
Temporal Graph Neural Networks

Erik Söhner, Max Helm∗, Benedikt Jaeger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: e.soehner@tum.de, helm@net.in.tum.de, jaeger@net.in.tum.de

Abstract—Graph Neural Networks (GNNs) have become a
fundamental tool for working with graph-structured data.
They have shown high accuracy in making predictions
in a wide range of applications and are now playing an
important role in the field of machine learning. To combine
the graph structure with temporal data, the Temporal Graph
Neural Network emerged, which brings improved predictive
performance to a variety of tasks. The paper shows common
patterns in temporal and traditional graph neural network
architectures and provides information on applications and
open challenges.

Index Terms—Temporal Graph Neural Networks

1. Introduction

Neural networks play an important role in machine
learning. These models help machine learning make accu-
rate and efficient predictions [1]. Their ability to recognize
patterns allows them to process data where traditional
machine learning algorithms struggle due to the com-
plexity of the data. As a result, many types of neural
networks are used in a wide range of real-world applica-
tions. These include image and speech recognition, natural
language processing, autonomous vehicles, and person-
alized recommendation systems [1]. For graph-structured
data, graph neural networks have emerged, contrary to the
traditional neural networks that are prevalent for grid-like
data. As neural networks show promise for more complex
tasks, new neural network architectures are rapidly being
developed. Temporal Graph Neural Networks (TGNN)
are one of the latest NN architectures. They extend the
graph neural network with additional modeling of tem-
poral dependencies on spatial features. In this paper, we
give some background on machine learning algorithms,
explain graph neural network architectures, and show
how temporal graph neural networks extend static GNN
architectures. We discuss the possibilities of TGNNs with
new frameworks such as PyTorch Geometric Temporal,
as well as future challenges in this area of research. The
paper also presents a TGNN architecture used for Internet
traffic prediction, as well as an overview of other TGNN
applications.

2. Background on Machine Learning Algo-
rithms

The most basic type of a Neural Network is the
Multi Layer Perceptron (MLP). It only consists of fully-
connected layers, namely an input layer, an output layer

and hidden layers in between. All nodes of a layer have
weighted edges, the learnable parameters, to all nodes of
their neighbor layers. The information of a node becomes
the weighted average of the node information from the
previous layer put in an activation function. This is known
as message passing. [2]

Another popular type is Convolutional Neural Net-
work (CNN). They consist of a number of convolutional
layers and a fully connected layer to generate the output.
As input, it takes a multidimensional array, typically an
image with its dimensions: height, width, color channels.
The convolution layer computes the convolution operation
on the layer’s input. This operation first applies filters con-
taining the learnable parameters, a matrix multiplication,
then it applies an activation function. Between the layers,
the sizes and number of dimension can change, for the
fully connected layer, it is arranged in single-dimension
array. [3]

2.1. Training of Neural Networks

The training of neural networks is an iterative process
in which the output of the neural network is used to
make a meaningful change in the learnable parameters of
the network. First, a cost function measures the discrep-
ancy between the network’s actual output and its optimal
output. The optimal output can either be known or the
plausibility of the actual output can be checked, depending
on the learning method of the neural network. Then, a
vector of optimal changes for all learnable parameters
is computed to minimize the cost function, called the
gradient, and applied to the parameters. [4]

3. Graph Neural Networks

Traditional neural networks perform well on a wide
range of tasks, but leave a lot of potential when working
with graph-structured data. Therefore, GNNs are designed
to exploit the existing dependencies. Consequently, GNNs
have shown superior performance in a number of domains
where they outperform other machine learning (ML) al-
gorithms. Examples of domains where GNNs are success-
fully used are social network analysis, drug discovery, or
recommendation systems. [5]

The architecture of GNNs can be broadly classified
into spatial and spectral GNNs [6]. Architectures of GNNs
are highly variant and difficult to generalize. The fol-
lowing descriptions of architectures can be understood
as feasible architectures that use common functions and
patterns across various GNN architectures.

