
Current State of Hardware and Tooling for SDR

Nico Rumsch, Leander Seidlitz∗, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: nico.rumsch@tum.de, seidlitz@net.in.tum.de, andre@net.in.tum.de

Abstract—Software Defined Radios have become increasingly
important because of their unique feature to support a wide
multitude of frequencies, modulation modes, amplitudes and
waveforms which makes a single device useful for a variety
of applications. In the following, the history of SDR and
the current state in terms of use cases, applications and
hardware will be presented. Furthermore, a comparison of
GNU Radio, Matlab and SDR# regarding their support for
hardware and applications will be made. Lastly, a small
overview of the usage of Field Programmable Gate Arrays
to improve the performance of Software Defined Radios is
given.

Index Terms—software-defined radio, history, hardware,
software, fpga, gnu radio

1. Introduction

In the 1970s a need for more easily configurable
radios started to arise. Before the introduction of Soft-
ware Defined Radios (SDRs), it was always necessary to
implement the ability to, for example, receive different
frequencies by using more hardware components. With
SDR a hardware and software platform was created to
solve this problem. Its possibility to be controlled by soft-
ware to receive and transmit different radio signals without
requiring modifications to the hardware itself makes it a
versatile tool for any radio hobbyist or researcher. This
holds especially true for cellular network research where
hardware can be used to simulate different networks.
In an ideal scenario, a single hardware device can be
configured by software to transmit or receive any imagin-
able frequency, or waveform, at any data rate. However,
current hardware offers have physical limits and operate
in specific boundaries like frequency ranges. [1]

1.1. History

The first step towards the SDRs known today was done
by Joe Mitola when he defined the term Software Radio
(SR) in 1992 as a system that consists of a Radio Fre-
quency (RF)-frontend, Analog Digital Converter (ADC)
and Digital Signal Processor (DSP). His proposed archi-
tecture alleviated the hardware responsibility of decoding
the signal and moves it to a dynamically configurable
DSP which thereby can easily support different waveforms
or frequencies amongst others. [2] The term "Software
Defined Radio" was later introduced by Stephen Blust
in 1995 [3]. Before the term existed, already in 1984

E-Systems Inc. implemented the first SDR in 1984 [4].
Four years later, in 1988, researchers of the Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt
(DFVLR), the predecessor of today’s Deutsches Zentrum
für Luft- und Raumfahrt (DLR), developed the first SDR
transceiver which could be configured through software
as part of a digital satellite modem [5], [6]. Later in the
1990s, the first large-scale application of a SDR platform
was deployed by the US military, called SpeakEASY 1
and the next generation SpeakEASY 2 [7], [8]. After 2000,
SDRs matured to a point where no significant change
to the concept occurred. All newer developments are in
improved performance, smaller chip sizes, lower power
consumption and better affordability. For hobbyists, a
range of offers for cheap SDR receivers emerged, while
researchers benefit from better performance and a wider
range of applications.

1.2. Functionality of SDRs

Figure 1: Example SDR architecture [9]

Figure 1 describes a common architecture for a SDR
with the three main components being a radio frequency
frontend, a converter between digital and analog signals
and a processor for interpreting or producing the digital
values. The RF-frontend is responsible for receiving the
radio wave from the transmission medium. This incoming
signal is sampled twice with one sample being phase
shifted by 90 degrees which is called I/Q sampling and
simplifies the hardware requirements for the SDR. [10]

I/Q sampling works on the premise that any waveform
can be reconstructed by adding the amplitude of a sine and
a cosine wave [10]. This gives an unambiguous waveform,
which is not possible to achieve with the multiplication
of in-phase waves [11]. Furthermore, representing a wave
with the amplitude I and Q is easier than working with
the amplitude and phase of a wave. The final formula
to represent a wave can be seen in Equation 1. Here,
frequency is abbreviated by f , total wave amplitude by

Seminar IITM SS 23 109 doi: 10.2313/NET-2023-11-1_19



A, time by z, phase by φ, In-phase amplitude by I , and
Quadrature amplitude by Q. [12]

A ·cos(2πft+φ) = (
√

I2 +Q2) cos(2πft+arctan(
Q

I
))

(1)
In the formula, the cos component is called the carrier

because it is the base wave onto which the information
will be encoded. Changing the I and Q amplitude of the
sine and cosine wave is called modulating and encodes
said information. [10]

