
Introduction to BBRv2 Congestion Control

Joji Mathew, Benedikt Jaeger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: joji.mathew@tum.de, jaeger@net.in.tum.de

Abstract—Congestion happens when an overflow occurs due
to more data being sent than the bandwidth and this leads
to loss. Congestion control algorithms try to prevent this
and the ones currently used widely are TCP algorithms
which are loss-based and delay-based starting only once a
loss has occurred leading to retransmissions due to which
further congestion occurs. Google proposed BBR in 2016
using another approach called congestion-based congestion
control which acts at an earlier stage compared to TCP
algorithms promising maximum throughput and minimum
queuing delay. But it still comes with drawbacks that Google
is trying to solve with the second version BBRv2 which is
still in the testing stage. In this paper, we give an overview
on congestion control overall, BBR, and introduce BBRv2.

Index Terms—congestion control, TCP, BBR, CUBIC, bot-
tleneck bandwidth

1. Introduction

TCP (Transmission Control Protocol) is a protocol in
the transport layer that ensures to establish end to end
connection between two hosts and is also responsible for
the safe transmission of data between the two. Whenever
a data packet is lost it makes sure to re-transmit it. When
multiple senders, unaware of the bandwidth of the connec-
tion send lots of data, it leads to congestion in the network
which causes buffer overflow and packet loss. TCP uses
congestion control algorithms to avoid this situation [1].
TCP has several implementations for the same starting
with RENO to the present-day CUBIC.

Excessive buffering and delays were reported on the
Internet in 2011 [2]. This was mainly due to the fact that
TCP operates only having loss as a parameter and starts
operating too late once congestion has occurred. By this
time senders re-transmit lost data which leads to further
congestion. BBR which was developed by Google tries to
operate at Kleinrock’s optimal point [3] way before a loss
occurs.

The paper is structured as follows. Section 2 talks
about the different approaches used in congestion control.
An introduction to BBR, it’s working, and performance
analysis is discussed in Section 3. Section 4 talks about
some drawbacks of BBR. BBRv2 is introduced briefly and
an elaboration of its algorithm and performance analysis
is done in Section 5. Finally, the conclusion and future
work is given in Section 6.

2. Different approaches in congestion control

These are some terms needed for later and their ex-
planations according to Scholz et al. in [3].

• BtlBW- Bottleneck is a link in the network path
with the lowest bandwidth and this bandwidth is
called Bottleneck bandwidth(BtlBW).

• RTT- Round Trip Time(RTT) is the time required
for a data packet to reach the receiver plus the
time for the acknowledgment to reach the sender.

• RTprop- It is the round trip propagation delay
when there is no queuing delay and very less data
in the buffer.

• Inflight data- Amount of data in the buffer.
• BDP- RTprop · BtlBW is called a pipe’s

Bandwidth-Delay Product(BDP).
• cwnd- Amount of data being sent in each RTT

2.1. TCP congestion control algorithms

TCP has primarily two congestion control approaches.
Even though it has a lot of algorithms in development. The
following are the ones used widely:

Loss-based congestion control. This approach identifies
loss as congestion and is used in implementations like
RENO, CUBIC. The basic idea of the implementation
is that it starts with a small cwnd, then increases ex-
ponentially after each RTT, and whenever a loss occurs,
it interprets it as congestion and reduces the cwnd by a
certain amount and now increases it unlike earlier only in
small amounts. This process of reducing cwnd and slow
incrementation keeps on repeating whenever a loss occurs
[4].

Delay-based congestion control. This other approach
identifies delay as a parameter for congestion instead of
loss and starts working when it sees an increase in RTT.

2.2. Congestion based Congestion control

The problem with loss-based congestion is that it
only starts acting when a loss occurs. When the Amount
Inflight > BDP queue starts slowly building up in the
buffer, increasing RTT, and when the Amount inflight=
BDP + Bottleneck buffer size, the buffer becomes full,
leading to congestion and packet loss [5].

