
Saving and Recovering Systems

Philipp Tekeser-Glasz, Sebastian Gallenmüller∗, Manuel Simon∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: philipp.tekeser-glasz@tum.de, gallenmu@net.in.tum.de, simonm@net.in.tum.de

Abstract—The Chair of Network Architectures and Services
operates multiple testbeds that allow researchers to develop
and run reproducible network experiments. Reproducibility
is achieved by running experiments on test nodes that have
no persistent storage. Instead, test nodes boot a live system
via PXE. This ensures that an experiment always starts
with the same initial state. Users can reserve test nodes in
advance using a calendar web interface. The facts that test
nodes cannot store data persistently and that they are shared
between users create a problem for users who are developing
new experiments since all development progress is lost after
a restart of the test node.

This paper presents an approach to overcome this prob-
lem by using virtual machines that can be saved to a host
with persistent storage and later restored on a test node.

Index Terms—virtualization, network experiments, testbeds,
reproducibility, development

1. Introduction

The testbeds at the Chair of Network Architectures
and Services are managed by the Plain Orchestration Ser-
vices (pos) which allows researchers to develop and run
reproducible network experiments [1]. One of the goals
of the testbeds and the pos framework is reproducibility,
which means that different researchers are able to obtain
the same result using the same experiment setup [2].
Each testbed consists of multiple test nodes that run the
experiment code and a management node that controls
the execution of the experiment. As a measure to achieve
reproducibility, test nodes run live systems and do not have
any persistent storage that could contain leftover data from
previous users. This ensures a clean state at the beginning
of an experiment.

However, during the development phase of an exper-
iment, this architecture prevents users from saving the
current state of a project between sessions since all data
is lost after a reboot. This paper presents an approach to
develop an experiment in virtual machines on a test node,
which can be saved to the management node and restored
later.

Section 2 gives a short introduction to architecture
and the technologies used in the testbed. The problem of
lost development progress that arises from the stateless
architecture is described in Section 3 and a possible
solution is explained. In Section 4, the implementation
of that solution is presented. Section 5 shows an example
workflow from the user’s perspective. The limitations of
the chosen approach are outlined in Section 6.

2. Background

This section explains the architecture of the testbed.
The testbed consists of a management node and multiple
test nodes. Test nodes run the experiment code. Some of
them contain specialized network hardware for specific
experiments. In order to guarantee a defined state at the
beginning of an experiment, these nodes do not have any
persistent storage that could contain leftover data from
previous experiments. A live operating system is loaded
over the network using the Preboot Execution Environ-
ment (PXE). Therefore, any changes to the system are
lost after a reboot. In addition to the test nodes, each
testbed has a management node to control the test nodes.
On the management node, each user has a persistent
home directory. Each test node contains a Baseboard
Management Controller (BMC); a device that allows the
management node to send commands to the test node
even if the operating system is unresponsive or has not
been started. The management node communicates with
the BMCs over the network using the Intelligent Platform
Management Interface (IPMI).

In order to ensure that users do not interfere with each
other by accessing a node at the same time, pos offers a
web interface through which nodes can be reserved in
advance. Users can then log in to the management node
using SSH and then use the pos command line tool to set
up their test nodes.

Only the management node is accessible from the
Internet. If a user wants to connect to a test node, they
first have to connect to the management node via SSH
and can then establish an SSH connection to the test node
from there.

For development purposes, pos also offers the option
to create multiple virtual machines on a physical test
node. This is done by setting up the physical test node
and launching virtual machines using the management
software libvirt [3]. Virtual machines are managed and
booted using the same protocols that physical test nodes
use. In order to allow pos to control virtual machines, the
host runs VirtualBMC [4] which accepts IPMI commands
and passes them on to the virtual machines running under
libvirt. The virtual machines receive their live operating
systems via PXE and do not have any persistent storage
either.

3. Problem

While the fact that test nodes do not store data per-
sistently allows researchers to run automated and repro-

Seminar IITM SS 23 121 doi: 10.2313/NET-2023-11-1_21

vm1 vm2

test node

eno0 eno1 eno2

eth0

macvtap

eth0

Figure 1: Networking on a test node

ducible network experiments, it is difficult to develop
experiments in this environment since all files are lost after
a reboot and users have to manually save and restore their
progress between sessions.

This paper presents an approach to automatically save
the state of virtual machines to the management node from
where it can later be restored on another test node.

The chosen approach consists of creating memory
images of the virtual machines on a test node, copying
them to the management node where each user has a
persistent home directory and later restoring the virtual
machines.

Additionally, it is necessary to save the network con-
figuration of the virtual machines. In a typical setup,
there is a virtual management network that connects all
virtual machines to the management interface of the host
using a macvtap bridge device, as shown in Figure 1.
The management interface is the one through which the
node can communicate with the management node. This
network allows pos to manage the virtual machines and
users to connect to them via SSH from the management
node. Other physical interfaces that are connected to other
nodes might be present for experiments. For this reason,
the correct interface has to be selected when setting up
the virtual machines for the first time and after restoring
since the new host could have other network interfaces
than the old one. This selection is done automatically by
searching the interface through which the default gateway
is reachable.