The two sampled amplitudes are converted by the
ADC to discrete digital values or created from digital
values in case of transmission by the Digital Analog Con-
verter (DAC). When sampling a frequency it is necessary
to sample at double the wanted frequency, called the
Nyquist frequency, to fully capture the characteristics of
it. For example, in the case of Bluetooth’s and WiFi’s
2.4GHz signals, it is required to sample at 4.8 GSps
which in turn can only be achieved with expensive
ADCs/DACs. To solve this problem, the incoming signal
is converted into an intermittent frequency before it is dig-
italized. This allows for the removal of the carrier from the
frequency, which creates a signal for the ADC/DAC that
is centered around 0Hz. This is known as the baseband.
[10]

The final I/Q values from the baseband signal can then
be used by the processor, which may be for example a
General Purpose Processor (GPP), a Field Programmable
Gate Array (FPGA), a Graphics Processing Unit (GPU),
or an Application-Specific Integrated Circuit (ASIC) to
decode the signal using available software.

2. State of the art

With advances in the hardware and software field,
modern SDR systems can, amongst others, operate on a
wider range of frequencies, and support more modulation
types and waveforms. In the last two decades, many new
systems were created that benefit from this dynamic usage
of hardware. One of the most prominent examples is
the development of cellular network standards (3G, 4G,
5G) [3]. Especially for 4G and 5G, the possibility for a
software-defined base station enables faster development
and updates to the mobile network with only software
changes [13].

2.1. SDR use cases

This section goes more into detail about cellular net-
works and describes the usage of SDRs in amateur radio.

2.1.1. Cellular networks and wireless communication.
Since the 4th generation of cellular networks, Software
Defined Networks are playing a more important role by
allowing for easy reconfigurability and dynamic deploy-
ments. This however does not yet extend to the physical
layer of the cell towers, where current research is propos-
ing to integrate SDRs as the missing building block. [13]–
[15]

In contrast, researchers and developers already
adopted SDRs for the field of cellular networks or wireless

communication which can be seen in Table 5, where two
of the three presented tools support the simulation of
cellular networks based on SDRs.

2.1.2. Amateur radio. SDRs play an important role in
amateur radio. Anyone can receive a wide range of fre-
quencies and modulations, which makes SDRs popular
among hobbyists. This interest is further increased by the
option for affordable hardware, like the RTL-SDR family.

One popular area, where many enthusiasts use SDRs,
is in the context of aircraft positional data (Automatic
Dependent Surveillance - Broadcast (ADS-B)). It is a
public, worldwide system where almost every commer-
cial aircraft broadcasts unencrypted details about itself,
amongst other information its position, on the 1090MHz
frequency. Many community-based projects use local, ter-
restrial SDRs to receive the data and send them to a
message broker, which combines all the received data and
provides a (public) dataset or live Application Program-
ming Interface (API). [16]–[19]

Other example use cases are RF fingerprinting, spec-
trum analysis, drone detection or decoding in general [20].
For a selection of further protocols which can be freely
received see the subsequent Section 2.2.

2.2. Protocols

The benefit of SDRs is the support for many different
applications and protocols via one single device. They
can be used by all computers or laptops, as the devices
are, in most cases, accessible via the Universal Serial Bus
(USB) or network. A selection of applications and their
corresponding frequency ranges can be found in Table 1.

2.3. SDR hardware

In Table 3 ten SDRs are presented with their hardware
specification. Compared are the available processor types
for which a more detailed comparison can be found in Ta-
ble 2. A SDR with an onboard FPGAs has the potential to
move some of the program logic onto the same for better
performance, as described in Chapter 3.2. This makes an
onboard FPGAs a key feature to consider. Furthermore,
it is indicated if the hardware is a receiver, transmitter or
transceiver and in which configuration it can be operated,
primarily half-duplex, full-duplex or both. For the ADC
and DAC the sampling rate and bit depth are listed where
it is better to have higher values in each category. The
bit depth indicates how precise a signal can be received
or reconstructed and the sampling rate of how often this
conversion can happen per second. The same applies to
the overall sampling rate, which might differ between the
ADCs and DAC. This can be caused by slower perfor-
mance in, for example, the communication interface on-
board processor. The frequency spectrum indicates which
frequency signals can be received or transmitted. A wide
frequency range, which goes into the upper and lower
bound extremes, is better than an SDRs with a more
narrow range. The bandwidth, as can be seen in figure
2, specifies which surrounding frequency range can be
observed around the tuned-to frequency of the SDR.