In bigger buffers loss-based congestion control algo-
rithm sends data at full bandwidth causing buffer bloat,

Seminar IITM SS 23 91 doi: 10.2313/NET-2023-11-1_16

loss-based
operating
point

Kleinrock’s optimal
operating point

BDP BDP+BtlneckBufSize

RTprop

R
T
T

BtlBw

Amount Inflight

D
el
iv
er
y

R
a
te

Figure 1: Amount Inflight vs Delivery Rate and RTT [3]

and only starts acting at BDP + Buffer size, where it
is already too late since the loss of packets causes re-
transmission resulting in further delays [6]. In the older
days, it used to make sense since memory was expensive
and buffers were smaller so it minimized the delay of
reaching BDP + Buffer size. But nowadays, with lesser
prices and more memory available, it causes a delay
of seconds. In the case of small buffers, this algorithm
is also overly sensitive and bring about low throughput
because it misinterprets loss as congestion, which could
have occurred due to other reasons like flows entering the
pipe.

The optimal point to start congestion control is when
Amount Inflight = BDP, as shown in Figure 1, also known
as Kleinrock’s optimal point [6]. This condition ensures
that the bottleneck does not starve, and at the same time,
the data does not overfill the pipe. Also the bottleneck
could be fully utilized if the sending and arrival rate of
packets at the bottleneck are equal. BBR tries to satisfy
both of these conditions.

3. BBR

BBR(Bottleneck Bandwidth and Roundtrip) was pro-
posed as an alternative approach by Google in 2016 [3].
It is a congestion-based congestion control approach that
mainly tries to achieve high throughput with a small queue
and can withstand random losses upto 15%, according to
Cardwell et al. in [7]. BBR operates on the parameter
BDP mainly, and to measure BDP, it has to constantly
determine BtlBW and RTT. But they cannot be observed
simultaneously, since as shown in Figure 1, RTT can be
measured accurately when Amount Inflight < BDP so that
there is no congestion resulting in RTT = RTprop and
BtlBW has to be measured when Amount Inflight > BDP
so that we get the maximum bandwidth.

3.1. Algorithm

According to Scholz et al. in [3], BBR algorithm
operates in 4 phases.

Phase 1(Startup): Pacing gain is a parameter that
controls the amount of data sent, that when multiplied
with the BtlBW shows the current sending rate. The
sending rate is doubled after each roundtrip, and once the
bandwidth has reached its maximum value, which BBR
assumes as the BtlBW, it continues with the second phase.

Phase 2(Drain): Here, BBR tries to reduce the queue
created at the bottleneck due to the first phase by tem-

porarily decreasing the pacing gain and starts with next
phase.

Phase 3(Probe Bandwidth): In this phase, with a
total of 8 cycles BBR tries to estimate the BtlBW. In
the first cycle, the pacing gain is set to 1.25 to probe
for extra bandwidth and then at 0.75 to drain the queues
created. Then for the rest of the phase, i.e., six cycles,
the pacing gain is set to 1. The bandwidth is sampled
constantly throughout the time and the maximum is used
as the BtlBW. This value holds for a period of 10 RTprop.
Then it enters the next phase.

Phase 4(Probe RTT): In this phase, which is about
200ms plus one RTT, bandwidth is set to four packets
to drain any possible queues created by the third phase
to get the current estimation of RTT. RTprop value is
updated if a new minimum is measured and is valid for
tens seconds.Both Probe_BW and Probe_RTT phase are
repeated continuously and updated.

3.2. Performance Analysis of BBR

When we look at the performance analysis of BBR and
CUBIC done by Cardwell et al. in [7], it is to be seen that
BBR achieves high bandwidth despite losses. At a loss
rate of 0.01%, CUBIC lowers the throughput to around
30MB s−1 and at 0.1%, further lowers to 12.5MB s−1

while BBR maintains the maximum at around 90MB s−1,
which shows that even small losses lead to low throughput
in a loss-based congestion control approach. When mea-
suring the buffer size(MB) against latency (s), CUBIC has
a linear increase in latency while BBR maintains a low
queue delay despite bloated buffers.

4. Problems of BBR

Even though BBR promised to solve a lot, it still
comes with problems. According to experiments done by
Ma et al. in [8], Song et al. in [5], and Scholz et al. in
[3], the following drawbacks were observed:

4.1. RTT unfairness

With multiple flows, flows with longer RTT recieve a
larger share of bandwidth compared to flows with smaller
RTT is the opposite of traditional loss-based and delay-
based algorithms, which favor flows with shorter RTT.
This leads to the following problems. There is an un-
pleasant trade-off between low latency and high delivery
rates. It no longer makes any sense to find a route that
has minimum RTT since flows with longer RTT receive
more bandwidth leading to a high delivery rate. Secondly,
since BBR is also a sender-based congestion control like
TCP, it will be easier to manipulate and increase the RTT
from the receiver side to get more share of bandwidth, and
the sender would be totally unaware of the situation. This
could lead to worse outcomes if all the receivers compete
and try to inflate their RTT constantly.

