
Hardware-assisted virtual network benchmarking tools

Eric Rosche, Florian Wiedner∗, Christoph Schwarzenberg∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: eric.rosche@tum.de, wiedner@net.in.tum.de, schwarzenberg@net.in.tum.de

Abstract—Accurate network emulation plays an essential
role in research and development. Most of the time, only a
couple of hosts are used to emulate comprehensive networks.
This poses difficulties when focusing on singular network
characteristics and their tail-behavior such as latency and
throughput, as it is difficult to emulate all required aspects
realistically. However, this is necessary, especially when look-
ing at e.g. low-latency network emulation in aeronautics,
where accurate measurements are crucial. In this paper, we
examine how these realistic measurements are achieved by
different hardware-assisted network emulators. We achieve
this by comparing the different tools and drawing a conclu-
sion from this analysis.

Index Terms—hardware-assisted, network benchmarking,
network emulation, low-latency, high-throughput,

1. Introduction

Network emulation is not a new concept. Common
tools like Mininet [1] or NetEm [2] allow the emulation of
configurable network topologies and their characteristics.
Despite the existance of multiple tools that already allow
such emulation, new tools and frameworks continue to be
presented. Recent tools like Kollaps [3] and those by Sylla
et al. [4], Ryu et al. [5], and Morin et al. [6] for wireless
network emulation emphasize the ongoing relevance of
this topic. New tools often focus on specific emulation
features, such as low latency. When looking at low la-
tency application, fields like Time-sensitive Networking
and aeronautics, in which as-fast-as-possible and reliable
calculations are crucial, emulation is a valuable tool.
Other aspects like complexity and high throughput are
interesting to emulate, as the importance of data centers
with a huge amount of traffic over short links is only
rising with further people and systems transferring to the
cloud. These aspects are difficult to emulate only using
virtual networking devices and require hardware assis-
tance. This is made possible by specifications like Single-
root Input/Output Virtualization (SR-IOV), which allow
for Peripheral Component Interconnect Express (PCIe) to
be virtualized.

In this paper, we will review multiple of these
hardware-assisted tools, focusing on different network
characteristics such as low latency and high throughput,
and what design choices made this possible. In Section
2 Background about the topic will be provided. Section
3 presents the four different tools analyzed in this paper.
Afterwards, we compare the tools in Section 4 and draw
conclusions in Section 5.

2. Background and Related work

There are different types of network emulation tools.
Some tools, like Mininet, are purely virtual solutions.
These kind of tools are designed to emulate a full network
on a single host and use features like namespaces for this
purpose. Other tools can be defined as testbeds of multiple
hosts, which are used on a large scale and by multiple
people at once, spanning over one or multiple data centers.
These testbeds are in their core real networks designed
for emulating real traffic in a controllable environment.
Testbeds like FABRIC [7], which was presented 2019,
SCIONLab [8], which has been in use since 2016, or
PlanetLab [9], established in 2003, are examples in this
context.

In this paper, we will focus on a different kind of
network benchmarking tool, namely the hardware-assisted
variant. The tools analyzed in this paper all share the
characteristic that they use real networking hardware to
allow benchmarking, and are designed to only use a very
limited number of devices. Depending on which hardware
is used in the design, this allows for realistic data from
real devices. We will also focus on tools which use off-
the-shelf hardware.

2.1. Similar comparisons

Different comparisons of network emulation tools
have been done before this analysis, though they focus
on other aspects. In the article presenting the Kollabs
emulator Gouveia et al. [3] present a very recent listing of
available virtual network emulation tools. The main focus
there lies in the comparisons of features, like dynamic
changing of network properties, and in which manner the
tools are implemented.

The article presenting the SCIONLab testbed [8] fea-
tures a short table comparing different network testbeds
on their features against the presented SCIONLab. We
could not find a recent comparison of these large scale
testbeds on a set of universal features. Comparisons like
the one made by Mirkovic et. al in [10] from 2011 are
older and therefore do not reflect the current iterations of
these testbeds.

2.2. Simulators

In comparison to network emulation, network simu-
lation only tries to replicate network behavior. Network
simulators like OMNeT++ [11] and NS3 [12] therefore
serve a different purpose. Similarly to the comparison

Seminar IITM SS 23 103 doi: 10.2313/NET-2023-11-1_18



of network emulators, we were not able to find recent
network simulator comparisons. A comparison from 2014
by Kabir et. al [13] shows that with the huge amount
of simulators available for different platforms and with
different design goals, that a suitable simulator with the
required features should be identifiable.

