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Abstract—The QUIC protocol is designed as a more flexible
alternative for the TCP / TLS stack and is implemented in
user-space. Thus several implementations exist, each with
its own strengths and weaknesses. In this paper, we take a
close look at MsQuic, a high-speed QUIC implementation
by Microsoft. We give an overview of the library, showcase
its strengths, and investigate in what projects it is already
deployed. Also, we evaluate MsQuic regarding performance
on different hardware architectures. Comparing the goodput
of MsQuic with other QUIC implementations, we found that
MsQuic outperforms them all, with the largest difference of
goodput on older hardware.

Index Terms—quic, msquic, goodput, performance, high-
speed, transport, measurements

1. Introduction

QUIC is a new transport protocol designed to replace
the existing TCP / TLS protocol stack. It was originally
developed by Google [1] and is now standardized by the
Internet Engineering Task Force [2]. It improves perfor-
mance and latency, by eliminating redundant handshakes,
streamlining the handshake procedure. It is built on top
of UDP and runs in user-space. Many different QUIC
implementations exist as a result of being built in user-
space, each having its strengths and weaknesses. They
differ in their implementation language and in their design.
This includes congestion and flow control, packet size,
retransmission handling, and more. One of these imple-
mentations is MsQuic by Microsoft [3]. It is open source
and designed to be a high-performance, general purpose
and cross-platform implementation of the QUIC protocol.
MsQuic is deployed in Windows [4] and other applica-
tions. In this paper, we take a look at QUIC, how it works
on a basic level, and what improvements it makes over
the existing TCP and TLS networking stack. We look at
MsQuic regarding the team behind it, its goals and design
as well as the process behind developing a QUIC library
with a focus on performance. We showcase the high-level
design of the library and shortly introduce its API. We
also show results of our measurements on MsQuic and
competing implementations, testing their claims of being
optimized for maximal throughput.

The remaining part of the paper is structured as fol-
lows. Firstly, we introduce QUIC and explain important
parts of its design. Then we showcase MsQuic, talking
about its goals, high-level architecture and its develop-
ment. Following this, we present our measurements re-
garding MsQuic and competing implementations. Finally,

we summarize related work that gives more context to
the performance measurements, before we conclude the
paper.

2. Background

QUIC is intended as a next-generation transport pro-
tocol that powers the new HTTP / 3 [5]. It replaces
TCP / TLS, taking care of flow control. It also handles
stream multiplexing, which was previously handled by the
HTTP layer. QUIC was originally developed by Google
as a successor to SPDY, their first attempt at designing
a next-generation transport protocol. Taking the lessons
learned from SPDY, they started development on QUIC,
which was standardized in 2021 by the IETF as RFC 9000
[2].

2.1. Rapid deployment

One of the main goals when designing QUIC was to
make rapid deployment possible, which also fostered the
general development process by Google. To achieve this
they made two key choices for the design of the protocol
[1]. The first one was to build QUIC in user-space rather
than kernel-space, allowing deployment as part of appli-
cations like web browsers1, in contrast to slow-moving
kernels of operating systems. The other decision was to
use the existing UDP protocol as a lightweight layer un-
derneath QUIC, leveraging existing network infrastructure
that already supports UDP traffic. That eliminated the need
to make any changes to middleboxes for them to support
the new protocol. These two decisions made it possible for
Google to roll QUIC out to users as part of their products
very quickly. It also gave them the opportunity to iterate
on their designs in the real world, having the tools to A / B
test changes with real-time feedback and monitoring.

2.2. Performance improvements

Another goal of QUIC was to reduce handshake
latency and enhance performance over the existing
TCP / TLS stack. First and foremost by reducing the
amount of network round trips that are required for a
TCP and a TLS handshake. It takes three round trips
for a TCP / TLS handshake between a client and server
before the client can send the actual request to the server.
QUIC combines the handshakes for the transport layer

1. Google used their browser Chrome to roll out the QUIC protocol
to their users.

Seminar IITM SS 23 1 doi: 10.2313/NET-2023-11-1_01



Client Server

CRYPTO[CH]

CRYPT
O[SH]

CRYPT
O[EE,

CERT,
CV, FIN]

DATA

CRYPTO[FIN]
DATA

HS_DO
NE

DATA

(a) 1-RTT

Client Server

CRYPTO[CH]
DATA

CRYPT
O[SH]

CRYPT
O[EE,

FIN]

DATA

CRYPTO[FIN]
DATA

HS_DO
NE

DATA

(b) 0-RTT

Client Server

CRYPTO[CH]
DATA

CRYPT
O[SH]

CRYPT
O[EE,

CERT,
CV, FIN]

DATA

CRYPTO[FIN]
DATA

HS_DO
NE

DATA

(c) Rejected 0-RTT

Figure 1: QUIC handshake timelines

and encryption into one. With that alone, QUIC is able to
alleviate the overhead needed for setting up a connection
[1].