Seminar IITM SS 23 110 doi: 10.2313/NET-2023-11-1_19



TABLE 1: Protocols or applications in frequency ranges [21], [22]

Frequency range Application Protocol

30-300 kHz Navigation
300 kHz-3MHz Marine/Aircraft navigation, AM broadcast
3-30MHz Broadcasting, mobile radio NFC/EMV, Automatic Identification System (AIS)
30-300MHz FM radio broadcast
300MHz-1GHz Cell phones, mobile radio, Internet of Things (IoT), TV LoRa, SIGFOX, ZIGBEE, Z-Wave, DVB-T2
1-3GHz WLAN, Cell phones, IoT ZIGBEE, ANT+, WIFI, LoRa, Bluetooth, ADS-B
3-60GHz Radar, Cell phones WIFI(6)

TABLE 2: Technologies for signal processing on SDR
[21], [23]

Type Performance Power Size

GPP low/medium low medium
DSP medium medium large
FPGA/SoC high medium large
ASIC high low small

bandwidth

tuned-to frequency

frequency f

Figure 2: Explanation: Bandwidth

2.3.1. Receiver. In the hobbyist space receivers are pop-
ular because of their affordability with a multitude of
platforms, such as RTLSDR and Airspy, being available.
The typical frequency range of these systems is between
1MHz and 2GHz with varying resolutions and amounts
of DACs/ADCs. Devices supporting this range can there-
fore already receive more than half of the applications and
protocols mentioned in Table 1. The number of samples
per second increased in the past to about 200 MSps for
expensive systems, with some more exotic products being
able to achieve rates in the range of GS/s by using a high-
performance FPGA for the processing, combined with
high-performance ADCs and DACs. [21]

2.3.2. Transceiver. Transceivers are devices that can both
send and receive data. Generally speaking, the transmit-
ter part of an SDR transceiver is either equally or less
powerful than the receiving part. Compared to a device,
which can only receive, the receivers on a transmitter
are more powerful than their receive-only counterparts.
This includes, amongst other, support for larger frequency
ranges, higher bandwidths, higher samples per second and
better resolutions of the ADCs/DACs. [21] Following the
same trend, professional-grade transceivers have the same
benefit over consumer hardware with microcontrollers,
custom System on a Chip (SoC), FPGAs or even GPUs
(AIR-T [36]) for very high throughputs. Popular consumer
transceivers are from HackRF and LimeSDR, while in the
professional space devices from USRP are popular.

3. Software support for SDR protocols and
hardware

Over the years, hardware and software for different use
cases of SDRs got developed. Software for SDRs connects
to the hardware at the baseband processing step (see
Figure 1). The following section will present a selection
of software, their support for the previously presented
hardware, and support for different use cases.

3.1. Software

The available software for SDRs can range from sim-
ple command line tools to graphical user interfaces, some-
times with support for protocol-specific visualizations.
There are over 30 universal and even more single-purpose
tools available for the popular RTL-SDR platform alone.
[37]

3.1.1. GNU Radio. One of the most popular tools is GNU
Radio originally released by Eric Blossom in 2001 as an
official GNU project. It is being continuously developed
and uses the concept of flowgraphs to define block-based
transformations. While all processing operations are im-
plemented in C++, the definition of the flowgraphs can be
written in either C++ or Python. GNU Radio is supported
on Linux, Windows, and MacOS. [38]–[40]

3.1.2. Matlab and Simulink. Matlab and Simulink are
proprietary software products by MathWorks. The suite
supports a wide range of applications from linear alge-
bra and numeric computing to complex simulations. [41]
Amongst others, it offers functionality to simulate wireless
networks directly on hardware. For this, the software can
interface with a wide range of platforms and communi-
cates with the digital processing unit of the SDR. Matlab
is supported on Linux, Windows, and MacOS. [42]

