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Abstract—Recent advances in wireless sensing demonstrate
the ability of commodity WiFi waves to detect human activ-
ity. Using IEEE 802.11 WiFi instead of cameras, wearable
sensors and LiDARs can be a widely available and cost-
effective solution to the human surveillance and detection
problem. It can play a crucial role in applications, such as
healthcare, intrusion detection systems and smart homes.

WiFi sensing schemes rely on using the fine granularity
of the physical layer CSI made possible by the OFDM
modulation technique. This paper introduces the necessary
theoretical background to cover wireless sensing. The most
relevant state of the art is analyzed to determine the per-
formance of WiFi based on different metrics and scenarios.
Recent works are able to accurately estimate human pose
using deep learning approaches. WiFi-based human recog-
nition proves to be a reliable detection mechanism using
off-the-shelf and low-cost hardware.

Index Terms—wifi, ofdm, csi, human detection

1. Introduction

Human activity detection and sensing has been ana-
lyzed for various surveillance and monitoring applications
for years. Such solutions are widely applicable in domains
such as intrusion detection systems [1], healthcare [2],
smart home [3], monitoring of children and elderly [1] or
even augmented reality [3] and gaming [4].

When considering approaches for the estimation of
human positioning, there are mainly three solutions. The
first option relies on approaches based on visualization [5],
such as 3D cameras. In this case, the cameras are used
to capture images of humans to then recognize and match
their activities [3]. However, the performance of this ap-
proach can be altered by physical factors, e.g., lighting
conditions or angles blocked by objects [3]. A second
solution to the detection problem is the use of wear-
able sensors [5], such as LiDAR and radar sensors [6].
Nonetheless, such devices have to be attached to the
targets of the detection, which is not always feasible. Both
of these approaches are characterized by high costs, power
and energy consumption, and may sometimes be out of
reach for daily use. This work focuses on another de-
tection method which uses 1D sensors, more specifically,
commodity WiFi signals for sensing.

The use of wireless signals for activity recognition
has been receiving attention due to its cost-efficiency and
high availability. Initial research has used the received
signal strength indicator (RSSI) for indoor localization
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Figure 1: Environment for through-wall detection of hu-
man activity using WiFi signals.

[7]. However, using the physical (PHY) layer for channel
state information (CSI) proves to be more accurate for
indoor localization than RSSI [7]. This is due to CSI’s
ability to have multipath characteristics, which offers
a more accurate representation of the environment [7].
Multiple detection approaches use the PHY layer CSI
provided by WiFi. The accuracy of this solution relies
on the fine granularity of channel information offered by
the orthogonal-frequency-division-multiplexing (OFDM)
modulation, which is the standard for IEEE 802.11 a/g/n
WiFi standards [7], [8]. For this approach, any activity
in the environment is detected using the amplitude and
phase information of the OFDM sub-carriers. The use
of WiFi for indoor detection can be more effective than
its counterparts since it is not prone to errors caused by
illumination, dead angles and it also offers an off-the-shelf
solution [6]. When comparing it to wearable sensors, it
is also "non-invasive", since it is not required that the
targets wear any additional equipment [1]. Thus, using
commodity WiFi signals to detect human activity through
walls can be a cost-effective, widely available and more
private approach.

Figure 1 displays a typical system for through-the-
wall detection using standard IEEE 802.11 WiFi. The blue
highlighted area represents the sent WiFi signals coming
from the transmitter antennas. Note that in this case, the
WiFi device stands for both transmitter and receiver. The
radio frequency (RF) signal crosses the wall and reflects
off objects and targeted humans [4]. The detection of
human activity is realized by capturing and analyzing
these reflections. The main challenge is to distinguish
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between reflections that generate from the wall itself and
from other objects in the room from the actual target. The
power of the received signal is also highly reduced, since
it has to pass through the wall twice [4]. The initial strong
reflection from the wall creates a "flash effect" [4], which
can hinder the sensing of the environment behind the wall.
The CSI shows the correlation between transmitted and
received signal waves, making it possible to detect motion
in the environment [6].

The paper is organized as follows. Relevant properties
of the used signal processing techniques, such as OFDM
and CSI are described in 2. Section 3 shows the com-
mon approaches to the through-wall detection and sensing
problem by presenting relevant state of the art. Finally, the
conclusion and key findings are given in Section 4.

2. Preliminaries

This section offers background information needed to
determine how WiFi signals are used to detect and sense
humans through surfaces. The underlying multiplexing
technique used by WiFi is the OFDM. Furthermore, the
PHY layer CSI uses information offered by OFDM to
detect motion between transmitted and received signal
waves. Therefore, the two are introduced below.

