
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

NET 2023-11-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2023

March 6, 2023 – August 17, 2023

Munich, Germany

Georg Carle, Stephan Günther, Benedikt Jaeger, Leander SeidlitzEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2023

Munich, March 6, 2023 – August 17, 2023

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger, Leander Seidlitz

Network Architectures
and Services
NET 2023-11-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Summer Semester 2023

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
Boltzmannstraße 3, 85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Leander Seidlitz
Chair of Network Architectures and Services (I8)
E-mail: seidlitz@net.in.tum.de
Internet: https://net.in.tum.de/~seidlitz/

Cataloging-in-Publication Data

Seminar IITM SS 23
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, March 6, 2023 – August 17, 2023
ISBN: 978-3-937201-78-8

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2023-11-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2023-11-1
Series Editor: Georg Carle, Technical University of Munich, Germany
© 2023, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/
https://net.in.tum.de/~seidlitz/

Preface

We are pleased to present to you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Summer Semester 2023. Each semester, the seminar takes place in two
different ways: once as a block seminar during the semester break and once in the course of the semester.
Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks, supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterward present the results to the other course participants.
To improve the quality of the papers, we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar, we award one with the Best Paper Award. For this semester,
the awards were given to Thomas Dietrich with the paper Common Workflow Language Execution on the
I8-Testbed and Ulkar Aslanova with the paper Wireless Time Synchronization in IEEE 802.11 .

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, December 2023

Georg Carle Stephan Günther Benedikt Jaeger Leander Seidlitz

III

https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany
Leander Seidlitz, Technical University of Munich, Germany

Advisors

Jonas Andre (andre@net.in.tum.de)
Technical University of Munich

Philippe Buschmann (phil.buschmann@tum.de)
Technical University of Munich

Sebastian Gallenmüller (gallenmu@net.in.tum.de)
Technical University of Munich

Max Helm (helm@net.in.tum.de)
Technical University of Munich

Kilian Holzinger (holzinger@net.in.tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Filip Rezabek (rezabek@net.in.tum.de)
Technical University of Munich

Patrick Sattler (sattler@net.in.tum.de)
Technical University of Munich

Christoph Schwarzenberg (schwarzenberg@net.in.tum.de)
Technical University of Munich

Leander Seidlitz (seidlitz@net.in.tum.de)
Technical University of Munich

Manuel Simon (simonm@net.in.tum.de)
Technical University of Munich

Markus Sosnowski (sosnowski@net.in.tum.de)
Technical University of Munich

Lion Steger (stegerl@net.in.tum.de)
Technical University of Munich

Henning Stubbe (stubbe@net.in.tum.de)
Technical University of Munich

Florian Wiedner (wiedner@net.in.tum.de)
Technical University of Munich

Johannes Zirngibl (zirngibl@net.in.tum.de)
Technical University of Munich

Richard von Seck (seck@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ss23/seminars/

V

https://net.in.tum.de/teaching/ss23/seminars/

Contents

Block Seminar

MsQuic – A High-speed QUIC Implementation . 1
Manuel Bünstorf (Advisor: Benedikt Jaeger)

A Scheme Towards Reproducibility . 7
Felix Christ (Advisor: Henning Stubbe)

LXC Container Between cgroups v1 and v2: a Performance Evaluation 13
Alexander Daichendt (Advisor: Florian Wiedner, Jonas Andre)

Common Workflow Language Execution on the I8-Testbed . 19
Thomas Dietrich (Advisor: Sebastian Gallenmüller, Manuel Simon)

Survey of Cryptographic Offloading Techniques for Blockchain Systems 25
Sebastian Fritsch (Advisor: Richard von Seck, Filip Rezabek)

Joint OFDM for Radar and Communication . 31
Thomas Konstantin Krachten (Advisor: Leander Seidlitz)

Current State of Hardware and Algorithms in WiFi Radars . 37
David Pop (Advisor: Leander Seidlitz, Jonas Andre)

Prediction of Rare Latency Events . 43
Caspar Leonard Scheerer (Advisor: Max Helm, Benedikt Jaeger)

Digital Twins of Computer Networks . 49
Martin Tonauer (Advisor: Kilian Holzinger)

Positioning in 5G Networks - Overview and Security Threats . 55
Lukas Wittmer (Advisor: Leander Seidlitz, Jonas Andre)

Content and API Acceleration Using Content Delivery Networks 61
Tom Maximilian von Allwörden (Advisor: Markus Sosnowski)

Seminar

Wireless Time Synchronization in IEEE 802.11 . 67
Ulkar Aslanova (Advisor: Leander Seidlitz, Jonas Andre)

Machine Learning Applications In 5G Network Orchestration . 73
David Friedlein (Advisor: Philippe Buschmann)

Survey On The Current State Of Tor Over QUIC . 79
Mohamed Mehdi Gharam (Advisor: Lion Steger)

Structure and Origin of CT Based Domain Lists . 85
Lorenz Johannes Lehle (Advisor: Patrick Sattler, Johannes Zirngibl)

Introduction to BBRv2 Congestion Control . 91
Joji Mathew (Advisor: Benedikt Jaeger)

The Evolution of Top-Level Domains: A Comparative Study of .org and .dev 97
Florian Pfisterer (Advisor: Johannes Zirngibl, Patrick Sattler)

Hardware-assisted virtual network benchmarking tools . 103
Eric Rosche (Advisor: Florian Wiedner, Christoph Schwarzenberg)

Current State of Hardware and Tooling for SDR . 109
Nico Rumsch (Advisor: Leander Seidlitz, Jonas Andre)

Temporal Graph Neural Networks . 115
Erik Söhner (Advisor: Max Helm, Benedikt Jaeger)

VII

Saving and Recovering Systems . 121
Philipp Tekeser-Glasz (Advisor: Sebastian Gallenmüller, Manuel Simon)

Network Insights with P4 In-Band Network Telemetry . 125
Sebastian Tobias Warter (Advisor: Sebastian Gallenmüller, Kilian Holzinger)

VIII

MsQuic – A High-speed QUIC Implementation

Manuel Bünstorf, Benedikt Jaeger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: m.buenstorf@tum.de, jaeger@net.in.tum.de

Abstract—The QUIC protocol is designed as a more flexible
alternative for the TCP / TLS stack and is implemented in
user-space. Thus several implementations exist, each with
its own strengths and weaknesses. In this paper, we take a
close look at MsQuic, a high-speed QUIC implementation
by Microsoft. We give an overview of the library, showcase
its strengths, and investigate in what projects it is already
deployed. Also, we evaluate MsQuic regarding performance
on different hardware architectures. Comparing the goodput
of MsQuic with other QUIC implementations, we found that
MsQuic outperforms them all, with the largest difference of
goodput on older hardware.

Index Terms—quic, msquic, goodput, performance, high-
speed, transport, measurements

1. Introduction

QUIC is a new transport protocol designed to replace
the existing TCP / TLS protocol stack. It was originally
developed by Google [1] and is now standardized by the
Internet Engineering Task Force [2]. It improves perfor-
mance and latency, by eliminating redundant handshakes,
streamlining the handshake procedure. It is built on top
of UDP and runs in user-space. Many different QUIC
implementations exist as a result of being built in user-
space, each having its strengths and weaknesses. They
differ in their implementation language and in their design.
This includes congestion and flow control, packet size,
retransmission handling, and more. One of these imple-
mentations is MsQuic by Microsoft [3]. It is open source
and designed to be a high-performance, general purpose
and cross-platform implementation of the QUIC protocol.
MsQuic is deployed in Windows [4] and other applica-
tions. In this paper, we take a look at QUIC, how it works
on a basic level, and what improvements it makes over
the existing TCP and TLS networking stack. We look at
MsQuic regarding the team behind it, its goals and design
as well as the process behind developing a QUIC library
with a focus on performance. We showcase the high-level
design of the library and shortly introduce its API. We
also show results of our measurements on MsQuic and
competing implementations, testing their claims of being
optimized for maximal throughput.

The remaining part of the paper is structured as fol-
lows. Firstly, we introduce QUIC and explain important
parts of its design. Then we showcase MsQuic, talking
about its goals, high-level architecture and its develop-
ment. Following this, we present our measurements re-
garding MsQuic and competing implementations. Finally,

we summarize related work that gives more context to
the performance measurements, before we conclude the
paper.

2. Background

QUIC is intended as a next-generation transport pro-
tocol that powers the new HTTP / 3 [5]. It replaces
TCP / TLS, taking care of flow control. It also handles
stream multiplexing, which was previously handled by the
HTTP layer. QUIC was originally developed by Google
as a successor to SPDY, their first attempt at designing
a next-generation transport protocol. Taking the lessons
learned from SPDY, they started development on QUIC,
which was standardized in 2021 by the IETF as RFC 9000
[2].

2.1. Rapid deployment

One of the main goals when designing QUIC was to
make rapid deployment possible, which also fostered the
general development process by Google. To achieve this
they made two key choices for the design of the protocol
[1]. The first one was to build QUIC in user-space rather
than kernel-space, allowing deployment as part of appli-
cations like web browsers1, in contrast to slow-moving
kernels of operating systems. The other decision was to
use the existing UDP protocol as a lightweight layer un-
derneath QUIC, leveraging existing network infrastructure
that already supports UDP traffic. That eliminated the need
to make any changes to middleboxes for them to support
the new protocol. These two decisions made it possible for
Google to roll QUIC out to users as part of their products
very quickly. It also gave them the opportunity to iterate
on their designs in the real world, having the tools to A / B
test changes with real-time feedback and monitoring.

2.2. Performance improvements

Another goal of QUIC was to reduce handshake
latency and enhance performance over the existing
TCP / TLS stack. First and foremost by reducing the
amount of network round trips that are required for a
TCP and a TLS handshake. It takes three round trips
for a TCP / TLS handshake between a client and server
before the client can send the actual request to the server.
QUIC combines the handshakes for the transport layer

1. Google used their browser Chrome to roll out the QUIC protocol
to their users.

Seminar IITM SS 23 1 doi: 10.2313/NET-2023-11-1_01

Client Server

CRYPTO[CH]

CRYPT
O[SH]

CRYPT
O[EE,

CERT,
CV, FIN]

DATA

CRYPTO[FIN]
DATA

HS_DO
NE

DATA

(a) 1-RTT

Client Server

CRYPTO[CH]
DATA

CRYPT
O[SH]

CRYPT
O[EE,

FIN]

DATA

CRYPTO[FIN]
DATA

HS_DO
NE

DATA

(b) 0-RTT

Client Server

CRYPTO[CH]
DATA

CRYPT
O[SH]

CRYPT
O[EE,

CERT,
CV, FIN]

DATA

CRYPTO[FIN]
DATA

HS_DO
NE

DATA

(c) Rejected 0-RTT

Figure 1: QUIC handshake timelines

and encryption into one. With that alone, QUIC is able to
alleviate the overhead needed for setting up a connection
[1].

Establishing a connection between a client and server
with QUIC is done in two different ways, as shown in
Figure 1. An initial connection of a client that has not con-
nected to the server before is depicted in Figure 1a. The
client sends an incomplete Client Hello to the server,
prompting a Server Hello from the server, together with
cryptographic data like the certificate, which the client
needs to establish an encrypted and trustable connection.
At this point the server can already send encrypted DATA
to the client. With the cryptographic data from the server,
the client sends a complete Client Hello and encrypted
DATA can be sent. The server responds with a Handshake
Done message, indicating that a secure connection was
established, and from there the connection to the client
is established. This results in only one network round
trip (1 RTT) of delay to establish a new connection, only
a third of the overhead TCP / TLS has. After this initial
connection, the client can cache the server configuration as
well as the cryptographic data to use in later connections
with the same server. As illustrated in Figure 1b, the client
can avoid sending an incomplete Client Hello and is
able to use the cached data to immediately send a complete
Client Hello as well as DATA, allowing for a connection
without any overhead. Lastly, the data cached by the
client might become invalid after some time, for example
because the server changed its configuration. When the
client tries to initiate a new connection with an invalid
encryption, the server will respond with the new crypto-
graphic data. At this point the client will proceed with the
regular 1-RTT procedure for connection establishment as
seen in Figure 1c.

3. MsQuic

MsQuic is the open source implementation of the
QUIC protocol by Microsoft [3]. Its initial release was on
the 27th of November 2019. It was developed by the data-
path and transports team at Microsoft, headed by Nicholas
Banks [6]. He is the primary QUIC architect and developer

and is responsible for the project. Later, the team was
split into a dedicated datapath team and transports team,
the latter of which now continues the development of the
library. The code for MsQuic was open sourced on the
28th of April 2020 on GitHub and is licensed under a
MIT License [3] that provides complete freedom over the
code, allowing unconfined commercial use, modification
and distribution. This, however, is without any liability or
warranty.

Commercial software exists that already uses MsQuic.
For example, it is already used as the kernel mode
msquic.sys in Windows 11 and Windows Server 2022
and is used by the Windows kernel mode http.sys for the
purpose of providing HTTP/3 capabilities [7]. The SMB
protocol offers the usage of QUIC as an alternative to
TCP, by using MsQuic under the hood [8]. The .NET Core
ecosystem uses MsQuic to provide QUIC functionality as
well [4]. The Microsoft Game Development Kit, which
provides the possibility of using QUIC as a transport
protocol to implement latency critical network code in
games, also using MsQuic as the implementation of choice
[9].

3.1. Goals

When Banks and his team started development on
MsQuic their main focus was to build a general purpose
QUIC implementation that can be used by other products
from Microsoft to leverage QUIC as a next-generation
transport protocol [4]. The two main components that
wanted to use MsQuic right from the beginning were the
HTTP kernel mode of Windows and the SMB protocol,
both of which run in the Windows kernel. This meant that
MsQuic needed to run in the kernel as well, in order to
be used by both HTTP and SMB in Windows. A mod-
ule inside of the Windows kernel has a few constraints,
primarily regarding the implementation language. Kernel
code for Windows has to be written in C or in a restricted
form of C++. The other constraint is having to implement
an asynchronous network IO model.

Although both HTTP and SMB were two main use
cases for MsQuic from the very beginning, they had dif-
ferent requirements [4]. HTTP requires a high number of
requests per second as well as low latency for connections.
SMB on the other hand benefits from high throughput on
a single connection. This meant MsQuic needed to be
optimized for both cases, handling as many requests per
second as possible while still enabling bulk transfer on
single connections. A bit later into development .NET core
team at Microsoft was interested in using their in-house
QUIC implementation to provide QUIC functionality for
the .NET ecosystem. Since .NET is a cross platform
framework, this meant that the goals for MsQuic now
also included providing cross platform support, for both
Windows and Linux as well as Xbox.

3.2. Design

On a high level, MsQuic is split into two parts [4].
The core protocol that implements all of the platform
independent protocol logic, as well as a platform spe-
cific abstraction layer that handles the interaction with
constructs tied to the OS like sockets and threads. An

Seminar IITM SS 23 2 doi: 10.2313/NET-2023-11-1_01

API

RegistrationConfiguration

Listener Connection

Stream

Figure 2: Object model of the API

asynchronous IO model is used for the data path, utilizing
asynchronous calls into lower layers to send data and
using upcalls back to the higher layer to complete these
sends. To improve performance IO operations are batched
between the Application / MsQuic layers and between the
MsQuic / UDP layers. This batching works together with
UDP send segmentation and receive coalescing [4].

