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Abstract—The ability to virtualize and separate multiple
networks on top of a common physical infrastructure al-
lows network providers to serve different needs. With this
approach, 5G networks can better support new technologies
such as self-driving cars, which is not possible with tradi-
tional one-size-fits-all architecture. This is possible while also
reducing the cost for the operators. The drawback is that it
requires a lot of configuration and management to function
optimally. Machine learning is a possible solution to simplify
and automate this work.

This paper analyses and compares multiple different pro-
posed implementations of machine learning in the network
slicing process. We see that all approaches provide benefits
but they can not be directly compared to each other, because
the measurements are too different.

Index Terms—5G, network slicing, machine learning,
software-defined networks

1. Introduction

Earlier mobile standards like 4G and 3G are mainly
designed for smartphones and thus have a design solely
focused on this purpose. With ongoing technological
development, new and different use cases arise. These
include self-driving cars, telemedicine and Internet of
Things (IoT). All use cases for mobile networking can
be divided into three classes following specifications from
the International Telecommunication Union (ITU):

• enhanced mobile broadband (eMBB) Mainly
meant for smartphones which need high data rates
and a large area covered due to their mobility.

• massive machine type communication (mMTC)
Sporadical communication of a large number of
devices in a small area. It is used for IoT devices
like sensors, which only send small amounts of
data in large timeframes. Packet loss is not a
significant problem.

• ultra reliable low latency communication
(uRLLC) Communication with access over
99.9999% and end-to-end latency of less than 50
ms is required for some industrial use cases. For
example smart connected fabrication plants.

For every class the network has to fulfill different
needs. Serving all of these classes with one network while
providing a consistent quality of service (QoS) is hard to
achieve. A potential solution could be to build multiple
different radio access networks, each specialized for one

class. However, the development of multiple networks
leads to a high amount of additional costs for network
providers.

A better solution is network slicing. It allows network
providers to use one physical network to serve all traffic
classes while still providing a consistent QoS. It works by
separating the network into multiple network slices (NS),
which are tailored to a specialized purpose.

The management of all these slices can be quite com-
plicated. Machine learning can simplify and automate this
management.

The remainder of this paper analyzes three different
approaches. Section 2 explains the background of network
slicing and the enabling technologies. Section 3 explains
three different papers and their results, which are then
discussed in Section 4. Section 6 concludes the paper.

2. Background

In this section we explain the key technologies that
enable network slicing.

2.1. Network Function Virtualization

Network function virtualization (NFV) is a concept
that enables virtualization to separate hardware from func-
tionality [1]. Network functions (NF) like virtual firewalls
or virtual load balancers can be deployed on servers to
run these network functions on any server. This helps
create flexible networks by deploying necessary NFs on
servers when needed. It reduces the dependency on special
hardware and the placement of servers in the network.

This technology is crucial for network slicing

2.2. Software Defined Networking (SDN)

Software defined networking (SDN) physically sepa-
rates the network control plane from the forwarding plane
[2]. The forwarding plane consists of all the hardware
that forwards packets while the control plane consists
of one or more SDN controllers. The control plane has
knowledge about the whole network and its policies.
With this information, it makes all the routing decisions
and communicates them via different protocols to the
forwarding plane. Then routers and switches follow the
decisions of the control plane and forward the packets.
In comparison to a classical network where every router
makes its own decisions about forwarding packets, SDN
centralizes the routing process. These differences allow

Seminar IITM SS 23 73 doi: 10.2313/NET-2023-11-1_13



the network a faster adaption to changes in the network
or the users’ needs.

SDN is necessary for network slicing to adjust the
routing decisions to changing network slices and their
different routing needs.

2.3. Network Slicing

Using the above explained technologies modularizing
networks is possible. The NGMN (Next Generation Mo-
bile Network) has introduced network slicing for 5G in
[3]. It allows the creation of multiple logically independent
networks that operate on top of a unified physical infras-
tructure. Network providers can customize these logical
networks to provide different services and performance
levels to meet the demand of multiple clients at the same
time.