To ensure that pos can find and control the virtual
machines, the virtual network interfaces have to use MAC
addresses that are derived from the host’s IP address.
When restoring the machines on a different test node,
the MAC addresses have to be changed to match the
new host’s IP. This is done by removing the interface
from the virtual machines before saving and adding a new
interface with the updated MAC address after restoring.
After that, the guest system has to be reconfigured to
recognize the new interface with a different MAC address.
Since there is no working network connection at this stage,
the reconfiguration is performed using a virtual serial port.
This reconfiguration of the management network allows
restoring the virtual machines on any test node.

A simpler approach is to leave the network interfaces
untouched, but this comes with the limitation that the
virtual machines can only be restored on the test node

from which they were saved because the MAC addresses
will otherwise not match the pattern that is expected by
pos and it will not be possible to establish a connection to
the machine. The advantage of being able to freely choose
a host is that users can work at any time without having
to wait until a specific test node becomes available.

It is important to note that the chosen approach is
not meant to replace the reproducible architecture of the
testbed. While the approach simplifies the development
process of new experiments, actual measurement results
should only be acquired using the reproducible approach
described in [1].

4. Implementation

The development workflow consists of three steps that
will be explained in this section. For each step in the
workflow, there is a Bash script that the user executes on
the management node. The scripts connect to the specified
test node to perform the necessary tasks. A simplified
overview of the interactions between the nodes in each
step is shown as a sequence diagram in Figure 2. Each
of the following subsections corresponds to a frame in
Figure 2.

4.1. Creating virtual machines

This process is based on the existing example code
that is used to create virtual machines in the testbed [5]. In
this step, the user starts a Bash script on the management
node which starts the selected test node and installs the
necessary virtualization software. After that, the virtual
management network is created. Then a user-specified
number of virtual machines is created. Each virtual ma-
chine has a network interface that is connected to the
management network. The MAC address is calculated
based on the IP address of the host and the ID of the
virtual machine. For each virtual machine, a virtualBMC
is started on the host that listens on a specific port based
on the ID of the VM. Once this is done, pos can start
the VMs, which then load their live operating system via
PXE like physical machines. When the boot process is
completed, getty is started on the virtual serial port in
order to allow a reconfiguration of the network settings
after restoring. Users can now establish SSH connections
and start working on their projects.

4.2. Saving virtual machines

To save the virtual machines, a Bash script is executed
on the management host which launches another Bash
script on the test node that performs multiple steps. The
first step is to create a file that contains a list of all virtual
machines and their IDs. The second step is to remove
the management interfaces from the virtual machines. If
the user has configured other interfaces, the script will
ignore those. In the third step, the definitions of the virtual
machines are stored as XML files. These files contain
general configuration data, e.g. memory size and serial
ports. After that, the actual memory dump is created and
compressed using gzip. The last step is to export the
network configuration from libvirt and replace the host

Seminar IITM SS 23 122 doi: 10.2313/NET-2023-11-1_21

management
node test node

IPMI command

PXE image

SSH setup commands

virtual machine

IPMI command

PXE image

start VM

SSH save commands

create

save

create image

memory imagedirectory structure

end of user session
test node might be used by another user

IPMI command

PXE image

SSH restore
commands

directory structure

restore

restore VM

reconfigure
systemd-networkd

Figure 2: Simplified sequence diagram of the implemen-
tation

vm_save
|-- net
| ‘-- net.xml
|-- vm
| |-- vm1.gz
| ‘-- vm2.gz
|-- vmmacs
‘-- vmxml

|-- vm1.xml
‘-- vm2.xml

Figure 3: Directory tree after saving

specific interface name with a placeholder variable that
will be replaced on the new host when restoring. The final
directory tree on the test node after all steps are completed
is shown in Figure 3. This directory is then copied to the
user’s home directory on the management node using SCP.
The compressed memory image of a Debian 11 system
with no additional software installed has a size of 1 GB.

4.3. Restoring virtual machines

The restoration process begins like the creation pro-
cess by starting the test node and installing the virtual-
ization software. In addition to that, the saved directory
is copied from the management node via SCP. First, the
network configuration is read and the placeholder variable
is replaced with the management interface. Then, the
virtual machines are redefined using the XML files. After
that, the memory images are decompressed and restored.
Each virtual machine gets a new management interface
with a MAC address based on the host’s IP address and
the ID that is read from the vmmacs file. However, the
guest system does not recognize the new interface because
of the changed MAC address. For this reason, an expect
[6] script is launched to replace the MAC address in the
interface configuration file of systemd-networkd on the
guest. After this step, the virtual machines can be reached
from other hosts on the network. In order to allow pos to
send IPMI commands to the virtual machines, virtualBMC
is started on the host system. This allows the user to reset
the virtual machine to a clean state using the pos command
line tool.