4.2. Unresponsive to packet loss

BBR overestimates the bottleneck bandwidth and ac-
cording to the analysis done by Hock et al. in [9], the

Seminar IITM SS 23 92 doi: 10.2313/NET-2023-11-1_16

throughput in networks that delay or aggregate ACKs, BBR
maintains an inflight cap which allows an increase in the cwnd
upto a maximum of (cwnd gain x BDP), where cwnd gain is a
constant. The bottleneck bandwidth is estimated by calculating
the delivery rate of the packets as the amount of data delivered
divided by the time taken to deliver the data. The delivery
rate is tracked for a moving window of 10 RTTs and the
highest value observed is set as the maximum bandwidth
(MaxBW). Similarly, the minimum RTT (minRTT) is the least
value seen over a period of 10 seconds. Subsequently, MaxBW
and minRTT are used to estimate the BDP. The cwnd and
pacing rate are adjusted by scaling factors cwnd gain and
pacing gain, respectively. Both the BBR versions have 4
phases (Fig. 1a). BBRv2 further divides its PROBE BW phase
into 4 sub-phases (Fig. 1b).

STARTUP

DRAIN

PROBE_BW

PROBE_RTT

(a) Phases of BBRv1 & BBRv2

PROBE_DOWN

PROBE_CRUISE

PROBE_REFILL

PROBE_UP

(b) PROBE BW in BBRv2

Fig. 1: Phases in BBRv1 and BBRv2
Algorithm 1: STARTUP phase

1: if MaxBW < 1.25 * prev MaxBW for 3 consecutive RTTs then
2: Exit STARTUP, Enter DRAIN // BBRv1 & BBRv2
3: else if lost packets > 2% of total packets inflight & loss gaps > 8 then

Save current inflight as inflight hi

Exit STARTUP, Enter DRAIN

}
// BBRv2

4: else if marked packets > 50% of delivered packets for 2 consecutive
RTTs then

Save current inflight as inflight hi

Exit STARTUP, Enter DRAIN

}
// BBRv2

5: else
6: Increase cwnd and pacing rate // BBRv1 & BBRv2
7: end if

During the STARTUP phase, cwnd and pacing rate are in-
creased by setting both cwnd gain and pacing gain to 2/ln(2)
(≈2.89) [3]. This exponential increase in the pacing rate and
cwnd can lead to queue buildup at the router. As shown in
Algorithm 1, BBRv1 exits this phase if the MaxBW does not
increase by at least 25% for 3 consecutive RTTs (lines 1-2).
BBRv2 has two additional conditions: it exits if the packet
loss or ECN marking rate is high (lines 3-4). loss gaps is
the number of times packet loss events occurred which helps
to differentiate transient bursts from persistent congestion.
inflight hi indicates the maximum value of cwnd observed so
far. BBRv1 is agnostic to packet losses and ECN marks.

The DRAIN phase clears the surplus queue from the pre-
vious phase by reducing the pacing gain to ln(2)/2 (≈0.35)
[3]. cwnd gain is unchanged (2/ln(2)) to keep the pipe full.
This phase terminates when the amount of inflight data < the
estimated BDP. This phase is same for BBRv2.

BBRv1 has 8 cycles in PROBE BW: the first cycle uses
a pacing gain of 1.25 to probe for more bandwidth, and the
next cycle uses pacing gain of 0.75 to drain the queue created.
Subsequently, the sending rate of BBRv1 is set to MaxBW

for the next 6 cycles using a pacing gain of 1. cwnd gain
is fixed to 2 in this phase, which implies that the inflight
cap is fixed to 2xBDP. Some studies have shown that inflight
cap is the primary source of unfairness in BBRv1 [6][7]. In
BBRv2, PROBE UP and PROBE DOWN use a pacing gain
of 1.25 and 0.75, respectively, whereas PROBE CRUISE and
PROBE REFILL use a pacing gain of 1. The bandwidth
probing time in BBRv2 is adaptive (unlike 8 cycles in BBRv1)
to improve the coexistence with Reno and CUBIC. Algorithm
2 shows the working of PROBE BW phase in BBRv2, where
probe wait is a random amount of time (between 2-3 seconds)
that BBRv2 waits before probing, and next loss epoch time
is the estimated time between two packet loss events of a
coexisting CUBIC or Reno flow.