For the creation of these slices three required layers
were defined by the NGMN [3]:

• The infrastructure resource layer comprises all
the physical resources, which includes access
nodes, cloud nodes, end-user devices such as
smartphones and wearables and even the links
between these devices. All devices have differ-
ent capabilities and can fulfill different roles in
the network. These capabilities and roles can be
controlled and monitored through an application
programming interface (API).

• The business enablement layer contains all of
the functions and configuration parameters of the
network devices. Some of these functions offer
different levels of performance, which are used
to differentiate the network slices. They are sepa-
rated into modular blocks and can be loaded onto
required devices by an API.

• The business application layer contains all ap-
plications and services provided by the network
operator or different enterprises.

The 3 layers are connected by the E2E management
and orchestration entity. This entity controls the cre-
ation, scaling and geographic distribution of resources of
all network slices. It defines a slice depending on the
use case and applications needed. It chooses the required
network functions with specific performance levels to map
those onto the device in the infrastructure resource layer.
It makes decisions about the scaling for the lifetime of
the slice. It shifts resources between slices to optimize
performance.

2.4. 3GPP Specification

The 3GPP defines a management and orchestration ar-
chitecture. The communication service management func-
tion (CSMF) translates incoming requests for services
into requirements for the network. These requirements are
sent to the Network Slice Management Function (NSMF),
which chooses or generates the slice blueprint optimal for
the requirements. A slice blueprint contains all needed
NFs, their connections and configurations. After the slice
is instantiated the NSMF manages it until it is decommis-
sioned.

A Network Slice instance (NSI) is a group of NFs.
"An NSI is composed of NFs shared between two or more
slices, as well as dedicated NFs" [4].

3. Network Slicing with Machine Learning

In recent years a lot of research about the usage of ML
for resource orchestration has been conducted. Multiple
research groups have proposed different methodologies to
include machine learning in the decision process. Some
of these are explained in the following.

3.1. Artificial Intelligence for Slice Deployment
and Orchestration

Dandachi et al. [4] propose two new approaches for
ML based on the 3GPP NSMF architecture. They define a
novel architecture that is compatible with the 3GPP design
and includes three new functions:

The slice analytics (SA) function minimizes required
resources by sharing them between slices. If multiple
slices want to use the same NF they can be grouped in a
common NSI.

The admission control (AC) decides whether new
slices can be created or have to be dropped because of
resource shortage.

This function can be combined with the congestion
control (CC) function, which scales slices up and down
as needed, to build a cross-slice admission and congestion
control (CSACC).

3.1.1. Slice Analytics (SA). The two main tasks of the
SA are the classification of slices and the reduction of
required resources. For this purpose, it receives the slice
blueprint and the resource requirements for new slices. If
the requested slice requires NFs and resources that are
already used by other slices, they can be shared between
the two slices. This reduces the number of new resources
that have to be allocated, which then reduces the rate of
denied requests due to a shortage of available resources.

Depending on the specific slices and services running
on them, the amount of NFs that can be shared is different.
This allows the classification into elastic and non-elastic
slices [5]. The authors of [4] only consider elastic slices
in their research. The usage is explained in the setting
of a sports event: Different broadcasts will use the same
images, which can be shared, but will provide different
commentary, which has to be separated.

The performance of two different algorithms for the
grouping are analysed. The first algorithm finds an existing
NSI with the highest amount of overlapping NFs using the
Jaccard similarity. For each new slice, the best group can
be calculated and only the missing NFs are created and
added to the NSI.

