
Content and API Acceleration Using Content Delivery Networks

Tom Maximilian von Allwörden, Markus Sosnowski∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: tom.von-allwoerden@tum.de, sosnowski@net.in.tum.de

Abstract—Modern web services are accessed all over the
world by potentially many users. Content Delivery Networks
(CDNs) play an integral role in lowering the latency for end-
users that are using these services by caching objects like a
website’s source code and images close to the user. Tradition-
ally, CDNs have been used for static content, but with the rise
of personalized user experiences and dynamically changing
content, new requirements for CDNs emerged. APIs are the
most common way such content is accessed, so an effort is
made to accelerate these.

This paper will give a brief introduction into how CDNs
work, how virtual network optimize routing and then exam-
ine how dynamic content and APIs can benefit from CDNs
via different invalidation techniques and what tradeoffs to
consider. Furthermore the paper collects diverse approaches
in the field of edge computing for moving the application
logic itself close to end users.

Index Terms—cdn, internet, api acceleration, dynamic con-
tent, virtual network, edge computing

1. Introduction

Content Delivery Networks (CDNs) bring web-
services like websites or APIs closer to the end-user by
deploying various globally distributed replica- or edge
servers that cache the content of the origin server. Such
locations are called Point of Presences (PoPs) and typ-
ically consist of Internet Exchange Points or locations
inside of an Internet Service Provider (ISP)’s networks [1].
Sitaraman et al. [2] show the main business incentive: high
load times of a website can avert potential users away from
a commercial site. A large CDN provider like Akamai
therefore deploys over 170 000 edge servers in about 1300
networks to accommodate todays needs [3,4], especially
in times where latency is the single biggest influence on
web performance, according to Ilya Grigorik [5].

When a user tries to access a web-service, instead of
visiting the origin server directly, they get directed to a
geographically close edge server by the CDN’s request-
routing system. If the content is cached, it is then im-
mediately returned, thus lowering the latency; however if
the content is not cached the CDN must fetch it from the
origin [6]. This can be done effectively using a CDN’s
virtual overlay network [2].

Beheshti [7] mentions that caching is especially ef-
fective for static content like images or script files, but
dynamic content and APIs are traditionally harder to cache
because simple caching could lead to the user getting stale,
outdated content.

This paper is structured as follows: Section 3 presents
an overview of different request routing methods. We take
a closer look at before mentioned virtual networks and
how connections to the origin are accelerated in Section 4.
Section 5 is about handling dynamic content with a focus
on a technique called invalidation. Lastly, in the umbrella
edge computing fall various approaches that improve a
site’s performance, which we discuss in Section 6.

2. Related Work

Two of the focal points of this paper are cache invali-
dation and consistency. We will not touch on the protocols
that different CDNs use to implement their invalidation
strategies, such as leases. This is discussed in more detail
by Ninan et al. in [8]. Wingerath et al. describe their ap-
proach for handling dynamic content in [9]. They focus on
the refresh procedure to detect stale content and afterwards
invalidate it automatically. We, on the other hand, will
look at manual invalidation, where we invalidate instantly
when events cause data to become stale.

3. Request Routing

Katz-Bassett et al. [10] state that the request-routing
system is responsible for directing a user from the origin
server to one of the CDN edge servers. There are three
common approaches CDNs use: Domain Name System
(DNS)-based, IP anycast-based and HTTP 304-based redi-
recting, where the user first contacts the origin, which then
redirects the user to a CDN server. We take a look at the
former two in more detail.

Gang Peng [6] presents more advanced methods, such
as those based on Peer-2-Peer systems, but these are
beyond the scope of this paper.

3.1. Domain Name System

With the DNS-based approach, which is covered by
Hung et al. [11], the administrator of a domain origin
places a CNAME entry pointing to the CDN’s DNS server
entry in its domain name server.

When a user requests a website, their local DNS
(LDNS) resolver, most commonly provided by their ISP,
will recursively query the domain name and contact the
CDN’s DNS server. This server then selects the edge
server PoP based on the LDNS IP-address [11]. This is
usually a good indicator for the approximate geographical
location of a user when not using a public resolver [10].

Seminar IITM SS 23 61 doi: 10.2313/NET-2023-11-1_11



Other metrics, such as the network load and previous
edge server choices are also taken into account when
selecting the edge server within a PoP [2].