Depending on the current estimate of bandwidth (bw) and
the data inflight, BBRv2 derives long-term upper bounds and
short-term lower bounds for bw and inflight because the
operating point of BBRv2 is given by a tuple (bw, inflight).
bw lo, bw hi and bw latest represent the lower bound, upper
bound and latest estimate of the bw, respectively. Similarly,
inflight lo, inflight hi and inflight latest are analogous to slow
start threshold (ssthresh), maximum cwnd observed so far and
the present value of cwnd, respectively.

inflight lo and bw lo are reduced if there are ECN marks
or packet losses when BBRv2 is not probing for bandwidth.
If there are ECN marks, DCTCP-style reduction is applied,
which is proportional to the number of packets marked in that
RTT. If there is a packet loss, CUBIC-like 30% reduction is
applied. If there are ECN marks and packet losses, the largest
reduction factor among those indicated by both is applied.
However, the maximum reduction factor is 50%. Note, these
lower bounds are short-term, and are reset whenever BBRv2
exits PROBE RTT or enters PROBE REFILL. When BBRv2
is probing but there are no ECN marks or packet losses,
inflight hi and bw hi are raised. If inflight latest > inflight hi,
then inflight hi is set to inflight latest, and if bw latest >
bw hi, then bw hi is set to bw latest. Besides, BBRv2 adapts
inflight hi and bw hi as shown in Algorithm 2.

BBRv1 enters the PROBE RTT in every 10 seconds. The
cwnd is set to 4 segments for 200ms. This is done to obtain a
better estimate of minRTT, which is devoid of queuing delay.
BBRv2 enters this phase every 5 seconds, and instead, sets
the cwnd to 50% of BDP to avoid loss of throughput.

III. EXPERIMENTAL SETUP AND SCENARIOS

The experiments are conducted on an emulated testbed
which is set up using network namespaces and virtual Ethernet
in Ubuntu 18.04. Flexible Network Tester [11] is used to run
tests and collect the results. Google’s Linux repository1 with
the implementation of BBR versions has been used for the
evaluation. The default implementation of CUBIC in Linux has
been used to study the inter-protocol fairness of BBR versions.

We use the simple topology shown in Fig. 2 for evaluation,
as it is adequate to obtain an initial understanding of the

1https://github.com/google/bbr/tree/v2alpha-experimental-pacing

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 11,2023 at 14:03:19 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Phases of BBR and BBRv2 algorithm [10]

Amount Inflight is between 2 BDP and 2.5 BDP, most
of the time. This could lead to problems when the buffer
size is less than 1 BDP since BDP + Buffersize, in this
case,would be less than 2 BDP. Due to the overestimation
BBR might start operating only at 2BDP, whereas loss has
already started occurring at BDP + Buffersize and BBR
would not reduce the amount of data sent since it does
not respond to loss, leading to further retransmissions and
delays.

4.3. Fairness between BBR and other algorithms

When BBR operates together with loss-based con-
gestion like CUBIC, the share of the bandwidth varies
according to the buffer size. When the buffer is shallow,
BBR occupies more bandwidth and in the case of deep
buffers CUBIC occupies a major share. In each of these
cases, this behaviour leads to starvation of flows using the
other algorithm leading to high retransmissions.

5. BBRv2

BBR was proposed by Google in 2016 [3] as an
alternative to traditional loss and delay-based algorithms,
promising maximum throughput with minimum queuing
delay. To achieve this, BBR tries to work at Klienrock’s
optimal point. It was deployed in Google B4 WAN,
Google.com and Youtube video servers [6]. B4 is a high-
speed Wide Area Network from Google, and in B4, it
was to be seen that BBR had a throughput 2 to 25
times greater than CUBIC, and when the receiver window
was raised, BBR was 130 times faster than CUBIC. In
Google.com, web page downloads were faster mainly in
the developing world. On Youtube, playbacks using BBR
had less rebuffering, and BBR was also able to achieve a
median RTT of 53% and 80% in developing world.