Establishing a connection between a client and server
with QUIC is done in two different ways, as shown in
Figure 1. An initial connection of a client that has not con-
nected to the server before is depicted in Figure 1a. The
client sends an incomplete Client Hello to the server,
prompting a Server Hello from the server, together with
cryptographic data like the certificate, which the client
needs to establish an encrypted and trustable connection.
At this point the server can already send encrypted DATA
to the client. With the cryptographic data from the server,
the client sends a complete Client Hello and encrypted
DATA can be sent. The server responds with a Handshake
Done message, indicating that a secure connection was
established, and from there the connection to the client
is established. This results in only one network round
trip (1 RTT) of delay to establish a new connection, only
a third of the overhead TCP / TLS has. After this initial
connection, the client can cache the server configuration as
well as the cryptographic data to use in later connections
with the same server. As illustrated in Figure 1b, the client
can avoid sending an incomplete Client Hello and is
able to use the cached data to immediately send a complete
Client Hello as well as DATA, allowing for a connection
without any overhead. Lastly, the data cached by the
client might become invalid after some time, for example
because the server changed its configuration. When the
client tries to initiate a new connection with an invalid
encryption, the server will respond with the new crypto-
graphic data. At this point the client will proceed with the
regular 1-RTT procedure for connection establishment as
seen in Figure 1c.

3. MsQuic

MsQuic is the open source implementation of the
QUIC protocol by Microsoft [3]. Its initial release was on
the 27th of November 2019. It was developed by the data-
path and transports team at Microsoft, headed by Nicholas
Banks [6]. He is the primary QUIC architect and developer

and is responsible for the project. Later, the team was
split into a dedicated datapath team and transports team,
the latter of which now continues the development of the
library. The code for MsQuic was open sourced on the
28th of April 2020 on GitHub and is licensed under a
MIT License [3] that provides complete freedom over the
code, allowing unconfined commercial use, modification
and distribution. This, however, is without any liability or
warranty.

Commercial software exists that already uses MsQuic.
For example, it is already used as the kernel mode
msquic.sys in Windows 11 and Windows Server 2022
and is used by the Windows kernel mode http.sys for the
purpose of providing HTTP/3 capabilities [7]. The SMB
protocol offers the usage of QUIC as an alternative to
TCP, by using MsQuic under the hood [8]. The .NET Core
ecosystem uses MsQuic to provide QUIC functionality as
well [4]. The Microsoft Game Development Kit, which
provides the possibility of using QUIC as a transport
protocol to implement latency critical network code in
games, also using MsQuic as the implementation of choice
[9].

3.1. Goals

When Banks and his team started development on
MsQuic their main focus was to build a general purpose
QUIC implementation that can be used by other products
from Microsoft to leverage QUIC as a next-generation
transport protocol [4]. The two main components that
wanted to use MsQuic right from the beginning were the
HTTP kernel mode of Windows and the SMB protocol,
both of which run in the Windows kernel. This meant that
MsQuic needed to run in the kernel as well, in order to
be used by both HTTP and SMB in Windows. A mod-
ule inside of the Windows kernel has a few constraints,
primarily regarding the implementation language. Kernel
code for Windows has to be written in C or in a restricted
form of C++. The other constraint is having to implement
an asynchronous network IO model.

Although both HTTP and SMB were two main use
cases for MsQuic from the very beginning, they had dif-
ferent requirements [4]. HTTP requires a high number of
requests per second as well as low latency for connections.
SMB on the other hand benefits from high throughput on
a single connection. This meant MsQuic needed to be
optimized for both cases, handling as many requests per
second as possible while still enabling bulk transfer on
single connections. A bit later into development .NET core
team at Microsoft was interested in using their in-house
QUIC implementation to provide QUIC functionality for
the .NET ecosystem. Since .NET is a cross platform
framework, this meant that the goals for MsQuic now
also included providing cross platform support, for both
Windows and Linux as well as Xbox.