The second algorithm uses spectral clustering [6] to
create NSIs that reduce resource usage. This algorithm
does not find an existing NSI to which new slices fit
but calculates an optimal grouping for all existing and
new slices. This has a the higher complexity (O(N3)) [6]
compared to calculating the Jaccard similarity (O(N)) and
thus the authors recommend executing this recalculation
in larger time intervals or when the system is overloaded.
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Dandachi et al. classify all slices into either guaranteed
quality-of service (GS) slices, which have a high priority,
or best effort (BE) slices, which have a lower priority.
Additionally, if the system needs more resources for GS
slices these can be taken from BE slices. For each class,
a queue exists, in which new slice requests are inserted
until they are created. After the new slice request has been
grouped with other slices it is inserted into one of two
queues depending on the class of the slice.

3.1.2. Cross-slice admission and congestion control
(CSACC). The CSACC function decides which queued
slices are accepted and how many resources get assigned
to the slices. The goal is to maximize the number of
accepted slices while reducing the probability that a new
slice request has to be dropped because the queue is full.
The resources of each slice can not be reduced beyond
a minimum level to prevent extreme degradation in the
QoS.

For this, reinforcement learning is employed. State-
Action-Reward-State-Action (SARSA) aims to find a pol-
icy that maps the state of the system to an action, which
maximizes the reward. To enhance this model the authors
use linear function approximation.

3.1.3. Performance results. Comparing only the slice
admission with SARSA to the CSACC with SARSA, the
latter method shows an improvement with up to 23%
reduction in dropped slice requests. However, this im-
provement is only possible if new GS slices are requested
with a probability of less than 70%. Higher values show
no difference between the two methods.

Using the SA function, the rate of dropped slices is
even further reduced. Up to 44% reduced drop rate is
achieved by using CSACC with SARSA and SA with
spectral clustering compared to not using any function,
as seen in Figure 1.

Figure 1: Slice dropping rate as a function of arrival
probability from [4]

3.2. Artificial Intelligence for Elastic Manage-
ment

In a paper from Gutierrez-Estevez et al. [7] the concept
of resource elasticity (which was defined in an earlier
paper from the same group) is being used as the basis of
multiple ML approaches. Resource elasticity describes the

ability of a network to automatically and smoothly adapt
to changes in the system. This elasticity can be applied to
three areas:

• computational elasticity in the operation of VNFs
• orchestration-driven elasticity in the placement

of VNFs
• slice-aware elasticity in the distribution of re-

sources between slices

3.2.1. Computationally Elastic Scheduler. One of the
more computationally expensive NF is the media access
control (MAC) scheduler. It is responsible for assigning
bandwidth resources to different devices in a network and
deciding on which modulation and coding scheme (MCS)
to use. Depending on the signal-to-noise ratio (SNR) in
the connection, different MCSs are best suited and have
different computational complexities. Contextual bandits
are an ML approach that tests different randomized poli-
cies. The policies are finetuned regarding environmental
conditions. The predicted SNR for a given user is a
necessary condition for the contextual bandits. Applying a
long short term memory network to this predicts the SNR.

3.2.2. Slice-Aware Resource Management. The authors
of [7] design algorithms, which are supposed to optimally
allocate/de-allocate resources to individual slices. They
have to consider QoS requirements, Service Level Agree-
ments (SLAs) and demands of the slices. These algorithms
can be applied to different problems.

The authors use a deep neural network to forecast the
amount of traffic in the future. This helps to allocate addi-
tional resources, if a large group of users, which increases
the demand, is predicted, or de-allocate resources at day
times when little to no traffic is expected. Algorithms
to adjust different settings in the network can also be
improved with this data.

Predicting the movement of people helps to adjust the
settings of cell towers such as the beam pattern or even
allocate towers at different locations to the slice. Identify-
ing groups of people and predicting their movement can
be done by ML algorithms. The position and demand of
users are necessary to guarantee reliable coverage.

Figure 2: Traffic prediction results from [7]

3.3. Machine Learning Based Resource Orches-
tration for 5G Network Slices

The group of Salhab et al. [8] proposes a novel
architecture that includes ML in the management and
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orchestration process.

