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Abstract—An increasing number of safety critical applica-
tions rely on networks and their latency bounds. Thus, pro-
viding estimates of worst case latencies is crucial for ensuring
the quality-of-service requirements of such systems. This
paper presents an approach to acquire these estimates using
Extreme Value Theory, a statistical method that bases its pre-
dictions on models derived from real-world measurements.
In particular, we analyze the latency values of a single flow
of a virtualized network topology. Additionally, we compare
the approach with alternative methods and present current
applications of Extreme Value Theory in the networking
area. We consider Extreme Value Theory a powerful tool
for estimating the tail-end of network latency distributions.
In many cases, it outperforms alternative approaches with
similar goals.

Index Terms—extreme value theory, latency measurement

1. Introduction

Safety-related systems, such as those in medical,
aerospace and security fields are known to be time-critical.
That is to say, missing a deadline can have drastic conse-
quences on the environment, on equipment or even human
lives. More and more of these critical systems are now
distributed and therefore rely on networks. One prominent
example are vehicular networks that need to exchange
real-time status updates between individual vehicles. For
this reason, ultra-reliable and low-latency communication
is a key service type in the next generation (6G) commu-
nication systems. Realizing networks with low end-to-end
latency guarantees represents a major challenge facing 6G
[1] [2].

This paper utilizes Extreme Value Theory (EVT) to
model the extreme latency events of a single network
flow. The raw latency data originate from an experiment
conducted by Wiedner et al. The authors make use of
real networking hardware to create a virtualized network
topology on a single physical host. The detailed mea-
surement setup is described in [3]. All code used to
visualize and analyze the described data is available online
at https://github.com/leonardscheerer/rare-latency-events.

The remainder of this paper is structured as follows:
Section 2 introduces the theoretical background of Ex-
treme Value Theory. In Section 3, various approaches to
the prediction of extreme events are discussed. Section 4
applies EVT to real-world latency data. After presenting
other applications of EVT in the networking area in Sec-
tion 5, some concluding remarks are made in Section 6.

2. Background

This section introduces basic concepts and results in
the field of Extreme Value Theory.

2.1. Extreme Value Theory

EVT is a branch of probability theory with the aim of
describing the stochastic behavior of extremes, i. e., events
on exceptionally large or small scales. The derived models
are a solid theoretical basis for predicting the occurrence
and extent of rare events and enable extrapolations to un-
observed levels. This goal is unique amongst the statistical
disciplines, as commonly, the objective is to model the
ordinary, rather than the unordinary [4].

EVT had its first applications in the 1950’s in the area
of civil engineering, in which the frequency and magni-
tude of natural phenomena such as floods or earthquakes
can be crucial information for the design of structural
components of buildings [4]. In recent years, EVT has
gained considerable traction in various other fields such
as the social sciences, the medical profession, economics
and even astronomy [5].

Conforming to the extreme value paradigm, the ex-
trapolations used to predict extreme values are based on
asymptotic arguments, i. e., on using mathematical limits
as finite-level approximations. As a consequence, the re-
sults of EVT cannot be regarded as exact when applied
to finite samples [4, Chapter 1].

Before trying to model the behavior of extreme events,
it is first necessary to define what constitutes an extreme
occurrence. There are two main ways to define such
events, leading to two alternative methods of mathematical
modeling [6]. Both approaches, termed the Block Maxima
approach and the Peaks over Threshold approach, are used
in practice and are briefly explained in the following two
sections.

2.2. Block Maxima Approach

In the Block Maxima approach the observation period
is divided into n non-overlapping blocks of equal size.
The maximum of each block is deemed to be an extreme
value. Figure 1a shows the raw latency data and Figure 1b
highlights the extreme values when applying the Block
Maxima approach with n = 15. When interested in
exceptionally small events, extreme values are derived
analogously with minima instead of maxima.
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(a) Raw data
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(b) Block Maxima approach
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(c) PoT approach

Figure 1: Latency data of a single network flow and their extreme values according to the Block Maxima and PoT
approach.

The Block Maxima are subsequently modeled using
the Fisher-Tippett-Gnedenko theorem. It states that un-
der certain assumptions, mainly that these maxima are
samples of independent and identically distributed random
variables, the distribution of the maxima converge to one
of three probability distributions: the Gumbel Distribution,
the Fréchet Distribution or the Weibull Distribution. The
distributions are also referred to as the extreme value type
1, type 2 and type 3 distributions, respectively [6].

