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Abstract—The cgroups feature of the Linux kernel is widely
used by lightweight virtualization technologies such as
Docker or LXC to provide resource isolation. Recently,
cgroups underwent a significant revamp from version 1 (v1)
to version 2 (v2). Researching the performance difference
between these two versions in terms of network latencies
enables the usage of containers in time-critical applications.
Previous work ignored cgroups as a potential source of
latency in packet-processing systems. In this paper, we
measure the performance difference between cgroups v1
and v2 in isolation using commodity hard- and software.
Our experiments show that the two versions achieve the
same degree of isolation, but the tail latencies of v1 are
higher, which can be explained by a more efficient, 2.4 %
less instruction-consuming implementation of v2. Therefore,
we recommend the use of v2 for low-latency lightweight
virtualization network deployments wherever possible.

Index Terms—low latency, container, lxc, virtualization,
dpdk, cgroups, packet processing

1. Introduction

From inter-vehicle communication in self-driving cars
to the coordination of assembly lines, critical applications
require technology to operate at peak performance. In
such scenarios, even the slightest delay can result in catas-
trophic consequences. That is why network latencies are a
crucial factor in enabling the interaction and coordination
of sensitive applications. To achieve the lowest and most
stable network latencies, it is crucial to invest in high-
quality networking equipment and thoroughly review the
entire software stack.

A common way of handling increasing complexity is
to compartmentalize different software components into
smaller pieces and run them in isolated environments.
This can be achieved through virtualization, using either
heavyweight virtual machines or lightweight containers. A
deeper understanding of the inner workings of the chosen
virtualization technique is necessary to optimize for low-
latency networking. Two essential features for enabling
such optimizations are namespaces and control groups
(cgroups).

Namespaces allow processes to have isolated and in-
dependent views of the system resources, such as the net-
work, filesystem, or process IDs. cgroups provide a way
to limit, allocate, and prioritize system resources among
processes or groups of processes. Initially, cgroups were
released in 2007 in kernel 2.6.24 [1] as version 1 (v1).

They were completely revamped [2] with a second version
(v2) released in kernel 4.5. Since cgroups v1 and v2
differ in their implemented features, this paper highlights
the differences between them. Furthermore, we show the
impact of the cgroup version on network latencies with
experimental measurements.

The paper is structured as follows: Section 2 presents
related work. In Section 3, we provide background infor-
mation on cgroups and Linux containers (LXC). Section 4
details the specific optimizations we apply to increase
isolation. Section 5 discusses the experimental setup and
measurements. Finally, we summarize our findings in
Section 6 and propose future work.

2. Related Work

In our previous work [3], we expanded the capabilities
of HVNet by Wiedner et al. [4], a framework for or-
chestrating low-latency experiments on a single host with
KVM, by incorporating LXC containers, initially devel-
oped by Wiedner et al. HVNet automates the setup of all
involved hosts, configures them for low-latency network-
ing, and synchronizes the measurement scripts. Virtual
networking topologies can be defined in text files. Our
measurements [3] of network latencies for LXC containers
with cgroups v2 demonstrated comparable performance
to VMs but with occasional spikes in tail latencies. To
address this issue, we found that using a real-time kernel
is effective. Our prior implementation and research serve
as the foundation for this paper, where we introduce a
new feature in HVNet to switch between cgroups v1 and
v2 and compare the cgroup versions to evaluate their
performance.

Abeni et al. [5] propose a real-time scheduler for the
Linux kernel that is aware of cgroups, making it compati-
ble with Docker and LXC. They demonstrate experimen-
tally that their scheduler delivers lower average response
times for a task set than KVM but with similar worst-case
latencies. Notably, their scheduler is capable of migrating
processes to another core that has processing time left;
a feature unavailable in KVM-based systems since the
hypervisor has no access to the scheduling of a VM guest.
However, it provides lower network latencies for cgroup-
based virtualization. Although their work shows promise,
it may not be directly applicable to our setup. In our setup,
a single core processes all packets of a network interface
card (NIC) in userspace with the Data Plane Development
Kit (DPDK). Process migration between different cores is
not anticipated.
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Listing 1: cgroups v1 hierarchy [6]
/sys/fs/cgroup

cpuset
cgroup0

cpuset.cpus
cpuset.mems

cgroup1
cpuset.cpus

memory
cgroup0

memory.limit_in_bytes

Listing 2: cgroups v2 hierarchy [2]
/sys/fs/cgroup

cgroup0
cpuset.cpus
cpuset.mems
memory.max

cgroup1
cpuset.cpus

3. Background

Section 3.1 presents a short introduction to cgroups,
highlighting their key features and differences between v1
and v2. Section 3.2 introduces the concept of containers
and Linux Containers (LXC), the container implementa-
tion we rely upon.