2.1. Orthogonal Frequency-Division Multiplexing

OFDM is a multiplexing technique used in wireless
applications, such as the IEEE 802.11 WiFi [8]. The main
principle of OFDM is to split a high volume of data into
smaller parts which are then transmitted simultaneously
through sub-carriers. This makes OFDM a multi-carrier
system [9], meaning that the channel is transformed into
a set of multiple orthogonal carriers, which do not in-
terfere with each other. The total bandwidth from the
spectrum is split into multiple bands corresponding to
each carrier, making it possible to transmit data in parallel
[10]. In OFDM, the sub-channels are able to overlap
without having interfering frequency spectra at the peak
of the subband due to the orthogonality [8], given by the
following condition:

∫ T

0

cos(2πnf0t) cos(2πmf0t) d t = 0, n ̸= m (1)

where n,m ∈ Z̸=0, f0 is the fundamental frequency and
T the time period of the integration [10]. Furthermore,
one sub-carrier signal can be described as follows [8]:

sn(t) = ane
j2πfnt (2)

for the transmitted data {a0, a1, ..., aN−1} and carrier fre-
quency fn. The sum of these signals of the N sub-carriers
represents the whole sent signal, which corresponds to the
following equation [8]:

sk =

N−1∑

n=0

ane
j2πnk

N (3)

Using the discrete Fourier transform (DFT) on the signal
defined in 3, the received data can be recovered [8].

Figure 2 depicts a typical OFDM system, contain-
ing an OFDM transmitter and receiver part. The input
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Figure 2: OFDM system based on [8], [10].

information sequence is modulated using quadrature am-
plitude modulation (QAM), thus modulating the OFDM
subcarriers. The signals are then transformed using inverse
fast Fourier transform (IFFT). The resulting OFDM signal
is completed after being transported through a digital-to-
analog (D/A) converter. On the receiving end, the process
is similar, but uses an analog-to-digital (A/D) converter,
FFT and is demodulated to create the resulting output data.

In a real OFDM application, for IEEE 802.11n WiFi,
a 20 MHz bandwidth centered around a 2.4 GHz or
5 GHz central frequency is used [3]. Depending on the
scenario, 30 up to 64 sub-carriers can share the channel.
The bandwidth and sub-carrier number may also deviate.

2.2. Channel State Information

The first step towards human activity detection using
wireless signal relies on the CSI given by the PHY
layer. CSI describes the relation between transmitted and
received signal wave [6]. Previously, the MAC layer re-
ceived signal strength indicator (RSSI) was mainly used
for wireless detection. Together with the sub-channel in-
formation of multiple-input-multiple-output (MIMO) and
OFDM in IEEE 802.11 WiFi, CSI is able to deliver finer-
grained information of the environment [5]. Being able to
use the phase and amplitude information of each OFDM
sub-carrier makes it more suitable and performant than its
data-link layer counterpart [7].

In a WiFi channel, for each sub-carrier, transmitting a
signal x and receiving a signal y denotes to:

y = Hx+ n (4)

Hi = |Hi|ej∠Hi (5)

where H is the CSI matrix and n the noise vector [11].
The CSI matrix estimates the modulated activity in the
environment given the WiFi waves [5]. The three dimen-
sions for the complex CSI matrix are for the i-th subcar-
rier with NT transmitter and NR receiver antennas [5].
Furthermore, the amplitude |Hi| and phase ∠Hi for each
complex CSI value Hi of a sub-carrier can be denoted as
in equation 5 [5], [7].

3. WiFi Detection Implementations

There are multiple approaches possible to the WiFi
sensing problem. This Section gives an overview of the
most relevant state of the art in the domain. Works that do
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Figure 3: Approaches for through-wall human sensing using WiFi based on [3], [5], [11].

not necessarily cover through-wall detection play an im-
portant role in the ongoing research and are thus analyzed
as well. Table 1 gives an overview of the main characteris-
tics of the works, such as accuracy scores, used hardware
and covered human positioning during the experiments.
Even though there are multiple implementations, most of
them follow a similar pattern. Figure 3 depicts a block
diagram of the typical flow when it comes to human
detection using WiFi waves. The first step is to generate
the WiFi signals to capture environment activity. The fine
granularity of CSI is used to extract information from the
received signal. The captured CSI measurements are then
processed by applying noise reduction, transformations
(e.g., FFT, discrete wavelet transform) and filtering tech-
niques to eliminate outliers and increase performance [11].
Processed CSI can be used by a model-based or learning-
based approach for different applications, such as human
detection, recognition or estimation.