Notice that with this scheme the end user’s IP-address
is not directly used for selecting an edge server. Sitaraman
et al. [12] and [10] discuss the proposed EDNS-Client-
Subnet DNS extension that allows the LDNS server to
send the user’s /24 IP-address-prefix along with the re-
quest, thus allowing the CDN to make a better decision.

This approach is widely popular. Examples of CDNs
using DNS-based approaches include Akamai [2], Ed-
genext [13] and AWS Cloudfront [14].

3.2. IP Anycast

With the IP Anycast approach, every edge server is
assigned the same IP-address. This method makes use of
the fact that when a network router gets the same route
announced from different interfaces, it chooses only the
one with the lowest hop count. A disadvantage with this
is that CDNs have less control over which edge server the
client connects to, but studies have shown that the method
leads to the optimal edge server in 80% of the time [10].

Popular CDNs, which use this approach include
Cloudflare [10], Microsoft Azure Front Door [15] and
Google Cloud CDN [16].

4. Virtual Network

CDN’s Network
User Origin

Figure 1: Routing using a CDN’s virtual network

Classical internet routing has several disadvantages:
The Border-Gateway Protocol that ISPs use to exchange
routes is known to lead to sub-optimal routing since it
has no topology information and solely uses hop-count as
its main metric [2]. The propagation of failed routes can
also take a significant amount of time. Furthermore, ISPs
are also driven by financial incentives and could prefer
routes over cheaper but slower peering-partner compared
to costly Customer-Provider (C2P) connections [2].

To mitigate this, CDNs influence the routing path
of a package by adding their servers as intermediate
hops, resulting in an overall more optimal route. They
do this by continuously measuring latency and package
drop between their edge servers and taking the topology
information of their server locations into account [2].

Some big players like AWS Cloudfront [17] and Mi-
crosoft Azure [18] come with their own backbone infras-
tructure between different PoPs, circumventing subopti-
mal internet routing even further. Common optimizations
when using the virtual network include:
Long-Term TCP& SSL connections A user’s TCP &

SSL connections are terminated close to them at
the edge. From there on, the edge server uses pre-
established TCP & SSL connections between the

origin and various edge servers. As the respective
handshakes require several round-trips, the saved cost
quickly accumulates [2,19].

No slow start TCP normally begins in a "slow start"
phase with small window sizes. CDNs skip this
phase and choose larger window sizes by taking
the previously mentioned network measurements into
account [2,19].

Data Compression : Images and other objects can be
compressed on the edge close to the origin server,
and thereby loaded quicker [2,19].

Abundant packages : CDNs can try to send the same
packages over multiple routes and then take the one
that arrives first. This also helps against package loss,
but can cause more congestion [2].

Virtual networks thus accelerate the content fetch from
the origin in case of a cache-miss and are therefore impor-
tant for uncacheable and dynamic content. It was shown,
that in Asia the use of a CDN’s more optimized routing
can lead to a 30-50% performance improvement [2].

5. Caching of Dynamic Content

In the last section we saw a general way to speed
up requests to the origin, but we did not make use of
a CDN’s caching capability yet. This section introduces
dynamic content and discuss techniques of caching it.

Dynamic content is content that changes over time
but might be the same for all users while personalized
content refers to dynamic content that is different for
each user. For example, a site presenting the top 10 most
viewed news articles of the day is dynamic content, while
a user’s shopping cart is personalized content. As the
storage requirements for the latter scale with the number
of users with each entry only relevant for a single user,
caching it might be of little value for a service, but we
will see a way of handling this content in Section 6.

Lawrence et al. [20] highlights that not all dynamic
content is the same: some content is valid for a long time,
while other might change with every request made. The
update trigger might be an external event, such as a new
blog post release, or it might simply be after a certain
period of time has passed. The latter would be easier to
handle, as one could just choose this period as the cache’s
Time-To-Live (TTL).

The main problem we face with caching is consistency,
as we have multiple, distributed copies of an object that
might become stale at any time. But even for dynamic con-
tent that normally changes with every request, a site owner
might choose to intentionally give up on consistency and
decide to cache it for a brief period, a practice referred
to as micro-caching, as this alone can take a considerable
load off the origin [9]. This is especially true for large
services that deal with hundreds to thousands of requests
per second.

Another way CDNs can benefit APIs is by accumu-
lating multiple requests over a short period of time and
sending them bundled to the origin. Therefore, taking load
and overhead off of the origin [21].