Even though BBR showed promising results in the
deployments, it still came with flaws. Apart from the ones
discussed earlier, BBR also does not respond to ECN
signals (Internet Protocol provides an extension called Ex-
plicit Congestion Notification(ECN) to notify TCP about
network congestion without dropping the packet, thus
avoiding retransmission [11]), and it has low throughput
for paths with high aggregation(wifi). BBRv2, the newest
version of BBR with modifications, was developed by
Google in 2018 to solve these problems [12]. To coexist
better with algorithms like CUBIC, it adapts bandwidth
probing. BBRv2 also responds to loss and uses DCTCP-
style ECN. Finally, it estimates the recent degree of ag-
gregation to avoid low throughput problems [13].

CUBIC BBR BBRv2

Parameters None BtlBW,
RTT

BtlBW,
RTT, max
aggrega-
tion,max
inflight

Response to
loss Yes No Yes

Response to
ECN Yes No Yes

Startup
slow until
RTT rise or
any loss

slow
start
until
thresh-
old

slow
start until
threshold or
ECN/loss
rate > target

cwnd in
Probe RTT
phase

N/A 4 pack-
ets BDP/2

TABLE 1: Comparison table based on [12], [16]

A current draft for the BBRv2 is available on the
internet [14] and as per the draft BBRv2 is currently
available publicly for Linux TCP and QUIC. QUIC is a
transport layer protocol like TCP implemented by Google
and deployed in 2012. It is supported in major web
browsers like Google Chrome, Firefox, and Microsoft
Edge. It tries to establish a connection with less latency
than TCP. QUIC also aims at bandwidth estimation in
both directions, which in turn helps the BBRv2 at BtlBW
estimations [15].

5.1. Algorithm

Explanation of the algorithm according to [14] and
[10]. BBRv1 and BBRv2 algorithms work similarly in
most cases. BBRv2 has some additional modifications on
how it responds to loss and ECN. The Probe_Bandwidth
phase is adaptive and therefore helps to coexist bet-
ter with algorithms like CUBIC solving the interpro-
tocol fairness problem. BBRv2 keeps tabs on the cur-
rent estimate(.._latest), lower bound(.._lo), and higher
bound(.._hi) values of the bandwidth and amount of data
in flight. The congestion window is bounded by these
lower and upper bound values instead of the inflight cap
of 2 BDP, like in BBRv1. BBRv2 also has some minor
changes with the congestion window in the drain phase.

Both BBR and BBRv2 exit the startup phase and enter
the drain phase when there has been no significant increase
of a minimum of 25% in the bandwidth in the last three
RTTs. In addition to this condition, BBRv2 also goes to
the drain phase if there is packet loss or when ECN marks
50% of the delivered packets for two consecutive RTTs.

The main difference in the algorithm is in the
Probe_Bandwidth phase. According to Nandagiri et al. in
[10], BBRv2 further breaks Probe Bandwidth into four
sub-phases, as shown in Figure 2. In the Probe_Down
phase BBR tries to reduce the amount of data in flight
by lowering the sending rate to 90% of the bottleneck

Seminar IITM SS 23 93 doi: 10.2313/NET-2023-11-1_16

bandwidth. It exits this state when there is free headroom.
So if the inflight_hi value is set, it remains in this state
until the volume of inflight data is less than inflight_hi.
The inflight_hi helps prevent loss and leaves space for
other flows or cross traffic. Also, any queues created at
the bottleneck have to be drained. Both of these conditions
have to be met to exit this phase. In the Probe_Cruise
phase, BBRv2 tries to send data at the same rate as
the delivery rate, i.e., data is sent at 100% capacity of
bottleneck bandwidth. In this phase, it responds to loss and
ECN by reducing bandwidth_lo and inflight_lo, indicating
that the delivery rate and amount of data inflight need to
be reduced. This phase holds adaptively and exits when
it needs to probe for more bandwidth. In the Probe_Refill
phase, BBRv2 has a goal of refilling the pipe. It attempts
to send at 100% of bottleneck bandwidth for just one
more RTT, with bandwidth_hi and inflight_hi restraining
the connection. In the Probe_Up phase, BBRv2 tries to
probe for more bandwidth. The pacing gain is set to
1.25 which when multiplied by the bottleneck bandwidth,
gives the current sending rate. When higher bandwidth and
amount inflight values are measured, the bandwidth_hi
and inflight_hi values are updated. It exits this phase when
there is either a loss of 2% or when the queue is high
enough that the flow judges that it has probed adequately.