The threading model of the library is comprised of
two different types of threads, data path threads and core
threads [4]. Data path threads handle UDP receive calls
and basic QUIC validation, before queuing each packet
to its associated connection object. The interaction of the
data path threads with the UDP layer is platform depen-
dent. Core threads process the queues of every connection
object, performing the majority of processing. This divi-
sion of the handlers for packet receives and the packet
processing allows for a practically lock free execution
of the code. It also makes horizontal and independent
scalability possible, where both a high amount of requests
and bulk throughput can be prioritized individually.

3.3. Prioritizing performance

One of the primary concerns when developing MsQuic
is performance [3]. As a general purpose implementa-
tion, however, performance can mean different things. For
HTTP, a high number of requests per second is crucial,
while for file sharing high throughput is important. In
order to provide performance in all scenarios, they have
worked to standardize a measure for performance and cre-
ated a process for testing the performance of their QUIC
implementation in different scenarios [10]. These mea-
sures consist of single connection upload and download
speeds, requests per second and handshakes per second.
Testing for these scenarios is done automatically for every
merge and pull request to the main branch. This provides
real time feedback of changes in performance that can
be tracked back to a certain commit. Thresholds are in
place to automatically reject any pull requests that do
not meet specified performance requirements. All of these
metrics are publicly available on the MsQuic performance
dashboard [11]. This commitment by the MsQuic team to
keep track of performance changes on every commit has
helped them a lot to achieve their goal of building a high-
performance QUIC implementation.

3.4. API overview

The library exposes an API providing different objects
encapsulating specific parts of MsQuic handling certain

functionalities [12]. An overview of these objects is shown
in Figure 2. The Registration object provides an execution
context for the child objects; typically only one Registra-
tion per application should be created. A Regestration is
associated with a Configuration object abstracting all of
the settings available to change the behavior of the library.
When building a server Listener objects are used to accept
incoming connections from clients. The more Listener
objects are created, the more simultaneous requests the
server will be able to handle. A successfully accepted
connection by a Listener will result in a new Connection
object representing the connection between the server and
a client. This Connection object can create or accept
arbitrarily many Stream objects, each one representing an
individual QUIC stream that is used for data transmission.

The API uses callbacks to indicate that an event has
happened. The functions that are registered to these call-
backs are not run in separate threads to MsQuic and as
such should keep the execution time to a minimum, to not
block execution of the library.

4. Evaluation

We compare the performance of MsQuic to other
QUIC implementations and chose the following three.
Quiche, which is the QUIC implementation from Cloud-
flare written in Rust. LSQUIC, an implementation from
LiteSpeed, which is written in C and lastly picoquic,
that has the goal of being a minimal but fully functional
implementation of the QUIC protocol and is also writ-
ten in C. We chose these three implementations because
they prioritize performance and most importantly are all
written in a systems programming language, making them
good targets for performance and speed comparisons with
MsQuic.

4.1. Setup

To conduct our measurements we used the test frame-
work by Jaeger et al. [13], which allowed us to execute
the tests on real hardware inside of a testbed. With this
framework the measurement procedure was the following.
Two seperate hosts are selected, one acting as a client and
one as a server. The server hosts a webserver, exposing
a 1073 MB large file and the client attempts to download
it. Measuring the time this data-transfer takes, we cal-
culate the average transmission speed. After the transfer
is complete we make sure that the file was transmitted
properly and did not get altered during transfer. This is
called goodput instead of throughput because instead of
measuring the raw amount of data transmitted, it takes
into account what portion of the data is actually useful.
It gets impacted negatively by retransmissions of packets
and does not count packet headers as useful data and
because of that it is a better representation of real world
usage. We conducted these measurements ten times for
each implementation, to reduce random deviations in the
measured goodput. We performed this procedure on three
different host pairs, with differing CPUs, to examine
the how the performance of the QUIC implementations
changes with different hardware. Each of the first two
hostpairs had an Intel Xeon E5-1650 v3 CPU with 6 cores
and 12 threads, running at 3.5Ghz. This is an older CPU

Seminar IITM SS 23 3 doi: 10.2313/NET-2023-11-1_01

picoquic quiche LSQUIC msquic
Implementation

0

1000

2000

3000

4000

5000

G
o
od

p
u
t

in
 M

b
it
/s

1445 1847
2568

5443

(a) Intel Xeon E5-1650 v3

picoquic quiche LSQUIC msquic
Implementation

0

1000

2000

3000

4000

5000

G
o
od

p
u
t

in
 M

b
it
/s

1957
2525

4416 4845

(b) Intel Xeon Gold 6312U

picoquic quiche LSQUIC msquic
Implementation

0

1000

2000

3000

4000

5000

G
o
od

p
u
t

in
 M

b
it
/s

1579
2441

3543 3898

(c) AMD EPYC 7543

Figure 3: Goodput of the four QUIC implementations on different CPU architectures

from around 2014, giving insight into the performance on
an aged Haswell architecture. The other two hostpairs we
tested on had fairly recent CPUs: Intel Xeon Gold 6312U
with 24 cores and 48 threads running at 2.4Ghz and the
second hostpair used AMD EPYC 7543 CPUs with 32
cores and 64 threads, running at 3.7Ghz. The connection
between each of the hostpairs was made with a 10GBase-
T Cat6a network cable with full duplex mode.

4.2. Results

Our results are visualized in Figure 3, with the black
lines at the top of the bars indicating the standard deviation
of the measured samples. Interestingly MsQuic performed
best on the older hardware, as seen in Figure 3a, achieving
a mean goodput of 5443 Mbit s−1 and significantly out-
performing all other implementations. On the newer Intel
CPU all implementations achieve a higher goodput, except
for MsQuic, which loses around 598 Mbit s−1 of mean
goodput as depicted in Figure 3b. To be noted as well
is the larger deviation of the measurements, indicating
that the speed of the connection was unstable. This is
not the case for the AMD host pair as illustrated in
Figure 3c. None of the implementations achieve as high
goodputs as measured on the new Intel CPU, but the
achieved speeds are much more stable. MsQuic achieved
the lowest goodput on this host pair, with a mean of only
3898 Mbit s−1.

From our resulst it seems like MsQuic achieves higher
goodputs on older hardware, outperforming all the other
implementations by a large margin. MsQuic still surpasses
all the other implementations on the newer hardware,
however with a much smaller margin. This behaviour
might be caused by differences of the CPU architectures,
but more measurements and research needs to be done to
reach a conclusion.

5. Related work

This paper takes a close look at MsQuic, measuring its
performance and comparing it to other QUIC implemen-
tations. A number of similar works exist that investigate
the improvements the QUIC protocol makes [14]–[16].
Carlucci et al. check if QUIC can be deployed safely and
compare QUIC to HTTP and SPDY [15]. The work of
Cook et al. discovered specific use cases and conditions
where QUIC is of high interest [14]. Yu et al. measured the
performance of QUIC in production environments, locat-
ing the largest bottlenecks of deployed QUIC applications

[16]. Seemann and Iyengar introduce the QuicInteropRun-
ner, a framework to test interoperability and performance
between different QUIC implementations [17].

Other similar works propose concrete techniques to
improve the performance of QUIC implementations [18]–
[20]. Yang et al. tackle the problem of QUIC using up
to 3.5 times the CPU cycles of optimized TCP and TLS
implementations [18]. They examined QUIC implemen-
tations to discover the computationally most intensive
parts and using their findings to define an architecture
for offloading these calculations to NICs. Tyunyayev et
al. introduce picoquic-dpdk, a modification of picoquic
that uses the DPDK library to bypass the Linux kernel
networking stack, reducing the amount of slow context
switches [19]. A different approach to circumventing large
amounts of context switching is presented by Wang et
al. [20]. They developed an implementation of QUIC
that runs in kernel-space and used it to more accurately
compare TCP and QUIC.

6. Conclusion

The last few years have been a success story for QUIC.
It provides significant improvements over the existing
TCP / TLS stack. Deployment of this new technology was
fast and user adoption was quick. All because QUIC is
built on top of UDP, making it effortless to deploy in
existing network infrastructure and because it runs in
user-space, making it not depend on operating systems
to implement it. Between the many implementations of
the QUIC protocol MsQuic stands out with its great
performance, not only in regards to raw goodput but also
the ability to handle a large number of requests per sec-
ond. The team building MsQuic at Microsoft, has shown
their dedication to building a high performance QUIC
implementation by putting great efforts into automatic per-
formance measurements and testing. Ensuring that every
change to the code base is inline with their performance
goals. On top of that MsQuic is open source under an MIT
License, has cross platform support and good documenta-
tion and is under active development backed by a major
corporation. We were able to validate their claims of high
performance. MsQuic has double the goodput of LSQUIC,
the second fastest QUIC implementation we tested. All of
these points make MsQuic a good choice for any project
that needs support for the QUIC protocol.

Seminar IITM SS 23 4 doi: 10.2313/NET-2023-11-1_01

References

[1] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey,
J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC
Transport Protocol: Design and Internet-Scale Deployment,” in
Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 183–196.
[Online]. Available: https://doi.org/10.1145/3098822.3098842

[2] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[3] Microsoft, “MsQuic,” 2023, last accessed 24 March 2023.
[Online]. Available: https://github.com/microsoft/msquic

[4] N. Banks, “MsQuic - QUIC Performance Talk,” 2021, last
accessed 26 March 2023. [Online]. Available: https://www.
youtube.com/watch?v=Icskyw17Dgw

[5] M. Bishop, “HTTP/3,” RFC 9114, Jun. 2022. [Online]. Available:
https://www.rfc-editor.org/info/rfc9114

[6] “Nicholas Banks LinkedIn,” last accessed 13 May 2023. [Online].
Available: https://www.linkedin.com/in/nicholas-banks-a3977520/

[7] Microsoft, “Platform Support of MsQuic,” last accessed 8
May 2023. [Online]. Available: https://github.com/microsoft/
msquic/blob/9f74f69d0c16fadb62a332246daabac704bc7db0/docs/
Platforms.md

[8] ——, “SMB over QUIC,” last accessed 8 May 2023. [On-
line]. Available: https://learn.microsoft.com/en-us/windows-server/
storage/file-server/smb-over-quic

[9] ——, “MsQuic for Microsoft Game Development
Kit,” last accessed 8 May 2023. [Online]. Avail-
able: https://learn.microsoft.com/en-us/gaming/gdk/_content/gc/
networking/overviews/game-mesh/msquic-intro-networking

[10] N. Banks, “QUIC Performance,” 2021, last accessed 26
March 2023. [Online]. Available: https://datatracker.ietf.org/doc/
draft-banks-quic-performance

[11] ——, “MsQuic Performance Dashboard,” last accessed 26 March
2023. [Online]. Available: https://microsoft.github.io/msquic/

[12] Microsoft, “MsQuic API,” 2023, last accessed 24 March
2023. [Online]. Available: https://github.com/microsoft/msquic/
blob/main/docs/API.md

[13] B. Jaeger, J. Zirngibl, M. Kempf, K. Ploch, and G. Carle, “QUIC on
the highway: Evaluating performance on High-Rate links,” in Inter-
national Federation for Information Processing (IFIP) Networking
2023 Conference (IFIP Networking 2023), Barcelona, Spain, Jun.
2023.

[14] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “Quic: Better
for what and for whom?” in 2017 IEEE International Conference
on Communications (ICC), 2017, pp. 1–6.

[15] G. Carlucci, L. De Cicco, and S. Mascolo, “HTTP over UDP: An
Experimental Investigation of QUIC,” in Proceedings of the 30th
Annual ACM Symposium on Applied Computing, ser. SAC ’15.
New York, NY, USA: Association for Computing Machinery,
2015, p. 609–614. [Online]. Available: https://doi.org/10.1145/
2695664.2695706

[16] A. Yu and T. A. Benson, “Dissecting Performance of Production
QUIC,” in Proceedings of the Web Conference 2021, ser.
WWW ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 1157–1168. [Online]. Available: https:
//doi.org/10.1145/3442381.3450103

[17] M. Seemann and J. Iyengar, “Automating QUIC Interoperability
Testing,” in Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC, ser. EPIQ ’20. New
York, NY, USA: Association for Computing Machinery, 2020,
p. 8–13. [Online]. Available: https://doi.org/10.1145/3405796.
3405826

[18] X. Yang, L. Eggert, J. Ott, S. Uhlig, Z. Sun, and G. Antichi,
“Making QUIC Quicker With NIC Offload,” in Proceedings of
the Workshop on the Evolution, Performance, and Interoperability
of QUIC, ser. EPIQ ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 21–27. [Online]. Available:
https://doi.org/10.1145/3405796.3405827

[19] N. Tyunyayev, M. Piraux, O. Bonaventure, and T. Barbette, “A
High-Speed QUIC Implementation,” in Proceedings of the 3rd
International CoNEXT Student Workshop, ser. CoNEXT-SW ’22.
New York, NY, USA: Association for Computing Machinery,
2022, p. 20–22. [Online]. Available: https://doi.org/10.1145/
3565477.3569154

[20] P. Wang, C. Bianco, J. Riihijärvi, and M. Petrova, “Implementation
and Performance Evaluation of the QUIC Protocol in Linux
Kernel,” in Proceedings of the 21st ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, ser. MSWIM ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 227–234. [Online]. Available:
https://doi.org/10.1145/3242102.3242106

Seminar IITM SS 23 5 doi: 10.2313/NET-2023-11-1_01

Seminar IITM SS 23 6

A Scheme Towards Reproducibility

Felix Christ, Henning Stubbe∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: felix.christ@tum.de, stubbe@net.in.tum.de

Abstract—The result of compiling software depends on a
myriad of factors. Describing the dependencies and the build
environment in their entirety is difficult, but necessary to
reach an output that is always the same for every compila-
tion.

With the functional package manager Guix, software
packages are described in the functional programming lan-
guage Guile Scheme, which makes identifying dependencies
simple. Guix also provides ways to describe the build envi-
ronment such that it can easily reproduced. These factors
combine to allow wholly reproducible builds.

We packaged a piece of moderately complex software for
Guix, and have found that this is a suitable way to achieve
a reproducible build.

Index Terms—reproducibility, guix, functional package man-
agement

1. Introduction

It is a difficult task to build and run software repro-
ducibly, or even reliably. This is because both compilation
and execution depend on many inputs. These inputs, com-
monly called “dependencies”, are required during build
time (such as compilers and build systems) and during
runtime (such as interpreters or shared libraries).

To add complexity, software also usually depends on
exact versions of their dependencies. As an example, a
program written to run with version 2.7 of the python
interpreter may not work with version 2.6, if the program
uses new features from 2.7. It may also not work with
version 3.0, since python syntax between the versions is
generally not compatible. Here, it is therefore not enough
to state “python” as a dependency, but also the exact
version.

The problem is made more difficult still because de-
pendencies also have dependencies. To guarantee that a
piece of software is built and run deterministically, it is
necessary to have a system that defines software in such a
way that it is possible to determine all recursive dependen-
cies. Such a system would ideally also have a simple way
of describing the entire environment, i.e. operating system,
with all its software and specific versions, in which the
build was performed.

