A Scheme Towards Reproducibility

Felix Christ, Henning Stubbe*
*Chair of Network Architectures and Services
School of Computation, Information and Technology, Technical University of Munich, Germany
Email: felix.christ@tum.de, stubbe@net.in.tum.de

Abstract—The result of compiling software depends on a
myriad of factors. Describing the dependencies and the build
environment in their entirety is difficult, but necessary to
reach an output that is always the same for every compila-
tion.

With the functional package manager Guix, software
packages are described in the functional programming lan-
guage Guile Scheme, which makes identifying dependencies
simple. Guix also provides ways to describe the build envi-
ronment such that it can easily reproduced. These factors
combine to allow wholly reproducible builds.

We packaged a piece of moderately complex software for
Guix, and have found that this is a suitable way to achieve
a reproducible build.

Index Terms—reproducibility, guix, functional package man-
agement

1. Introduction

It is a difficult task to build and run software repro-
ducibly, or even reliably. This is because both compilation
and execution depend on many inputs. These inputs, com-
monly called “dependencies”, are required during build
time (such as compilers and build systems) and during
runtime (such as interpreters or shared libraries).

To add complexity, software also usually depends on
exact versions of their dependencies. As an example, a
program written to run with version 2.7 of the python
interpreter may not work with version 2.6, if the program
uses new features from 2.7. It may also not work with
version 3.0, since python syntax between the versions is
generally not compatible. Here, it is therefore not enough
to state “python” as a dependency, but also the exact
version.

The problem is made more difficult still because de-
pendencies also have dependencies. To guarantee that a
piece of software is built and run deterministically, it is
necessary to have a system that defines software in such a
way that it is possible to determine all recursive dependen-
cies. Such a system would ideally also have a simple way
of describing the entire environment, i.e. operating system,
with all its software and specific versions, in which the
build was performed.

Guix is a package manager and operating system that
provides these features. In this paper, we set out to de-
scribe package management with Guix and how it can help
make build processes reproducible in Section 2. We then
package a concrete piece of moderately complex software
with Guix in Section 3. In Section 4, we are then able

Seminar IITM SS 23

to evaluate this packaging process in terms of complexity,
and determine whether Guix is suitable for reproducibly
building software. Section 5 briefly lists previous uses of
Guix in academia, and a conclusion is reached in Section
6.

2. Guix

Guix is a package manager introduced in 2013 [1]. As
of the time of writing, it includes 21436 packages of free
software. It sets itself apart from other package managers
such as pacman or RPM as a functional package manager.
This difference lies in how packages are defined.

2.1. Functional Package Management

Packages, i.e. the building and installation process, are
represented as pure functions, in the sense of functional
programming. A pure function is a function with the
following properties:

1) The function will always evaluate to the same
value given the same input (i.e. it is determinis-
tic).

2) It is free of side effects.

In the context of building software, the first property
means the build processes do not depend on the state and
available dependencies in the operating system,

The inputs (source code, all dependencies) for building
software can be considered to be the function’s param-
eters. The finished build is considered to be the result
of evaluating the function. In Guix, this is achieved by
creating a container for each build that is separated from
the host OS.

2.2. Building packages

A build daemon builds packages in a chroot environ-
ment. It is used because it provides a lightweight way to
control which programs a process uses and has access
to by changing the apparent root directory [2]. Inside
this container, only the dependencies explicitly listed in
the package definition are visible. This ensures that the
evaluation stays pure, and does not depend on the state of
the host system. It is the build daemons task to configure
an environment that includes not only libraries and headers
needed for compilation but also explicitly defined build
systems and compilers.

Now it is clear how Guix differs from other, imperative
package managers. Instead of packages modifying the

doi: 10.2313/NET-2023-11-1 02

state of the system unpredictably, as with privileged shell
scripts, and depending on the packages installed in the
system, installing and updating packages is instead trans-
actional. This means that these processes can be recreated
and rolled back easily. Also, because building is mediated
through the daemon, and installation only requires linking
to the built binaries, all actions are generally unprivileged.
This is not the case for imperative managers, which need
to move binaries into protected locations, such as /bin.

Instead of these traditional locations, all package build
results are stored in a central location, the store. Each
directory contained is prefixed by a cryptographic hash
over the “function inputs”. The store acts as a “cache
of function results” [1] so that repeated evaluations of
a package can be substituted by its result.

When a user wishes to install a package, they may do
so by issuing an unprivileged call to the build daemon,
which produces the packages inputs and dependencies,
and evaluates the package function. It then stores the
resulting binaries, libraries, and header files in the store.
Links to these results are then added to the user’s profile,
a directory containing user-specific versions of the direc-
tories usually found in the root directory, such as bin,
etc, or include.