Seminar IITM SS 23 115 doi: 10.2313/NET-2023-11-1_20



3.1. Spatial Graph Neural Networks Architecture

In spatial GNNs, each layer updates the graph repre-
sentation. Here we assume a traditional GNN with a static
graph, so the only thing that changes in each layer are the
node features. The message passing of a hidden layer is
processed for each node individually. The neighbor node
features are the input for a message-passing function,
which can be decomposed into four functions that may
occur. [6]

1) Transformation function is a matrix multipli-
cation on each input’s node feature map. This
is where attention mechanisms, a multiplication
by the corresponding edge’s weight, are usually
located. In general, this weight matrix can contain
learnable or static parameters or edge features.

2) Aggregation function takes the same feature
from all transformed node feature maps. The
aggregation is applied to each feature, creating a
single feature map. Typical aggregation functions
are min, max, sum, or average.

3) Update function combines the remaining fea-
tures from previous operations with the node
features in element-wise operations.

4) Activation function amplifies the node fea-
tures. Typical activation functions include sig-
moid, ReLU, and softmax.

3.2. Spectral Graph Neural Networks Architec-
ture

A major difference to spatial GNNs is the global
nature of message passing in the spectral domain. In order
to operate in the spectral domain, the feature matrix must
first be transformed by multiplying it by the eigenvector of
the graph’s Laplacian matrix. Then, the functions present
in a layer can be applied. [6]

1) Convolution is the multiplication of the trans-
formed matrix with a diagonal matrix of weights

2) Activation function
3) Pooling takes a single value from a neighborhood

of nodes, reducing the dimension of the feature
map. Typical pooling functions are max pooling,
average pooling, attention pooling. For node clas-
sification tasks, the output layer of the spectral
GNN is often a fully connected layer.

4. Temporal Graph Neural Networks

Traditional Graph Neural Networks are limited in ap-
plications that work with time-varying data. These GNN
models have difficulty modeling temporal dynamics be-
cause the graph structure they work with is static, ne-
glecting the changing relationships that actually exist. For
example, in social network analysis, a model must under-
stand the changing social interactions over time in order
to predict influential individuals or discover communities.
Similarly, in financial applications like risk assessment of
investment decisions, market dynamics must be taken into
account to make accurate predictions. To overcome these
limitations, Temporal Graph Neural Networks (TGNNs)

have become a promising extension to traditional GNNs
and a relevant area of research. The models allow the
modeling of temporal dependencies in addition to the
spatially arranged data. [7]

4.1. Temporal Graph Neural Network Architec-
tures

In the past, researchers have proposed a number of
TGNN architectures. In addition to the algorithmic classi-
fication of GNNs, namely spatial or spectral, there is an-
other major design decision for TGNNs in the time variant
method. The temporal information can be directly defined
in the graph structure, or the GNN can be extended by
operations handling the temporal information. A common
approach are Hybrid Graph Neural Networks, where time-
varying information is processed in another ML algorithm.
[7]

Temporal information can be a static information: a
time stamp, which can be modeled as a node feature, or
the temporal distance between nodes, which can be mod-
eled as an edge feature. An example for this is pandemic
forecasting [8].

Temporal information related to a node or an edge can
also be dynamic, it can be referred to as time varying
information, e.g. time series information. In this case,
GNN does not need to be extended yet, because the
information can be modeled as multidimensional features.
Time series information can also be passed as an argument
into the message passing function, where GNN layers
correspond to specific time steps [9]. In spectral GNNs,
this kind of information can be used to set the parameters
for convolution kernels [10].

If the graph is dynamic, i.e. links change over time,
an extension of the GNN is inevitable. A dynamic graph
representation can be a sequence of graph snapshots over
time, where the individual graphs serve as input for a
Graph Attention Network (GAT), to be later merged in
an output function [11]. Another option is the temporal
evolution of the graph, where in each layer the neighbor
nodes are defined by the corresponding graph snapshot of
the layer at a given time [12].