2.3. SR-IOV

SR-IOV is a standard which allows a single PCIe
device to be split into multiple virtual devices, which can
then be used in virtualization. To achieve this, SR-IOV
uses virtual and physical functions. Physical function are
complete PICe functions, which allow for configuration of
the device in the standard way. Virtual Functions (VF) on
the other hand are soly capable of sending and receiving
data.

This allows for different Virtual Machines (VM) to use
the same PCIe device without any other kind of resource
allocation. The hypervisor or the managing operating sys-
tem of the VMs must support SR-IOV, as the physical
function could be required at some point in the virtualiza-
tion process. This can speed up the virtualization of e.g.
networking devices as are used by the tools discussed in
this paper [14].

3. Hardware-Assisted Virtual Network Emu-
lation Tools

In the following, we will introduce the tools we will be
comparing. All of the following tools provide the ability to
benchmark virtual network configurations while utilizing
hardware assistance. We have selected these tools for
comparison because they employ similar techniques, such
as SR-IOV, but they have different approaches and design
goals.

3.1. HVNet

N
ICLoadGen

Timestamper

VM 1

VM n

...

Server

Figure 1: Simplified HVNnet setup

HVNet [15] is an approach for creating virtual net-
work topologies utilizing real networking hardware, with
a focus on realistic timestamping of low-latency traffic.
To achieve this, a configuration with a load generator that
generates traffic, connected to a Device under Test (DuT)
using HVNet is used. For the evaluation, timestamping
hardware is used to ensure a minimal discrepency. The
traffic sent and received by the DuT is channeled over a
Network Interface Card (NIC) utilizing SR-IOV to sep-
arate it into multiple virtual links. VMs running on the
DuT are configured to have minimal overhead. To achieve
a setup with VMs instead of using the Data Plane De-
velopment Kit (DPDK) [16], like e.g. Mininet is using, a

kernel-based networking approach is employed. This setup
allows for extremely low-latency traffic emulation, where
the 99th percentile of logical link latency is approximately
100 µs for 2-hop measurements at 1 Mbit/s. This tool aims
for realistic network behavior, emulating low latency, low
jitter network traffic on a easily configurable setup with
minimal devices. HVNet setup is summarized in Figure 1.

3.2. NFV-TestPerf

Container 1

Container 2

N
IC

Container 1

Container 2

or

Container 1

Switch

Server Server

Figure 2: Simplified NFV-TestPerf single host setup

Another way to emulate multiple hosts on a single
computer is by using containers. Similar to VMs, con-
tainers can be assigned a virtual function on an SR-IOV
capable network card. A tool that allows this is NFV-
TestPerf [17]. This framework can be used to specify
network topologies and configure applications hosted in
containers to communicate over different connection types
like Linux bridges, virtual switches, or the aforementioned
SR-IOV-capable networking hardware. We will focus on
the usage of SR-IOV and also discuss the results using
VALE [18], a virtual networking switch.

Another feature achieved by this approach, is the
framework being very flexible. It allows for single and
multiple container communication on single or multiple
host configurations, each with different connection types
as described above. Six different connection types are
compared in multiple scenarios with single or multiple
hosts. To achieve network virtualization, DPDK’s Appli-
cation Programming Interface (API) is used. It allows
the virtual containers to access the VFs of the SR-IOV
capable hardware as well as the virtual software switches.
Therefore, the network virtualization runs in user space.

Using this method, tests performed on only a single
host with a low packet sending rate and a maximum burst
size of 128 achieved latencies below 200 µs using SR-IOV.
The NFV-Testperf is summarized in Figure 2.

3.3. TurboNet

A different approach to emulating network behavior
with the help of networking hardware is TurboNet [19].
The idea here is to use a programmable switch to emulate
multiple configurable virtual switches. The main goal
to TurboNet is, in contrast to the two tools mentioned
earlier, to emulate switching topologies. To achieve this,
the programmable switch is sliced into multiple emulated
switches and links. Packets are sent over physical links
only when they enter or exit the switch topology.

This is accomplished by assigning each virtual switch
a set of ports and emulating link delays via a queue.
Additionally, TurboNet allows for multiple programmable
switches to be used by connecting them via a physical
link.

Seminar IITM SS 23 104 doi: 10.2313/NET-2023-11-1_18



Switch 1

Switch 2

Switch 3

Switch n

Configuration Routing

Host 1

Host 2

programmable
switch

Figure 3: Simplified TurboNet setup

Configuration of TurboNet is available via an API,
which also allows for configuring link behaviors such as
loss and artificial delays. The TurboNet setup is summa-
rized in Figure 3.

3.4. ExRec

Rack 1 Rack n...