3.1. cgroups

cgroup is a Linux kernel feature that assigns resources
such as CPU time, memory, and I/O between processes.
Resources can be limited, prioritized, and isolated, en-
abling administrators fine-grained control over the system.
There are scenarios where it is desirable to guarantee that
one critical process has access to resources. For example,
a background cronjob should not compete for resources
with a web server and potentially negatively affect the
latency of a request. With cgroups, the administrator can
prevent resource contention by guaranteeing resources to
the webserver and limiting non-critical processes.

Both cgroup versions are mounted in the same lo-
cation, /sys/fs/cgroup, but differ in their hierarchical
structure. Listing 1 shows the hierarchy for v1, where each
controller is represented by a separate mount point, and
a cgroup must be created for each controller individually.
In contrast, Listing 2 depicts the same hierarchy for v2.
A unified, hierarchical structure represented by a single
mount point of type cgroup2 holds all controllers and
groups. Each group can hold any number of enabled
controllers.

In v2, it is no longer possible to assign a process
to an internal node of the tree hierarchy as claimed
by Down [7]. These properties can be verified on any
modern Linux-based system by inspecting the output of
systemctl status. The "no inner process" node clears
up the hierarchy and makes it easier to understand.

Figure 1: Architecture of VMs and containers [3]

In addition, several inconsistencies have been ad-
dressed in cgroups v2, leading to a higher de-
gree of standardization. For instance, the renaming of
memory.limit_in_bytes to memory.max is evident in
Listing 1 and 2. These standardizations have been ap-
plied to all thresholds, resulting in a more uniform and
consistent naming scheme.

Important for our network latency performance anal-
ysis is the scheduler load-balancing option. Scheduler
load balancing is a feature where a process may be
migrated to a different core to balance the load equally
in a multicore system [8]. In latency-critical applications,
a single context switch can cause a spike in latency.
In v1, this behavior can be disabled by modifying the
file cpuset.sched_load_balance. However, in v2, this
option was initially removed. Only recent kernels (≥ 6.1)
support this option which was introduced by Waiman [9].
This paper disables scheduler load balancing for v1 and
compares it to cgroups v2 with load balancing. Testing
this option for cgroups v2 is out of scope for this paper
due to missing infrastructure for testing the latest kernels.

Finally, another change is that in v1, each thread of a
process could be assigned to a different cgroup [7]. This
behavior is considered confusing and unnecessary and is
no longer present in v2.

3.2. LXC Containers

Containers are a lightweight alternative for virtualiza-
tion. They are considered to be operating system level
because they share the host kernel and operate on the same
level as any other process in userspace. Figure 1 highlights
this architectural difference between VMs and containers.
A container does not virtualize its own kernel, while a VM
does. Furthermore, no hypervisor is required. Sharing the
kernel with the host and other containers has implications
for isolation. However, modern kernels offer features that
help to build isolated systems. The most important features
are cgroups and namespaces.

LXC is a low-level container runtime being in ac-
tive development since 2008. It provides a minimalistic
feature set to remain lightweight with minimal overhead.
Userspace tools for managing LXC containers are avail-
able. A C or Python API is available for controlling LXC
for more advanced use cases. One downside of LXC is that
convenience features such as layered images or orchestra-
tion are missing entirely. LXC images are typically larger
than Docker images since they snapshot the entire root
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filesystem of an OS installation - including the installed
libraries.

We use LXC 4.0, the userspace tools, and the Python
API for our implementation. To evaluate the performance
difference of cgroups v1 and v2, we extend an existing
framework for low-latency measurements: HVNet [4].

4. Implementation

Our original plan was to implement cgroups v1 and
v2 on Debian Buster to enable a more seamless com-
parison with previous work by Wiedner et al. [4] and
Gallenmüller et al. [10], [11]. However, Debian Buster
runs on kernel 4.19, which does not yet include the
cpuset controller [12]. Without the cpuset controller, the
container is unisolatable from the rest of the system,
making a performance comparison between cgroups v1
and v2 meaningless. Therefore, we focus our efforts on
Debian Bullseye, which supports the legacy cgroups v1
and a more mature implementation of cgroups v2.