Guix is a package manager and operating system that
provides these features. In this paper, we set out to de-
scribe package management with Guix and how it can help
make build processes reproducible in Section 2. We then
package a concrete piece of moderately complex software
with Guix in Section 3. In Section 4, we are then able

to evaluate this packaging process in terms of complexity,
and determine whether Guix is suitable for reproducibly
building software. Section 5 briefly lists previous uses of
Guix in academia, and a conclusion is reached in Section
6.

2. Guix

Guix is a package manager introduced in 2013 [1]. As
of the time of writing, it includes 21436 packages of free
software. It sets itself apart from other package managers
such as pacman or RPM as a functional package manager.
This difference lies in how packages are defined.

2.1. Functional Package Management

Packages, i.e. the building and installation process, are
represented as pure functions, in the sense of functional
programming. A pure function is a function with the
following properties:

1) The function will always evaluate to the same
value given the same input (i.e. it is determinis-
tic).

2) It is free of side effects.

In the context of building software, the first property
means the build processes do not depend on the state and
available dependencies in the operating system,

The inputs (source code, all dependencies) for building
software can be considered to be the function’s param-
eters. The finished build is considered to be the result
of evaluating the function. In Guix, this is achieved by
creating a container for each build that is separated from
the host OS.

2.2. Building packages

A build daemon builds packages in a chroot environ-
ment. It is used because it provides a lightweight way to
control which programs a process uses and has access
to by changing the apparent root directory [2]. Inside
this container, only the dependencies explicitly listed in
the package definition are visible. This ensures that the
evaluation stays pure, and does not depend on the state of
the host system. It is the build daemons task to configure
an environment that includes not only libraries and headers
needed for compilation but also explicitly defined build
systems and compilers.

Now it is clear how Guix differs from other, imperative
package managers. Instead of packages modifying the

Seminar IITM SS 23 7 doi: 10.2313/NET-2023-11-1_02

state of the system unpredictably, as with privileged shell
scripts, and depending on the packages installed in the
system, installing and updating packages is instead trans-
actional. This means that these processes can be recreated
and rolled back easily. Also, because building is mediated
through the daemon, and installation only requires linking
to the built binaries, all actions are generally unprivileged.
This is not the case for imperative managers, which need
to move binaries into protected locations, such as /bin.

Instead of these traditional locations, all package build
results are stored in a central location, the store. Each
directory contained is prefixed by a cryptographic hash
over the “function inputs”. The store acts as a “cache
of function results” [1] so that repeated evaluations of
a package can be substituted by its result.

When a user wishes to install a package, they may do
so by issuing an unprivileged call to the build daemon,
which produces the packages inputs and dependencies,
and evaluates the package function. It then stores the
resulting binaries, libraries, and header files in the store.
Links to these results are then added to the user’s profile,
a directory containing user-specific versions of the direc-
tories usually found in the root directory, such as bin,
etc, or include.

2.3. Guile Scheme

Guix defines packages in the functional programming
language Guile Scheme. While Guix’s predecessor Nix
shares the same mechanism for building and managing
packages, Scheme is what separates them. Nix featured
a different, less intuitive domain-specific language, called
the “Nix expression language” [3]. The developers of Guix
intended Scheme to offer simplicity so that developers
could “help grow and maintain a large software distribu-
tion” [1].

These Schemes explicitly state the inputs required to
build and run the software. Things that are considered
inputs in that sense include other packages providing
dependencies, arguments for the build system, as well as
source code (from git or tarballs) [4].

Because other packages are also inputs, and they too
are defined as Schemes, Guix can easily traverse and
describe all dependencies of a defined package. This is
particularly useful when the build daemon needs to deter-
mine which packages need to be available in the chroot
environment during build time. It constructs all inputs,
and their inputs recursively. It can then determine which
of these inputs are already present in the store, and build
all those that are not.

2.4. Channels

Collections of Guix packages are organized into git
repositories called channels [5]. These channels contain
collections of Scheme (.scm) files with package defini-
tions. Additionally, they may also define the URL of a
CI server to download pre-built packages from, patches
needed for certain packages to be built, channel depen-
dencies (other channels that are required for this one),
and keys of the channel authors to authenticate commits.

While Guix includes a default channel by default,
users may add additional channels. Contributors may also

choose to define and publish their own channel by simply
making a git repository available online.

Channels also make it possible to easily describe
the state of a system with its available packages. At a
particular point in time, all information that is needed to
recreate a system is the URLs of its channels, as well as
the commit that represents the channels’ current state.

3. Packaging LLVM-LC3

The goal of this section is to describe the process and
assess the complexity of packaging software for Guix. We
set out to build the code generator of the LLVM toolchain
with the ability to generate code for the “Little Computer
3” (LC3) educational assembly language.

The LLVM toolchain is comprised of a frontend and a
backend. The frontend translates code from a high-level
language to an intermediate representation (IR). There
exist frontends for languages such as C/C++ (with clang
as frontend), Haskell (kaleidoscope), or Go (llgo). This
IR may then be translated into the target instruction set
by the backend. Our goal is to compile this backend, and
include support for LC3 as a target instruction set.

3.1. Understanding the Build Process

The source code for the LLVM backend is hosted on
GitHub as part of the LLVM Project. For it to support
a target instruction set, a developer needs to define the
procedures on how to translate the IR into that spe-
cific machine language. Several such implementations that
are already included with the backend can be found in
the directory llvm/lib/Target, such as x86, ARM, or
RISCV, with each being represented by a directory with
the target’s name.

The implementation of the LC3 machine, hereafter re-
ferred to as lc3-target, is not included, but is fortunately
made available by a user on GitHub. Unfortunately, little
information on how to include his implementation into
the LLVM backend is provided. The trivial approach of
adding the implementation into Target/LC3 is unsuccess-
ful. Two important pieces of information are missing:

1) Where does the backend’s code need modifica-
tions for the lc3-target to be supported?

2) What version of the backend is this lc3-target
intended for?

We now proceed to identify the steps to build the
backend and answer these questions through examining
clues and repeatedly invoking the build process after
slight modifications. Answering these questions together
proves difficult. When a compilation error occurs, it is
not immediately clear whether it stems from an incorrect
backend version, or from some necessary modification that
has not yet taken place.

3.1.1. Modifications in the Backend. The backend’s
source code needs to be modified in three places. In two
places, this is related to adding some members to enums
that are used by the lc3-target. A modification must also
be made in the CMakeLists.txt in the Target directory,
for the build system to pick up the directory in which
lc3-target resides.

Seminar IITM SS 23 8 doi: 10.2313/NET-2023-11-1_02

3.1.2. Identifying the Version. We identify the version
of LLVM that lc3-target was developed for by nar-
rowing down the window of possible versions. Since the
last commit in LC3’s history is from July 24, 2016, all
versions greater than 3.8 are discarded. From there, we
work backward to find the correct version. Version 3.8 is
discarded because lc3-target uses a function that was
removed in that version. The next lower, version 3.7, is
found to be the correct one.

3.1.3. Finding the Compiler. Even after the correct ver-
sion is found, compilation still yielded an error within
lc3-target. An implicit conversion from a unique_ptr
to bool is impossible. Using version 5 of the gcc compiler
instead of the latest version fixes this error, which is a
known bug with old versions of llvm1.

3.1.4. Informal Process. After successfully building and
verifying the functionality of the backend, we identify the
following informal steps.

1) Fetch the source code of the LLVM Project (re-
lease 3.7)

2) Fetch the source code for lc3-target implemen-
tation into LLVM’s Target directory

3) Register the lc3-target within the backend’s
source code.

4) create a build directory
5) call cmake with certain variables to generate build

files
6) build llvm

We also identify that python 2.7 is required to gen-
erate the build files. This informal process now must be
formalized into a Scheme, defining it as a package.

3.2. Defining a Scheme

Guix features a high-level Scheme data type for rep-
resenting a package. Documentation for it and the rest
of this section can be found in the Guix cookbook [5].
This data type has some self-explanatory fields that are
just strings, such as the name, version, or description.

3.2.1. Fetching source code. Origins of source code,
such as remote git repositories, tar-balls, or local files,
are represented as the origin data type. A package has
only one source field, which can be considered to be the
primary origin of the package. In our case, however, two
origins of source code are needed. Fortunately, additional
origins can be added to a package in the inputs field,
which contains a list of dependencies of the package.

3.2.2. Modifying source code. origin objects also in-
clude a patches field, which contains a list of patch files
to be applied to the code. This is useful in our case, as
it allows us to modify the code from the official llvm
repository to register lc3-target.

1. https://github.com/digego/extempore/issues/318

3.2.3. Build systems. Guix offers many standard build
systems as pre-defined build-system objects. They repre-
sent common ways to build software. The build-system
field of the package contains the system to be used for the
package. Depending on its value, a different sequence of
commands will be executed inside the build environment.
In our case, we use the cmake-build-system.

Sometimes modifications must be made to that ide-
alized build process. For this purpose, it is divided into
build phases, which may be edited in the Scheme. This
is necessary in our case as well. In particular, the source
code of lc3-target needs to be moved to the Target
directory. This can be done by modifying the configure
phase of the build system. In this phase, all the origins
have already been fetched into the build environment.
Before the phase is executed, we insert a hook that copies
the lc3-target code to the correct location.

3.3. Adding to a Channel

Adding a package to a channel only involves adding
the Scheme file to the git repository. It is also necessary
to adjust the module definition at the top of the file to
reference the channel.

If, like in our case, the build process involves
patches from .patch files, they must also be added to
the repository. Patches are found during building using
search-pathes from the channels root, so the path of the
patch files referenced in the Scheme must also be adjusted
to be relative from there.

Finally, for Guix to recognize this channel, it is added
to the user’s channels, and guix pull needs to be ex-
ecuted to make packages from the channel available to
build.

4. Evaluation

After the process of making a software available as a
package in Guix, we are now able to discuss whether this
has brought us closer to the goal of reproducibility.

4.1. Reproducibility

When trying to get the compilation to finish suc-
cessfully during the first, exploratory stage (3.1.3), we
encounter a roadblock that has an implication for whether
the package builds deterministically. With the most recent
version of gcc available in Guix at the time of writing,
version 10.3.0, compilation fails due to an implicit cast.
With an earlier version such as 5.5.0, the compilation
succeeds.

In the Scheme defining the package, it is not required
to specify the version that should be used. The follow-
ing line implicitly includes the most recent version of
the commencement package, which puts the most recent
version of the gcc toolchain into the build environment.

#:use-module (gnu packages commencement)

It is therefore possible to define a package in a Scheme
for Guix, that builds and installs correctly when the most
recent version of gcc accepts the implicit cast. However,
when a newer version of gcc treats this as an error, the
build fails.

Seminar IITM SS 23 9 doi: 10.2313/NET-2023-11-1_02

Figure 1: The same built package is reproduced from just
the channel state and the package Scheme.

It is clear from this example that simply defining a
package in a Scheme is not enough to make it repro-
ducible. To actually compile with reproducibly, the pack-
ager’s current Guix environment needs to be described.
This includes the versions of all input packages.

For reproducing sofware, the environment must be
recreated, and the package built within it. Thankfully,
Guix includes a utility to do just this, called guix
time-machine [4]. A conceptual overview of its use for
this purpose is illustrated in figure 1.

To summarize, reaching the same build result each
time is the result of two of Guix’s features. First, with
help of the Scheme package format, guix build is able
to determine all transitive inputs of the software, down
to the operating system. Second, the state of the Guix
environment, including the packages at the version the
software was built at, can be recreated with the guix
time-machine. The time machine only requires the de-
scription of Guix’s channels at that time for this, i.e. a git
commit (6b29c9 in this example), since channels are git
repositories.

4.2. Complexity

It is a goal of the Scheme format for packages to
be “purely declarative in common cases”, so as to be
“directly usable by packagers with little or no experience
with Scheme.” [1]. For such common cases, a Scheme
can intuitively be constructed with help from the examples
in the Guix cookbook. However, for non-obvious cases,
such as ours, where a git repository needs to be fetched
and copied to a specific location, the documentation does
not provide an easy recipe. In cases such as these, it is
very useful to browse the default channel’s other package
definitions. It is likely that the special case has been dealt
with by another packager in the past. Guix’s package still
appear less complex than Nix’s though, as can be seen

by comparing the definitons for the same packages, like
llvm.

To aid with debugging during the definition of
the Scheme, the command guix build with the
--keep-failed switch is useful. It allows building a
package without a channel and also keeps the build envi-
ronment to examine, which helps determine the cause of
failures.

The most challenging part of our example is to deter-
mine the informal building steps and dependencies before
they are translated into a Scheme. Because the developer
of lc3-target has not provided any information on the
llvm version or modifications to llvm’s source code, a
process of trial-and-error is necessary.

5. Related work

Guix has been used previously in scientific work. In
their paper from 2015, Courtés and Wurmus explore the
use of Guix in high-performance computing [6]. They
show that its structure, with unprivileged users being
able to build packages through calls to the user daemon,
benefits environments where many users share a cluster.
It is also useful because Guix packages do not depend
on parts of the host system, making moving them to new
clusters a less involved process. With Guix, it is also more
straightforward for them to define variants of software
for different use cases. In a specific example, they define
different variants for a package for developers and users.

There is also use for Guix in bioinformatics. In 2018,
Wurmus et al. introduce PiGx, a tool for developing
pipelines that transform raw experimental data into reports
[7]. PiGx is packaged using Guix, which makes it not
only reproducible but also transparent. The specific de-
pendencies and packages used can be easily described and
analyzed, which would more complex if a virtual machine
is used to recreate the software environment.

Recently, in 2022, work has also been done by Batten
et al. as part of the CARRV workshop to use Guix for
packaging RISC-V software, as well as hardware simu-
lators like gem5 [8]. RISC-V software is mostly cross-
compiled as of yet, posing the problem that toolchains
for it need to be defined. This again has many complex
inputs, making packaging with Guix suitable.

6. Conclusion

In this paper, we have discussed the internals and
mechanisms of the Guix package manager, and what
makes its approach useful for reproducibility in contrast
to other package managers. Furthermore, we have shown
in a concrete example the process of packaging software,
and described in detail the process of learning the de-
pendencies of largely undocumented software. We aim to
make this package available in the channel guix-past,
which is managed by France’s National Institute for Re-
search in Digital Science and Technology (INRIA). Fur-
thermore, we have provided a recipe for using the guix
time-machine to recreate the package environment to
build a piece of software with the same inputs each time,
making it reproducible.

