data.

For a real INT deployment, it is usually desirable to
collect additional data like congestion indicators. Even
though they can provide valuable information to diagnose
network issues, they are omitted here to avoid additional
complexity.

4. P4 INT Implementations

Over time, many developers have implemented differ-
ent versions of the INT specification in P4-based projects.
This section briefly compares three well-documented im-
plementations in Subsection 4.1. After that, it describes
details about the GÉANT implementation in Subsec-
tion 4.2, which is used in the remaining sections of this
paper.

4.1. Choosing a Suitable Implementation

In practice, we use two main software components for
our test setup:

• a P4 implementation of a network switch with INT
support, and

• an application that collects the INT headers and
transforms them into a format compatible with an
existing database system.

This paper considers and compares the three P4 imple-
mentations summarized in Table 2 and the two collectors
summarized in Table 3. Numerous other implementations
exist, but many are based on the outdated version 0.4 of
INT or are not properly documented.

The implementation created by Joshi in [11] is one
of the most recent ones and supports the latest INT
version 2.1. Unfortunately, it is built solely for Intel Tofino
hardware and does not support the bmv2. The INT 1.0
implementation in the Open Network Operating System
(ONOS) uses the bmv2, but its documentation2 is outdated
and does not work in current versions of ONOS. The
last implementation described by Parniewicz et al. [2] as
part of a GÉANT project is similar but has a working
documentation.

2. https://wiki.onosproject.org/display/ONOS/In-band+Network+
Telemetry+(INT)+with+ONOS+and+P4

A frequently used collector is the INTCollector de-
scribed by Tu et al. [12], which can send data to InfluxDB
or Prometheus backends. Unfortunately, this implementa-
tion fails to start on current Linux versions. For demon-
stration purposes, we can also use the slower Python
implementation included in the GÉANT project to store
the data in InfluxDB.

Only the switch implementation from the GÉANT
projects seems suitable for our virtual test setup. We use it
in the following sections for our use case from Section 3.
For simplicity, we also use the INT collector included in
the GÉANT project.

4.2. The implementation of the GÉANT project

This P4 implementation of INT was created as part of
a GÉANT project about network monitoring. It includes
an implementation of INT 0.4 and 1.0 for both virtual
bmv2 switches and Intel Tofino switches. It also has
extensive documentation and also provides visualization
tools. [13].

Add INT header
(source)

Forward Clone
(sink)

Append metadata
(transit)

Transform to report
(sink)

Remove INT header
(sink)

src
port

clone

!clone

report
port

dst
port

Figure 1: GÉANT P4 pipeline based on int.p4

The used P4 processing pipeline is visualized in Fig-
ure 1. It is configured using P4 tables [14].

In the ingress pipeline, the switch first adds the INT
header if a packet should be monitored. This decision is
made based on a flag to use a port as an INT source and a
list of layer 3/4 endpoint addresses to monitor. Next, the
egress port is picked from a static layer 2 address forward
table. If it is a port configured as an INT sink, the packet
is also cloned to the reporting port. [14].

The egress pipeline first appends the local metadata
if there is already an INT header in the packet. If the
destination is an INT sink port, the INT headers are
removed in the next step. If it is a cloned packet sent
to the reporting port, the packet headers are wrapped with
a report header in order to send them to the IP address of
the collector. The GÉANT project seems to use the same
headers as the Telemetry Report 1.0 specification for this
purpose [15]. [14].

5. Creating the P4 INT Test Setup

In the P4 INT demonstration setup, we have to install,
configure, and start multiple software components for
monitoring and the virtual network. For our simple re-
quirements, the docker-based configurations shipped with
the GÉANT project allow us to create an environment that
matches our requirements:

Seminar IITM SS 23 127 doi: 10.2313/NET-2023-11-1_22



1) Follow the instructions3 to start and configure
docker containers for InfluxDB and the grafana
dashboard. These components act as the moni-
toring system that stores and visualizes the INT
metrics. The collector itself is part of the next
step.

2) Start the INT 1.0 mininet testbed that is shipped
with the P4 implementation of the GÉANT
project. The included instructions4 describe how
to start the collector and use p4app to create a
virtual network in a docker container (external
connectivity is not required). Note that the In-
fluxDB IP address should be a public IP of the
host.

In the default configuration, the setup consists of three
statically configured switches. Each can act as an INT
source, transit hop, or sink. The network parts relevant to
this paper are visualized in Figure 2 based on the dump/net
output of mininet [7].

h1

10.0.1.1

s1

1 3 s2
2

3
s3

1 3

h2

10.0.2.2

Figure 2: Layer 2 path between h1 and h2 with IP ad-
dresses and port numbers

This setup now includes all parts required for our
monitoring use case from Section 3. For example, if we
send data from host 1 to host 2, switch 1 acts as an
INT source and adds instructions to collect all INT fields
(due to the configuration in commands1.txt). All switches
then add INT headers with telemetry while forwarding the
packets. Switch 3 removes the headers and sends the INT
data to the collector, which processes them and sends the
telemetry to the InfluxDB server.

6. Evaluation of the Test Setup

We now use the previously created test setup to
demonstrate how INT can help to localize latency issues.
For this purpose, we first introduce a 5000ms delay for
data sent from s1 to s2. Next, we start sending packets
from h1 to the IP address of h2. The GÉANT project
provides us with the Python script h1_h2_udp_flow.py
for this purpose. Both steps can be achieved by executing
the commands in Figure 3 in the mininet prompt [7], [16].