5. Example Workflow

This section shows the development workflow using
the scripts. As an example, iperf3 will be installed on
two virtual machines on test node vmexp1. These virtual
machines will then be saved to the management node and
restored on test node vmexp0. All shown commands are
run on the management node.

First, two virtual machines with Debian 11 are created
on the test node vmexp1.

. / e x p e r i m e n t . sh vmexp1

After the script has finished executing, there are two
virtual machines called vmexp1-vm1 and vmexp1-vm2.

It is now possible to establish an SSH connection and
start developing. In this simple example, we will install
iperf3 on both virtual machines.

s s h vmexp1−vm1 a p t i n s t a l l i p e r f 3
s s h vmexp1−vm2 a p t i n s t a l l i p e r f 3

Then, iperf3 is run in server mode on vmexp1-vm1 and in
client mode on vmexp1-vm2.

s s h vmexp1−vm1 i p e r f 3 −s −D
s s h vmexp1−vm2 i p e r f 3 −c vmexp1−vm1

This command will measure the throughput of the virtual
network connection between the two virtual machines.

At the end of a session, the user can save all virtual
machines to a new directory called save_dir using the
following command.

. / save_vms . sh vmexp1 s a v e _ d i r

The directory save_dir will then contain the structure
shown in Figure 3.

In order to start a new session on the node vmexp0,
the following command is used.

. / r e s t o r e . sh vmexp0 s a v e _ d i r

Seminar IITM SS 23 123 doi: 10.2313/NET-2023-11-1_21

Now, the user can continue working on the virtual ma-
chines called vmexp0-vm1 and vmexp0-vm2. In this case
we can run iperf again in order to see that the installed
package is present and that the network connection has
been restored correctly. Note that the iperf server process
is still running on vmexp0-vm1 since we saved a full
memory image of the virtual machines.

s s h vmexp0−vm2 i p e r f 3 −c vmexp0−vm1

Like before, this command will show the throughput of
the virtual network connection between the two restored
virtual machines.

6. Evaluation

The chosen approach simplifies the development pro-
cess of new experiments by allowing users to create
backups of virtual machines and restore them later on a
different host. It makes a more effective use of testbed
resources possible since users only have to use one phys-
ical test node when developing experiments that would
normally require multiple nodes.

However, there are some limitations. First, it is only
possible to restore virtual machines on a different host
when there is only a management network that has the
structure shown in Figure 1. Other interfaces are ig-
nored by the script and might therefore lead to an error
when restoring on a new host where the interface is not
available. More complex network setups, e.g. passthrough
interfaces, are possible but restoring will only work on the
same host where these interfaces are available.

When restoring network interfaces of type virtio on
the new host, AppArmor caused an error. For this reason,
AppArmor had to be completely disabled via a kernel
parameter in order to be able to restore these network
interfaces.

Another limitation is that the network reconfigura-
tion on the guest system is currently only supported for
systemd-networkd. It is therefore only possible to use
specific operating systems in virtual machines. In this
case, only Debian 11 was tested, which is commonly used
on the testbed.

When an experiment is ready to run, it might be
necessary to make changes to the code in order to run
it on physical hardware.

7. Conclusion

We explained the stateless nature of nodes in the
testbed and the advantages it has for reproducible net-
work experiments. This created the problem of losing
progress during the development phase of an experiment.
We proposed a solution to this problem based on virtual
machines which can be saved to the management node
and restored on a different test node. An implementation
of this approach using Bash scripts was presented. We
also provided a demonstration of the implementation in
which we showed the steps to create, save and restore a
session.

In the future, this solution could be integrated into the
pos command line interface in order to simplify the de-
velopment workflow. Another topic for future work could
include the development of a more complex example
project using the presented approach.

References

[1] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: A methodology and toolchain for reproducible network
experiments,” in Proceedings of the 17th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 259–266. [Online]. Available: https://doi.org/
10.1145/3485983.3494841

[2] ACM, “Artifact Review and Badging - Current,” https://www.acm.
org/publications/policies/artifact-review-and-badging-current, 2020,
[Online; accessed 18-June-2023].

[3] “libvirt: The virtualization API,” [Online; accessed 18-June-2023].
[Online]. Available: https://libvirt.org/

[4] “How to use VirtualBMC — virtualbmc 3.0.2.dev5 documentation,”
[Online; accessed 18-June-2023]. [Online]. Available: https:
//docs.openstack.org/virtualbmc/latest/user/index.html

[5] S. Gallenmüller, “vm-example,” https://gitlab.lrz.de/I8-testbeds/
pos-examples/-/tree/master/tutorials/vm-example/bullseye, 2021,
[Online; accessed 18-June-2023].

[6] D. Libes, “expect: Scripts for controlling interactive processes.”
Computing Systems, vol. 4, pp. 99–125, 03 1991.

Seminar IITM SS 23 124 doi: 10.2313/NET-2023-11-1_21