In the Probe RTT phase, which BBRv1 enters every 10
seconds to estimate the latest RTprop, BBRv1 sends only
four packets to drain the queues created in Probe_BW
whereas BBRv2 enters the phase every 5 seconds and
maintains the throughput by draining it only to half the
BDP in this phase.

Table 1, based on [16] and [12], shows the difference
in how CUBIC, BBR, and BBRv2 work.

5.2. Performance analysis of BBR v2

Response to loss. As it can be seen in Figure 3 from
Song et al. in [12], CUBIC is overly sensitive and starts
reducing throughput from a loss of 0.001%, BBR is loss
agnostic and continues to deliver maximum throughput
up to around 15% and BBRv2 provides a good middle
ground providing maximum throughput until about 1%
loss.

Inter-protocol Fairness. Experiments were conducted by
Nandagiri et al. in [10] to check the Inter-protocol fairness.
In the experiment, ECN was disabled since CUBIC and
BBRv2 work with different types of ECN. In shallow
buffers, BBRv1 had more share than CUBIC as pointed
out earlier. But in the case of BBRv2, the sharing of band-
width with CUBIC is fairer than BBRv1. This behaviour
attributes to BBRv2 being bounded by lower and upper
bound values and not having an inflight cap like BBRv1,
preventing losses in the startup phase, helping CUBIC
to maintain its throughput and not reduce the congestion
window. After Startup both BBRv2 and CUBIC reduce
throughput when they encounter loss. During the probing
phase, the bandwidth of BBRv2 remains somewhat con-
stant, but CUBIC on the contrary, increases its bandwidth
after each RTT leading to having a slightly larger share.

In the case of deep buffers BBRv2 has a throughput
way less than its fair share. Both CUBIC and BBRv2
have an equal throughput in the beginning and reduce

Y.-J. Song et al.: Understanding of BBRv2: Evaluation and Comparison With BBRv1 Congestion Control Algorithm

ProbeBW:Up phase is terminated immediately after the
inflight data exceeds the previously set 1.25 × BDP, even
though a newBDP has not been updated as shown in Fig. 7(a).
In addition, BBRv2 repeated the ProbeBW:Up phase once
after random intervals (2 to 3 s), so that it takes quite a long
time to probe the full bandwidth.

Fig. 6(b) shows that BBRv2 quickly adapts to the new
test environment where the bandwidth decreases from 80 to
40 Mbps in terms of throughput. However, BBRv2 takes
about 9 seconds to operate at the optimal operating point that
provides the maximum throughput and the minimum latency
as shown in Fig. 7(b). When BBRv2 detected the packet
loss, it sets the inflight_lo to temporarily reduce the
amount of inflight data and waits for the lower BDP to be
calculated. That is, BBRv2 controls the amount of inflight
data depending on the inflight_lo until it estimates the
lower bottleneck bandwidth close to the actual bottleneck
bandwidth.

3) ACCORDING TO RANDOM PACKET LOSS
We measured the average throughput of BBRv1, BBRv2,
and CUBIC that operated on the link where the random
packet loss rate ranging from 0.000001% to 10% occurred,
and Fig. 8 shows the results of the experiments. CUBIC
shows a significant performance degradation despite a small
packet loss rate of 0.01%. That is because CUBIC rec-
ognizes the packet loss as the network congestion signal
and repeatedly reduces the congestion window. Unlike the
loss-based congestion control algorithm, BBRv1 does not
directly reduce the congestion window size no matter how
much packet loss occurs. Hence, BBRv1 achieves a high
data rate despite the high packet loss rate. However, this
operating characteristic caused BBRv1’s aggressiveness in
the coexistence with other TCP flows. To compromise
between the aggressiveness and robustness, BBRv2 reduces
the inflight data if it detects the packet loss that exceeds the
predefined threshold (loss_threshold=2%). Therefore,
BBRv2 shows high link utilization when packet loss rate is
less than 2%, and the throughput rapidly decreases in the
environment where the packet loss rate is more than 2%.

FIGURE 8. Throughput according to random packet loss rate.