All three distributions can be represented with a single
distribution, the Generalized Extreme Value Distribution
(GEV). The cumulative distribution function F (x;µ, σ, ξ)
of the GEV is given by (1). It measures the probability
that the random variable will take a value less than or
equal to x.

F (x;µ, σ, ξ) = exp(−max{1 + ξ
x− µ

σ
, 0}− 1

ξ ) (1)

ξ is termed the extreme value index and maps to the
aforementioned three distributions. To derive a robust
model, ξ as well as the scale parameter σ and location
parameter µ have to be fitted to the observed data using
a suitable estimation method [5, Chapter 4].

2.3. Peaks over Threshold Approach

In the Peaks over Threshold (PoT) approach, we spec-
ify some threshold u. All values that exceed this threshold
are considered extreme values. Figure 1a shows the raw
latency data and Figure 1c highlights the extreme values
when applying the PoT approach with u = 400 µs. When
interested in exceptionally small events, extreme values
are derived analogously with threshold subceedances in-
stead of threshold exceedances.

The obtained excesses, i. e., the amounts that the peaks
exceed the threshold, follow the Pickands-Balkema-De
Haan theorem. It states that with a sufficiently high thresh-
old and under similar conditions to the Fisher-Tippett-
Gnedenko theorem, the values of the excesses will con-
verge to the Generalized Pareto Distribution (GPD). The
cumulative distribution function G(x;σ, ξ) of the GPD is
given by

G(x;σ, ξ) = 1−max{1 + ξx

σ
, 0}− 1

ξ (2)

Similarly to (1), ξ determines the shape and σ the scal-
ing of the distribution. Equation (2) does not contain a

location parameter, as it is fixed to the previously chosen
threshold [5, Chapter 4] [7].

3. Analysis

In this section we argue that dedicated methods are
necessary to accurately predict extreme behavior. After-
wards we analyze selected modeling approaches for ex-
tremes, particularly in the context of latency events.

3.1. Traditional Methods

Traditional parametric statistical methods are ill-suited
to model values at the very tail-end of a distribution.
These statistical methods typically aim to be a good fit for
a large proportion of the observed data, thus, accurately
representing regions where most of the data fall. However,
this comes at the price of a worse fit in the tails and
therefore justifies the usage of dedicated approaches. Nev-
ertheless, separate methods for modeling extreme values
such as EVT are not needed – and possibly not suited –
for estimating values that make up the top 10 %, 5 % or
perhaps even 1 %. Rather, these methods focus on extreme
(e. g. 0.1 %) outliers [8].

3.2. Modeling Approaches

Machine Learning. One possible approach to
predicting rare latency events is machine learning. This
method has emerged as a fast and reliable means to
data-driven predictions. Wambura et al. [9] propose using
a deep neural network for real-time stochastic extreme
events prediction. The authors empirically confirm that
their approach is fast and accurate. Their experimental
results also suggest superior performance compared to
well-known prediction methods. Nevertheless, application
of deep learning to latency events is not straightforward
and requires a large number of training samples due
to a slow convergence in the training phase. Low
learning efficiency can be combatted by the integration of
knowledge of the environment such as estimated packet
loss [10].

Network Calculus. Another possible approach to
modeling and preventing high latencies are provable
worst case upper latency bounds. This can be achieved
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via network calculus, a system theory for communication
networks. The theoretical framework is built on the non-
traditional min-plus and max-plus algebras [11]. Network
Calculus and similar formal methods work on simplified
assumptions and do not incorporate environmental events
such as electromagnetic interferences. Additionally, the
derived bounds are not tight [12].