The collected INT metadata can be analyzed in the
Grafana dashboard. For our use case, we want to find

3. https://github.com/GEANT-DataPlaneProgramming/int-analytics
4. https://github.com/GEANT-DataPlaneProgramming/int-platforms/

tree/master/platforms/bmv2-mininet

s1 tc qdisc add dev s1-eth3 root netem delay 5s
h1 python /tmp/host/h1_h2_udp_flow.py

Figure 3: Mininet commands used for our test setup

latency issues. The interesting values for this purpose are
the pre-hop link delays (see Figure 4).

In our experiment, the delay between Switch 1 and
2 is about 6 s. This is higher than the near-zero delay
between Switch 2 and 3. Therefore, we have identified
our high-latency link.

Unfortunately, this experiment also reveals some lim-
itations. There is an additional delay of about 1 s on the
link s1-s2 and not on the link s2-s3. We suspect that
it is caused by the overhead of the software switch, but
this hypothesis cannot be verified without tests on real
hardware.

0 50 100 150 200 250 300
0

2,000

4,000

6,000

Time [s]

D
el
ay

[m
s]

Switch 1 - 2
Switch 2 - 3

Figure 4: Link delays from experiment

Overall, this virtual experiment showed how it is pos-
sible to find high-latency links in an INT-capable network.
Unfortunately, there is a significant overhead which would
make it difficult to measure lower, more realistic latencies.
Further evaluation of INT’s accuracy in this use case
would likely require P4-capable hardware and is out of
the scope of this paper.

7. Conclusion

In this paper, we saw how INT can help to solve
network problems in previously not possible ways. Based
on a simple use case where we located latency issues in
layer 2 networks, we explained INT and created a virtual
demonstration setup. Our evaluation showed that INT is
suitable for the use case but, at least in our emulated
network, has a significant overhead.

Based on this setup, it is also possible to collect
other potentially helpful INT data. For example, a network
operator can decide to collect the queue occupancy or the
exact layer 2 path of a packet. Accurately evaluating the
precision of INT in these more complex use cases will
require real hardware and future work. Such future work
should also consider the newer version 2.1 of INT, which
can provide additional possibilities to debug network is-
sues.

References

[1] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J.
Wobker, “In-band network telemetry via programmable data-
planes,” in ACM SIGCOMM, vol. 15, 2015.

[2] D. Parniewicz, T. Martínek, F. Pederzolli, D. Ding, M. Campanella,
I. Golub, and T. Chown, “In-Band Network Telemetry Tests in
NREN Networks,” GÉANT Association, Tech. Rep., 2021.

Seminar IITM SS 23 128 doi: 10.2313/NET-2023-11-1_22



[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[4] The P4 Language Consortium, “P4_16 Language Specification,”
https://p4.org/p4-spec/docs/P4-16-v1.2.4.pdf, 2023, [Online; ac-
cessed 15-June-2023].

[5] P4 Project, “The Reference P4 Software Switch,” https://github.
com/p4lang/behavioral-model, 2023, [Online; accessed 15-June-
2023].

[6] R. Oliveira, C. Schweitzer, A. Shinoda, and L. Prete, “Using
mininet for emulation and prototyping software-defined networks,”
06 2014, pp. 1–6.

[7] Mininet Project Contributors, “Mininet Walkthrough,” http://
mininet.org/walkthrough/, 2022, [Online; accessed 15-June-2023].

[8] P4 Project, “P4app,” https://github.com/p4lang/p4app, 2019, [On-
line; accessed 15-June-2023].

[9] The P4.org Applications Working Group, “In-band Network
Telemetry (INT) Dataplane Specification - Version 1.0,” https:
//p4.org/p4-spec/docs/INT_v1_0.pdf, 2018, [Online; accessed 15-
June-2023].

[10] ——, “In-band Network Telemetry (INT) Dataplane Specification
- Version 2.1,” https://p4.org/p4-spec/docs/INT_v2_1.pdf, 2020,
[Online; accessed 15-June-2023].

[11] M. Joshi, “Implementation and Evaluation of In-Band Network
Telemetry in P4,” Master’s thesis, KTH Royal Institute of Tech-
nology, 2021.

[12] N. V. Tu, J. Hyun, G. Y. Kim, J.-H. Yoo, and J. W.-K. Hong,
“Intcollector: A high-performance collector for in-band network
telemetry,” in 2018 14th International Conference on Network and
Service Management (CNSM), 2018, pp. 10–18.

[13] D. Parniewicz, “Common P4-based INT implementation
for bmv2-mininet and Tofino platforms,” https://github.com/
GEANT-DataPlaneProgramming/int-platforms, 2021, [Online;
accessed 15-June-2023].

[14] ——, “INT Configuration Guide,” https://github.com/
GEANT-DataPlaneProgramming/int-platforms/blob/master/
docs/configuration.md, 2021, [Online; accessed 15-June-2023].

[15] The P4.org Applications Working Group, “Telemetry Report For-
mat Specification - Version 1.0,” https://raw.githubusercontent.com/
p4lang/p4-applications/master/docs/telemetry_report_v1_0.pdf,
2018, [Online; accessed 15-June-2023].

[16] F. Ludovici and H. P. Pfeifer, tc-netem(8) Linux Manual Page,
2011.

Seminar IITM SS 23 129 doi: 10.2313/NET-2023-11-1_22