3.1.3. SDR#. SDR# is a simple-to-use, general-purpose
visualization tool for SDRs, running on Windows only.
It visualizes real-time readings of the frequency and
spectrum from the SDR. [43] Furthermore, it has a rich
plugin system to enable support for more protocols and
SDR applications. [44] Hardware-wise it natively only
supports the Airspy platform but is extended by official
or community-developed plugins and can interface with a
wide variety of SDRs. [45]

3.2. Hardware

The support of GNU Radio, Matlab and SDR# for
hardware devices, as presented in Table 3, is indicated in

Seminar IITM SS 23 111 doi: 10.2313/NET-2023-11-1_19



TABLE 3: Comparison of selected SDR hardware

Hardware Chipset Processor Type RF Frontend Receiver/Transmitter Duplex ADC/DAC resolution [Bits] ADC/DAC sampling rate [MSps] Sampling rate [MSps] Frequency range
[MHz] Bandwidth [MHz] Interface

RTL-SDR [24] R820T2 n/a n/a 1/- n/a 8/- n/a 28.8 0.5 – 1766 2.4 USB
Airspy R2 [25] R860 GPP 35dBm IIP3 1/- n/a 12/- 20/- 10 24 – 1700 9 USB
Airspy Mini [26] R860 n/a 35dBm IIP3 1/- n/a 12/- 36/- 10 24 – 1700 6 USB
LimeSDR [27]–[29] LMS7002M FPGA n/a 2/2 full 12/12 n/a 61.44 0.1 – 3800 61.44 USB
LimeSDR PCIe [28]–[30] LMS7002M FPGA n/a 2/2 full 12/12 n/a 61.44 0.1 – 3800 61.44 PCIe
HackRF One [21], [31] MAX2837 GPP,FPGA n/a 1/1 half 8/10 20/20 20 1 – 6000 20 USB
USRP B200 [32] AD9364 FPGA 20dBm IIP3 1/1 both 12/12 61.44/61.44 61.44 70 – 6000 56 USB
USRP B210 [33] AD9361 FPGA 20dBm IIP3 2/2 both 12/12 61.44/61.44 61.44 70 – 6000 56 USB
USRP N320 [34] n/a GPP,FPGA 17dBm IIP3 2/2 both 14/16 250/250 250 3 – 6000 200 Ethernet
Per Vices Cyan [35] n/a GPP,FPGA n/a 1-16/1-16 both 16/16 1000/1000 1000 <18000 1000 Ethernet

Table 4. A unique feature of the USRP devices is, that
all of them can be controlled with the common interface
library USRP Hardware Driver (UHD) [46]. This means,
developers can support all devices from this vendor by
implementing support for the UHD interface.

While GNU Radio supports all in Table 3 listed de-
vices, both Matlab and SDR# only support a subset of
them. Generally speaking, Matlab is focussing more on
professional-grade products, in this case from USRP/Ettus
Research, and SDR# supports hardware targeted towards
enthusiasts.

TABLE 4: Software support for presented hardware [21],
[47], [48]

GNU Radio Matlab SDR#

RTL-SDR Yes Yes Yes
Airspy R2 Yes No Yes
Airspy Mini Yes No Yes
LimeSDR Yes No Yes
LimeSDR PCIe Yes No Yes
HackRF One Yes No Yes
USRP B200 Yes Yes No
USRP B210 Yes Yes No
USRP N320 Yes Yes No
Per Vices Cyan Yes Yes No

A recent development to achieve even higher perfor-
mance in SDRs is to utilize FPGAs and implement pro-
cessing logic in hardware. Three approaches are possible
to utilize FPGAs for processing:

1) Build a SDR out of a RF-frontend and FPGA
2) Additional FPGA as an accelerator
3) Utilize SDRs built-in FPGAs

Following the first approach, an implementation of the
IEEE 802.11 standard and ZigBee is described in [49]. In
contrast, the authors of [50] propose a framework to utilize
a FPGA as an accelerator in combination with GNU Radio
and show promising results. Lastly, in [8] the authors de-
scribe the communication with the host as one of the major
limitations of high performance SDRs, which follows the
third approach. The authors were able to achieve an up to
64 times higher data rate by moving the demodulation of
the signal onto the FPGA and thereby eliminating most
communication overhead. The interaction with the FPGA
could be performed by a utility from UHD.