C. INTRA-PROTOCOL CONVERGENCE
We configured an experimental environment in which two
BBR flows transmit data for 100 s on the common bottleneck

FIGURE 9. Throughput according to bottleneck buffer size when two
identical BBR flows start at different times. (Flow 1: 0 second, Flow 2:
2 second).

link to evaluate how fast the throughput for two flows with
different start times converge for the existence of two BBR
flows. We set the bottleneck bandwidth to 50 Mbps and
1 Gbps and the round-trip propagation time to 30 ms. The
bottleneck buffer sizes were varied from 0.1 to 16 BDP
according to the test scenarios. One flow (Flow 1) first
started sending data at 0 s, then the other (Flow 2) entered
the bottleneck link after 2 s. In addition, Fig. 9 shows the
average throughput for each flow repeated 10 times in the
same scenario, and Fig. 10 presents the change in throughput,
the buffer backlog of Switch 2, and the timestamp of packet
retransmissions when each version of BBR flows operated on
links of 0.2, 2, and 4 BDP bottleneck buffers.

Considering only the throughput, in Fig. 9(a),(b), two
BBRv1 flows that originate at different times fairly share
the bottleneck link regardless of the bottleneck bandwidth
and buffer size because two BBRv1 flows measure similar
BtlBw and RTprop and calculate a similar BDP. There-
fore, they inject a similar amount of inflight data into the
network. However, the behaviors of the two BBRv1 flows
show significant differences depending on the size of the
bottleneck buffer when analyzed from the standing queue
viewpoint. During the coexistence of two BBRv1 flows, each
BBRv1 host overestimates the bottleneck bandwidth to send
out about 200 KB more data than the actual BDP of the link
as shown in Fig. 10. If the bottleneck buffer is sufficiently
large to prevent buffer overflow like Fig. 10(b),(c), no packet
retransmissions occur except in the startup phase. Otherwise,
BBRv1 flows experience excessive packet retransmissions
as described in Fig. 10(a). Moreover, the duration of the
throughput fluctuation that occurs when the second flow
enters increases with the bottleneck buffer size increases
in Fig. 10(b),(c). As the buffer size increases, the size of the
RTprop increasedwhen the second flow commenced, result-
ing in a superior delivery rate and long-standing queue until
the first flow enters the next ProbeRTT phase. The first flow

37138 VOLUME 9, 2021

Figure 3: Throughput vs loss for CUBIC,BBR and BBRv2
[12]

throughput encountering a loss. But when CUBIC starts
increasing its sending rate BBRv2 is still in the drain
phase, trying to reduce the queues created at Startup phase.
By the time BBRv2 enters the Probe_Bandwidth phase,
it experiences loss due to CUBIC reaching the threshold
forcing BBRv2 to reduce its bandwidth’s higher bound
further.

RTT fairness and Intra-protocol fairness. Experiments
were conducted by Song et al. in [12] to determine the
RTT and Intra-protocol fairness of BBRv2. It was done
with two flows, with the first flow having a fixed RTT
of 30ms and the second flow with varying RTT. In
BBRv1 flows with larger RTT received a bigger share
of bandwidth than the shorter flows. In BBRv2 a similar
behaviour is observed. For flows with the same RTT, the
flow starting first gets a bigger share of throughput, but
according to Nandagiri et al. in [10], similar flows have
better fairness when ECN is enabled. Experiments on RTT
fairness were also conducted by Gomez et al. in [17]
with 50 flows of 10ms RTT and 50 flows of 50ms RTT.
It is shown that both BBRv1 and BBRv2 allocate more
bandwidth to flows with bigger RTT when buffer size is
above 0.6 BDP, but when the buffer size is above 12 BDP,
BBR v2 has a very high fairness index, whereas BBRv1
is still unfair.

6. Conclusion and future Work

BBRv2 is the best version of BBR, as of now. BBRv2
when deployed on Youtube had lesser RTT than CUBIC
and BBRv1. It is currently deployed as the default TCP
congestion control for internal Google traffic [16]. It pro-
vides maximum throughout till 1% loss, is more efficient
using ECN signals, reduces queuing delay, and has better
throughput in wifi. BBRv2 alpha is the current version
which has some shortcomings which Google is working
on fixing with the final version. BBRv2 has a fairness
issue when ECN is disabled and is a bit too complex to
deploy in WAN like b4 due to its dependency on DCTCP
like ECN [10]. Although RTT fairness issues are better
compared to BBRv1, it has not been solved completely.
The same situation remains with inter-protocol fairness in
the case of deep buffers. According to [18], Google is
trying to add BBR.Swift extension to BBRv2. It aims to
use delay also as a parameter without changing the BBR
core. Google is also planning for a full-scale rollout in
their company.