As APIs usally interface with a database at the origin,
there are efforts that try to map the cache objects to this
underlying relational data. The analysis is typically done
by observing the traffic between web listeners, databases

Seminar IITM SS 23 62 doi: 10.2313/NET-2023-11-1_11



and web services, but the analysis of this mapping is too
expensive and unreliable to use in practice [20].

Therefore, we will focus on the most common way
dynamic content is cached, namely, fine-grained cache
control and invalidation.

5.1. Cache Control and Invalidation

In comparison to the difficult and expensive task of
maintaining and modeling data dependencies between
cache objects, invalidation is a cheap and simple alterna-
tive [20]. We want to cache dynamic content for as long as
possible and invalidate it as soon as it becomes stale. The
most common way invalidation occurs is simply when the
set livetime of a cached item expires. This livetime can
be controlled via the "Expires" header and is passed in
the response from the origin [22]. Another option is to
invalidate the cash manually. This can be done via the
CDN’s API, also refered to as purging [23,24].

We generally want to invalidate as little as necessary
so that we reduce the number of cache misses. Fine-
grained invalidation is generally more difficult to do and
costs the CDN more resources. CDNs commonly provide
different purging methods that vary in their level of gran-
ularity [23,24]:
By URL Invalidates the cache object that is associated

with the URL.
By Prefix Invalidate all objects with a given URL prefix
By Tag The origin Server can associate cache objects

with a tag by adding a "Cache-Tag" header to the
response. This way many possibly by path unrelated
endpoints can be purged with a single request.

By Geo Only invalidate cache objects at certain PoPs.
Even with purging, users could still get stale content

if the CDN only provides weak consistency. Weak consis-
tency means that the cached objects on the different PoPs
only eventually get invalidated instead of instantly as it is
the case with strong consistency [25]. Even CDNs such as
Fastly that advertise a "instant purge" feature do not have
strong consistency across different PoPs [26]. Although
this can already be enough for services, where users
requesting the same content tend to be geographically
close together. When we look at a typical restful API,
there are generally two types of requests [24]:
state requesting GET
state changing POST, PUT, DELETE
The former can usually be cached, while the latter are
commonly passed through to the origin [24]. In response
to a state changing request, the corresponding cache en-
tries need to be invalidated. Let us explore how invalida-
tion mechanics can be used in practice by examining the
following example of a video watching & commenting
platform with the following endpoints:

• PUT /api/<videoid>/comment: users can leave
comments with their username attached.

• GET & PUT /api/<userid>/profile: users can re-
trieve or change their profiles e.g. their username.

In the event that a user changes their username, we
want to invalidate all comments made by them to reflect
this change. In this scenario, invalidating every object
separately is a costly task. Instead, we use tags to as-
sociate each comment and possibly other user-related

endpoints with the user’s id and purge them with one
purge call [24,27,28]. Another possibility is to handle
purging and other logic on the edge servers themselves.
We highlight this in more detail in Section 6.

Further techniques to to improve invalidation include:
Cache-keys The index into the cache to associate an URL

with a cached object is called the cache-key. Modern
CDNs allow one to include or exclude certain parts
and parameters of the URL and request headers into
the key to avoid unnecessary cache-misses [29].

Auto revalidation A CDN might try to fetch the newest
state of an object once the TTL has expired. If
the content was invalidated via a message from the
origin, the origin could pass the newest version of
that object along [25].

Invalidation order Monitoring the popularity of objects
allows a CDN to invalidate the popular ones first as
these affect the most users [20].

In recent years, GraphQL APIs have become a modern
alternative to RESTful APIs. Wundergraph and Hygraph
are examples of services that specialize in GraphQL API
management and include CDN-like caching capabilities.
These can handle invalidation automatically to some ex-
tent, but use relatively simple approaches: Wundergraph
allows the developer to define dependencies between APIs
but not the data dependencies within an API [5,30]. It
caches all objects for 10 seconds. Hygraphs supports
invalidation and does this based on the GraphQL schema
and content changes, but only with weak consistency [31].

6. Edge Computing

Invalidation is not perfect for applications with a high
number of uncacheable requests or whenever we have a
cache-miss, as the origin is the sole producer of fresh
content and needs to be contacted.

The idea behind edge computing is to move as much
application logic as possible close to the user onto edge
servers. When a request can be completely handled on the
edge, no additional overhead is needed to reach out to the
origin server, thus decreasing latency and taking load of
the origin. For this, applications are usually split into an
edge and an origin component [21].