2.3. Guile Scheme

Guix defines packages in the functional programming
language Guile Scheme. While Guix’s predecessor Nix
shares the same mechanism for building and managing
packages, Scheme is what separates them. Nix featured
a different, less intuitive domain-specific language, called
the “Nix expression language” [3]. The developers of Guix
intended Scheme to offer simplicity so that developers
could “help grow and maintain a large software distribu-
tion” [1].

These Schemes explicitly state the inputs required to
build and run the software. Things that are considered
inputs in that sense include other packages providing
dependencies, arguments for the build system, as well as
source code (from git or tarballs) [4].

Because other packages are also inputs, and they too
are defined as Schemes, Guix can easily traverse and
describe all dependencies of a defined package. This is
particularly useful when the build daemon needs to deter-
mine which packages need to be available in the chroot
environment during build time. It constructs all inputs,
and their inputs recursively. It can then determine which
of these inputs are already present in the store, and build
all those that are not.

2.4. Channels

Collections of Guix packages are organized into git
repositories called channels [5]. These channels contain
collections of Scheme (.scm) files with package defini-
tions. Additionally, they may also define the URL of a
CI server to download pre-built packages from, patches
needed for certain packages to be built, channel depen-
dencies (other channels that are required for this one),
and keys of the channel authors to authenticate commits.

While Guix includes a default channel by default,
users may add additional channels. Contributors may also

Seminar IITM SS 23

choose to define and publish their own channel by simply
making a git repository available online.

Channels also make it possible to easily describe
the state of a system with its available packages. At a
particular point in time, all information that is needed to
recreate a system is the URLs of its channels, as well as
the commit that represents the channels’ current state.

3. Packaging LLVM-LC3

The goal of this section is to describe the process and
assess the complexity of packaging software for Guix. We
set out to build the code generator of the LLVM toolchain
with the ability to generate code for the “Little Computer
3” (LC3) educational assembly language.

The LLVM toolchain is comprised of a frontend and a
backend. The frontend translates code from a high-level
language to an intermediate representation (IR). There
exist frontends for languages such as C/C++ (with clang
as frontend), Haskell (kaleidoscope), or Go (11go). This
IR may then be translated into the target instruction set
by the backend. Our goal is to compile this backend, and
include support for LC3 as a target instruction set.

3.1. Understanding the Build Process

The source code for the LLVM backend is hosted on
GitHub as part of the LLVM Project. For it to support
a target instruction set, a developer needs to define the
procedures on how to translate the IR into that spe-
cific machine language. Several such implementations that
are already included with the backend can be found in
the directory 1lvm/1ib/Target, such as x86, ARM, or
RISCYV, with each being represented by a directory with
the target’s name.

The implementation of the LC3 machine, hereafter re-
ferred to as 1c3-target, is not included, but is fortunately
made available by a user on GitHub. Unfortunately, little
information on how to include his implementation into
the LLVM backend is provided. The trivial approach of
adding the implementation into Target/LC3 is unsuccess-
ful. Two important pieces of information are missing:

1) Where does the backend’s code need modifica-
tions for the 1c3-target to be supported?

2) What version of the backend is this 1c3-target
intended for?

We now proceed to identify the steps to build the
backend and answer these questions through examining
clues and repeatedly invoking the build process after
slight modifications. Answering these questions together
proves difficult. When a compilation error occurs, it is
not immediately clear whether it stems from an incorrect
backend version, or from some necessary modification that
has not yet taken place.

3.1.1. Modifications in the Backend. The backend’s
source code needs to be modified in three places. In two
places, this is related to adding some members to enums
that are used by the 1c3-target. A modification must also
be made in the CMakeLists.txt in the Target directory,
for the build system to pick up the directory in which
lc3-target resides.

doi: 10.2313/NET-2023-11-1 02

3.1.2. Identifying the Version. We identify the version
of LLVM that 1c3-target was developed for by nar-
rowing down the window of possible versions. Since the
last commit in LC3’s history is from July 24, 2016, all
versions greater than 3.8 are discarded. From there, we
work backward to find the correct version. Version 3.8 is
discarded because lc3-target uses a function that was
removed in that version. The next lower, version 3.7, is
found to be the correct one.

3.1.3. Finding the Compiler. Even after the correct ver-
sion is found, compilation still yielded an error within
lc3-target. An implicit conversion from a unique_ptr
to bool is impossible. Using version 5 of the gcc compiler
instead of the latest version fixes this error, which is a
known bug with old versions of llvm!.

3.1.4. Informal Process. After successfully building and
verifying the functionality of the backend, we identify the
following informal steps.

1) Fetch the source code of the LLVM Project (re-
lease 3.7)

2) Fetch the source code for 1c3-target implemen-
tation into LLVM’s Target directory

3) Register the lc3-target within the backend’s
source code.

4) create a build directory

5) call cmake with certain variables to generate build
files

6) build llvm

We also identify that python 2.7 is required to gen-
erate the build files. This informal process now must be
formalized into a Scheme, defining it as a package.