Seminar IITM SS 23 94 doi: 10.2313/NET-2023-11-1_16

References
[1] GeeksforGeeks, “Transport Layer Responsibilities,” [accessed 24-

May-2023]. [Online]. Available: https://www.geeksforgeeks.org/
transport-layer-responsibilities/

[2] Engagement and P. operations center, “20200504 - Neal Cardwell
- BBR: A Model-based Congestion Control,” https://www.youtube.
com/watch?v=mpbWQbkl8_g, [accessed 17-July-2023].

[3] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of tcp bbr congestion
control,” in 2018 IFIP networking conference (IFIP networking)
and workshops. IEEE, 2018, pp. 1–9.

[4] GeeksforGeeks, “TCP Congestion control,” [accessed 3-
June-2023]. [Online]. Available: https://www.geeksforgeeks.org/
tcp-congestion-control

[5] Y.-J. Song, G.-H. Kim, and Y.-Z. Cho, “Bbr-cws: improving the
inter-protocol fairness of bbr,” Electronics, vol. 9, no. 5, p. 862,
2020.

[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacob-
son, “Bbr: congestion-based congestion control,” Communications
of the ACM, vol. 60, no. 2, pp. 58–66, 2017.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, I. Swett,
J. Iyengar, V. Vasiliev, and V. Jacobson, “Bbr congestion control:
Ietf 99 update,” in Presentation in ICCRG at IETF 99th meeting,
2017. [Online]. Available: https://www.ietf.org/proceedings/99/
slides/slides-99-iccrg-iccrg-presentation-2-00.pdf

[8] S. Ma, J. Jiang, W. Wang, and B. Li, “Fairness of congestion-
based congestion control: Experimental evaluation and analysis,”
arXiv preprint arXiv:1706.09115, 2017.

[9] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of
bbr congestion control,” in 2017 IEEE 25th international confer-
ence on network protocols (ICNP). IEEE, 2017, pp. 1–10.

[10] A. Nandagiri, M. P. Tahiliani, V. Misra, and K. K. Ramakrishnan,
“Bbrvl vs bbrv2: Examining performance differences through ex-
perimental evaluation,” in 2020 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN, 2020, pp. 1–6.

[11] Wikipedia, “Explicit Congestion Notification,” accessed 12-June-
2023]. [Online]. Available: https://en.wikipedia.org/wiki/Explicit_
Congestion_Notification

[12] Y.-J. Song, G.-H. Kim, I. Mahmud, W.-K. Seo, and Y.-Z. Cho,
“Understanding of bbrv2: Evaluation and comparison with bbrv1
congestion control algorithm,” IEEE Access, vol. 9, pp. 37 131–
37 145, 2021.

[13] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha,
Y. Seung, M. Mathis, and V. Jacobson, “Bbr v2 a model-based con-
gestion control,” 2019. [Online]. Available: https://datatracker.ietf.
org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00

[14] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, and V. Jacobson,
“BBR Congestion Control,” Internet Engineering Task Force,
Internet-Draft draft-cardwell-iccrg-bbr-congestion-control-02, Mar.
2022, work in Progress. [Online]. Available: https://datatracker.
ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/

[15] Wikipedia, “QUIC,” accessed 12-June-2023]. [Online]. Available:
https://en.wikipedia.org/wiki/QUIC

[16] N. Cardwell, Y. Cheng, S. H. Yeganeh, P. Jha, Y. Seung,
K. Yang, I. Swett, V. Vasiliev, B. Wu, L. Hsiao et al., “Bbrv2:
A model-based congestion control performance optimization,” in
Proc. IETF 106th Meeting, 2019, pp. 1–32. [Online]. Available:
https://lafibre.info/testdebit/linux/201911_bbr_v2_doc_ietf106.pdf

[17] J. Gomez, E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava,
“A performance evaluation of tcp bbrv2 alpha,” in 2020 43rd Inter-
national Conference on Telecommunications and Signal Processing
(TSP), 2020, pp. 309–312.

[18] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev,
P. Jha, Y. Seung, M. Mathis, V. Jacobson, N. Dukkipati, and
G. Kumar, “Bbr update : 1:bbr.swift; 2:scalable loss handling,”
2020. [Online]. Available: https://datatracker.ietf.org/meeting/109/
materials/slides-109-iccrg-update-on-bbrv2-00

Seminar IITM SS 23 95 doi: 10.2313/NET-2023-11-1_16