One popular approach is the deployment of edge
functions. Edge functions run in response to incomming
requests. These can then modify the request, interact with
the CDN’s caching system, or implement entire API-
endpoints on edge, and thus behave similarly to an API-
gateway [2]. For example, the invalidation logic discussed
in the previous section can be implemented as edge func-
tions. Most CDNs offer such functions, for example AWS
Lambda@Edge [32] or Cloudflare Worker [33].

Applications that only need a static database to func-
tion are prime candidates to be moved completely onto the
edge. For example encyclopedias, dictionaries or product
catalogues of e-commerce businesses with a fixed number
of products [21]. In the following sections, we will discuss
various techniques in more detail.

6.1. Normalization

URL normalization is applied to the HTTP path and
parameters of incoming requests and ensures the same

Seminar IITM SS 23 63 doi: 10.2313/NET-2023-11-1_11



encoding for all paths in compliance with RFC3986 [34].
As the path is a common component of the cache key,
different encodings of the same object can lead to unnec-
essary cache misses.

For example, these two URLs refer to the
same object: "example.com/api/./user/青 沼" and
"example.com/api/user/%E9%9D%92%E6%B2%BC".
Since these would hit in different cache keys,
normalization is applied to map the former path
into the latter.

6.2. Edge Site Includes

Personalized sites are created explicitly for the user re-
questing them, and it thus provides little value for a CDN
to cache the site as is, especially because the presented
content might become stale fast anyway [20]. But looking
at how personalized sites are constructed one might notice
that they are often built using shared fragments [20].
For example, Figure 2 shows different fragments of the
bing.com website with fragments such as recent news or
weather that could be shared across users of the same city.

Edge-Site-Includes (ESI) allow for the creation of
dynamic, fragmented websites by assembling the web-
site on the edge. Here, a website consists of an HTTP
template with special ESI tags, that describe the type
and location of the fragments that should be included in
the final site. The fragments are shared between different
templates and can each be individually cached and have
their own TTL [2,20]. The ESI environment allows one
to encapsulate personalized information into a fragment
that itself can be cached [20]. A edge server might also
speculatively assemble a site beforehand, based on the
user’s last visited sites [35].

Figure 2: Sample fragmentation of bing.com

6.3. Validation & Authorization

Before forwarding a request to the origin it can be
checked for ill-formatted content [2]. A certain kind of
validation is authorization, where we check if the user
has the necessary access rights. JSON Web Tokens are
a popular method to authenticate users. We assume that
the user got a API token from an issuer (most likely the
origin) in advance. The client then includes this token in
the "Authentication" header within each request. The edge

which is provided a JSON Web Key Set by the Issuer,
checks the user token against this set [36].

Other authorization schemes like OAuth or openid
connect can also be handled on edge [37,38].

6.4. Aggregation

Some simple API endpoints might only consist of
requests to other external services like cloud databases or
weather APIs. These requests can be moved from origin to
edge servers and format the responses on edge [2]. Addi-
tionally, the responses of those endpoints might be cached
on the edge server. More advanced handling can also be
achieved using edge functions. Even transactional tasks
can benefit from solely exchanging raw and compressed
data between the origin and edge servers, where the final
product is then assembled on edge [21].

6.5. Session Handling

Websites commonly keep sessions with clients to rec-
ognize users and keep temporary data across multiple
requests. Often, the returned websites embed this tempo-
rary information based on the session token. For example,
current shopping cart items can be associated with the
session. Edge servers can be used to replace placeholders
in a generic HTML site with the content acquired by the
state. The other way around is also possible: If no session
token is found, the edge can directly return the default site
for anonymous users [20].

7. Conclusion and Future Work

CDNs are an essential part of accelerating web ser-
vices and APIs through the caching of both static and
dynamic content. They rely on a request-routing system
to connect a user to an edge server and thus lower the main
factor that contributes to a site’s loading time: latency. We
looked at the concept of virtual networks, which lower
latency between the edge and origin servers and ways
to accelerate dynamic content and APIs. The different
methods of invalidation and cache control are tricky to
facilitate correctly and demand careful consideration from
developers with respect to the application build.

This paper also laid out how edge computing can be
used to move different aspects of applications onto edge,
like authentication, site assembly or endpoints based on
accumulative requests. To conclude, these approaches can
not only take load off the origin, lowering the bandwidth
needed, but also make end user’s experience better through
faster loading times, especially when their request can
completely be handled on edge.