Besides higher data rates, another benefit of using
FPGAs is faster development times compared to ASICs.
However FPGAs also require larger board sizes as more
additional hardware is needed. [21], [51]

3.3. Protocol support

As most transmitted data is encoded, software is
typically required to decode them and provide specific

visualizations, e.g. showing data on a map in the case of
ADS-B or AIS.

The support for the in Section 3.1 presented software
and the previously presented applications are described
in Table 5. Because SDR# itself mainly supports the
visualization of the baseband data, it relies on extensions
to support applications beyond the build functionality and
does not support most wireless communication protocols.
Matlab on the other hand has tools for most communica-
tion protocols. Lastly, GNU Radio supports a wide range
of applications because of its flow graph design and big
community support.

In Table 5, support for a protocol will be annotated
with "Yes", if additional software is required a "*" will
be added and no information available will be indicated
by "n/a".

TABLE 5: Protocol support of SDR software [52]–[67]

GNU Radio Matlab SDR#

WIFI Yes Yes n/a
ADS-B Yes Yes Yes*
FM radio broadcast Yes Yes Yes
LoRa Yes n/a n/a
ZigBee Yes n/a n/a
AIS Yes Yes Yes*
3G Yes n/a n/a
4G Yes Yes n/a
5G n/a Yes n/a
Bluetooth Yes Yes n/a

For cellular networks, there also exists the Open Air
Interface (OAI) developed by the OpenAirInterface Soft-
ware Alliance. Its goal is to lower the adoption barrier for
Radio Access Networks (RANs) by offering implementa-
tions for modern cellular network types like 4G and 5G.
[68]

4. Conclusion

Software Defined Radio supports a wide variety of
different use cases. It is especially dominant in cellular
networks in its recent versions, to enable dynamic up-
grades without requiring hardware changes. For enthusi-
asts, it allows an easy start in the field of radio networks,
because a single device can be used versatilely in terms
of frequency and application support, while still being
affordable. Because of the same features SDRs are largely
adopted in development and research to, for example, sim-
ulate cellular networks, WIFI or other protocols without
requiring specific hardware.

The field is under continuous development to achieve
the ideal SDR with its latest development being the inclu-
sion of FPGAs in the SDR. While they have been used
as an accelerator for quite a while now, using the SDR’s

Seminar IITM SS 23 112 doi: 10.2313/NET-2023-11-1_19



onboard FPGA is rather new and can greatly improve per-
formance by reducing the communication volume between
SDRs and hosts.

References

[1] T. Ulversoy, “Software Defined Radio: Challenges and Opportuni-
ties,” vol. 12, no. 4, pp. 531–550.

[2] J. Mitola, “Software Radios-Survey, Critical Evaluation and Fu-
ture Directions,” in [Proceedings] NTC-92: National Telesystems
Conference, pp. 13/15–13/23.

[3] R. Sahu, “Theoretical and Practical Approach to GNU Radio and
LimeSDR Platform.”

[4] M. T. Mushtaq, M. S. Khan, M. R. Naqvi, R. Khan, M. A. Khan,
and O. Koudelka, “Cognitive Radios and Cognitive Networks: A
short Introduction,” 2013.

[5] R. G. Machado and A. M. Wyglinski, “Software-Defined Radio:
Bridging the Analog–Digital Divide,” vol. 103, no. 3, pp. 409–423.

[6] Peter Hoeher and Helmuth Lan, “Coded-8PSK Modem for Fixed
and Mobile Satellite Services Based on DS,” in Coded-8psk Modem
for Fixed and Mobile Satellite Services Based on DSP, vol. January
1990, pp. 117–123.

[7] R. Lackey and D. Upmal, “Speakeasy: The Military Software
Radio,” vol. 33, no. 5, pp. 56–61.

[8] S. S. Hanna, A. A. El-Sherif, and M. Y. ElNainay, “Maximizing
USRP N210 SDR Transfer Rate by Offloading Modulation to the
On-Board FPGA,” in 2016 International Conference on Wireless
Networks and Mobile Communications (WINCOM), pp. 110–115.