Passive Bistatic WiFi Radar (PBWR). In [12], Chetty
et al. present one of the first attempts (2012) for through-
the-wall (TTW) detection with WiFi by using a passive
bistatic WiFi radar. The authors test their implementation
to detect a moving human. The WiFi wave signal trans-
mitter is a 802.11 WiFi AP placed in the same room,
4 m away from the target. The passive bistatic radar
consists of two receivers placed outside the room at a
standoff distance. The data is processed offline first by
applying range-Doppler mapping. The CLEAN algorithm
is then introduced to remove digital signal interference
(DSI) and additional stationary clutter. For target detec-
tion, a 2D constant false alarm rate is used. The signal-to-
interference ratio (SIR) is the main metric for the TTW
target responses. Results show that using CLEAN, the SIR
is decreased by 19 dB, creating a more accurate detection.

Wi-Vi. Adib and Katabi [4] present Wi-Vi, a TTW de-
tection device. The main components of the Wi-Vi device
are two transmitter and one receiver antennas. Compared
to the previous implementation, Wi-Vi does not need to
have any device located within the same room as the
target. One main aspect analyzed by this work is the
initial reflection from the wall that is much stronger than
the reflections off the objects behind the wall, creating a
"flash effect". The authors use iterative nulling together
with power boosting to tackle this challenge, by nulling
the strongly reflected signal. An inverse synthetic aperture
radar (ISAR) is used for motion tracking. Experiments
are carried within a conference building having walls
of different building materials and thickness. Wi-Vi can
detect one or multiple moving human targets and gestures.
The detection scores are 100% for 0 to 1 targets. For

multiple humans, Wi-Vi shows an accuracy of 85%. When
considering gesture detection, the accuracy reaches 93%
for closer and 75% for longer standoff distances. Wi-Vi
delivers high detection accuracy for thin building materials
(wood, glass, door, 15 cm hollow wall), but drops at 87%
for a concrete 20 cm wall.

DeMan. Wu et al. introduce DeMan [1], a solution for
"non-invasive DEtection of moving and stationary hu-
MAN with commodity WiFi devices". Unlike previous
works, DeMan also focuses on detecting stationary hu-
mans by choosing breathing (chest motions) as a sensing
factor. However, this work does not cover through-wall
detection. The scheme is based on the amplitude and
phase values of the OFDM sub-carriers given by CSI. The
experimental hardware consists of a IEEE 802.11n WiFi
AP transmitter and a laptop equipped with a NIC receiver.
DeMan delivers high accuracy for the conducted experi-
ments in true positive scenarios: 99.86% for absent, 93%
for stationary and 95% for moving humans respectively.

WiSpy. Hanif et al. propose WiSpy [13], a CSI-based
through-wall movement sensing and person counting
scheme, which uses commodity WiFi waves. Two Intel
NUCs are placed in front of a 33 cm brick wall. In
their approach, the authors use machine learning (ML)
algorithms on the processed CSI data to predict the
amount of people behind the wall. Principal component
analysis (PCA) is applied on the CSI measurements for
dimensionality reduction. This work also compares mul-
tiple ML algorithms on the PCA data. Results show, that
using decision trees (DT) delivers the best results, i.e.,
a detection accuracy of 96.97%. On the other hand, k-
nearest neighbor (KNN) delivers the poorest performance,
having a detection accuracy of under 80%.

Person-in-WiFi (PiW). In [14], Wang et al. introduce
one of the first WiFi-based person perception schemes,
implementing body segmentation and pose estimation. A
deep learning approach is used to map WiFi samples
to 2D human body segmentation using recorded RGB
videos. During the experiments, subjects are placed be-
tween transmitter and receiver, without having any walls
or obstructing stationary objects in-between. The setup
consists of two WiFi NICs, one used for transmission,
one for receiving, each having 3 antennas. To implement
a deep learning approach for person perception, CSI mea-
surements and video frames are taken at the same time
stamps. Body segmentation maps are constructed using
region-based convolutional neural networks (R-CNN). For
pose estimation, however, the Body25 model of OpenPose
is used. The proposed approach shows high performance
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TABLE 1: WiFi radar sensing implementations comparison.

PBWR [12] Wi-Vi [4] DeMan [1] WiSpy [13] PiW [14] HARNN [3] DensePose [6] GoPose [15]

General

accuracy – >85% >94% 96.97% >85% >95% >87% <5cm error
carrier freq. 2.4 GHz 2.4 GHz 2.4 GHz 5.18 GHz 2.4 GHz 5 GHz 5 GHz 5.32 GHz
bandwidth 16 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 40 MHz

hardware DWL
2000AP+

WiFi
antennas

Intel 5300
NIC

Intel
NUC

Intel 5300
NIC

Intel 5300
NIC

WiFi
antennas

Intel 5300
NIC

Human position

moving ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
stationary ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓
pose estimation ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓
through-wall ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

for whole person profiles, having detection scores between
85% and 91%. Low performance of WiFi signal detection
is demonstrated for small body parts due to WiFi’s wave-
length of 12.5 cm.