Seminar IITM SS 23 10 doi: 10.2313/NET-2023-11-1_02

References

[1] L. Courtès, “Functional Package Management with Guix,”
CoRR, vol. abs/1305.4584, 2013. [Online]. Available: http:
//arxiv.org/abs/1305.4584

[2] chroot(2) - Linux man page, Free Software Foundation. [Online].
Available: https://linux.die.net/man/2/chroot

[3] E. Dolstra and A. Löh, “NixOS: A Purely Functional Linux
Distribution,” in Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP
’08. New York, NY, USA: Association for Computing Machinery,
2008, p. 367–378. [Online]. Available: https://doi.org/10.1145/
1411204.1411255

[4] K. Hinsen, “Reproducible computations with Guix,”
2020. [Online]. Available: https://guix.gnu.org/en/blog/2020/
reproducible-computations-with-guix/

[5] R. Wurmus, E. Flashner, P. Neidhardt, O. Pykhalov, M. Brooks,
M. Karpezo, B. Waegeneire, A. Batista, C. Lemmer-Webber,
J. Branson, M. Couroyer, and L. Courté, “GNU Guix Cookbook,”
2019. [Online]. Available: https://guix.gnu.org/en/cookbook/en/

[6] L. Courtès and R. Wurmus, “Reproducible and User-Controlled
Software Environments in HPC with Guix,” in 2nd International
Workshop on Reproducibility in Parallel Computing (RepPar),
Vienne, Austria, Aug. 2015. [Online]. Available: https://hal.inria.fr/
hal-01161771

[7] R. Wurmus, B. Uyar, B. Osberg, V. Franke, A. Gosdschan,
K. Wreczycka, J. Ronen, and A. Akalin, “PiGx: reproducible
genomics analysis pipelines with GNU Guix,” GigaScience,
vol. 7, no. 12, 10 2018, giy123. [Online]. Available: https:
//doi.org/10.1093/gigascience/giy123

[8] C. Batten, P. Prins, E. Flashner, A. Isaac, J. Nieuwenhuizen,
E. Zarraga, T. Ta, A. Rovinski, and E. Garrison, “The Case for Using
Guix to Enable Reproducible RISC-V Software & Hardware,” 2022.

Seminar IITM SS 23 11 doi: 10.2313/NET-2023-11-1_02

Seminar IITM SS 23 12

LXC Container Between cgroups v1 and v2: a Performance Evaluation

Alexander Daichendt, Florian Wiedner∗, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: daichend@net.in.tum.de, wiedner@net.in.tum.de, andre@net.in.tum.de

Abstract—The cgroups feature of the Linux kernel is widely
used by lightweight virtualization technologies such as
Docker or LXC to provide resource isolation. Recently,
cgroups underwent a significant revamp from version 1 (v1)
to version 2 (v2). Researching the performance difference
between these two versions in terms of network latencies
enables the usage of containers in time-critical applications.
Previous work ignored cgroups as a potential source of
latency in packet-processing systems. In this paper, we
measure the performance difference between cgroups v1
and v2 in isolation using commodity hard- and software.
Our experiments show that the two versions achieve the
same degree of isolation, but the tail latencies of v1 are
higher, which can be explained by a more efficient, 2.4 %
less instruction-consuming implementation of v2. Therefore,
we recommend the use of v2 for low-latency lightweight
virtualization network deployments wherever possible.

Index Terms—low latency, container, lxc, virtualization,
dpdk, cgroups, packet processing

1. Introduction

From inter-vehicle communication in self-driving cars
to the coordination of assembly lines, critical applications
require technology to operate at peak performance. In
such scenarios, even the slightest delay can result in catas-
trophic consequences. That is why network latencies are a
crucial factor in enabling the interaction and coordination
of sensitive applications. To achieve the lowest and most
stable network latencies, it is crucial to invest in high-
quality networking equipment and thoroughly review the
entire software stack.

A common way of handling increasing complexity is
to compartmentalize different software components into
smaller pieces and run them in isolated environments.
This can be achieved through virtualization, using either
heavyweight virtual machines or lightweight containers. A
deeper understanding of the inner workings of the chosen
virtualization technique is necessary to optimize for low-
latency networking. Two essential features for enabling
such optimizations are namespaces and control groups
(cgroups).

Namespaces allow processes to have isolated and in-
dependent views of the system resources, such as the net-
work, filesystem, or process IDs. cgroups provide a way
to limit, allocate, and prioritize system resources among
processes or groups of processes. Initially, cgroups were
released in 2007 in kernel 2.6.24 [1] as version 1 (v1).

They were completely revamped [2] with a second version
(v2) released in kernel 4.5. Since cgroups v1 and v2
differ in their implemented features, this paper highlights
the differences between them. Furthermore, we show the
impact of the cgroup version on network latencies with
experimental measurements.

The paper is structured as follows: Section 2 presents
related work. In Section 3, we provide background infor-
mation on cgroups and Linux containers (LXC). Section 4
details the specific optimizations we apply to increase
isolation. Section 5 discusses the experimental setup and
measurements. Finally, we summarize our findings in
Section 6 and propose future work.

2. Related Work

In our previous work [3], we expanded the capabilities
of HVNet by Wiedner et al. [4], a framework for or-
chestrating low-latency experiments on a single host with
KVM, by incorporating LXC containers, initially devel-
oped by Wiedner et al. HVNet automates the setup of all
involved hosts, configures them for low-latency network-
ing, and synchronizes the measurement scripts. Virtual
networking topologies can be defined in text files. Our
measurements [3] of network latencies for LXC containers
with cgroups v2 demonstrated comparable performance
to VMs but with occasional spikes in tail latencies. To
address this issue, we found that using a real-time kernel
is effective. Our prior implementation and research serve
as the foundation for this paper, where we introduce a
new feature in HVNet to switch between cgroups v1 and
v2 and compare the cgroup versions to evaluate their
performance.

Abeni et al. [5] propose a real-time scheduler for the
Linux kernel that is aware of cgroups, making it compati-
ble with Docker and LXC. They demonstrate experimen-
tally that their scheduler delivers lower average response
times for a task set than KVM but with similar worst-case
latencies. Notably, their scheduler is capable of migrating
processes to another core that has processing time left;
a feature unavailable in KVM-based systems since the
hypervisor has no access to the scheduling of a VM guest.
However, it provides lower network latencies for cgroup-
based virtualization. Although their work shows promise,
it may not be directly applicable to our setup. In our setup,
a single core processes all packets of a network interface
card (NIC) in userspace with the Data Plane Development
Kit (DPDK). Process migration between different cores is
not anticipated.

Seminar IITM SS 23 13 doi: 10.2313/NET-2023-11-1_03

Listing 1: cgroups v1 hierarchy [6]
/sys/fs/cgroup

cpuset
cgroup0

cpuset.cpus
cpuset.mems

cgroup1
cpuset.cpus

memory
cgroup0

memory.limit_in_bytes

Listing 2: cgroups v2 hierarchy [2]
/sys/fs/cgroup

cgroup0
cpuset.cpus
cpuset.mems
memory.max

cgroup1
cpuset.cpus

3. Background

Section 3.1 presents a short introduction to cgroups,
highlighting their key features and differences between v1
and v2. Section 3.2 introduces the concept of containers
and Linux Containers (LXC), the container implementa-
tion we rely upon.

3.1. cgroups

cgroup is a Linux kernel feature that assigns resources
such as CPU time, memory, and I/O between processes.
Resources can be limited, prioritized, and isolated, en-
abling administrators fine-grained control over the system.
There are scenarios where it is desirable to guarantee that
one critical process has access to resources. For example,
a background cronjob should not compete for resources
with a web server and potentially negatively affect the
latency of a request. With cgroups, the administrator can
prevent resource contention by guaranteeing resources to
the webserver and limiting non-critical processes.

Both cgroup versions are mounted in the same lo-
cation, /sys/fs/cgroup, but differ in their hierarchical
structure. Listing 1 shows the hierarchy for v1, where each
controller is represented by a separate mount point, and
a cgroup must be created for each controller individually.
In contrast, Listing 2 depicts the same hierarchy for v2.
A unified, hierarchical structure represented by a single
mount point of type cgroup2 holds all controllers and
groups. Each group can hold any number of enabled
controllers.

In v2, it is no longer possible to assign a process
to an internal node of the tree hierarchy as claimed
by Down [7]. These properties can be verified on any
modern Linux-based system by inspecting the output of
systemctl status. The "no inner process" node clears
up the hierarchy and makes it easier to understand.

Figure 1: Architecture of VMs and containers [3]

In addition, several inconsistencies have been ad-
dressed in cgroups v2, leading to a higher de-
gree of standardization. For instance, the renaming of
memory.limit_in_bytes to memory.max is evident in
Listing 1 and 2. These standardizations have been ap-
plied to all thresholds, resulting in a more uniform and
consistent naming scheme.

Important for our network latency performance anal-
ysis is the scheduler load-balancing option. Scheduler
load balancing is a feature where a process may be
migrated to a different core to balance the load equally
in a multicore system [8]. In latency-critical applications,
a single context switch can cause a spike in latency.
In v1, this behavior can be disabled by modifying the
file cpuset.sched_load_balance. However, in v2, this
option was initially removed. Only recent kernels (≥ 6.1)
support this option which was introduced by Waiman [9].
This paper disables scheduler load balancing for v1 and
compares it to cgroups v2 with load balancing. Testing
this option for cgroups v2 is out of scope for this paper
due to missing infrastructure for testing the latest kernels.

Finally, another change is that in v1, each thread of a
process could be assigned to a different cgroup [7]. This
behavior is considered confusing and unnecessary and is
no longer present in v2.

3.2. LXC Containers

Containers are a lightweight alternative for virtualiza-
tion. They are considered to be operating system level
because they share the host kernel and operate on the same
level as any other process in userspace. Figure 1 highlights
this architectural difference between VMs and containers.
A container does not virtualize its own kernel, while a VM
does. Furthermore, no hypervisor is required. Sharing the
kernel with the host and other containers has implications
for isolation. However, modern kernels offer features that
help to build isolated systems. The most important features
are cgroups and namespaces.

LXC is a low-level container runtime being in ac-
tive development since 2008. It provides a minimalistic
feature set to remain lightweight with minimal overhead.
Userspace tools for managing LXC containers are avail-
able. A C or Python API is available for controlling LXC
for more advanced use cases. One downside of LXC is that
convenience features such as layered images or orchestra-
tion are missing entirely. LXC images are typically larger
than Docker images since they snapshot the entire root

Seminar IITM SS 23 14 doi: 10.2313/NET-2023-11-1_03

filesystem of an OS installation - including the installed
libraries.

We use LXC 4.0, the userspace tools, and the Python
API for our implementation. To evaluate the performance
difference of cgroups v1 and v2, we extend an existing
framework for low-latency measurements: HVNet [4].

4. Implementation

Our original plan was to implement cgroups v1 and
v2 on Debian Buster to enable a more seamless com-
parison with previous work by Wiedner et al. [4] and
Gallenmüller et al. [10], [11]. However, Debian Buster
runs on kernel 4.19, which does not yet include the
cpuset controller [12]. Without the cpuset controller, the
container is unisolatable from the rest of the system,
making a performance comparison between cgroups v1
and v2 meaningless. Therefore, we focus our efforts on
Debian Bullseye, which supports the legacy cgroups v1
and a more mature implementation of cgroups v2.

To switch between the two cgroups versions,
a startup flag --lxc-enable-cgroup-v1 is imple-
mented in HVNet [4]. By setting this flag, the
container host is booted with the kernel parameter
systemd.unified_cgroup_hierarchy=0. This parame-
ter disables the unified cgroups v2 hierarchy and enables
the legacy cgroups v1.

The process isolation methodology differs between
cgroups v1 and v2, but both achieve the same goal.
For v2, we utilized two methods: first, the feature
cpuset.cpus.partition, which removes CPU cores of
a child from the parent cgroup. Second, we use systemd
to restrict all processes to CPU cores unused by the con-
tainer through the command systemctl set-property
user.slice AllowedCPUs=0-23;27-31. In contrast, nei-
ther of these features are available with v1. Instead, we
followed the instructions suggested by Weisbecker [13].
First, we create a new housekeeping cgroup and restrict its
access to CPU cores, ensuring no cores are shared between
housekeeping and the container. Next, we move all pro-
cesses, including kernel threads unrelated to the container
into this cgroup using the Python tool cset [14]. It is
worth noting that the init process with PID must remain in
the root cgroup; otherwise, it would be impossible to start
a container. By applying these optimization techniques, we
have ensured that the processing cores are fully isolated.

5. Evaluation

In the first Section 5.1, we introduce the experiment
setup in detail. Subsequently, in Section 5.2 we present
the findings from our measurements and provide a com-
prehensive analysis and discussion of the results.

5.1. Experiment Setup

Our experimental setup follows both HVNet [4] and
our previous work [3]. Figure 2 provides an overview of
the configuration for the three hosts involved in the exper-
iment: the Device under Test (DuT), the Timestamper, and
the load generator (LoadGen). To generate packets on the
LoadGen, we utilize MoonGen by Emmerich et al. [15], a

LoadGen DuT

Timestamper

▶

◀

▶

◀

▲ ▲

Figure 2: Experiment setup [3]

flexible high-performance packet generator written in Lua.
The Timestamper is connected to the ingress and egress
lines via passive optical terminal access points (taps),
which add a negligible, constant delay. The DuT runs a
single LXC container with direct access to the ingress and
egress interfaces and runs a minimal DPDK L2 forwarding
application.

The LoadGen features an Intel Xeon Silver 4116, 192
GB RAM, and a dual-port Intel 82599ES 10-Gigabit SFP+
NIC connected to the DuT with optical fibers. The DuT is
equipped with an AMD EPYC 7551P, 128 GB RAM, and
a dual-port Intel X710 10Gbe SFP+ NIC. The Timestam-
per is outfitted with an AMD EPYC 7542, 512 GB RAM,
and a dual-port Intel E810-XXVDA4 25-Gigabit flashed
to 10-Gigabit NIC, providing 1.25 ns precision.

To automate and make the measurements reproducible,
we use the plain orchestration service (pos) by Gallen-
müller et al. [16]. This service enables us to control
boot parameters, power status, and images of bare-metal
hosts and VMs hosted by libvirt, utilizing IPMI. In our
previous work [3], we developed virtualLXCBMC [17]
to integrate LXC with pos, which enables us to control
LXC containers with IPMI. However, since a container
does not have its own kernel, it is impossible to set boot
parameters.

Each packet carries a unique identifier to precisely
evaluate its network latency. The packets are timestamped
by their respective NICs. The Timestamper matches a
packet on the ingress and egress and measures the du-
ration. This methodology enables us to measure the pro-
cessing latency without introducing latency by the mea-
surement process itself. Subsequently, the Timestamper
generates pcap files which scripts process further.

In our measurements, we utilize minimal-sized packets
of 64 B as the processing cost of a single packet remains
constant, irrespective of its size [15]. Therefore, the num-
ber of packets, not their size, is the predominant factor
contributing to processing delays. We measure with a
packet rate of 1.52 Mpkt/s corresponding to 825 Mbit s−1,
and 6.24 Mpkt/s corresponding to 3.39 Gbit s−1, like in our
previous work [3]. On the DuT we use Debian Bullseye
with a real-time kernel 5.10.

5.2. Results

To measure the tail latencies of cgroups v1 and v2, we
use the setup of Section 5.1, the optimizations described in
Section 4 and [4]. Each experiment is repeated three times;
the worst case is reported in this paper. We have made
instructions for reproduction and additional measurement
data available for inspection1.

Seminar IITM SS 23 15 doi: 10.2313/NET-2023-11-1_03

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

Percentiles [%] (log)

L
at
en

cy
[µ
s]

(l
og

)

cgroups v1
cgroups v2

Figure 3: HDR histogram of cgroups v1 and v2 with
1.52 Mpkt/s on Debian Bullseye with real-time kernel.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

Percentiles [%] (log)

L
at
en

cy
[µ
s]

(l
og

)

cgroups v1
cgroups v2

Figure 4: HDR histogram of cgroups v1 and v2 with
6.24 Mpkt/s on Debian Bullseye with real-time kernel.