To lessen the design complexity of edge functions for
custom purging, research should be conducted to look at
how invalidation can be done more automatically by using
assumptions about data dependencies in the cached objects
and API endpoints, and how unified API Guidelines can
help in this endeavour.

References

[1] “Cloudflare Glossary - Internet exchange points,”
https://www.cloudflare.com/de-de/learning/cdn/glossary/internet-
exchange-point-ixp/, [Online; accessed 28-March-2023].

Seminar IITM SS 23 64 doi: 10.2313/NET-2023-11-1_11



[2] J. S. Erik Nygren, Ramesh K. Sitaraman, “The Akamai Network:
A Platform for High-Performance Internet Applications,” SIGOPS
Oper. Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010. [Online].
Available: https://doi.org/10.1145/1842733.1842736

[3] B. M. Maggs and R. K. Sitaraman, “Algorithmic Nuggets
in Content Delivery,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 3, pp. 52–66, Jul. 2015. [Online]. Available:
https://doi.org/10.1145/2805789.2805800

[4] “Why Akamai,” https://www.akamai.com/why-akamai, [Online;
accessed 28-March-2023].

[5] I. Grigorik, High Performance Browser Networking: What every
web developer should know about networking and web perfor-
mance. "O’Reilly Media, Inc.", 2013.

[6] G. Peng, “CDN: Content Distribution Network,” 2004. [Online].
Available: https://arxiv.org/abs/cs/0411069

[7] H. Beheshti, “Fastly - Leveraging your CDN to cache "un-
cacheable" content,” https://www.fastly.com/blog/leveraging-your-
cdn-cache-uncacheable-content, [Online; accessed 28-March-
2023].

[8] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R. Tewari,
“Cooperative Leases: Scalable Consistency Maintenance in
Content Distribution Networks,” in Proceedings of the 11th
International Conference on World Wide Web, ser. WWW ’02.
New York, NY, USA: Association for Computing Machinery,
2002, pp. 1–12. [Online]. Available: https://doi.org/10.1145/
511446.511448

[9] W. Wingerath, F. Gessert, E. Witt, H. Kuhlmann, F. Bücklers,
B. Wollmer, and N. Ritter, “Speed Kit: A Polyglot and
GDPR-Compliant Approach For Caching Personalized Content,”
in 2020 IEEE 36th International Conference on Data Engineering
(ICDE), 2020, pp. 1603–1608. [Online]. Available: https:
//doi.org/10.1109/ICDE48307.2020.00142

[10] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and
J. Padhye, “Analyzing the Performance of an Anycast CDN,” in
Proceedings of the 2015 Internet Measurement Conference, ser.
IMC ’15. New York, NY, USA: Association for Computing
Machinery, 2015, pp. 531–537. [Online]. Available: https:
//doi.org/10.1145/2815675.2815717

[11] Z. Wang, J. Huang, and S. Rose, “Evolution and challenges
of DNS-based CDNs,” Digital Communications and Networks,
vol. 4, no. 4, pp. 235–243, 2018. [Online]. Available: https:
//doi.org/10.1016/j.dcan.2017.07.005

[12] F. Chen, R. K. Sitaraman, and M. Torres, “End-User Mapping: Next
Generation Request Routing for Content Delivery,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 167–181, Aug. 2015.
[Online]. Available: https://doi.org/10.1145/2829988.2787500

[13] “EdgeNext CDN Introduction,” https://
home.console.edgenext.com/#/doc/content/cdn/Product%
20Introduction/Product%20overview, [Online; accessed 28-
March-2023].

[14] “How CloudFront delivers content,” https://
docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
HowCloudFrontWorks.html, [Online; accessed 28-March-2023].

[15] “Microsoft Azure Front Door - Traffic acceleration,”
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-
traffic-acceleration, [Online; accessed 28-March-2023].

[16] “Google Cloud CDN - Choose a CDN Product,” https://
cloud.google.com/cdn/docs/choose-cdn-product, [Online; accessed
28-March-2023].

[17] “Amazon CloudFront Key Features,” https://aws.amazon.com/
cloudfront/features/?nc1=h_ls&whats-new-cloudfront.sort-by=
item.additionalFields.postDateTime&whats-new-cloudfront.sort-
order=desc, [Online; accessed 28-March-2023].

[18] “How Microsoft builds its fast and reliable global network,”
https://azure.microsoft.com/en-us/blog/how-microsoft-builds-its-
fast-and-reliable-global-network/, [Online; accessed 28-March-
2023].