HARNN. A CSI-based WiFi detection scheme for hu-
man activity recognition using recurrent neural networks
(HARNN) is introduced by Ding et al. in [3]. This work
firstly uses a two-level decision tree leveraging the vari-
ance and correlation coefficient of the CSI measurements
to detect activity in the environment. Moreover, the noise
is eliminated from the raw CSI using channel power
variation (CPV) and time-frequency analysis (TFA) in
time and frequency domain respectively. Detection of
various human activities (e.g., running, walking, sitting
etc.) is achieved using a RNN model with a long short-
term memory (LSTM) block. A WiFi device is used for
transmission together with a Intel 5300 NIC as a receiver.
The experiments are carried in a closed off environment,
through-wall detection, however, is not covered. HARNN
reaches detection accuracies of 95% and 96% for all
the mentioned activities. The authors also point out, that
increasing the amount of receivers yields better detection
rates of 96% up to 98% on average.

DensePose. Geng et al. propose DensePose [6], a study
that aims to achieve body segmentation and key-point
body detection using commodity WiFi signals. Simi-
lar to HARNN, after sanitizing the raw CSI data, the
amplitude and phase of the 30 OFDM sub-carriers are
mapped to 2D feature maps. The data is passed through a
DensePose-RCNN architecture, used to predict UV coor-
dinates of the human body. UV maps create a correlation
between 3D and 2D human data. The main goal here
is to map 1D CSI data to UV maps, thus transforming
the data into spatial domain. The correlation between
CSI samples and video captures is achieved similar to
HARNN. In addition, DensePose uses transfer learning
from the image-based network to the WiFi-based one to
reduce training time. The testing environment uses three
transmission and three emission antennas. The authors test
out their approach in multiple layout scenarios. The imple-
mentation yields high accuracies of over 87% for the same
layout used in training. However, when deployed within an
unknown layout, the average precision (AP) of the model
drops (e.g., from 43 AP to 27 AP). The detection accuracy
also suffers when faced with human body poses, which
did not occur during training. Moreover, the results are not

entirely clear once there are more than three human targets
in the testing space. The authors thus motivate generating
more training data to solve the failure cases.

GoPose. In [15], Ren et al. present GoPose, a scheme used
to estimate human pose using WiFi signals. The novelty
relies on the tracking of 3D skeleton-based human poses,
compared to the 2D version of PiW. The implementation
is able to track both stationary and moving targets. Un-
like previous works, GoPose manages to estimate unseen
activities as well. It also works when being faced with
walls, screens or other stationary objects. The scheme
builds up on sanitized CSI measurements of 30 OFDM
sub-carriers. In addition, it uses the 2D angle of arrival
(AoA) spectrum to determine between reflections off ob-
jects and targeted bodies. To map 2D AoA spectra to
3D skeletons of humans, the authors use a deep learning
approach based on CNN and LSTM. Estimating the 3D
pose of people requires a higher amount of devices for the
setup. One transmitter and four receivers are used in the
testing environment. The transmitter uses three linear an-
tennas, whereas the receivers are equipped with L-shaped
antennas. Results are evaluated using joint localization
errors. GoPose is able to accurately track stationary human
targets, having low errors of 0.4 cm. Testing through-wall
detection yields errors of an average 4.7 cm. Similar to
prior works, the estimation success rate decreases when
faced with multiple people due to multiple reflections.

4. Conclusion

This paper analyzes the use of commodity WiFi signal
waves for human sensing. Preliminaries required for the
standard IEEE 802.11 WiFi signal analysis, such as CSI
and OFDM, are introduced. The analyzed related works
show that WiFi radar is a competitor to cameras or wear-
able sensors due to its wide availability, power efficiency
and low cost. Under normal circumstances, most imple-
mentations reach detection accuracies over 85%.

With the rise of machine learning over the years,
previous CSI-based sensing schemes have been improved
using more complex deep learning architectures to be
able to estimate 3D posing of humans. Current research
still faces issues when it comes to detecting smaller body
parts, large stand-off distances and multiple human targets.
Moreover, the proved accurate WiFi sensing also raises an
issue to the networking community regarding security and
regulations of WiFi signals.
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