[9] T. Juhana and S. Girianto, “An SDR-based Multistation FM
Broadcasting Monitoring System,” in 2017 11th International
Conference on Telecommunication Systems Services and
Applications (TSSA). IEEE, pp. 1–4, accessed 2023-05-29.
[Online]. Available: http://ieeexplore.ieee.org/document/8272943/

[10] Dr. Marc Lichtman, “3. IQ Sampling — PySDR: A Guide to
SDR and DSP using Python,” accessed 2023-06-10. [Online].
Available: https://pysdr.org/content/sampling.html

[11] Mikael Q Kuisma, “I/Q Data for Dummies,” 03/10/2023,
8:08:56 PM, accessed 2023-06-11. [Online]. Available: http:
//whiteboard.ping.se/SDR/IQ

[12] Dr. Marc Lichtman, “3. IQ Sampling — PySDR: A
Guide to SDR and DSP using Python — Carrier Down
Conversion,” accessed 2023-06-10. [Online]. Available: https:
//pysdr.org/content/sampling.html#carrier-and-downconversion

[13] H.-H. Cho, C.-F. Lai, T. K. Shih, and H.-C. Chao, “Integration of
SDR and SDN for 5G,” vol. 2, pp. 1196–1204.

[14] D. Kafetzis, S. Vassilaras, G. Vardoulias, and I. Koutsopoulos,
“Software-Defined Networking Meets Software-Defined Radio in
Mobile ad hoc Networks: State of the Art and Future Directions,”
vol. 10, pp. 9989–10 014.

[15] F. Xu, H. Yao, C. Zhao, and C. Qiu, “Towards next
Generation Software-Defined Radio Access Network–Architecture,
Deployment, and Use Case,” vol. 2016, no. 1, p. 264,
accessed 2023-05-29. [Online]. Available: https://doi.org/10.1186/
s13638-016-0762-6

[16] Flightradar24, “Live Flight Tracker - Real-Time Flight Tracker
Map,” Flightradar24, accessed 2023-05-31. [Online]. Available:
https://www.flightradar24.com/

[17] “The OpenSky Network - Free ADS-B and Mode S Data
for Research,” accessed 2023-05-31. [Online]. Available: https:
//opensky-network.org/

[18] “Home - Serving the Flight Tracking Enthusiast,” ADS-B
Exchange, accessed 2023-05-31. [Online]. Available: https:
//www.dev.adsbexchange.com/

[19] “ADSBHub - Free ADS-B Data Exchange and Plane Tracking,”
accessed 2023-05-31. [Online]. Available: https://www.adsbhub.
org/

[20] W. Jeong, J. Jung, Y. Wang, S. Wang, S. Yang, Q. Yan, Y. Yi,
and S. M. Kim, “SDR Receiver Using Commodity Wifi via
Physical-Layer Signal Reconstruction,” in Proceedings of the
26th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’20. Association for Computing
Machinery, pp. 1–14, accessed 2023-06-04. [Online]. Available:
https://dl.acm.org/doi/10.1145/3372224.3419189

[21] J. D. J. Rugeles Uribe, E. P. Guillen, and L. S. Cardoso,
“A Technical Review of Wireless Security for the Internet
of Things: Software Defined Radio Perspective,” vol. 34,
no. 7, pp. 4122–4134, accessed 2023-06-04. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1319157821000896

[22] L. Hui Fang, S. Hassan, M. AbdulMalek, M. Mazalan, S. Johari,
N. Safari, and Y. Wahab, “Development of Microstrip Chebyshev
Low Pass Filters using Laser Micromachining.”

[23] F. Karray, M. W. Jmal, A. Garcia-Ortiz, M. Abid, and A. M.
Obeid, “A Comprehensive Survey on Wireless Sensor Node
Hardware Platforms,” vol. 144, pp. 89–110, accessed 2023-06-05.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1389128618302202

[24] “Buy RTL-SDR Dongles (RTL2832U),” rtl-sdr.com, ac-
cessed 2023-06-18. [Online]. Available: https://www.rtl-sdr.com/
buy-rtl-sdr-dvb-t-dongles/

[25] “Airspy R2 - airspy.com,” accessed 2023-06-14. [Online].
Available: https://airspy.com/airspy-r2/

[26] “Airspy Mini - airspy.com,” accessed 2023-06-14. [Online].
Available: https://airspy.com/airspy-mini/

[27] “LimeSDR,” Lime Microsystems, accessed 2023-06-14. [Online].
Available: https://limemicro.com/products/boards/limesdr/

[28] “LimeSDR Comparison,” Crowd Supply, accessed 2023-06-
14. [Online]. Available: https://www.crowdsupply.com/lime-micro/
limesdr