Hybrid GNNs for processing temporal information can
be used, too. There is no standard way for information
flow between time and graph modules. Nevertheless, the
capabilities of specific architectures can be used to take
advantage of the different ways of handling time. [7]

• 1D-CNN time module: A convolutional neural
network with one-dimensional input is used to
extract temporal patterns. The convolution oper-
ation allows the model to have a small number of
parameters as well as translation invariance, so that
patterns are detected regardless of their temporal
position. In addition, manual modification can help
the model to better fit the data. 1D-CNN can com-
plement the GNN in a way that can be considered
as sandwiched, where its input and output is the
output and input for a GNN layer, respectively.
[13]

• LSTM time module: Long Short-Term Memory
is a type of Recurrent Neural Network (RNN).
It allows the network to selectively remember

Seminar IITM SS 23 116 doi: 10.2313/NET-2023-11-1_20



and forget information based on its relevance to
the context. The component can model sequential
patterns, such as trends, and seasonality. An ap-
plication here is to predict PV power forecasting
by modeling spatial and temporal dependencies
between power plants. [14]

4.2. PyTorch Geometric Temporal

As machine learning algorithms evolve in research
and real-world applications, software emerges that enables
widespread use and rapid implementation of machine
learning models. However, in the early research stages of
new architectures, well-suited libraries often do not exist
and implementation tasks are complicated. Motivated to
create an open source machine learning algorithm that
could handle non-static node features in graphs, Rozem-
berczki et al. came up with the PyTorch Geometric Tem-
poral framework. [15]

Their goal was to create a user-friendly and functional
software. For easy inspection of the runtime state, they de-
signed the software in a modular way with limited number
of public methods. Furthermore, the system provides test
coverage, documentation, practical tutorials, continuous
integration, package indexing, and frequent releases.

Providing this framework, the authors claim that Py-
Torch Geometric Temporal is the first deep learning library
designed for neural spatiotemporal signal processing. Fig-
ure 1 shows the different scenarios of GNN’s non-static
properties that the framework is able to handle.

Figure 1: PyTorch scenarios [15]

Examining the framework’s predictive performance,
the authors find that PyTorch Geometric Temporal has
similar predictive performance to recurrent neural net-
works on regression tasks. Among possible future di-
rections, they mention considering continuous time or
time differences between temporal snapshots that are not
constant. Another possibility they see is the inclusion

of temporal models that operate on curved spaces, like
hyperbolic or spherical spaces.

4.3. Current Challenges in Temporal Graph Neu-
ral Network Development

While the potential of TGNNs is undeniable, there are
still challenges that may slow down TGNN research.

A prominent problem is the lack of benchmarking
capabilities. Models are trained for a specific problem,
but due to limited standardized datasets and evaluation
metrics, the models are not tested on datasets from dif-
ferent domains. This makes it uncertain whether they are
suitable for other applications. [7]

A further difficulty for the rather new TGNNs is
the need to adapt the learning methods to avoid over-
smoothing. For GNNs, techniques such as dropout, virtual
nodes, and neighbor sampling exist. Due to the variety
and complexity of architectures, no solution can serve as
a general solution [16]. Therefore, a lot of experiments
need to be done on the even more complex TGNNs.

Another well-known problem is that institutions work-
ing with privacy-critical data are often unable to pub-
lish data. This is related to missing methods to create
privacy-preserving representations. One solution is fed-
erated learning, a training method for dealing with data
isolation between different sources. Guannan Lou et al.
have demonstrated the effectiveness of a federated learn-
ing framework for a TGNN. [17]

5. Related Work

There is a range of applications where TGNNs show
good performance.

Traffic prediction is a major domain for TGNN re-
search. The temporal GNNs have superior performance
over traditional GNNs in tasks like traffic planning and
route planning. Their predictions show to be more accu-
rate and better handle dynamic traffic conditions, such as
traffic fluctuations and congestion. [18]

Pandemic forecasting for the TGNN became a big
research domain during covid pandemic. It has shown to
achieve state-of-art forecasting. [8]

PV production forecasting is of great importance for
the transition to renewable energy. TGNNs have shown
to outperform state-of-the-art methods for PV forecasting
[14]. Therefore, TGNNs have great potential for long-
term applications such as infrastructure planning as well
as short-term applications such as efficient dispatching
of other sources or informed decisions related to energy
markets.

5.1. Internet Traffic Forecasting using Temporal-
Topological Graph Convolutional Networks

A prospective application for TGNNs can be internet
traffic forecasting. Being part of everydays life, it is im-
portant the internet works on fast and reliable infrastruc-
ture. With billions of connected devices and exponentially
growing traffic it needs good solutions to master this
challenge. However, it opens up opportunities for con-
tinuous innovation in network technology and supporting

Seminar IITM SS 23 117 doi: 10.2313/NET-2023-11-1_20



algorithms. One advancement for infrastructure planning
and network resource management lies in accurate internet
traffic prediction.