The latency differences between cgroups v1 and v2
on Debian Bullseye with a real-time kernel, with a packet
rate of 1.52 Mpkt/s, are shown in Figure 3. Both versions
exhibit a nearly identical latency trend, with a slight dif-
ference emerging between the 99th and 99.9th percentiles.
Specifically, the latency with v1 at the 99.9th percentile is
slightly higher than with v2. However, towards the 99.99th
percentile, the network latencies of both versions match
again.

Figure 4 presents the result of the same experiment
with a higher packet rate of 6.24 Mpkt/s. The same trend
as in Figure 3 is visible, albeit the spike in tail latency
occurs slightly earlier. This behavior is expected, as the
packet rate is four times higher than before. Likewise, v1
exhibits higher worst-case network latencies.

The 5000 worst-case latencies, as shown in Figure 5,
are similarly distributed for cgroups v1 and v2, as the
HDR histograms already suggested. There are slightly
more outliers for v1, indicating that more packets are
affected by higher processing delays than for v2. Our re-
maining measurement data suggests that extreme outliers,
like those seen for v2 at the 34th second of measurement
time, are more prevalent for v2.

0 10 20 30 40
0

50

100

Measurement time [s]

L
a
te
n
cy

[µ
s]

cgroups v1
cgroups v2

Figure 5: 5000 worst-case latencies of cgroups v1 and v2
with 1.52 Mpkt/s on Debian Bullseye with real-time kernel

TABLE 1: Performance analysis with perf stat -B be-
tween cgroups v1 and v2.

cgroups instructions branches migrations

v1 674 × 109 98 × 109 297
v2 659 × 109 96 × 109 148

We verify the claim that cgroups v2 has a more
efficient implementation by measuring the number of in-
structions executed with the Linux performance analysis
tool perf [18]. The measurement includes the container
startup, 60 s packet forwarding at 1.52 Mpkt/s, and the
shutdown. The experiment is repeated three times, taking
the average value. The resulting data is presented in
Table 1 and in the reproduction collection1. We observe
that for cgroups v1, the number of instructions executed
is about 2.4 % higher, and about 2.2 % more conditional
branches are executed compared to v2. The difference in
process migrations of 148 in v2 and 297 in v1 is note-
worthy. Given that we disabled scheduler load balancing,
this finding is unexpected.

While these differences seem small, it is crucial to
note that our recorded difference in latencies only occurs
at the 99.9th percentile, which concerns only a fraction
of all packets.

6. Conclusion and Future Work

The Linux kernel is a constantly evolving system, with
bug fixing and continuing feature expansion. However,
with these rapid changes, there is no extensive research
available to evaluate the changes. To ensure the reliability
and safety of using containers and cgroups in low-latency
systems like self-driving cars or airplanes, detailed studies
are necessary. In this paper, we have demonstrated that
cgroups v2 is a superior choice for low-latency network-
ing. While the latency behavior is identical to cgroups v1
up to the 99th percentile, v1 performs worse with more
packets having higher latency. Additionally, v1 consumes
2.4 % more instructions for the same workload, indicating
its less efficient implementation. Therefore, we conclude
that cgroups v2 is the better choice for low-latency sys-
tems that require high performance and reliability. It is
worth noting, however, that v2 lacks some of the features
of v1, and upgrading to a more modern kernel may
not always be possible without additional costs. Systems
in production often utilize operating systems with long
release cycles, which makes changes to packaged software
like the kernel expensive.

As part of our future work, we aim to enhance and
automate measuring and analyzing the instructions con-
sumed by a container, the underlying technology, and the
applications inside. Automation would enable us to assess
the performance of different enabling technologies like
cgroups more effectively. Additionally, we are interested
in testing the kernel 6.1, which incorporates the new
cpuset partition type isolated, and comparing it against
cgroups v1 cpuset.sched_load_balance.

1. https://wiedner.pages.gitlab.lrz.de/iitm-seminar-daichendt-
reproducibility/

Seminar IITM SS 23 16 doi: 10.2313/NET-2023-11-1_03

References

[1] J. Corbet, “Notes from a container,” LWN.net, 10 2007,
accessed on March 23, 2023. [Online]. Available: https:
//lwn.net/Articles/256389/

[2] R. Rosen, “Understanding the new control groups API,” LWN.net,
3 2016, accessed on March 23, 2023. [Online]. Available:
https://lwn.net/Articles/679786/

[3] A. Daichendt, “Lightweight low-latency virtual networking,”
August 2022, B.Sc. thesis, found at https://gitlab.lrz.de/wiedner/
iitm-seminar-daichendt-reproducibility/-/blob/master/data/thesis.
pdf.

[4] F. Wiedner, M. Helm, S. Gallenmüller, and G. Carle, “HVNet:
Hardware-Assisted virtual networking on a single physical host,”
in IEEE INFOCOM WKSHPS: Computer and Networking Ex-
perimental Research using Testbeds (CNERT 2022) (INFOCOM
WKSHPS CNERT 2022), Virtual Event, May 2022.

[5] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-
time scheduling in the linux kernel,” ACM SIGBED Review,
vol. 16, no. 3, pp. 33–38, Nov. 2019. [Online]. Available:
https://doi.org/10.1145/3373400.3373405

[6] M. Kerrisk, “cgroups(7) - linux manual page,” https://www.
man7.org/linux/man-pages/man7/cgroups.7.html, 2021, accessed
on April 1, 2023.

[7] C. Down, “cgroupv2: Linux’s new unified control group system,”
QCON London, 2017.

[8] Debian. (2020, November) cpuset(7) - linux manual page. [Online].
Available: https://manpages.debian.org/bullseye/manpages/cpuset.
7.en.html

[9] L. Waiman, “cgroup/cpuset: Add a new isolated
cpus.partition type,” https://github.com/torvalds/linux/commit/
f28e22441f353aa2c954a1b1e29144f8841f1e8a, Sep. 2022.

[10] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “Ducked Tails:
Trimming the Tail Latency of(f) Packet Processing Systems,” in 3rd
International Workshop on High-Precision, Predictable, and Low-
Latency Networking (HiPNet 2021), Izmir, Turkey, Oct. 2021.

[11] S. Gallenmüller, J. Naab, I. Adam, and G. Carle, “5G URLLC: A
case study on low-latency intrusion prevention,” IEEE Communi-
cations Magazine, vol. 58, no. 10, pp. 35–41, Oct. 2020.

[12] H. Tejun, “Control Group v2,” https://www.kernel.org/doc/html/v4.
19/admin-guide/cgroup-v2.html, Oct. 2015, accessed on March 23,
2023.

[13] F. Weisbecker, “CPU isolation practical example, part 5,”
January 2022, accessed on March 23, 2023. [Online]. Available:
https://www.suse.com/c/cpu-isolation-practical-example-part-5/

[14] A. Tsariounov, “cpuset,” https://github.com/lpechacek/cpuset,
2018, accessed on 2023-03-23.

[15] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “MoonGen: A Scriptable High-Speed Packet Generator,”
in Internet Measurement Conference (IMC) 2015, IRTF Applied
Networking Research Prize 2017, Tokyo, Japan, Oct. 2015.

[16] S. Gallenmüller, D. Scholz, H. Stubbe, E. Hauser, and G. Carle,
“Reproducible by Design: Network Experiments with pos,” in
KuVS Fachgespräch - Würzburg Workshop on Modeling, Analysis
and Simulation of Next-Generation Communication Networks 2022
(WueWoWas’22), Würzburg, Germany, Jul. 2022.

[17] A. Daichendt, “VirtualLXCBMC,” August 2022. [Online].
Available: https://github.com/AnonymContainer/virtuallxcbmc

[18] “perf-stat(1) - linux manual page,” https://www.man7.org/linux/
man-pages/man1/perf-stat.1.html, accessed on March 23, 2023.

Seminar IITM SS 23 17 doi: 10.2313/NET-2023-11-1_03

Seminar IITM SS 23 18

Common Workflow Language Execution on the I8-Testbed

Thomas Dietrich, Sebastian Gallenmüller∗, Manuel Simon∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: thomas.dietrich@tum.de, gallenmu@net.in.tum.de, simonm@net.in.tum.de

Abstract—The Common Workflow Language (CWL) is an
open standard to describe workflows in a portable way.
Data analysis using workflows has increased significantly in
science. Nevertheless, there has been no coordinated way to
express them, resulting in multiple diverse workflow systems
that are complicated to exchange. Exchange and verification
are fundamental principles in research. Therefore, it is
essential to share the workflows behind the findings in a
standardised way so that the results are reproducible and can
be confirmed. This article describes the necessary steps to
install and execute CWL workflows on a testbed that uses the
pos framework to manage nodes. For the execution of CWL,
we chose an implementation called StreamFlow because it
provides SSH Connectors. A CWL execution on this testbed
utilises a combination of StreamFlow, the pos framework
and bash scripts. This automation framework can execute
new CWL workflows or existing ones from other researchers
without a high expense. It enables data analysis with CWL
and its verification. An example implementation is available
at https://gitlab.lrz.de/netintum/teaching/iitm/repos/2023ss-
bs/u838/-/tree/main/resources/experiment.

Index Terms—experiment workflows, common workflow lan-
guage, streamflow, testbed

1. Introduction

Scientific experiments are capable of analysing data
to acquire knowledge. These data analyses can consist of
several steps following a fixed sequence to generate in-
sights and meaningful output data from the input material.
Computers carry out these workflows when dealing with
large amounts of data or complex tasks. For this, scientists
need applications that execute these workflows based on
input data. Competing solutions exist from various com-
panies that perform workflows in different ways. Baker
and van Hemert’s research [1] concluded that workflows
become the dominant technology in describing scientific
processes. As a result of this growth, there are over 300
different computational data analysis workflow systems
compiled by Amstutz et al. [2].
Exchange with other researchers, mutual control, peer
review and transparency are the fundamentals of scientific
research. For this, workflows used in scientific methods
must be traceable. However, this is complex, with multi-
ple different systems. Repeating experiments with other
systems requires a high expense and is impossible if
two systems are incompatible. A new standard called the
Common Workflow Language (CWL) was developed by

Amstutz et al. [3] to ensure that academic principles can
also be maintained when using workflows. A multi-faceted
project created by Crusoe et al. [4] around the mere
language strives for portably exchangeable workflows be-
tween systems with various environments, thus enabling
scientists to reproduce data analyses for more transparency
and better control over results. Due to these reasons,
Leipzig [5] identified the CWL standard as a rising trend
in his review of bioinformatic pipeline frameworks.
In addition, the CWL project provides tools to facilitate
editing and viewing workflows, converting existing lan-
guages into CWL through converters and enabling exe-
cution through frameworks. The creators of CWL also
provide a reference implementation called cwltool that
supports local execution on Linux, Mac and Windows.
Besides the reference solution, production-ready imple-
mentations with other features exist, such as the Stream-
Flow implementation by Colonnelli et al. [6] with various
connectors. These connectors allow StreamFlow to con-
nect to hybrid workflows using cloud computing and high-
performance computers or multi-container environments
like Docker containers by Merkel [7].
This paper describes the necessary steps to install and ex-
ecute the CWL. It uses an implementation of StreamFlow
with SSH Connectors to combine CWL workflow steps to
nodes on the testbed of the Chair of Network Architectures
and Services from the Technical University of Munich
(I8), which Haden et al. introduced in [8]. In addition, bash
scripts automate the execution of StreamFlow projects
on the testbed of the I8 using the pos framework from
Gallenmüller et al. [9].
The content of this paper is structured as follows. Sec. 2
briefly describes how to write a workflow in CWL, fol-
lowed by Sec. 3, explaining how StreamFlow is structured
and how to use it to execute the CWL. Sec. 4 uses this
information to combine CWL and StreamFlow with bash
scripts and the pos framework to create an experiment
runnable on the testbed. Sec. 5 concludes the paper and
provides an outlook on further contents of the CWL
project.

2. Common Workflow Language

CWL is an open and free standard. It describes work-
flows in a human-readable way. CWL focuses on its
community and aims to be interoperable, vendor-neutral
and portable across different platforms. Reusable work-
flows and reproducible results can improve transparency in
research. There are tools, libraries and editor plugins that
already support CWL. Furthermore, you can parallelize

Seminar IITM SS 23 19 doi: 10.2313/NET-2023-11-1_04

workflows with the scatter feature [4] to make them
scalable. However, this paper will only deal with the basic
functionalities of CWL because additions like tools or the
scatter feature would exceed its scope.
CWL workflow files are written in YAML and have
the ending .cwl. There are two essential class types:
the CommandLineTool and the Workflow class. The
CommandLineTool class is a wrapper for software tools
executed with the command line. It stores the command,
describes input and output and assigns them an id defined
in the Workflow class [3].

1 cwlVersion: v1.2
2 class: CommandLineTool
3 baseCommand: echo
4 stdout: output.txt
5 inputs:
6 step_in:
7 type: string
8 inputBinding:
9 position: 1

10 outputs:
11 step_out:
12 type: stdout

Listing 1: echo.cwl

The functionality of the file above is to repeat an in-
put message captured in a text file called output.txt.
After specifying the cwlVersion and the class type, a
baseCommand has to be declared. The expression in Line 4
of Listing 1 captures the messages from stdout in a file.
The class assigns input and output names and types. The
inputBinding describes the position of arguments after
the command [3].

1 cwlVersion: v1.2
2 class: Workflow
3 inputs:
4 message: string
5 outputs:
6 out:
7 type: File
8 outputSource:

echo/step_out
9 steps:

10 echo:
11 run: echo.cwl
12 in:
13 step_in: message
14 out: [step_out]

Listing 2: workflow.cwl

To define the workflow, the Workflow class uses the
CommandLineTool classes. It specifies the input and out-
put of the whole workflow and assigns intermediate prod-
ucts to steps. Inputs of workflows are typically stored in
JSON or YAML files with the same name as the workflow
file followed by a "-job" suffix. CWL is limited by the
input given once the workflow has been started. Since
it is not possible to add input later, care must be taken
to add all the required data before starting the workflow
to avoid later problems. The workflow.cwl file uses the
CommandLineTool from Listing 1 to build an example

workflow with one step. A complex workflow can be cre-
ated, in a human-readable manner, by adding other work
steps. CWL also supports additional requirements like us-
ing JavaScript with the InlineJavaScriptRequirement
for added functionality. Installing the required packages
for all extra functionalities in the setup is necessary. To
evaluate, e. g. inline JavaScript expressions, Node.js has
to be installed in addition to the basic packages, as shown
in Section 4.2 [3].

3. StreamFlow

StreamFlow is a workflow manager capable of execut-
ing CWL workflows on different architectures. As shown
in Figure 1, this workflow manager executes a StreamFlow
file. This file is written in YAML and conventionally is
called streamflow.yml. It consists of two parts. The first
one is called "Model description files" and contains a
YAML description of infrastructures that should execute
the workflow steps, e. g. , different servers or different
nodes of a testbed.