To switch between the two cgroups versions,
a startup flag --lxc-enable-cgroup-v1 is imple-
mented in HVNet [4]. By setting this flag, the
container host is booted with the kernel parameter
systemd.unified_cgroup_hierarchy=0. This parame-
ter disables the unified cgroups v2 hierarchy and enables
the legacy cgroups v1.

The process isolation methodology differs between
cgroups v1 and v2, but both achieve the same goal.
For v2, we utilized two methods: first, the feature
cpuset.cpus.partition, which removes CPU cores of
a child from the parent cgroup. Second, we use systemd
to restrict all processes to CPU cores unused by the con-
tainer through the command systemctl set-property
user.slice AllowedCPUs=0-23;27-31. In contrast, nei-
ther of these features are available with v1. Instead, we
followed the instructions suggested by Weisbecker [13].
First, we create a new housekeeping cgroup and restrict its
access to CPU cores, ensuring no cores are shared between
housekeeping and the container. Next, we move all pro-
cesses, including kernel threads unrelated to the container
into this cgroup using the Python tool cset [14]. It is
worth noting that the init process with PID must remain in
the root cgroup; otherwise, it would be impossible to start
a container. By applying these optimization techniques, we
have ensured that the processing cores are fully isolated.

5. Evaluation

In the first Section 5.1, we introduce the experiment
setup in detail. Subsequently, in Section 5.2 we present
the findings from our measurements and provide a com-
prehensive analysis and discussion of the results.

5.1. Experiment Setup

Our experimental setup follows both HVNet [4] and
our previous work [3]. Figure 2 provides an overview of
the configuration for the three hosts involved in the exper-
iment: the Device under Test (DuT), the Timestamper, and
the load generator (LoadGen). To generate packets on the
LoadGen, we utilize MoonGen by Emmerich et al. [15], a

LoadGen DuT

Timestamper

▶

◀

▶

◀

▲ ▲

Figure 2: Experiment setup [3]

flexible high-performance packet generator written in Lua.
The Timestamper is connected to the ingress and egress
lines via passive optical terminal access points (taps),
which add a negligible, constant delay. The DuT runs a
single LXC container with direct access to the ingress and
egress interfaces and runs a minimal DPDK L2 forwarding
application.

The LoadGen features an Intel Xeon Silver 4116, 192
GB RAM, and a dual-port Intel 82599ES 10-Gigabit SFP+
NIC connected to the DuT with optical fibers. The DuT is
equipped with an AMD EPYC 7551P, 128 GB RAM, and
a dual-port Intel X710 10Gbe SFP+ NIC. The Timestam-
per is outfitted with an AMD EPYC 7542, 512 GB RAM,
and a dual-port Intel E810-XXVDA4 25-Gigabit flashed
to 10-Gigabit NIC, providing 1.25 ns precision.

To automate and make the measurements reproducible,
we use the plain orchestration service (pos) by Gallen-
müller et al. [16]. This service enables us to control
boot parameters, power status, and images of bare-metal
hosts and VMs hosted by libvirt, utilizing IPMI. In our
previous work [3], we developed virtualLXCBMC [17]
to integrate LXC with pos, which enables us to control
LXC containers with IPMI. However, since a container
does not have its own kernel, it is impossible to set boot
parameters.

Each packet carries a unique identifier to precisely
evaluate its network latency. The packets are timestamped
by their respective NICs. The Timestamper matches a
packet on the ingress and egress and measures the du-
ration. This methodology enables us to measure the pro-
cessing latency without introducing latency by the mea-
surement process itself. Subsequently, the Timestamper
generates pcap files which scripts process further.

In our measurements, we utilize minimal-sized packets
of 64 B as the processing cost of a single packet remains
constant, irrespective of its size [15]. Therefore, the num-
ber of packets, not their size, is the predominant factor
contributing to processing delays. We measure with a
packet rate of 1.52 Mpkt/s corresponding to 825 Mbit s−1,
and 6.24 Mpkt/s corresponding to 3.39 Gbit s−1, like in our
previous work [3]. On the DuT we use Debian Bullseye
with a real-time kernel 5.10.