ToR nToR 1

DO Switch 1 DO Switch 1... DA Switch

Server 1

Figure 4: Simplified ExRec single host setup

As data centers become increasingly relevant and
continue to grow in size, they represent another cru-
cial application for network emulation. An example of
a framework tackling this issue with off-the-shelf hard-
ware is ExRec [20]. In the setup of ExRec, a variable
number of hosts M emulates N data center racks, which
are connected to top-of-rack switches emulated on the M
hosts with virtual machines. The ToRs are then connected
to an electric packet switch, which emulates k demand-
oblivious spine switches. An optical circuit switch is used
as a demand-aware switch. The framework also ensures
that network bottlenecks occur only as intended, and that
there are no bottlenecks on the VMs. For control mes-
sages, the most achievable inter-arrival time was 500 µs,
but the focus of the testbed is on high throughput with
realistic data center behavior. The ExRec setup is sum-
marized in Figure 4.

4. Comparison of the Tools

In the following, we will try to compare the designs,
features, and limitations of the previously presented tools.
We will focus on the purpose each tool serves and how
they achieve this in comparison to the other tools. The
comparison is summarized in Table 1.

4.1. Low Latency

Three of the four mentioned tools have low latency as
a requirement or feature. HVNet is specifically designed
with low latency in mind, as is NFV-TestPerf. In both
cases, SR-IOV capable network cards can be used to
transfer packets between different virtual network nodes.

TurboNet uses emulated switches, which only have a
nanosecond delay because of the use of loopback ports as
links. In the evaluation, a Tofino switch is used for which
the dequeuing plus enqueuing delay adds up to around
200 ns for all available bandwidths from 10 Gbit/s to 100
Gbit/s. As this is not a realistic representation of larger
networks, TurboNet uses queue depth in programmable
switches to bridge this delay to a more realistic value.
Even with passing a 10 Gbit/s delayed queue, the delay
ranges from 100 µs to 1000 µs.

ExRec does not have a focus on low latency directly.
Latency measurements are not directly highlighted in the
article describing the tool, but in the evaluation of the
testbed, switches are configured at runtime, which is dis-
played to be possible with an inter-arrival time of about
500 µs. This, however, only gives us a very low bound of
what the actual worst case latency of packets at full load
could be, which should be significantly higher. For latency,
however, only the worst case is an interesting metric, as a
big deviation can lead to unreliable results. In this regard,
it is, therefore, limited in comparison to the other tools.

When comparing HVNet and NFV-TestPerf, HVNnet
with its ≈ 200 µs worst-case latency for 2 hops, and NFV-
Testperf with a mean latency between 100 µs to 200 µs
for a burst rate of 128 and 1500-byte packets, seem to
both reach a good performance. It is, however, important
to note that virtual networking for HVNet is done in the
kernel space, where NFV-Testperf’s is done in user space.
Additionally, NFV-Testperf uses packets with a size of
1500 bytes, where HVNet uses packets with a size of
363 bytes. But when pulling Mininet as a fully virtual
alternative to the test, as has been done in the publication
presenting HVNet [15] it has worst-case latencies of about
600x (about 100 ms). This shows that to achieve these
kinds of latencies, optimized processes and hardware are
absolutely necessary.

4.2. Throughput

Another very interesting network metric is throughput.
Especially when emulating multiple virtual hosts on a
single real one, high throughput can be difficult to achieve
when using real networking hardware. Using an SR-
IOV capable network card for multiple virtual links, the
maximal achievable throughput for each virtual link is the
maximal throughput the network card can handle divided
by the amount of virtual links [15]. In more complex
emulated topologies, this can quickly become an issue.
Looking at a 10 Gbit/s network card, only 10 virtual
links can be assigned to physically reach a Gbit/s one-
directional link throughput. Additionally, packet size can
also have a big influence on throughput, as reducing the
packet size by half doubles the cost for the same through-
put. The second limit is, therefore, the emulation cost
coming from high throughput traffic. This can reduce the
emulatable network size in the worst case exponentially

Seminar IITM SS 23 105 doi: 10.2313/NET-2023-11-1_18



TABLE 1: Comparison of Tools

Tool Topology Networking Hardware Latency Throughput

Mininet fully virtual hosts - ≈ 200 ms 1 Gbit/s
HVNnet LoadGen, Timestamper, and DuT SR-IOV NIC worst-case ≈ 200 µs N/A
NFV-TestPerf Host spawning containers u.a. SR-IOV NIC mean ≈ 100 µs to 200 µs ≈ 13 Gbit/s
TurboNet Emulated switches in programmable switch programmable switch emulated ≈ 200 µs to 1000 µs 40 Gbit/s
ExRec hosts virtualizing racks connected to switches NIC and emulated switches min 500 µs 10 Gbit/s

It is important to add that these tools were evaluated in their presenting article and are therefore using different hardware. The displayed values are
to be viewed as a reference. Mininet throughput from [21]

if every virtual host would be connected to every other
virtual host.