Figure 1: StreamFlow Model from [6]

The deployment diagrams in the upper right corner
show that there can be multiple models with different
structures within a single model description file. A model
has a type section containing the chosen connector and
a config field with connector-specific configuration pa-
rameters. The second part, called "Workflow description
files", references a workflow file like workflow.cwl in
Listing 2, or, as indicated by the activity diagram in the
upper left corner of Figure 1, can be a complex workflow
that runs in parallel steps. Input files mentioned in Section
2 and a bindings section are also part of these description
files. The binding section describes which workflow step is
deployed on which model. This section can, e. g. specify
that the echo step in Listing 2, Line 10 should be executed
on a specific node from the testbed mentioned in the
introduction. This binding is visualised by the arrows in
the illustration in the middle of Figure 1 that combine
the deployment diagram and the activity diagram. As a
whole, combined by the bindings section, these two
description files result in a StreamFlow file. With this
file, the StreamFlow executor can interpret CWL, schedule

Seminar IITM SS 23 20 doi: 10.2313/NET-2023-11-1_04

tasks and deploy the workflow to connected environments
while managing the data by itself [6].

This paper uses an SSHConnector to connect to dif-
ferent nodes. The names of the used nodes listed in an
array called nodes, the username in a field username,
and a path to the SSH key file on the nodes in sshKey are
configuration parameters for this connector. As depicted
in Figure 1, there also exist other connectors for high-
performance computing (HPC) and container technolo-
gies. As mentioned in the introduction, there is, e. g. a
DockerConnector that requires a docker image as his
config or a SlurmConnector that is capable of connect-
ing to an HPC facility orchestrated by the Slurm queue
manager from Yoo et al. [10]. This SlurmConnector
requires a hostname of an HPC facility and a username
for the SSH connection to this facility. While container
connectors would also be feasible on the I8-testbed, HPC
connectors require an HPC facility [6].

4. Implementation on the Testbed

Once the workflow is described by CWL and the exe-
cution is managed with StreamFlow, a Bash script called
experiment.sh is executed on the management node. It
automatically orchestrates nodes from the testbed [8] us-
ing the pos framework, simultaneously installs the needed
packages, prepares SSH Connections for the connectors
mentioned at the end of Section 3, copies required files
to the nodes and executes the StreamFlow file.

4.1. Orchestration of Nodes

The testbed consists of nodes orchestrated by a
management node through the pos framework [9].
The framework can reserve selected nodes by creating
calendar entries for them. It allocates the nodes for
the experiment and boots them with specified images.
Furthermore, pos can copy files from the management
node to other nodes and remotely execute commands
or executables on selected nodes. For the execution of
StreamFlow, a master node is set up that uses a selectable
amount of worker nodes, as shown in Figure 2. A Debian
11 (bullseye) image, e. g. is needed, since StreamFlow
requires python >= 3.8 [6].

Management node

Master node Worker nodes

Figure 2: Testbed typology

4.2. Basic Nodes Setup

The experiment.sh script simultaneously executes a
setup script called setup.sh on all selected nodes using
the pos launch feature. The script displayed in Listing 3
installs the needed packages for CWL and the StreamFlow
execution [9].

,

1 #!/bin/bash
2 apt-get update
3 apt-get install -y python3-pip
4 pip install streamflow
5 pip install --force-reinstall

"cwltool==3.1.20220802125926"
6 curl -fsSL

https://deb.nodesource.com/setup_19.x
| bash - &&\

7 apt-get install -y nodejs
8
9 #add needed packages here

Listing 3: The setup.sh script

After updating, the script installs the Python package
installer pip because it is used to install StreamFlow. Once
pip is available, it installs StreamFlow. Installing Stream-
Flow downloads a cwltool version missing a file [11].
Therefore, it is necessary to reinstall the latest version,
cwltool==3.1.20220802125926, without this bug. Users can
add other packages required for the experiment to this
list. Inline Javascript expressions, e. g. , can be used in
the CWL. To evaluate these expressions, NodeSource, a
distribution of Node.js for Debian [12], must be installed.
Once all packages are installed, the master and worker
nodes are processed differently. Only the master node re-
ceives the streamflow folder in the experiment directory
displayed in Figure 3.

4.3. Preparation of SSH Connections

From now on, it would be possible to execute CWL
files on nodes locally with the cwltool mentioned in
Section 4.2. So it would also be possible to build fur-
ther preparation steps as a workflow. However, since this
would generate a lot of overhead and exceed the con-
cepts presented in section 2, bash scripts also perform
further preparations. By default, the management node can
communicate with other nodes. To achieve connectivity
- as shown in Figure 2 - the master node should also
be able to connect to the worker nodes. Therefore, the
experiment script prepares the master and worker nodes
for SSH connections. The experiment directory contains
a pre-generated SSH key pair with a private key called
worker and a public key called worker.pub, as shown in
Figure 3. The framework script experiment.sh executed
on the management node remotely copies the public SSH
key to all worker nodes with the pos copy feature. Then a
script called keyexchange.sh is remotely executed on all
workers with the pos remote command execution feature
from the management node. This setup script appends
the copied public key to the authorized_keys in the
.ssh folders to approve the new SSH connection. The
streamflow folder copied to the master node, as described

Seminar IITM SS 23 21 doi: 10.2313/NET-2023-11-1_04

in Section 4.2, contains the private key worker. To copy
the private key, pos needs read permission on this file.
Therefore the private key has reading permissions for
everyone (644). Since this would be a security gap, the
main script repeals the read permissions by executing the
safeKey.sh script remotely on the master node. As a
result, the private key has the default permissions 600.
Besides the private key, the master node needs all worker
nodes mentioned in his known_hosts. The framework
script uses the command ssh-keyscan to gather all pub-
lic keys from the worker nodes in a manually created
known_hosts file. This file is remotely stored on the
master node by the management node and replaces the
existing known_hosts file to verify all worker nodes to
the master. After this preparation, the master node can
connect to all worker nodes through an SSH connection
to delegate work.

experiment
streamflow

streamflow.yml
worker
workflow-job.json
workflow.cwl

experiment.sh
keyexchange.sh
safeKey.sh
setup.sh
worker.pub

Figure 3: The experiment directory

4.4. Execution of the Experiment

The directory structure of a StreamFlow experiment
could be set up as depicted in Figure 3. The experiment
directory contains a streamflow subfolder that is copied
to the master node from the management node. It contains
the workflow files from Section 2, the StreamFlow file
from Section 3 and the private SSH key. Section 4.3
explained this key with the public SSH key, the key-
scripts safeKey.sh and keyexchange.sh. The main script
experiment.sh explained in Section 4 and the setup.sh
script shown in Listing 3 complete the experiment.
An example implementation can be downloaded from a
GitLab Repository [13]. To execute the workflow, the
experiment directory in Figure 3 can be copied to
the management node of the testbed using the secure
copy command scp. The main bash script that starts
the whole experiment, "bash experiment/experiment.sh",
is executed from the parent directory of experiment as
the working directory. It takes a master node as the first
argument and at least one worker node as the following
arguments. For the workflow to function, the workers
listed in the nodes array mentioned in Section 3 have to
be passed as parameters after the freely selectable master
node. When using this framework with larger projects,
the hardcoded waiting time for the preparation to finish
in experimant.sh has to be adjusted. Through the freely
adjustable number of worker nodes, the script can scale
with larger projects until all nodes from the testbed work
to capacity if the workflows are built in a parallelisable

way, e. g. , by using the scatter feature mentioned in Sec-
tion 2. Additional tools required for workflow steps, can
be added to the setup.sh script, as shown in Section 4.2.
Consequently, this proof of concept can be used for further
workflow experiments.

5. Conclusion

Instead of using proprietary workflow systems, com-
plex data analysis flows can be described in the CWL
standard. The StreamFlow manager can execute workflow
descriptions in CWL. This manager interprets CWL and
uses SSHConnectors to connect the master nodes with
workers. In addition, it independently schedules deploy-
ment to workers and accomplishes data management. To
automatically run the experiment on the I8-Testbed, bash
scripts use features from the pos framework to orchestrate
nodes, set them up, prepare SSH connections and execute
the StreamFlow file. This way, data analysis workflows
are portable and can be exchanged with other researchers
to reuse the workflows and reproduce results. The ex-
changeable and verifiable CWL standard improves two
necessary principles of modern research using automated
data analysis and enhancing the transparency of scientific
findings.
This paper is a proof of concept for a testbed framework of
the CWL standard and does not cover the whole standard.
There are further undiscussed CWL topics regarding CWL
because it would have been too much for the scope of this
paper. CWL offers, e. g. , a scatter feature to parallelise
workflows to improve their scalability.

References

[1] A. Barker and J. van Hemert, “Scientific workflow: A survey and
research directions,” in Parallel Processing and Applied Mathe-
matics, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Was-
niewski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 746–753.

[2] P. Amstutz, M. Mikheev, M. R. Crusoe, N. Tijanić, and
S. Lampa, “Existing workflow systems,” 2022, updated 2023-03-
10, accessed 2023-03-28]. [Online]. Available: https://s.apache.
org/existing-workflow-systems

[3] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman,
J. Chilton, M. Heuer, A. Kartashov, D. Leehr, H. Ménager,
M. Nedeljkovich, M. Scales, S. Soiland-Reyes, and
L. Stojanovic, “Common Workflow Language, v1.0,” 7 2016.
[Online]. Available: https://figshare.com/articles/dataset/Common_
Workflow_Language_draft_3/3115156

[4] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Ti-
janić, H. Ménager, S. Soiland-Reyes, B. Gavrilović, C. Goble, and
T. C. Community, “Methods included: Standardizing computational
reuse and portability with the common workflow language,” Com-
mun. ACM, vol. 65, no. 6, p. 54–63, may 2022.

[5] J. Leipzig, “A review of bioinformatic pipeline frameworks,” Brief-
ings in bioinformatics, vol. 18, no. 3, pp. 530–536, 2017.

[6] I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, “Stream-
flow: Cross-breeding cloud with hpc,” IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 4, pp. 1723–1737, 2021.

[7] D. Merkel, “Docker: lightweight linux containers for consistent
development and deployment,” Linux journal, vol. 2014, no. 239,
p. 2, 2014.

Seminar IITM SS 23 22 doi: 10.2313/NET-2023-11-1_04

[8] M. Haden, “I8-testbed: Introduction,” in Proceedings of the Semi-
nar Innovative Internet Technologies and Mobile Communications
(IITM), Summer Semester 2020, ser. Network Architectures and
Services (NET), G. Carle, S. Günther, and B. Jaeger, Eds., vol.
NET-2020-11-1. Munich, Germany: Chair of Network Architec-
tures and Services, Department of Computer Science, Technical
University of Munich, Nov. 2020, pp. 61–65.

[9] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: A methodology and toolchain for reproducible network
experiments,” in Proceedings of the 17th International Confer-
ence on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 259–266.

[10] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple
linux utility for resource management,” in Job Scheduling Strate-
gies for Parallel Processing, D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 44–60.

[11] Updated 2023-03-10, accessed 2023-03-28]. [Online]. Available:
https://github.com/alpha-unito/streamflow/issues/15

[12] Updated 2023-03-10, accessed 2023-03-28]. [Online]. Available:
https://github.com/nodesource/distributions

[13] T. Dietrich, accessed 2023-03-28]. [Online]. Available: https:
//gitlab.lrz.de/netintum/teaching/iitm/repos/2023ss-bs/u838.git

Seminar IITM SS 23 23 doi: 10.2313/NET-2023-11-1_04

Seminar IITM SS 23 24

Survey of Cryptographic Offloading Techniques for Blockchain Systems

Sebastian Fritsch, Richard von Seck∗, Filip Rezabek∗,
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: s.fritsch@tum.de, seck@net.in.tum.de, frezabek@net.in.tum.de

Abstract—The rise of blockchain systems in recent years has
posed challenges to their energy efficiency and scalability.
Proposed solutions to these problems have been crypto-
graphic offloading techniques, which we want to present in
this paper. Firstly, we introduce blockchain systems based on
the blockchain stack and the blockchain trilemma. Secondly,
we present the offloading techniques found for each layer and
group them into five categories: Proof of Work offloading,
Signature Verification offloading, Zero-Knowledge Proof of-
floading, offloading to the network and Trusted Execution
offloading. It was observed that most of the actual offloading
of cryptographic operations occure in the context of Proof
of Work or Zero-Knowledge Proofs, and despite successful
research results, the other offloading categories are often not
yet applied in practice and further research is needed.

Index Terms—blockchain, cryptographic offloading, hard-
ware acceleration, FPGA

1. Introduction

Blockchain technology has gained immense popular-
ity in recent years for its ability to provide secure and
decentralized computation, transfer, and storage of data.
Starting with Bitcoin [1] as a proof of concept in 2008,
a huge ecosystem of different blockchain systems and
technologies has emerged over the last decade.

However, one of the major bottlenecks of further adop-
tion of state-of-the-art blockchain technology into real-
world systems is low throughput performance and high
latency [2]. To overcome this challenge, researchers have
proposed various cryptographic offloading techniques that
aim to shift some of the heavy computational tasks from
blockchain nodes to other specialized hardware devices.

In this paper we conduct a survey of cryptographic
offloading techniques for blockchain systems. It covers
various approaches proposed to reduce the computational
burden on blockchain nodes, which are categorized into
five main categories: Proof of Work (PoW) offloading,
Signature Verification offloading, Zero-Knowledge Proof
(ZKP) offloading, and Trusted Execution offloading. The
objective of this survey is to provide an overview of cryp-
tographic offloading techniques for blockchain systems
and to help researchers and practitioners understand the
state-of-the-art in this area.

2. Background

Figure 1 shows the blockchain stack as laid out by
Fan et al. [3] and Li et al. [4], which provides a basic

Figure 1: The blockchain stack as presented by [3] [4]

introduction to the technical side of blockchain systems.
The data layer is the foundational layer of the

blockchain, which defines data structures, models, block
layout, and storage policies. All higher layers in the
blockchain stack use and work on these data structures
and in that way the data layer forms a meta-layer, which
is symbolized by the red coloring. A very crucial structure
are transactions, which contain information signed by
a user on how to alter the distributed ledger data in
accordance with the runtime rules. Those, in turn, get
grouped into blocks, which then get committed together
onto the ledger through a consensus mechanism. The exact
layout of these data structures varies from one blockchain
implementation to another, but they all share some com-
mon concepts. For example, the linkage of the different
blocks (which coined the term block-chain), through the
inclusion of the previous block header in the current block,
is essential [4].

A blockchain consists of multiple nodes that commu-
nicate in a peer-to-peer network. If everybody can par-
ticipate in the network, we speak of a public blockchain,
otherwise the blockchain system is called permissioned.
Similarly to the OSI/ISO model, the network layer facili-
tates the operation of all higher layers. The network layer
is responsible for connections to peers and the propagation
of blocks and transactions. The peer-to-peer layout is the
basis for the decentralized structure of the blockchain,
as there is no machine or network participant that can
exclude a peer by itself [3].