3.3.1. System design. The proposed network architecture
is not based on the 3GPP architecture but contains four
other components as seen in Figure 3. The first part is
the gatekeeper. To aggregate and sort traffic into the
correct slices, first a marking and classification phase is
needed. Using the slice blueprints and tenant requests,
the gatekeeper generates requirements using supervised
learning. This allows us to choose the correct blueprint
for each requested slice.

These policies are then handed to the decision maker,
which is composed of a forecast aware slicer and an
admission controller. The forecast aware slicer uses re-
gression trees to predict the required ratio of all network
slices. It achieves this using different information about
the traffic. Using this and the current load on the network,
the admission controller decides whether to grant requests
for new slices or not.

If the request is accepted it gets sent to the slice
scheduler. Its purpose is to find a schedule that serves
all slices and minimizes the total time needed. Salhab et
al. prove this to be an NP-hard problem [9] and provide
a heuristic for solving it.

Denied requests are sent to the resource manager,
which uses micro-services to automatically scale re-
sources. If additional resources are needed to allow a
new slice to be accepted it reduces the resources for
other slices. Available resources can be assigned to slices,
increasing their performance. The authors use Reinforce-
ment learning to optimize decision making and improve
the system’s utilization.

Figure 3: Block diagram of the architecture from [8]

3.3.2. Performance. The paper compares different ma-
chine learning algorithms running on the above-mentioned
architecture. The first benchmark compares different mod-
els used for the classification. Most of the models achieve
a prediction accuracy of over 90%. The highest accuracy
of 98% was produced using a linear discriminant model.

The second benchmark compares different models
used to predict the optimal slice ratios. Different tree
algorithms (simple trees, medium trees and complex trees)
achieved the lowest root mean squared error (around 5%)
and the highest prediction speeds. These results, however,
come at the expense of a longer training time compared
to linear models. Since the models’ training is infrequent,
this tradeoff can be accepted. To validate the usefulness
of the tree models, the authors compare them to the
theoretical optimum, a static slice ratio and a random slice

ratio. The ML model performed the best, with an average
5% gap to the theoretical optimum. The random approach
performed the worst with a 30% gap.

For the last test, the setup was run with and without
traffic forecasting. Using the forecasting the throughput of
the system increased by approximately 30%.

4. Evaluation

All approaches are shown to be beneficial in some
aspect. But comparing them against each other is difficult
because different papers use ML to improve other aspects
of the system. Moreover, all of the approaches analyzed in
this paper measured different metrics of the network or the
ML models. The authors of [7] only show the accuracy of
the ML models, but not any performance results obtained
from implementing them. Paper [4] focuses on the proba-
bility, that a new slice request has to be dropped. The last
paper [8] includes the ML accuracy and the throughput of
the system with the implemented methods.

Some aspects of an approach can not be measured
with numbers. For example, the system architecture in
[4] is based on the 3GPP architecture and the system
in [8] introduces a completely new architecture. Both
provide certain advantages and disadvantages. A standard-
ized system makes it easier to expand and compare to
other systems on the same architecture. Creating a new
architecture allows the system to be better specialized for
a certain use case.

Some current problems in this research area include
the lack of data for training supervised models. Because
5G is not widely deployed and the hardware is expensive,
collecting real-world data for training is difficult.

5. Related work

There have been multiple other surveys about this
research area, which focus on certain types of approaches.
Some focus on the applications of 5G and ML for IoT
devices Wijethilaka et al. [10], Khan et al. [11]. Oth-
ers concentrate on deep reinforcement learning Hurtado
Sánchez et al. [12]. The survey from Su et al. [13]
concentrates on mathematical models.

6. Conclusion and future work

In this paper, we examine different approaches to
utilizing ML in the management and orchestration process
for network slicing.

We found that ML seems to improve many aspects
of the management and orchestration process. One archi-
tecture has been shown to increase the throughput of the
system [8] other designs increase the number of slices that
can be run on a system.

A possible solution to better compare different ap-
proaches would be to implement different designs on the
same setup and measure the same parameters. This could
be done in future work.
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