[29] “LMS7002M Documentation,” MyriadRF, accessed 2023-06-14.
[Online]. Available: https://github.com/myriadrf/LMS7002M-docs

[30] “LimeSDR PCIe,” Lime Microsystems, accessed 2023-06-
14. [Online]. Available: https://limemicro.com/products/boards/
limesdr-pcie/

[31] “HackRF One - Great Scott Gadgets,” accessed 2023-06-14.
[Online]. Available: https://greatscottgadgets.com/hackrf/one/

[32] E. R. Brand, a National Instruments, “USRP B200 USB Software
Defined Radio (SDR),” Ettus Research, accessed 2023-06-18.
[Online]. Available: https://www.ettus.com/all-products/ub200-kit/

[33] ——, “USRP B210 USB Software Defined Radio (SDR),”
Ettus Research, accessed 2023-06-18. [Online]. Available: https:
//www.ettus.com/all-products/ub210-kit/

[34] ——, “USRP N320,” Ettus Research, accessed 2023-06-18.
[Online]. Available: https://www.ettus.com/all-products/usrp-n320/

[35] “Cyan – Per Vices,” accessed 2023-06-18. [Online]. Available:
https://www.pervices.com/cyan/

[36] “Artificial Intelligence Radio Transceiver (AIR-T),” Deep-
wave Digital, accessed 2023-06-05. [Online]. Available:
https://deepwavedigital.com/hardware-products/sdr/

[37] “The BIG List of RTL-SDR Supported Software,” rtl-sdr.com,
accessed 2023-06-14. [Online]. Available: https://www.rtl-sdr.com/
big-list-rtl-sdr-supported-software/

[38] “GNU Radio - The Free & Open Source Radio Ecosystem · GNU
Radio,” GNU Radio, accessed 2023-06-14. [Online]. Available:
https://www.gnuradio.org/

[39] “GNU Radio,” accessed 2023-06-14. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=GNU_Radio&
oldid=1159673658

[40] A. Marwanto, M. A. Sarijari, N. Fisal, S. K. S. Yusof, and R. A.
Rashid, “Experimental Study of OFDM Implementation Utilizing
GNU Radio and USRP - SDR,” in 2009 IEEE 9th Malaysia
International Conference on Communications (MICC), pp. 132–
135.

[41] “MATLAB,” accessed 2023-06-14. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=MATLAB&oldid=1157953731

Seminar IITM SS 23 113 doi: 10.2313/NET-2023-11-1_19



[42] “What Is Software-Defined Radio (SDR)?” accessed 2023-06-
14. [Online]. Available: https://www.mathworks.com/discovery/
sdr.html

[43] J. R. Machado-Fernández, “Software Defined Radio:
Basic Principles and Applications,” vol. 24, no. 38,
pp. 79–96, accessed 2023-06-14. [Online]. Avail-
able: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=
S0121-11292015000100007&lng=en&nrm=iso&tlng=en

[44] “List of SDRSharp Plugins,” rtl-sdr.com, accessed 2023-06-14.
[Online]. Available: https://www.rtl-sdr.com/sdrsharp-plugins/

[45] “SDR# and Airspy Downloads - airspy.com,” accessed 2023-06-14.
[Online]. Available: https://airspy.com/download/

[46] “USRP Hardware Driver (UHD™) Software,” Ettus Research,
accessed 2023-06-14. [Online]. Available: https://github.com/
EttusResearch/uhd

[47] “USRP Support from Communications Toolbox,” accessed
2023-06-18. [Online]. Available: https://www.mathworks.com/
hardware-support/usrp.html

[48] “Airspy@groups.io | USRP / UHD support,” accessed 2023-06-18.
[Online]. Available: https://groups.io/g/airspy/topic/7621279

[49] A. Di Stefano, G. Fiscelli, and C. Giaconia, “An FPGA-Based
Software Defined Radio Platform for the 2.4GHz ISM Band,” in
2006 Ph.D. Research in Microelectronics and Electronics, pp. 73–
76.