Seminar IITM SS 23 25 doi: 10.2313/NET-2023-11-1_05

The core of a blockchain is formed by the consensus
layer. On this layer, blockchain nodes run an agreed-upon
consensus algorithm that decides on the validity of the
current state of the ledger and on which blocks to include
in it. In the center of most consensus mechanism is a
sybil resistance mechanism, that differentiates between
trustworthy and non-trustworthy peers, like PoW in Bit-
coin [1]. In PoW, miners must find a random value to
include in the block so that the block hash has the required
number of zero bits. As it is not computationally feasible
to solve this efficiently, miners must resort to brute force
and invest money in the form of energy to mine the
block and “prove their work”. In return, miners receive a
reward for their efforts, which in most public blockchains
is a token share. PoW has been criticized harshly for
its vast energy consumption and high latency, so modern
blockchains tend to switch to other consensus mechanisms
such as Proof of Stake (PoS), Proof of Authority (PoA)
or Practical Byzantine Fault Tolerance (PBFT) [2]. Those
algorithms do not rely on the computational power of the
nodes, but rather on the stake or their identity.

An interesting area of research on novel consensus
mechanisms has been in the field of rollups [5]. Rollups
attempt to solve the scalability issues of many layer-one
chains such as Ethereum by introducing a second layer,
that handles the transaction execution and only stores
state and proofs on the layer-one chain. We distinguish
between two types of rollups: Optimistic rollups and zero-
knowledge rollups.

For cryptographic offloading we focus on zero-
knowledge rollups, which publish a validity-ZKP to the
layer-one to attest the correct execution of transactions.
ZKPs are a technology that enable proving the validity
of a statement without revealing information about the
statement iself. They are also used for applications in
Smart Contracts (SCs) such as privacy preserving transfer
[5].

The application layer forms the user facing site of the
blockchains. Starting with Ethereum in 2015, blockchains
enable the execution of SCs and Chaincode on the execu-
tion layer [6]. The execution layer offers SCs an execution
environment, in which they can interact with blockchain
assets and data in ways allowed by the runtime. Exam-
ples for such SCs include simple transfers, decentralized
exchanges, decentralized autonomous organizations or pri-
vacy preserving transfers through ZKPs.

Scalability

Security Decentralization

Figure 2: The blockchain trilemma [7]

Figure 2 shows the blockchain trilemma as first pre-
sented by Vitalik Buterin [7]. It states that there is an
inevitable trade-off between the three properties of Scal-
ability, Security, and Decentralization. As for many pub-

lic blockchains, security and decentralization are crucial,
scalability becomes a major issue. This problem led to
more research into scalability solutions like sharding,
rollups, or the Lightning Network [4], but also to more
attention and research on offloading cryptographic opera-
tions [8], which we are going to outline in this work.

3. Overview of Categories

Nearly every layer in a blockchain system involves
cryptographic operations, which – depending on their
computational effort – may be suitable for cryptographic
offloading. In Table 1, we have categorized our findings
for cryptographic offloading in five categories and mapped
them to the layers, where the offloading technique is used.
In the following we are going to outline our findings in
detail associated with every blockchain layer.

3.1. Data Layer

Starting with the data layer, we find data structures
like Merkle Trees, which are computed using a tree-like
structure of hashes. While it is theoretically possible to
accelerate these hash computations, we did not find recent
research on hardware or network offlading of the data
layer.

3.2. Network Layer

Next up with the network layer, some blockchains (es-
pecially permissioned blockchains) like Quorum, Ripple
and Corda use TLS to secure the data transfer between
network participants [29] [30]. Hyperledger Fabric also
offers support for TLS, but it is turned off by default
[30]. Research by Kim et al. [27] has explored offloading
the TLS handshake to SmartNICs, which demonstrated a
5.9x speedup compared to using a CPU. However, there
has not been any evidence of adoption of such offloading
techniques in blockchain systems.

3.3. Consensus Layer

The consensus layer is home to most cryptographic
operations in a blockchain system and therefore desig-
nated for offloading them. For the sake of readability we
are going to present each offloading category in an own
subsection.

3.3.1. Proof of Work Offloading. PoW is a popular sybil-
resistance algorithm and the most widespread example
of cryptographic offloading to hardware in blockchain
systems. The best-known example of this is Bitcoin,
which incentivizes block mining through block rewards
and transaction fees [9]. In order to mine more correct
blocks and save energy, the first Bitcoin GPU miner was
introduced in 2010, followed by subsequent developments
such as FPGA (Field Programmable Gate Array) miners in
2011 and the first specialized ASIC (Application-Specific
Integrated Circuit) miner in 2013 [9]. These advancements
led to an increase in mining power from 33 MH/s on
Intel Core i7-990x to 13.5 TH/s on an Antminer S9
ASIC. Currently, the two state-of-the-art ASIC miners are

Seminar IITM SS 23 26 doi: 10.2313/NET-2023-11-1_05

Category Affected Layers References

Proof of Work Offloading Consensus Layer [9], [10], [11], [12]
Signature Verification Offloading Consensus Layer, Execution Layer, Application Layer [13], [14], [15], [16]
Zero-Knowledge Proof Offloading Consensus Layer, Application Layer [17], [18], [19], [20], [21], [14]
Trusted Execution Offloading Consensus Layer, Execution Layer [22], [23], [24], [25], [26]
Network Offloading Consensus Layer [15], [27], [28]

TABLE 1: Categories of Cryptographic Offloading Techniques

BitFury and Bitmain, both of which operate on a 16nm
die size and have an energy consumption of about 0.07W
per GH/s [9].

Korotkyi and Sachov [12] presented a design for a
PoW accelerator for the IOTA cryptocurrency by imple-
menting the Curl hash function on a FPGA, and they were
able to achieve a latency speedup of 2100x compared to
the software implementation.

On the other hand, efforts have been made to prevent
offloading of PoW to specialized hardware by introduc-
ing ASIC-resistant algorithms such as multi-hash PoW
(e.g., X11, X14), memory-hard PoW (e.g., Ethash, Scrypt,
Crypt-Night), or programmatic PoW (e.g., ProgPoW) [31].

Another interesting field of blockchain application is
the use in IoT networks. As most IoT nodes do not
have access to plentiful energy or computation resources,
researchers have proposed offloading the PoW to the edge.
This involves taking the computational effort away from
the node itself and delegating it to a trusted machine on
the edge network [28].

3.3.2. Signature Verification Offloading. As modern
blockchains, such as Ethereum, shift their consensus away
from PoW due to energy and efficiency concerns, other
cryptographic operations become increasingly important.
In particular, signature verification was found to be a
major performance bottleneck in PoS/PoA chains. In
2020, Toyoda et al. showed that about 5.91 seconds
out of 30 seconds blockchain runtime were spent on
crypto.Ecrecover in a PoA Ethereum blockchain [32].
The function crypto.Ecrecover recovers the public key
of a given ECDSA signature.

In a work published by Javaid et al. [15], they mea-
sured that about 40% of the total execution time on their
Hyperledger Fabric blockchain is spent on ecdsa_verify
and 10% on the SHA256 hashing algorithm. The signa-
ture verification is needed on the consensus layer, but
also partly on the application layer, as SCs and decen-
tralized Apps (dApps) also often perform cryptographic
operations. Therefore, this subsection can also be applied
to Section 3.4. These examples signify the optimization
speedup in consensus gained by offloading asymmetric
crypto operations.

Ikeda [16] published work on offloading ECDSA
verification to a FPGA that is twice as fast as a 64-
thread AMD EPYC 7601 but uses about 33 times less
energy. There is a tradeoff between energy consumption
and performance of the implementation and most research
we found is focused on energy efficiency. While this is a
valid concern, the performance aspect is more important
in the context of blockchain systems. A commercial solu-
tion offered by SilexInsight and marketed as “Blockchain
Hardware Accelerator” [13] focuses on performance and
claims 500,000 signature verifications on the secp256k1

curve per second, which would correspond to a verifica-
tion time of 2 microseconds. It can be used on FPGAs
but is also sold as a proprietary core for ASICs. However,
there is no public record of blockchains using the Silex
Insight accelerator, and it is unclear whether the 500,000
signatures are measured on a FPGA or an ASIC [13].

Devlin [14] published work on accelerating the Zcash
blockchain, focusing not only on ZKP acceleration but
also on a signature verification core. He achieved a 1.5x
speedup in signature verification with one core and the
ability to add more FPGA cores for parallel processing.

The most sophisticated research we found was per-
formed by Javaid et al. [15], who implemented a custom
network card on a FPGA that filters blockchain messages
and verifies signatures for transactions and blocks, as well
as calculates block hashes directly on the FPGA. This
design is similar to a SmartNIC, as it can operate on the
data before it reaches the CPU. To speed up signature
verification itself, they used a propriertary core provided
by Mercury Systems. In addition to offloading signature
verification, they also accelerated computation of tx and
block hashes using “3 stream-based SHA-256 hash cal-
culators” and validation/sanitization of transactions. This
enabled a 4.4x speedup in block validation compared to
software implementation.

3.3.3. Trusted Execution Offloading. Another interest-
ing area of research has been Trusted Execution Envi-
ronments (TEEs). TEEs are implemented as a hardware
feature by CPU manufacturers and offer a way to protect
the confidentiality and integrity of computations that take
place inside them. In addition, many TEE vendors offer
a way for trusted communication channels to retrieve
computing results from the TEE [25]. As the primitives of
Trusted Computing are based on cryptography, and the use
of them offers ways to accelerate operations, we consider
the use of TEEs as a cryptographic offloading technique.

In an overview published by Bao et al. [26], they
presented various consensus algorithms that make use
of the TEE implementation called “Intel Software Guard
Extensions (SGX)”. These include Proof-of-Useful-Work
(PoUW), Proof-of-Elapsed-Time (PoET), or Secure Proof
of Stake (SPoS), which is resistant against the “nothing
at stake attack” and the “long-range attack”.

3.3.4. Zero-Knowledge Proof Offloading. As explained
in Section 2, zero-knowledge proofs are used in the con-
sensus layer for rollup layer-two chains. There are mul-
tiple approaches and setups for zero-knowledge proofs.
The most famous ones are zkSNARKs, zkSTARKs, and
Bulletproofs [33]. At the current time, every known zero-
knowledge setup suffers from some performance or decen-
tralization issues, such as creation complexity, validation
complexity, proof size, or the requirement for a trusted

Seminar IITM SS 23 27 doi: 10.2313/NET-2023-11-1_05

setup [34]. This makes it difficult to achieve a performant
software implementation. Therefore, multiple researchers
have set out to offload the computation of verifications or
proofs onto suited hardware.

Weiliang et al. [17] presented GZPK, a proof system
for zkSNARKs, that offloads many of the underlying
ZKP operations to a GPU. Such underlying functions
include Multiscalar Multiplication (MSM) or Number-
theoretic transformations (NTT). A similar approach was
presented by Lu et al. [18], which focused on the MSM
operation. They were able to achieve a speedup of about
2x in comparison to other state-of-the-art GPU implemen-
tations. Apart from GPU acceleration, there is research on
FPGA offloading. For instance, Peng et al. [21] designed
a hardware implementation of the Groth16 zk-SNARK
algorithm, which managed to achieve a 10x speedup for
creating a proof compared to a reference software imple-
mentation. Additionally, some commercial companies are
researching on and developing hardware implementations
of zero-knowledge proofs, most notably Ingonyama1 and
Cysic2. There has also been the “ZPrize”3 competition in
2022, which focused on accelerating the underlying func-
tions. For example, Ray et al. [20] accelerated the MSM
by 15% compared to a FPGA implementation of ZCash,
which we reference in Section 3.4. Another prize category
was the acceleration of NTT on a FPGA, which was won
by team “Supranational”. They achieved a performance
of 2.47 milliseconds for a transform of the required 224

points [19].

3.4. Execution and Application Layer

The execution and application layers of blockchain
systems involve multiple cryptographic operations. For in-
stance, the Solana Sealevel Runtime provides syscalls for
cryptographic operations like sol_secp256k1_recover or
sol_curve_validate_point [35]. The Ethereum Virtual
Machine (EVM) provides the ECDSAPUBKEY, ECDSASIGN,
and SNARKV precompiled contracts [6] that could poten-
tially be offloaded to hardware. Additionally, SCs are free
to implement any cryptographic operations they require,
leading to a variety of applications. One such applica-
tion are the ZKPs used for privacy-preserving transfers
of digital assets. Tornado Cash and Zcash are two of
the most prominent examples of this [36]. Research has
been conducted on offloading some of the computations
involved in Zcash to FPGAs. For example, Ben Devlin
[14] designed a zk-SNARK accelerator by implementing
a bls12-381 coprocessor on a FPGA. He achieved a 2.9x
speedup by implementing Fp, F2

p, F6
p, F12

p arithmetic over
the bls12-381 curve, as well as several higher-level op-
erations such as inversion, calculating powers, calculating
Frobenius maps, Miller loops, final exponentiation, and
optimal ate pairing [14].

Several researchers have proposed leveraging TEEs to
execute SCs over private data and to verify the correct
execution of these contracts. Bowman et al. [24] em-
ployed Intel SGX to achieve these goals for mutually
untrusted parties. Meanwhile, Yuan et al. [23] presented

1. https://ingonyama.com
2. https://cysic.xyz, https://hackmd.io/@Cysic
3. https://www.zprize.io

ShadowEth, which utilized a similar approach to execute
private SCs while preserving existing public blockchains.
In this method, only the verification of the correct execu-
tion of SCs is performed on the public chain.

In contrast, Das et al. [22] proposed FastKitten, which
utilizes TEEs to execute SCs on public blockchains that
lack native support for smart contract execution but have
a means of storing data. Unlike the previous approaches,
FastKitten does not focus on privacy but rather on extend-
ing the functionality of blockchains.

4. Discussion

In Section 3, we explored various approaches to of-
floading cryptographic operations and how they can be
applied to different layers of the blockchain stack. We
can further categorize these methods based on their scope
and impact on the blockchain system.

PoW offloading provides a significant performance
improvement in terms of energy costs and speed for the
node itself. Without using PoW offloading to ASICs,
mining Bitcoin would no longer be profitable due to the
high energy costs associated with using GPUs and CPUs
[9]. This is likely the reason why PoW offloading is widely
used in practice. ZKP offloading to GPUs is currently
deployed in Filecoin 4 and there is a lot of research going
into offloading to FPGAs and ASICs.

On the other hand, approaches like Signature Verifi-
cation offloading often only provide a performance gain
for the blockchain if the majority of nodes required for
consensus adopts them. Otherwise, the blockchain’s speed
is bottlenecked by the slowest machine required to reach
consensus. While there may be potential for energy sav-
ings, to our knowledge, this approach has not been widely
adopted yet.

While achieving majority adoption of specialized hard-
ware is challenging in permissionless blockchains like
Ethereum, there is potential for permissioned blockchains
like Hyperledger Fabric. In those settings, the nodes are
known and can be required to use a certain hardware
or software. This is the focus of the work done by
Javaid et al. [15] on Hyperledger Fabric, although they
acknowledge that further research and development is
needed for the technology and especially for the database
connection between specialized hardware and the CPU.
This example can be mapped to the blockchain trilemma
presented in Figure 2, where one trades decentralization
of the blockchain against scalability and security.

Another interesting aspect is the adoption of TEEs in
blockchains. Bao et al. [26] have laid out more than 18
different research proposals and projects that make use
of Intel SGX. However, there has also been criticism of
TEEs. For example, many of these projects are vulner-
able to single-point-of-failure attacks, meaning a single
compromised SGX enclave could compromise the entire
network. Additionally, many solutions depend on “trusted
functions”, like random number generators, which are
provided by the environment and must be trusted by the
node operator [26].