3.2. Defining a Scheme

Guix features a high-level Scheme data type for rep-
resenting a package. Documentation for it and the rest
of this section can be found in the Guix cookbook [5].
This data type has some self-explanatory fields that are
just strings, such as the name, version, or description.

3.2.1. Fetching source code. Origins of source code,
such as remote git repositories, tar-balls, or local files,
are represented as the origin data type. A package has
only one source field, which can be considered to be the
primary origin of the package. In our case, however, two
origins of source code are needed. Fortunately, additional
origins can be added to a package in the inputs field,
which contains a list of dependencies of the package.

3.2.2. Modifying source code. origin objects also in-
clude a patches field, which contains a list of patch files
to be applied to the code. This is useful in our case, as
it allows us to modify the code from the official llvm
repository to register lc3-target.

1. https://github.com/digego/extempore/issues/318

Seminar IITM SS 23

3.2.3. Build systems. Guix offers many standard build
systems as pre-defined build-system objects. They repre-
sent common ways to build software. The build-system
field of the package contains the system to be used for the
package. Depending on its value, a different sequence of
commands will be executed inside the build environment.
In our case, we use the cmake-build-system.

Sometimes modifications must be made to that ide-
alized build process. For this purpose, it is divided into
build phases, which may be edited in the Scheme. This
is necessary in our case as well. In particular, the source
code of 1lc3-target needs to be moved to the Target
directory. This can be done by modifying the configure
phase of the build system. In this phase, all the origins
have already been fetched into the build environment.
Before the phase is executed, we insert a hook that copies
the 1c3-target code to the correct location.

3.3. Adding to a Channel

Adding a package to a channel only involves adding
the Scheme file to the git repository. It is also necessary
to adjust the module definition at the top of the file to
reference the channel.

If, like in our case, the build process involves
patches from .patch files, they must also be added to
the repository. Patches are found during building using
search-pathes from the channels root, so the path of the
patch files referenced in the Scheme must also be adjusted
to be relative from there.

Finally, for Guix to recognize this channel, it is added
to the user’s channels, and guix pull needs to be ex-
ecuted to make packages from the channel available to
build.

4. Evaluation

After the process of making a software available as a
package in Guix, we are now able to discuss whether this
has brought us closer to the goal of reproducibility.

4.1. Reproducibility

When trying to get the compilation to finish suc-
cessfully during the first, exploratory stage (3.1.3), we
encounter a roadblock that has an implication for whether
the package builds deterministically. With the most recent
version of gcc available in Guix at the time of writing,
version 10.3.0, compilation fails due to an implicit cast.
With an earlier version such as 5.5.0, the compilation
succeeds.

In the Scheme defining the package, it is not required
to specify the version that should be used. The follow-
ing line implicitly includes the most recent version of
the commencement package, which puts the most recent
version of the gcc toolchain into the build environment.

#:use-module (gnu packages commencement)

It is therefore possible to define a package in a Scheme
for Guix, that builds and installs correctly when the most
recent version of gcc accepts the implicit cast. However,
when a newer version of gcc treats this as an error, the
build fails.

doi: 10.2313/NET-2023-11-1 02

channel:
guix@commit_6b29c9

|$guix time-machine |

Kstored environment

dd@8 32

binutils@2.37
cmake@3.21.4
sources

package.scm

Sguix build \

/ build enviroment \

@

=

\ 4

reproduced
package

Figure 1: The same built package is reproduced from just
the channel state and the package Scheme.

It is clear from this example that simply defining a
package in a Scheme is not enough to make it repro-
ducible. To actually compile with reproducibly, the pack-
ager’s current Guix environment needs to be described.
This includes the versions of all input packages.

For reproducing sofware, the environment must be
recreated, and the package built within it. Thankfully,
Guix includes a utility to do just this, called guix
time-machine [4]. A conceptual overview of its use for
this purpose is illustrated in figure 1.

To summarize, reaching the same build result each
time is the result of two of Guix’s features. First, with
help of the Scheme package format, guix build is able
to determine all transitive inputs of the software, down
to the operating system. Second, the state of the Guix
environment, including the packages at the version the
software was built at, can be recreated with the guix
time-machine. The time machine only requires the de-
scription of Guix’s channels at that time for this, i.e. a git
commit (6b29¢c9 in this example), since channels are git
repositories.

4.2. Complexity

It is a goal of the Scheme format for packages to
be “purely declarative in common cases”, so as to be
“directly usable by packagers with little or no experience
with Scheme.” [1]. For such common cases, a Scheme
can intuitively be constructed with help from the examples
in the Guix cookbook. However, for non-obvious cases,
such as ours, where a git repository needs to be fetched
and copied to a specific location, the documentation does
not provide an easy recipe. In cases such as these, it is
very useful to browse the default channel’s other package
definitions. It is likely that the special case has been dealt
with by another packager in the past. Guix’s package still
appear less complex than Nix’s though, as can be seen

Seminar IITM SS 23

10

by comparing the definitons for the same packages, like
1lvm.