[19] “Microsoft CDN - Dynamic Site Acceleration,”
https://learn.microsoft.com/en-us/azure/cdn/cdn-dynamic-site-
acceleration, [Online; accessed 28-March-2023].

[20] J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, and T. Zhong, “Web
Caching for Database Applications with Oracle Web Cache,” in
Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’02. New York, NY,
USA: Association for Computing Machinery, 2002, pp. 594–599.
[Online]. Available: https://doi.org/10.1145/564691.564762

[21] A. Davis, J. Parikh, and W. E. Weihl, “Edgecomputing: Extending
Enterprise Applications to the Edge of the Internet,” in Proceedings
of the 13th International World Wide Web Conference on Alternate
Track Papers and Posters, ser. WWW Alt. ’04. New York, NY,
USA: Association for Computing Machinery, 2004, pp. 180–187.
[Online]. Available: https://doi.org/10.1145/1013367.1013397

[22] “Amazon CloudFront - Managing how long content stays in the
cache,” https://docs.aws.amazon.com/AmazonCloudFront/latest/
DeveloperGuide/Expiration.html, [Online; accessed 31-March-
2023].

[23] “Cloudflare CDN - Purge Cache,” https://
developers.cloudflare.com/cache/how-to/purge-cache/, [Online;
accessed 31-March-2023].

[24] “Fastly - API Caching, Part 1,” https://www.fastly.com/blog/api-
caching-part-i, [Online; accessed 30-March-2023].

[25] M. Hossein Sheikh Attar and M. Tamer Özsu, “Alternative
Architectures and Protocols for Providing Strong Consistency
in Dynamic Web Applications,” World Wide Web, vol. 9,
no. 3, pp. 215–251, Oct. 2006. [Online]. Available: https:
//doi.org/10.1007/s11280-006-8563-1

[26] “Fastly - Purging,” https://developer.fastly.com/reference/api/
purging/, [Online; accessed 31-March-2023].

[27] “Fastly - API Caching, Part 2,” https://www.fastly.com/blog/api-
caching-part-ii, [Online; accessed 30-March-2023].

[28] “Fastly - API Caching, Part 3,” https://www.fastly.com/blog/api-
caching-part-iii, [Online; accessed 30-March-2023].

[29] “Amazon CloudFront - Controlling the Cache Key,”
https://docs.aws.amazon.com/AmazonCloudFront/latest/
DeveloperGuide/controlling-the-cache-key.html, [Online; accessed
31-March-2023].

[30] “Wundergraph Architecture - Manage API Dependencies explic-
itly,” https://docs.wundergraph.com/docs/architecture/manage-api-
dependencies-explicitly, [Online; accessed 31-March-2023].

[31] “Hygraph - Caching,” https://hygraph.com/docs/api-reference/
basics/caching, [Online; accessed 31-March-2023].

[32] “AWS Lambda Features,” https://aws.amazon.com/lambda/
features/, [Online; accessed 31-March-2023].

[33] “Cloudflare - How Workers work,” https://
developers.cloudflare.com/workers/learning/how-workers-works/,
[Online; accessed 01-April-2023].

[34] T. Berners-Lee, R. T. Fielding, and L. M. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” RFC 3986, Jan. 2005.
[Online]. Available: https://doi.org/10.17487/RFC3986

[35] Suresha and J. R. Haritsa, “On Reducing Dynamic Web
Page Construction Times,” in Advanced Web Technologies and
Applications, J. X. Yu, X. Lin, H. Lu, and Y. Zhang,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
722–731. [Online]. Available: https://doi.org/10.1007/978-3-540-
24655-8_78

[36] “Google Cloud CDN - Using JWT to authenticate users,” https://
cloud.google.com/api-gateway/docs/authenticating-users-jwt, [On-
line; accessed 31-March-2023].

[37] J. T. Zhao, S. Y. Jing, and L. Z. Jiang, “Management of
API Gateway Based on Micro-service Architecture,” Journal
of Physics: Conference Series, vol. 1087, no. 3, p. 032032,
sep 2018. [Online]. Available: https://doi.org/10.1088/1742-6596/
1087/3/032032

[38] “Wundergraph - OpenID Connect-Based Authentication,”
https://docs.wundergraph.com/docs/features/openid-connect-
based-authentication, [Online; accessed 31-March-2023].

Seminar IITM SS 23 65 doi: 10.2313/NET-2023-11-1_11