[50] C. R. Irick, “Enhancing GNU Radio for Hardware Accelerated
Radio Design,” accessed 2023-06-12. [Online]. Available: https:
//vtechworks.lib.vt.edu/handle/10919/33474

[51] M. Petri and M. Ehrig, “A SoC-based SDR Platform for Ultra-High
Data Rate Broadband Communication, Radar and Localization
Systems,” in 2019 Wireless Days (WD), Apr. 2019, pp. 1–4.

[52] T. Vilches and D. Dujovne, “GNUradio and 802.11: Performance
Evaluation and Limitations,” vol. 28, no. 5, pp. 27–31.

[53] cloud9477, “Gr-ieee80211,” accessed 2023-06-16. [Online].
Available: https://github.com/cloud9477/gr-ieee80211

[54] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Decoding
IEEE 802.11a/g/p OFDM in Software Using GNU radio,”
in Proceedings of the 19th Annual International Conference on
Mobile Computing & Networking, ser. MobiCom ’13. Association
for Computing Machinery, pp. 159–162, accessed 2023-06-16.
[Online]. Available: https://doi.org/10.1145/2500423.2505300

[55] M. Hostetter, “Gr-adsb,” accessed 2023-06-16. [Online]. Available:
https://github.com/mhostetter/gr-adsb

[56] S. Meshram and N. Kolhare, “The Advent Software Defined Radio:
FM Receiver with RTL SDR and GNU radio,” in 2019 Inter-
national Conference on Smart Systems and Inventive Technology
(ICSSIT), pp. 230–235.

[57] D. Valerio, “Open Source Software-Defined Radio: A
Survey on GNUradio and its Applications,” accessed 2023-
06-16. [Online]. Available: https://www.semanticscholar.
org/paper/Open-Source-Software-Defined-Radio%
3A-A-survey-on-and-Valerio/90cdfd630dabf4ea75aea53bbc9c22ae2367e737

[58] B. Oumimoun, L. Nahiri, H. Idmouida, A. Addaim, Z. Guennoun,
and K. Minaoui, “Software Defined AIS Receiver Implementation
Based on RTL-SDR and GNU Radio,” in 2022 IEEE Asia Pacific
Conference on Wireless and Mobile (APWiMob), pp. 1–5.

[59] “GR-Bluetooth,” Great Scott Gadgets, accessed 2023-06-16. [On-
line]. Available: https://github.com/greatscottgadgets/gr-bluetooth

[60] “WLAN Toolbox,” accessed 2023-06-18. [Online]. Available:
https://www.mathworks.com/products/wlan.html

[61] W. Alqwider, A. Dahal, and V. Marojevic, “Software Radio with
MATLAB Toolbox for 5G NR Waveform Generation,” in 2022
18th International Conference on Distributed Computing in Sensor
Systems (DCOSS), pp. 430–433.

[62] “ADS-B and AIS - MATLAB & Simulink,” accessed 2023-06-
18. [Online]. Available: https://www.mathworks.com/help/comm/
ads-b-and-ais.html

[63] “FM Broadcast Receiver - MATLAB & Simulink Example,”
accessed 2023-06-18. [Online]. Available: https://www.mathworks.
com/help/supportpkg/rtlsdrradio/ug/fm-broadcast-receiver.html

[64] “Bluetooth LE Waveform Reception Using SDR -
MATLAB & Simulink,” accessed 2023-06-18. [On-
line]. Available: https://www.mathworks.com/help/bluetooth/ug/
bluetooth-low-energy-receiver.html

[65] “ADSB# Plugin for SDRSharp,” rtl-sdr.com, accessed
2023-06-18. [Online]. Available: https://www.rtl-sdr.com/
adsb-plugin-for-sdrsharp/

[66] “Getting Started with RTL-SDR and SDR-Sharp
and CubicSDR,” Adafruit Learning System, accessed
2023-06-18. [Online]. Available: https://learn.adafruit.com/
getting-started-with-rtl-sdr-and-sdr-sharp/sdr-number-fm-radio

[67] J. Demel, S. Koslowski, and F. K. Jondral, “A LTE Receiver
Framework Using GNU Radio,” Journal of Signal Processing
Systems, vol. 78, no. 3, pp. 313–320, Mar. 2015.

[68] “OpenAirInterface – 5G Software Alliance for Democratising
Wireless Innovation,” accessed 2023-06-16. [Online]. Available:
https://openairinterface.org/

Seminar IITM SS 23 114 doi: 10.2313/NET-2023-11-1_19