TurboNet tackles this issue by implementing its own
background traffic emulation. This is done by using pro-
grammable switches to inject packets into the switch
pipeline. In a comparison made by Emmerich et al. in
the paper presenting MoonGen [22], a popular packet
creation tool, it is struggling to reach a comparable kind
of throughput for smaller packet sizes.

ExRec is another tool that focuses more on achieving
throughput goals, despite the emulation of switches. In
their evaluation, the tool could reach high throughput
levels extremely fast, right after a certain preconfigured
flow had been started.

As NFV-TestPerf’s primary goal is to emulate virtual-
ized network functions, which can also need high volumes
of data depending on the application, throughput is also
a metric interesting here. SR-IOV has some of the best
achieved results in the throughput evaluation of the tool,
only being beaten by VALE in some scenarios, where
throughput reaches up to 12 Gbit/s.

4.3. Results

After comparing the different tools, we can draw some
results and requirements for this kind of tools.

4.3.1. Low Latency. For measuring low latency traf-
fic, hardware supporting virtualization appears necessary
though measurements using VALE returned good results
in the evaluation of NFV-TestPerf [17]. This could be
interesting to analyze further for the other tools, especially
HVNet as it has a similar structure. In comparison, all the
tools achieve latencies that are far below what Mininet
and other purely virtual solutions can achieve.

4.3.2. High Throughput. When looking at throughput, a
different conclusion can be drawn. As throughput is lim-
ited by the hardware, using VALE achieved good results
in the evaluation of NFV-TestPerf [17]. The tests where
this was conducted were limited to a very small number of
containers. It is expected that for more virtualized nodes
this result will only strengthen, as then the worst-case ex-
ponential limitation of the hardware will come into effect.
It would however be interesting to analyze the load that is
then put on the CPU, as it would rise in the same manner
as the hardware limitation. Overhead from each host also
plays a role here, as it doesn’t limit the configuration using
hardware, but the software switching may be affected.
This is why NFV-TestPerf is implemented to only allow
network bottlenecks.

4.3.3. Final Points. The comparison with Mininet shows
that specialized setups can achieve realistic low latency
and also high throughput traffic even when simulating
bigger network topologies with only very few hosts. But
other than Mininet, which is designed to be as flexible
as possible, a lot of additional work is required to al-
low for more emulation configurations. Tools like ExRec
and TurboNet can only emulate a very specific setup
and cannot be used to emulate a more general network
topology. HVNet and NFV-TestPerf are designed to allow
a more general topology but may face challenges when
simulating more specific network types, e.g., switching,
like TurboNet is designed to, or data center behavior as is
done by ExRec. It, therefore, becomes clear that a tool for
all purposes, like Mininet, cannot create the best results
for specific network aspects, and that this focus requires
specialized setups in itself. So if an emulator is to be
chosen for a project and the standard tools do not meet the
requirements for the emulation, an emulator specialized in
the characteristics of the project may be hard to find. Some
of the tools that have been compared in this article are
available open source, namely ExRec and NFV-Testperf,
and the links to GitHub are still active and working at the
time of writing.

5. Conclusion and Future Work

In this paper, we compared different hardware-assisted
network emulation tools for their features. This allowed us
to verify the importance of hardware in emulators where
low latency is a design goal. We also learned that focusing
on a few characteristics of networks can easily lead to
restrictions concerning other characteristics. When using
NICs in the emulation process, the number of links that
are emulated over it imposes a harsh restriction on the
achievable throughput.

However, if no hardware is used, the tools have sig-
nificant downsides in these regards.

The comparison leaves a few open questions that could
be answered in future work. For example, the comparison
of the tools was done with a focus on the emulation of
low latency networks and throughput. Other, more abstract
characteristics of networks could be compared, like the
emulation of a network with a high number of nodes
or different scenarios like cross-traffic load. Additionally,
the tools could be compared in a more practical way by
setting them up and running tests on them. Other aspects
mentioned in Section 4.3 could also be compared, like the
performance of VALE in the other tools.

Seminar IITM SS 23 106 doi: 10.2313/NET-2023-11-1_18



References

[1] “An Instant Virtual Network on your Laptop (or other PC),”
mininet.org, [Online; accessed 14-July-2023].

[2] S. Hemminger, “Network Emulation with NetEm,” April 2005.