5.2. Results

To measure the tail latencies of cgroups v1 and v2, we
use the setup of Section 5.1, the optimizations described in
Section 4 and [4]. Each experiment is repeated three times;
the worst case is reported in this paper. We have made
instructions for reproduction and additional measurement
data available for inspection1.
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Figure 3: HDR histogram of cgroups v1 and v2 with
1.52 Mpkt/s on Debian Bullseye with real-time kernel.
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Figure 4: HDR histogram of cgroups v1 and v2 with
6.24 Mpkt/s on Debian Bullseye with real-time kernel.

The latency differences between cgroups v1 and v2
on Debian Bullseye with a real-time kernel, with a packet
rate of 1.52 Mpkt/s, are shown in Figure 3. Both versions
exhibit a nearly identical latency trend, with a slight dif-
ference emerging between the 99th and 99.9th percentiles.
Specifically, the latency with v1 at the 99.9th percentile is
slightly higher than with v2. However, towards the 99.99th
percentile, the network latencies of both versions match
again.

Figure 4 presents the result of the same experiment
with a higher packet rate of 6.24 Mpkt/s. The same trend
as in Figure 3 is visible, albeit the spike in tail latency
occurs slightly earlier. This behavior is expected, as the
packet rate is four times higher than before. Likewise, v1
exhibits higher worst-case network latencies.

The 5000 worst-case latencies, as shown in Figure 5,
are similarly distributed for cgroups v1 and v2, as the
HDR histograms already suggested. There are slightly
more outliers for v1, indicating that more packets are
affected by higher processing delays than for v2. Our re-
maining measurement data suggests that extreme outliers,
like those seen for v2 at the 34th second of measurement
time, are more prevalent for v2.
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Figure 5: 5000 worst-case latencies of cgroups v1 and v2
with 1.52 Mpkt/s on Debian Bullseye with real-time kernel

TABLE 1: Performance analysis with perf stat -B be-
tween cgroups v1 and v2.

cgroups instructions branches migrations

v1 674 × 109 98 × 109 297
v2 659 × 109 96 × 109 148

We verify the claim that cgroups v2 has a more
efficient implementation by measuring the number of in-
structions executed with the Linux performance analysis
tool perf [18]. The measurement includes the container
startup, 60 s packet forwarding at 1.52 Mpkt/s, and the
shutdown. The experiment is repeated three times, taking
the average value. The resulting data is presented in
Table 1 and in the reproduction collection1. We observe
that for cgroups v1, the number of instructions executed
is about 2.4 % higher, and about 2.2 % more conditional
branches are executed compared to v2. The difference in
process migrations of 148 in v2 and 297 in v1 is note-
worthy. Given that we disabled scheduler load balancing,
this finding is unexpected.

While these differences seem small, it is crucial to
note that our recorded difference in latencies only occurs
at the 99.9th percentile, which concerns only a fraction
of all packets.

6. Conclusion and Future Work

The Linux kernel is a constantly evolving system, with
bug fixing and continuing feature expansion. However,
with these rapid changes, there is no extensive research
available to evaluate the changes. To ensure the reliability
and safety of using containers and cgroups in low-latency
systems like self-driving cars or airplanes, detailed studies
are necessary. In this paper, we have demonstrated that
cgroups v2 is a superior choice for low-latency network-
ing. While the latency behavior is identical to cgroups v1
up to the 99th percentile, v1 performs worse with more
packets having higher latency. Additionally, v1 consumes
2.4 % more instructions for the same workload, indicating
its less efficient implementation. Therefore, we conclude
that cgroups v2 is the better choice for low-latency sys-
tems that require high performance and reliability. It is
worth noting, however, that v2 lacks some of the features
of v1, and upgrading to a more modern kernel may
not always be possible without additional costs. Systems
in production often utilize operating systems with long
release cycles, which makes changes to packaged software
like the kernel expensive.

As part of our future work, we aim to enhance and
automate measuring and analyzing the instructions con-
sumed by a container, the underlying technology, and the
applications inside. Automation would enable us to assess
the performance of different enabling technologies like
cgroups more effectively. Additionally, we are interested
in testing the kernel 6.1, which incorporates the new
cpuset partition type isolated, and comparing it against
cgroups v1 cpuset.sched_load_balance.

1. https://wiedner.pages.gitlab.lrz.de/iitm-seminar-daichendt-
reproducibility/
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