3.2. Design

On a high level, MsQuic is split into two parts [4].
The core protocol that implements all of the platform
independent protocol logic, as well as a platform spe-
cific abstraction layer that handles the interaction with
constructs tied to the OS like sockets and threads. An
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asynchronous IO model is used for the data path, utilizing
asynchronous calls into lower layers to send data and
using upcalls back to the higher layer to complete these
sends. To improve performance IO operations are batched
between the Application / MsQuic layers and between the
MsQuic / UDP layers. This batching works together with
UDP send segmentation and receive coalescing [4].

The threading model of the library is comprised of
two different types of threads, data path threads and core
threads [4]. Data path threads handle UDP receive calls
and basic QUIC validation, before queuing each packet
to its associated connection object. The interaction of the
data path threads with the UDP layer is platform depen-
dent. Core threads process the queues of every connection
object, performing the majority of processing. This divi-
sion of the handlers for packet receives and the packet
processing allows for a practically lock free execution
of the code. It also makes horizontal and independent
scalability possible, where both a high amount of requests
and bulk throughput can be prioritized individually.

3.3. Prioritizing performance

One of the primary concerns when developing MsQuic
is performance [3]. As a general purpose implementa-
tion, however, performance can mean different things. For
HTTP, a high number of requests per second is crucial,
while for file sharing high throughput is important. In
order to provide performance in all scenarios, they have
worked to standardize a measure for performance and cre-
ated a process for testing the performance of their QUIC
implementation in different scenarios [10]. These mea-
sures consist of single connection upload and download
speeds, requests per second and handshakes per second.
Testing for these scenarios is done automatically for every
merge and pull request to the main branch. This provides
real time feedback of changes in performance that can
be tracked back to a certain commit. Thresholds are in
place to automatically reject any pull requests that do
not meet specified performance requirements. All of these
metrics are publicly available on the MsQuic performance
dashboard [11]. This commitment by the MsQuic team to
keep track of performance changes on every commit has
helped them a lot to achieve their goal of building a high-
performance QUIC implementation.

3.4. API overview

The library exposes an API providing different objects
encapsulating specific parts of MsQuic handling certain

functionalities [12]. An overview of these objects is shown
in Figure 2. The Registration object provides an execution
context for the child objects; typically only one Registra-
tion per application should be created. A Regestration is
associated with a Configuration object abstracting all of
the settings available to change the behavior of the library.
When building a server Listener objects are used to accept
incoming connections from clients. The more Listener
objects are created, the more simultaneous requests the
server will be able to handle. A successfully accepted
connection by a Listener will result in a new Connection
object representing the connection between the server and
a client. This Connection object can create or accept
arbitrarily many Stream objects, each one representing an
individual QUIC stream that is used for data transmission.

The API uses callbacks to indicate that an event has
happened. The functions that are registered to these call-
backs are not run in separate threads to MsQuic and as
such should keep the execution time to a minimum, to not
block execution of the library.

4. Evaluation

We compare the performance of MsQuic to other
QUIC implementations and chose the following three.
Quiche, which is the QUIC implementation from Cloud-
flare written in Rust. LSQUIC, an implementation from
LiteSpeed, which is written in C and lastly picoquic,
that has the goal of being a minimal but fully functional
implementation of the QUIC protocol and is also writ-
ten in C. We chose these three implementations because
they prioritize performance and most importantly are all
written in a systems programming language, making them
good targets for performance and speed comparisons with
MsQuic.

4.1. Setup

To conduct our measurements we used the test frame-
work by Jaeger et al. [13], which allowed us to execute
the tests on real hardware inside of a testbed. With this
framework the measurement procedure was the following.
Two seperate hosts are selected, one acting as a client and
one as a server. The server hosts a webserver, exposing
a 1073 MB large file and the client attempts to download
it. Measuring the time this data-transfer takes, we cal-
culate the average transmission speed. After the transfer
is complete we make sure that the file was transmitted
properly and did not get altered during transfer. This is
called goodput instead of throughput because instead of
measuring the raw amount of data transmitted, it takes
into account what portion of the data is actually useful.
It gets impacted negatively by retransmissions of packets
and does not count packet headers as useful data and
because of that it is a better representation of real world
usage. We conducted these measurements ten times for
each implementation, to reduce random deviations in the
measured goodput. We performed this procedure on three
different host pairs, with differing CPUs, to examine
the how the performance of the QUIC implementations
changes with different hardware. Each of the first two
hostpairs had an Intel Xeon E5-1650 v3 CPU with 6 cores
and 12 threads, running at 3.5Ghz. This is an older CPU
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Figure 3: Goodput of the four QUIC implementations on different CPU architectures