To aid with debugging during the definition of
the Scheme, the command guix build with the
--keep-failed switch is useful. It allows building a
package without a channel and also keeps the build envi-
ronment to examine, which helps determine the cause of
failures.

The most challenging part of our example is to deter-
mine the informal building steps and dependencies before
they are translated into a Scheme. Because the developer
of lc3-target has not provided any information on the
Ilvm version or modifications to llvm’s source code, a
process of trial-and-error is necessary.

5. Related work

Guix has been used previously in scientific work. In
their paper from 2015, Courtés and Wurmus explore the
use of Guix in high-performance computing [6]. They
show that its structure, with unprivileged users being
able to build packages through calls to the user daemon,
benefits environments where many users share a cluster.
It is also useful because Guix packages do not depend
on parts of the host system, making moving them to new
clusters a less involved process. With Guix, it is also more
straightforward for them to define variants of software
for different use cases. In a specific example, they define
different variants for a package for developers and users.

There is also use for Guix in bioinformatics. In 2018,
Wurmus et al. introduce PiGx, a tool for developing
pipelines that transform raw experimental data into reports
[7]. PiGx is packaged using Guix, which makes it not
only reproducible but also transparent. The specific de-
pendencies and packages used can be easily described and
analyzed, which would more complex if a virtual machine
is used to recreate the software environment.

Recently, in 2022, work has also been done by Batten
et al. as part of the CARRV workshop to use Guix for
packaging RISC-V software, as well as hardware simu-
lators like gem5 [8]. RISC-V software is mostly cross-
compiled as of yet, posing the problem that toolchains
for it need to be defined. This again has many complex
inputs, making packaging with Guix suitable.

6. Conclusion

In this paper, we have discussed the internals and
mechanisms of the Guix package manager, and what
makes its approach useful for reproducibility in contrast
to other package managers. Furthermore, we have shown
in a concrete example the process of packaging software,
and described in detail the process of learning the de-
pendencies of largely undocumented software. We aim to
make this package available in the channel guix-past,
which is managed by France’s National Institute for Re-
search in Digital Science and Technology (INRIA). Fur-
thermore, we have provided a recipe for using the guix
time-machine to recreate the package environment to
build a piece of software with the same inputs each time,
making it reproducible.

doi: 10.2313/NET-2023-11-1 02

References

(1]

(2]

(3]

(4]

L. Courtes, “Functional Package Management with Guix,”
CoRR, vol. abs/1305.4584, 2013. [Online]. Available: http:
/larxiv.org/abs/1305.4584

chroot(2) - Linux man page, Free Software Foundation. [Online].
Available: https://linux.die.net/man/2/chroot

E. Dolstra and A. Loh, “NixOS: A Purely Functional Linux
Distribution,” in Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP
’08. New York, NY, USA: Association for Computing Machinery,
2008, p. 367-378. [Online]. Available: https://doi.org/10.1145/
1411204.1411255

K. Hinsen, “Reproducible computations with Guix,”
2020. [Online]. Available: https://guix.gnu.org/en/blog/2020/
reproducible-computations- with-guix/

Seminar IITM SS 23

11

(5]

(6]

(7]

(8]

R. Wurmus, E. Flashner, P. Neidhardt, O. Pykhalov, M. Brooks,
M. Karpezo, B. Waegeneire, A. Batista, C. Lemmer-Webber,
J. Branson, M. Couroyer, and L. Courté, “GNU Guix Cookbook,”
2019. [Online]. Available: https://guix.gnu.org/en/cookbook/en/

L. Courtes and R. Wurmus, “Reproducible and User-Controlled
Software Environments in HPC with Guix,” in 2nd International
Workshop on Reproducibility in Parallel Computing (RepPar),
Vienne, Austria, Aug. 2015. [Online]. Available: https://hal.inria.fr/
hal-01161771

R. Wurmus, B. Uyar, B. Osberg, V. Franke, A. Gosdschan,
K. Wreczycka, J. Ronen, and A. Akalin, “PiGx: reproducible
genomics analysis pipelines with GNU Guix,” GigaScience,
vol. 7, no. 12, 10 2018, giyl23. [Online]. Available: https:
//doi.org/10.1093/gigascience/giy 123

C. Batten, P. Prins, E. Flashner, A. Isaac, J. Nieuwenhuizen,
E. Zarraga, T. Ta, A. Rovinski, and E. Garrison, “The Case for Using
Guix to Enable Reproducible RISC-V Software & Hardware,” 2022.

doi: 10.2313/NET-2023-11-1 02