Extreme Value Theory. The remainder of this paper
focuses on applying EVT to the prediction of rare latency
events. As discussed in Section 2, both the Block Max-
ima as well as the PoT approach are used in practice.
The Block Maxima approach particularly lends itself to
modeling data sets that already consist of block maxima,
e. g. records of annual maximum sea-levels. In this case,
the approach can incorporate all of the measurements and
formulate accurate predictions. In practice, however, it is
uncommon to have data of this form and following the
Block Maxima approach may entail a wastage of informa-
tion. Suppose, for example, that there are several recorded
high events during one block. The block maximum takes
precedence over all other events of a block. They are
ignored as a consequence of this approach – even if they
were noteworthy in the sense that they exceed the Block
Maxima of other blocks [4]. This is not the case for
the threshold exceedances in the PoT method. For this
reason, the PoT approach is considered to utilize extreme
observations more efficiently than the Block Maxima ap-
proach [13]. Note that both the maxima as well as the
threshold excesses are assumed to be independent of each
other in the respective theorems described in Section 2.2
and 2.3. Whereas this is often a reasonable assumption
in the Block Maxima approach, as they are spaced out
by construction, this cannot be said for the PoT approach.
Thus, the PoT approach is often used in combination with
special techniques such as declustering that aim to ensure
that the data are independent [4, Chapter 5]. Based on
the aforementioned benefits and drawbacks of the Block
Maxima and PoT approaches, we deem the PoT technique
to be more suitable for the characterization of the tail
distribution of latencies.

4. Rare Latency Estimation

This section applies Extreme Value Theory to the real-
world latency data introduced in Section 1 in order to
predict rare latency events. We use the PoT approach de-
scribed in Section 2.3 and assume that the raw data consist
of a sequence of independent and identically distributed
measurements.

4.1. Inference

To fit the generalized Pareto family to the observations,
we first select a suitable threshold and subsequently
estimate the characterizing scale parameter σ and shape
parameter ξ.

Threshold Selection. Threshold selection is a crucial
part of extreme value analysis following the Peaks over
Threshold method. Too low a threshold is likely to lead to
the Generalized Pareto Distribution not being a good fit for
the threshold excesses, as a sufficiently high threshold is a

requirement of the Pickands-Balkema-De Haan theorem.
Too high a threshold results in very few exceedances – and
thus less information – for the estimation of the model.
One tool for the selection of an appropriate threshold is the
mean residual life plot. Figure 2 shows the mean residual
life plot of the latency data and its approximate 95 %
confidence intervals based on the approximate normality
of sample means.
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Figure 2: Mean residual life plot for the latency data of a
single network flow.

The mean residual life plot depicts the average excess
value over the given threshold for a set of different values
of the threshold u. According to [4, Section 4.3.1], the
mean residual life plot should be approximately linear
in u above a threshold u0 at which the GPD provides
a valid approximation for the threshold excesses. In
practice, the interpretation of the mean residual life
plot often proves to be difficult as it involves a great
deal of subjective judgement. Based on Figure 2, we
decide to use a threshold of u = 370 µs because of the
approximate linearity for from u = 370 µs to u = 425 µs.
This leads to 42 threshold exceedances, a proportion of
about 3.32 %. It might be tempting to suggest a higher
threshold such as u = 425 µs as there is some evidence
for a linear relationship. However, this would result in
only 4 exceedances, too few for a meaningful inference.
Similarly, lower thresholds provide an excessive number
of exceedances violating the asymptotic assumption of
Extreme Value Theory.

Parameter Estimation. There are several fit methods
to derive the parameters of (2). Using maximum likelihood
estimation, we get

(σ, ξ) ≈ (27.813,−0.064) (3)

The 95 % confidence intervals for σ and ξ are [16.141,
39.485] and [−0.356, 0.227], respectively. We omit tech-
nical details and simply refer to [7, Chapter 3] and [4,
Section 4.3.2].

4.2. Model Checking

Model checking consists of assessing the quality of
a fitted generalized Pareto model based on plots and
different metrics. In this paper, we focus on probability
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plots as a graphical technique to evaluate the quality of the
parameter estimates in (3). In practice, however, various
other means such as quantile plots, return level plots or
density plots can also be useful to determine the goodness-
of-fit of a model. The probability plot for the fitted model
is shown in Figure 3.
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Figure 3: Probability plot for the latency data of a single
network flow.

In general, probability plots are a tool for assessing the
degree to which a data set follows a given distribution. In
Figure 3, the data are plotted against the GPD with the
model parameters of (3). The construction of probability
plots ensures that the points should lie close to the unit
diagonal if the data set follows the given distribution [4,
Section 4.3.5]. No substantial departures from linearity
can be seen, so that we deem our model to be suitable for
extrapolation.