Internet traffic prediction belongs to the class of time
series forecasting problems. In this field linear prediction
methods are used as well as neural networks, being ca-
pable to model non-linear data. However existing neural
network algorithms in internet traffic forecasting often
ignore network topology as they mainly model temporal
data of traffic flow series. [19]

Zhenjie Yao et al. [19] proposed "Temporal-
Topological Graph Convolutional Networks" (TTGCN),
a TGNN architecture modeling the links’ throughput of
internet traffic in time series with also capturing network
topology for predicting internet traffic. The graph repre-
sentation looks as follows: A network link makes a node
in the TTGCN graph, where edges exist, when the links
are connected to the same router. The model processes in
turn the temporal convolution and graph convolution, as
illustrated in Figure 2. The temporal convolution extracts
the temporal features while the graph convolution uses
the new representation connecting it to the topological
information. The temporal convolution is a gated linear
unit that takes as input the feature matrix of the graph,
initially the time series data of the links. Two matrices are
generated by multiplying the input by the two different
convolution kernels set in the current layer. A sigmoid
function is applied to one of the matrices, which is then
merged with the other matrix by computing the Hadamard
product. The output is an updated graph feature matrix
with one feature less. The new feature matrix is passed to
the graph convolution layer that works with the graph’s
spectral domain. Here the researchers came up with two
different approaches for representing the graphs adjacancy
matrix. One is a normal adjacancy matrix for the graph
as described before, the other is defined

Âi,j =





B, if link i heads to tail of link j

−1, if link i heads to tail of link j and v.v.
−1, if link i heads to head of link j

0, otherwise.
(11)

where the optimal parameter B is to be found by testing
for the smallest error. Head and tail are the routers that a
directed link passes traffic to and from respectively. The
main operation here is the multiplication of its input with
the graphs’s Laplacian matrix and a matrix of learnable
parameters. Following this structure, the final temporal
convolution layer’s output contains one remaining node
feature. At this stage the feature matrix is passed to a
fully connected layer, whose results are the predictions
for every network link. Obtaining only one time step’s
predictions, the later time steps’ predictions need to be
obtained recursively.

The model’s performance was tested with data from
the UKERNA academic network backbone by Simple Net-
work Management Protocol (SNMP). Traffic of 18 links
connecting 8 core routers was observed for over a month.
Samples for all links were taken every 10 minutes. In the
paper the MAE and RMSE are compared for different
prediction models, namely Historical Average, ARIMA,
a popular linear model for time-series forecasting, Gated
Recurrent Unit, Spatio-Temporal Graph Convolution Net-

works (STGCN), a TGNN showing good performance
in road traffic prediction. Both the temporal GNNs were
measured with the normal and the advanced adjecency
matrix: TTGCN+, STGCN+. In the test the model should
predict the next 9 time steps after being initialized with
data of 12 time steps. The models were trained with
data of 31 days and were tested on the data of the 8
remaining days. The test results show best performance for
TTGCN+ then STGCN+, TTGCN, STGCN, pointing out
the proposed model achieved the best prediction perfor-
mance. The paper does not provide information if the best
adjacancy matrix parameter was calculated for STGCN+,
too. With TTGCN+ having a 13.7% lower RMSE than
STGCN+ and over 10% lower RMSE than TTGCN+
with next higher parameter shows that having a good
data representation is crucial for exploiting a prediction
model’s potential.

Figure 2: Architecture of TTGCN [19] ©2021 IEEE

6. Conclusion

In this paper, Temporal Graph Neural Networks are
explained. It provides relevant information on machine
learning algorithms and describes how common spectral
and spatial GNNs are constructed. It can be concluded
that TGNNs show good prediction performance on data
with spatial and temporal relationships. Their architectures
are usually combinations of common patterns in machine
learning. One can expect that new TGNN architectures
will emerge to leverage their capabilities in even more
applications. However, there are challenges that need to
be addressed. Contributions to benchmarking tools are
needed, GNN methods against oversmoothing need to be
adopted, further advances for federated learning must be
driven.