[3] P. Gouveia, J. a. Neves, C. Segarra, L. Liechti, S. Issa,
V. Schiavoni, and M. Matos, “Kollaps: Decentralized and
dynamic topology emulation,” 2020. [Online]. Available: https:
//doi.org/10.1145/3342195.3387540

[4] T. Sylla, L. Mendiboure, M. Berbineau, R. Singh, J. Soler,
and M. S. Berger, “Emu5gnet: an open-source emulator for 5g
software-defined networks,” in 2022 18th International Conference
on Wireless and Mobile Computing, Networking and Communica-
tions (WiMob), 2022, pp. 474–477.

[5] B. Ryu, R. Knopp, M. Elkadi, D. Kim, and A. Le, “5g-emane:
Scalable open-source real-time 5g new radio network emulator with
emane,” in MILCOM 2022 - 2022 IEEE Military Communications
Conference (MILCOM), 2022, pp. 553–558.

[6] D. G. Morin, P. P. ManuelJ. López Morales, and A. G. A. A.
Villegas, “FikoRE: 5G and Beyond RAN Emulator for Application
Level Experimentation and Prototyping,” 2022.

[7] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, and P. Ruth, “Fabric: A national-scale programmable
experimental network infrastructure,” IEEE Internet Computing,
vol. 23, no. 6, pp. 38–47, 2019.

[8] J. Kwon, J. A. García-Pardo, M. Legner, F. Wirz, M. Frei,
D. Hausheer, and A. Perrig, “Scionlab: A next-generation internet
testbed,” in 2020 IEEE 28th International Conference on Network
Protocols (ICNP). IEEE, 2020, pp. 1–12.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman, “Planetlab: an overlay testbed for broad-
coverage services,” ACM SIGCOMM Computer Communication
Review, vol. 33, no. 3, pp. 3–12, 2003.

[10] J. Mirkovic, A. Hussain, and H. Shi, “A comparative study of
network testbed usage characteristics.”

[11] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in 1st International ICST Conference on Simulation
Tools and Techniques for Communications, Networks and Systems,
2010.

[12] “ns-3 Network Simulator,” https://www.nsnam.org, [Online; ac-
cessed 14-July-2023].

[13] M. H. Kabir, M. J. H. Syful Islam, and S. Hossain, “Detail
comparison of network simulators,” vol. 5, no. 20, 2019.

[14] P. Legros, “Why using Single Root I/O Virtualization
(SR-IOV) can help improve I/O performance and
Reduce Costs,” https://www.design-reuse.com/articles/32998/
single-root-i-o-virtualization.html, [Online; accessed 02-August-
2023].

[15] F. Wiedner, M. Helm, S. Gallenmüller, and G. Carle, “Hvnet:
Hardware-assisted virtual networking on a single physical host,”
in IEEE INFOCOM 2022 - IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), 2022, pp. 1–6.

[16] “Data Plane Development Kit,” https://www.dpdk.org/, [Online;
accessed 02-August-2023].

[17] G. Ara, L. Lai, T. Cucinotta, L. Abeni, and C. Vitucci, “A frame-
work for comparative evaluation of high-performance virtualized
networking mechanisms,” in Cloud Computing and Services Sci-
ence, D. Ferguson, C. Pahl, and M. Helfert, Eds. Cham: Springer
International Publishing, 2021, pp. 59–83.

[18] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual
machines,” in Proceedings of the 8th international conference on
Emerging networking experiments and technologies, 2012, pp. 61–
72.

[19] J. Cao, Y. Liu, Y. Zhou, L. He, and M. Xu, “Turbonet: Faithfully
emulating networks with programmable switches,” IEEE/ACM
Transactions on Networking, vol. 30, no. 3, pp. 1395–1409, 2022.

[20] J. Zerwas, C. Avin, S. Schmid, and A. Blenk, “Exrec: Experimen-
tal framework for reconfigurable networks based on off-the-shelf
hardware,” in Proceedings of the Symposium on Architectures for
Networking and Communications Systems, 2021, pp. 66–72.

[21] A. Al-Sadi, A. Al-Sherbaz, J. Xue, and S. Turner, Developing
an Asynchronous Technique to Evaluate the Performance of SDN
HP Aruba Switch and OVS: Proceedings of the 2018 Computing
Conference, Volume 2, 01 2019, pp. 569–580.

[22] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “Moongen: A scriptable high-speed packet generator,” in
Proceedings of the 2015 Internet Measurement Conference, 2015,
pp. 275–287.

Seminar IITM SS 23 107 doi: 10.2313/NET-2023-11-1_18