4.3. Extrapolation

After having estimated suitable parameter values, it is
possible to utilize the derived model to predict extreme
values. Usually, it is convenient to interpret extreme value
models in terms of return periods and return levels. The
former, the return period, corresponds to the average time
between extreme events. The latter, the m-observation
return level, describes the value that is expected to be
exceeded exactly once in the next m observations [4,
Section 4.3.3].

Using the model parameters of (3), the 10 000-
observation return level is calculated to be approximately
505 µs, i. e., a latency value above 505 µs is expected to be
witnessed only once every 10 000 observations. Assuming
that the number of network packets per second stays
constant at 7.7 packets/s, 10 000 observations correspond
to about 22 min. Note that this is an extrapolation to an
unobserved level. The data set only consists of 1264 ob-
servations sent over a period of 2.7 min with a maximum
latency of about 491 µs.

The 95 % confidence interval is calculated to be ap-
proximately [429 µs, 580 µs] via the Delta Method. The
confidence intervals often tend to be large, as uncertainty
can be magnified in extrapolation.

5. Applications

This section is dedicated to presenting applications of
Extreme Value Theory in the networking area.

CBA-EVT. Wang et al. [14] propose to use EVT
in a medium access control (MAC) protocol designed
for battery-powered wireless sensor networks (WSNs).
WSNs are networks of spatially dispersed sensors that
monitor physical conditions of the environment. Amongst
other areas, they are used in earth sensing, e. g. for natural
disaster prevention. It is paramount that MAC protocols
for WSNs are energy-efficient to ensure that the sensors
can serve their intended functions longer. CBA-EVT is
such a MAC protocol that aims to be energy-efficient
while also avoiding long latencies. It is named after
the two theoretical methods that are the foundation of
the protocol: Cost Benefit Analysis and Extreme Value
Theory. For a given time slot, Extreme Value Theory in
CBA-EVT is used to estimate the completion time of
each node, i. e., the time after which no further packets
will have to be received in this time slot. This can be
used to enable the node to enter a low-power mode early
during one time slot and thus saving energy without
sacrificing latency.

Vehicular networks. Extreme Value Theory is
also used to ensure stringent latency and reliability
constraints in vehicular networks. Vehicle-to-vehicle
safety applications are inherently time-critical, as
individual vehicles rely on acquiring real-time status
updates from each other. One commonly used metric
is the age of information (AoI). It measures the time
elapsed since the latest status update that reached its
intended destination has been generated at its source. As
argued by Abdel-Aziz et al. [2], minimizing the average
AoI in vehicular networks cannot fulfill the unique
requirements of ultra-reliable and low-latency vehicular
communication. Instead, the authors use Extreme Value
Theory to reduce the probability of outliers in the AoI
distribution and show the achieved improvements of their
approach with simulation results.

Wireless networks. Vehicular networks are a special
case of wireless networks. As shown by Mouradian [12],
Extreme Value Theory is particularly attractive for study-
ing worst case delays in wireless networks. In contrast to
wired networks, wireless networks are more susceptible
to unpredictable behavior of the environment such as
electromagnetic interference. These disturbances cannot
be captured by formal methods like network calculus.
As a result, statistical methods, especially Extreme Value
Theory, are a valuable tool for the study of worst case
delays in wireless networks.

6. Conclusion and Future Work

In this paper we discussed different prediction ap-
proaches for rare latency events. In particular, we looked at
a general statistical method called Extreme Value Theory
and the two main approaches therein: the Block Maxima
approach and the Peaks over Threshold approach.
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To investigate the Peaks over Threshold method in
greater detail, we modeled the tail-end of the latency
distribution of a single network flow. The latency data
originated from a network experiment on a single physical
host using real networking hardware. We consider this
approach a powerful tool not only for estimating worst
case latencies but also for many other applications in the
networking area. However, the accuracy of the predictions
is limited by the quality and amount of measurement data
and by the assumptions about the data.

To reduce the complexity of the analysis, we assumed
that the measurements are independent and identically
distributed. The assumption of independence has already
been relaxed by Helm et al. [15]. Future work can explore
further relaxation of these assumptions and their effect
on the accuracy and reliability of the predictions. The
consequences of following the Block Maxima approach
instead of the PoT method in the context of predicting
high latencies also require further investigation.
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