References

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A.
Mohamed, and H. Arshad, “State-of-the-art in artificial neural
network applications: A survey,” Heliyon, vol. 4, no. 11, 2018.

Seminar IITM SS 23 118 doi: 10.2313/NET-2023-11-1_20



[2] H. Taud and J. Mas, Multilayer Perceptron (MLP). Cham:
Springer International Publishing, 2018, pp. 451–455. [Online].
Available: https://doi.org/10.1007/978-3-319-60801-3_27

[3] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural
Networks,” 2015.

[4] F. Günther and S. Fritsch, “Neuralnet: training of neural networks.”
R J., vol. 2, no. 1, p. 30, 2010.

[5] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu,
“A Comprehensive Survey on Graph Neural Networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32,
no. 1, pp. 4–24, 2021.

[6] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang,
C. Li, and M. Sun, “Graph neural networks: A review of
methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2666651021000012

[7] Z. A. Sahili and M. Awad, “Spatio-Temporal Graph Neural Net-
works: A Survey,” 2023.

[8] A. Kapoor, X. Ben, L. Liu, B. Perozzi, M. Barnes, M. Blais, and
S. O’Banion, “Examining COVID-19 Forecasting using Spatio-
Temporal Graph Neural Networks,” 2020.

[9] L. Wang, A. Adiga, J. Chen, A. Sadilek, S. Venkatramanan,
and M. Marathe, “CausalGNN: Causal-Based Graph Neural
Networks for Spatio-Temporal Epidemic Forecasting,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 11, pp. 12 191–12 199, Jun. 2022. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/21479

[10] S. Hadou, C. I. Kanatsoulis, and A. Ribeiro, “Space-Time Graph
Neural Networks,” 2022.

[11] A. Fathy and K. Li, “Temporalgat: Attention-based dynamic graph
representation learning,” in Advances in Knowledge Discovery and
Data Mining, H. W. Lauw, R. C.-W. Wong, A. Ntoulas, E.-P.
Lim, S.-K. Ng, and S. J. Pan, Eds. Cham: Springer International
Publishing, 2020, pp. 413–423.

[12] Y. Fan, M. Ju, C. Zhang, and Y. Ye, Heterogeneous Temporal
Graph Neural Network, pp. 657–665. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611977172.74

[13] A. M. Karimi, Y. Wu, M. Koyuturk, and R. H. French,
“Spatiotemporal Graph Neural Network for Performance Prediction
of Photovoltaic Power Systems,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 17, pp. 15 323–
15 330, May 2021. [Online]. Available: https://ojs.aaai.org/index.
php/AAAI/article/view/17799

[14] J. Simeunović, B. Schubnel, P.-J. Alet, and R. E. Carrillo, “Spatio-
Temporal Graph Neural Networks for Multi-Site PV Power Fore-
casting,” IEEE Transactions on Sustainable Energy, vol. 13, no. 2,
pp. 1210–1220, 2022.

[15] B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel,
M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon, and
R. Sarkar, “PyTorch Geometric Temporal: Spatiotemporal Signal
Processing with Neural Machine Learning Models,” 2021.

[16] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Lio,
F. Scarselli, and A. Passerini, “Graph Neural Networks for temporal
graphs: State of the art, open challenges, and opportunities,” 2023.

[17] G. Lou, Y. Liu, T. Zhang, and X. Zheng, “STFL: A Temporal-
Spatial Federated Learning Framework for Graph Neural Net-
works,” 2022.

[18] Y. Li, W. Zhao, and H. Fan, “A Spatio-Temporal Graph Neural
Network Approach for Traffic Flow Prediction,” Mathematics,
vol. 10, no. 10, 2022. [Online]. Available: https://www.mdpi.com/
2227-7390/10/10/1754

[19] Z. Yao, Q. Xu, Y. Chen, Y. Tu, H. Zhang, and Y. Chen, “Internet
Traffic Forecasting using Temporal-Topological Graph Convolu-
tional Networks,” in 2021 International Joint Conference on Neural
Networks (IJCNN), 2021, pp. 1–8.

Seminar IITM SS 23 119 doi: 10.2313/NET-2023-11-1_20