from around 2014, giving insight into the performance on
an aged Haswell architecture. The other two hostpairs we
tested on had fairly recent CPUs: Intel Xeon Gold 6312U
with 24 cores and 48 threads running at 2.4Ghz and the
second hostpair used AMD EPYC 7543 CPUs with 32
cores and 64 threads, running at 3.7Ghz. The connection
between each of the hostpairs was made with a 10GBase-
T Cat6a network cable with full duplex mode.

4.2. Results

Our results are visualized in Figure 3, with the black
lines at the top of the bars indicating the standard deviation
of the measured samples. Interestingly MsQuic performed
best on the older hardware, as seen in Figure 3a, achieving
a mean goodput of 5443 Mbit s−1 and significantly out-
performing all other implementations. On the newer Intel
CPU all implementations achieve a higher goodput, except
for MsQuic, which loses around 598 Mbit s−1 of mean
goodput as depicted in Figure 3b. To be noted as well
is the larger deviation of the measurements, indicating
that the speed of the connection was unstable. This is
not the case for the AMD host pair as illustrated in
Figure 3c. None of the implementations achieve as high
goodputs as measured on the new Intel CPU, but the
achieved speeds are much more stable. MsQuic achieved
the lowest goodput on this host pair, with a mean of only
3898 Mbit s−1.

From our resulst it seems like MsQuic achieves higher
goodputs on older hardware, outperforming all the other
implementations by a large margin. MsQuic still surpasses
all the other implementations on the newer hardware,
however with a much smaller margin. This behaviour
might be caused by differences of the CPU architectures,
but more measurements and research needs to be done to
reach a conclusion.

5. Related work

This paper takes a close look at MsQuic, measuring its
performance and comparing it to other QUIC implemen-
tations. A number of similar works exist that investigate
the improvements the QUIC protocol makes [14]–[16].
Carlucci et al. check if QUIC can be deployed safely and
compare QUIC to HTTP and SPDY [15]. The work of
Cook et al. discovered specific use cases and conditions
where QUIC is of high interest [14]. Yu et al. measured the
performance of QUIC in production environments, locat-
ing the largest bottlenecks of deployed QUIC applications

[16]. Seemann and Iyengar introduce the QuicInteropRun-
ner, a framework to test interoperability and performance
between different QUIC implementations [17].

Other similar works propose concrete techniques to
improve the performance of QUIC implementations [18]–
[20]. Yang et al. tackle the problem of QUIC using up
to 3.5 times the CPU cycles of optimized TCP and TLS
implementations [18]. They examined QUIC implemen-
tations to discover the computationally most intensive
parts and using their findings to define an architecture
for offloading these calculations to NICs. Tyunyayev et
al. introduce picoquic-dpdk, a modification of picoquic
that uses the DPDK library to bypass the Linux kernel
networking stack, reducing the amount of slow context
switches [19]. A different approach to circumventing large
amounts of context switching is presented by Wang et
al. [20]. They developed an implementation of QUIC
that runs in kernel-space and used it to more accurately
compare TCP and QUIC.

6. Conclusion

The last few years have been a success story for QUIC.
It provides significant improvements over the existing
TCP / TLS stack. Deployment of this new technology was
fast and user adoption was quick. All because QUIC is
built on top of UDP, making it effortless to deploy in
existing network infrastructure and because it runs in
user-space, making it not depend on operating systems
to implement it. Between the many implementations of
the QUIC protocol MsQuic stands out with its great
performance, not only in regards to raw goodput but also
the ability to handle a large number of requests per sec-
ond. The team building MsQuic at Microsoft, has shown
their dedication to building a high performance QUIC
implementation by putting great efforts into automatic per-
formance measurements and testing. Ensuring that every
change to the code base is inline with their performance
goals. On top of that MsQuic is open source under an MIT
License, has cross platform support and good documenta-
tion and is under active development backed by a major
corporation. We were able to validate their claims of high
performance. MsQuic has double the goodput of LSQUIC,
the second fastest QUIC implementation we tested. All of
these points make MsQuic a good choice for any project
that needs support for the QUIC protocol.
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