4. https://github.com/filecoin-project/rust-fil-proofs

Seminar IITM SS 23 28 doi: 10.2313/NET-2023-11-1_05

5. Conclusion and future work

In conclusion, offloading cryptographic operations to
specialized hardware or TEEs can significantly improve
the performance and efficiency of blockchain systems.
PoW offloading is already widely used in practice, while
other offloading techniques such as signature verification
require wider adoption to have a significant impact. Other
interesting research has been done on SCs in the Execution
and application layer, which can benefit from TEEs and
ZKPs for privacy and functionality. Overall, performance
and energy improvements are an important step forward
but wider adoption and research are needed for some of
these techniques.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008, accessed: 2023-04-01. [Online]. Available: "https://bitcoin.
org/bitcoin.pdf"

[2] A. G. Gad, D. T. Mosa, L. Abualigah, and A. A. Abohany,
“Emerging trends in blockchain technology and applications: A
review and outlook,” Journal of King Saud University - Computer
and Information Sciences, vol. 34, no. 9, pp. 6719–6742, Oct. 2022.
[Online]. Available: https://doi.org/10.1016/j.jksuci.2022.03.007

[3] C. Fan, S. Ghaemi, H. Khazaei, and P. Musilek, “Performance
evaluation of blockchain systems: A systematic survey,” IEEE
Access, vol. 8, pp. 126 927–126 950, 2020. [Online]. Available:
https://doi.org/10.1109/access.2020.3006078

[4] W. Li, M. He, and S. Haiquan, “An overview of blockchain
technology: Applications, challenges and future trends,” in
2021 IEEE 11th International Conference on Electronics
Information and Emergency Communication (ICEIEC)2021 IEEE
11th International Conference on Electronics Information and
Emergency Communication (ICEIEC). IEEE, Jun. 2021. [Online].
Available: https://doi.org/10.1109/iceiec51955.2021.9463842

[5] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain
scaling using rollups: A comprehensive survey,” IEEE Access,
vol. 10, pp. 93 039–93 054, 2022. [Online]. Available: https:
//doi.org/10.1109/access.2022.3200051

[6] G. Wood, “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, pp.
1–41, 2022, accessed: 2023-03-30. [Online]. Available:
https://ethereum.github.io/yellowpaper/paper.pdf

[7] V. Buterin, “Why sharding is great: demystifying the technical
properties,” 2021, accessed: 2023-03-30. [Online]. Available:
https://vitalik.ca/general/2021/04/07/sharding.html

[8] A. Hafid, A. S. Hafid, and M. Samih, “Scaling blockchains:
A comprehensive survey,” IEEE Access, vol. 8, pp. 125 244–
125 262, 2020. [Online]. Available: https://doi.org/10.1109/access.
2020.3007251

[9] M. B. Taylor, “The evolution of bitcoin hardware,” Computer,
vol. 50, no. 9, pp. 58–66, 2017. [Online]. Available: https:
//doi.org/10.1109/mc.2017.3571056

[10] N. T. Courtois, M. Grajek, and R. Naik, “Optimizing SHA256 in
bitcoin mining,” in Communications in Computer and Information
Science. Springer Berlin Heidelberg, 2014, pp. 131–144. [Online].
Available: https://doi.org/10.1007/978-3-662-44893-9_12

[11] J. A. Dev, “Bitcoin mining acceleration and performance
quantification,” in 2014 IEEE 27th Canadian Conference on
Electrical and Computer Engineering (CCECE). IEEE, May 2014.
[Online]. Available: https://doi.org/10.1109/ccece.2014.6900989

[12] I. Korotkyi and S. Sachov, “Hardware accelerators for IOTA
cryptocurrency,” in 2019 IEEE 39th International Conference on
Electronics and Nanotechnology (ELNANO). IEEE, Apr. 2019.
[Online]. Available: https://doi.org/10.1109/elnano.2019.8783449

[13] “Silex insight blockchain hardware accelerator
product sheet,” accessed: 2023-03-30. [Online].
Available: https://www.silexinsight.com/content/uploads/
BA452-Blockchain-Hardware-Accelerator_Web.pdf,https:
//www.silexinsight.com/blockchain-hardware-accelerator/

[14] B. Devlin, “Zcash fpga acceleration engine,” 2019, accessed: 2023-
03-30. [Online]. Available: https://github.com/ZcashFoundation/
zcash-fpga/blob/master/zcash_fpga_design_doc_v1.4.2.pdf

[15] H. Javaid, J. Yang, N. Santoso, M. Upadhyay, S. Mohan,
C. Hu, and G. Brebner, “Blockchain machine: A network-
attached hardware accelerator for hyperledger fabric,” in 2022
IEEE 42nd International Conference on Distributed Computing
Systems (ICDCS). IEEE, Jul. 2022. [Online]. Available: https:
//doi.org/10.1109/icdcs54860.2022.00033

[16] M. Ikeda, “Hardware acceleration of elliptic-curve based crypto-
algorithm, ECDSA and pairing engines,” in 2021 IEEE 14th
International Conference on ASIC (ASICON). IEEE, Oct.
2021. [Online]. Available: https://doi.org/10.1109/asicon52560.
2021.9620402

[17] W. Ma, Q. Xiong, X. Shi, X. Ma, H. Jin, H. Kuang,
M. Gao, Y. Zhang, H. Shen, and W. Hu, “GZKP: A
GPU accelerated zero-knowledge proof system,” in Proceedings
of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
Volume 2. ACM, Jan. 2023. [Online]. Available: https:
//doi.org/10.1145/3575693.3575711

[18] T. Lu and L. Peng, “BPU: A blockchain processing unit for
accelerated smart contract execution,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, Jul. 2020. [Online].
Available: https://doi.org/10.1109/dac18072.2020.9218512

[19] “Accelerating ntt operations on an fpga,” 2022, accessed: 2023-
03-30. [Online]. Available: https://github.com/z-prize/2022-entries/
tree/main/open-division/prize2-ntt

[20] F. Y. Q. Andy Ray, Ben Devlin and R. Yesantharao, “Hardcaml
zprize competition,” 2022, accessed: 2023-03-30. [Online].
Available: https://zprize.hardcaml.com

[21] B. O. Peng, Y. Zhu, N. Jing, X. Zheng, and Y. Zhou,
“Design of a hardware accelerator for zero-knowledge proof in
blockchains,” in Lecture Notes in Computer Science. Springer
International Publishing, 2021, pp. 136–145. [Online]. Available:
https://doi.org/10.1007/978-3-030-74717-6_15

[22] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: Practical smart contracts
on bitcoin,” USA, p. 801–818, 2019.

[23] R. Yuan, Y.-B. Xia, H.-B. Chen, B.-Y. Zang, and J. Xie,
“ShadowEth: Private smart contract on public blockchain,”
Journal of Computer Science and Technology, vol. 33, no. 3, pp.
542–556, May 2018. [Online]. Available: https://doi.org/10.1007/
s11390-018-1839-y

[24] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private
data objects: an overview,” 2018. [Online]. Available: https:
//arxiv.org/abs/1807.05686

[25] K. Rabimba, L. Xu, L. Chen, F. Zhang, Z. Gao, and
W. Shi, “Lessons learned from blockchain applications of trusted
execution environments and implications for future research,”
in Workshop on Hardware and Architectural Support for
Security and Privacy. ACM, Oct. 2021. [Online]. Available:
https://doi.org/10.1145/3505253.3505259

[26] Z. Bao, Q. Wang, W. Shi, L. Wang, H. Lei, and B. Chen,
“When blockchain meets SGX: An overview, challenges, and
open issues,” IEEE Access, vol. 8, pp. 170 404–170 420, 2020.
[Online]. Available: https://doi.org/10.1109/access.2020.3024254

[27] D. Kim, S. Lee, and K. Park, “A case for SmartNIC-
accelerated private communication,” in 4th Asia-Pacific Workshop
on Networking. ACM, Aug. 2020. [Online]. Available: https:
//doi.org/10.1145/3411029.3411034

[28] S. Wadhwa, S. Rani, Kavita, S. Verma, J. Shafi, and M. Wozniak,
“Energy efficient consensus approach of blockchain for IoT
networks with edge computing,” Sensors, vol. 22, no. 10, p. 3733,
May 2022. [Online]. Available: https://doi.org/10.3390/s22103733

[29] M. Benji and M. Sindhu, “A study on the corda and ripple
blockchain platforms,” in Advances in Intelligent Systems and
Computing. Springer Singapore, Dec. 2018, pp. 179–187.
[Online]. Available: https://doi.org/10.1007/978-981-13-1882-5_
16

Seminar IITM SS 23 29 doi: 10.2313/NET-2023-11-1_05

[30] N. Storublevtcev, “Cryptography in blockchain,” in Computational
Science and Its Applications – ICCSA 2019. Springer International
Publishing, 2019, pp. 495–508. [Online]. Available: https:
//doi.org/10.1007/978-3-030-24296-1_39

[31] H. Cho, “ASIC-resistance of multi-hash proof-of-work mechanisms
for blockchain consensus protocols,” IEEE Access, vol. 6, pp.
66 210–66 222, 2018. [Online]. Available: https://doi.org/10.1109%
2Faccess.2018.2878895

[32] K. Toyoda, K. Machi, Y. Ohtake, and A. N. Zhang, “Function-
level bottleneck analysis of private proof-of-authority ethereum
blockchain,” IEEE Access, vol. 8, pp. 141 611–141 621, 2020.
[Online]. Available: https://doi.org/10.1109/access.2020.3011876

[33] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A
survey on zero-knowledge proof in blockchain,” IEEE Network,

vol. 35, no. 4, pp. 198–205, Jul. 2021. [Online]. Available:
https://doi.org/10.1109/mnet.011.2000473

[34] Y. Gong, Y. Jin, Y. Li, Z. Liu, and Z. Zhu, “Analysis
and comparison of the main zero-knowledge proof scheme,”
in 2022 International Conference on Big Data, Information
and Computer Network (BDICN). IEEE, Jan. 2022. [Online].
Available: https://doi.org/10.1109/bdicn55575.2022.00074

[35] R. Patel, “Sealevel syscalls,” 2022, accessed: 2023-03-30. [Online].
Available: https://bpf.wtf/sol-0x04-syscalls/

[36] T. Chen, A. Lu, J. Kunpittaya, and A. Luo, “A review of
zero knowledge proofs,” 2021, accessed: 2023-03-30. [Online].
Available: https://timroughgarden.github.io/fob21/reports/r4.pdf

Seminar IITM SS 23 30 doi: 10.2313/NET-2023-11-1_05

Joint OFDM for Radar and Communication

Thomas Krachten, Leander Seidlitz∗, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: ge58fag@mytum.de, seidlitz@net.in.tum.de, andre@net.in.tum.de

Abstract—The increasing congestion of the radio wave spec-
trum through the exponentially growing need for wireless
communication, combined with the move of communication
channels in Radio Detection And Ranging (RADAR) spec-
trum, lead to the idea of Joint RADAR and Communications
(JRC) systems. This paper explores the current state of JRC
systems using Orthogonal Frequency Division Multiplexing
(OFDM) in the literature. The paper first gives an overview
of the concept of OFDM and its basics, an introduction to
RADAR systems and the mathematical background of the
target detection and tracking with RADAR, followed by the
basics of JRC systems and is concluded by a discussion of
the currently proposed implementations of JRC systems.

Index Terms—sensing, hight-speed networks, OFDM,
RADAR, RadCom, OFDM RADAR, waveform design,
FMCW, overview

1. Introduction
With the increasing demand for wireless communica-

tion in the last decades and in the future, the spectrum has
and will become more crowded. On top of this, the need
for higher transmission speeds means the trend of using
higher and higher frequencies, traditionally occupied by
Radio Detection And Ranging (RADAR) systems, will
continue. This overlap of bandwidth results in in-band
and adjacent-band interference creating problems for both
applications. [1], [2] Those interferences pose a problem
for the communication and military industry but also the
aviation, car and space industries due to using RADAR
in their respective applications. To solve this problem, the
idea of integrating RADAR and communication in one
system has surfaced as Joint RADAR and Communica-
tions (JRC) or RADAR and Communications (RadCom)
system. This integration is possible due to the use of sim-
ilar components and the move to digital signal processing
in both fields. Those components include transmitting and
receiving antennas and the signal creation and processing
logic. This integration reduces the cost and needed space
of the system by reducing the number of components
needed but increases the complexity of the JRC system.
[3]

2. Frequency multipexing
Multiplexing is a technique that combines multiple

signals to one to send over a shared channel to optimize
the channel for a chosen criteria, such as data rate. There
is a multitude of categories the technique can assigned to,

Guard-Interval Guard-Interval Guard-Interval Guard-Interval

Figure 1: Diagram in frequency-amplitude-domain of
a FDM channel with 5 subbands modulated with
rect-functions on. Resulting in 5 sinc functions with
sinc(x) = sin(x)

x with their respective peaks at the
carrier-frequencies they are modulated on. The sub-
bands are spaced apart by a guard interval spacing,
but there are still Inner Symbol Interference (INSI)
between the subbands due to the sidelobes of the sinc-
functions not being zero at the peaks of the other sinc-
functions.

e.g Time Division Multiplexing (TDM), Space Division
Multiplexing (SDM), Frequency Division Multiplexing
(FDM) and Code Division Multiplexing (CDM). [4] This
paper focuses on FDM and its special form Orthogonal
Frequency Division Multiplexing (OFDM) due to its ad-
vantages in Joint RADAR and Communications (JRC)-
systems.

2.1. Frequency Division Multiplexing
FDM is a technique that divides a channel into mul-

tiple none overlapping frequency bands called subbands,
which are spaced apart by a guard interval spacing (guard
band) as seen in Fig. 1. The subbands have an individual
carrier-frequency in the bandwidth of the original channel.
A different data stream is modulated on each sub-carrier,
e.g. by multiplying the carrier frequency with a sequence
of rect-functions representing the bits of the data stream.
With the rect-function being defined, in dependency of τ ,
the duration of the signal being at 1, as:

rect(t) =

{
1 if |t| ≤ τ

2

0 otherwise
(1)

The subbands are combined to one signal via an In-
verse Fast Fourier Transform (IFFT) and transmitted over
the channel to the receiver. The receiver splits the signal

Seminar IITM SS 23 31 doi: 10.2313/NET-2023-11-1_06

Figure 2: Diagram in frequency-amplitude-domain of
an OFDM channel with 5 subbands modulated with
rect-function on. Resulting in 5 sinc-functions with
peaks at the carrier-frequencies in the frequency-
amplitude domain. The subbands are orthogonal, i.e.,
each maximum amplitude corresponds to the mini-
mum absolute amplitude of the others, by choosing
the subcarriers spacing δf = 1

τ with τ the length of
the window in the rect-function. [9]

into the subbands with a bandpass filter and demodulates
the data streams. [5], [6] The advantages of FDM are the
more efficient use of the available bandwidth, no time
synchronization is needed and the low complexity of im-
plementations. The disadvantages are the limited number
of subbands, the difficulty in assigning the frequencies to
the subbands and the INSI between subbands. The INSI
stems from the sidelobes of the sinc-function not being
zero at the peaks of all the other functions. Therefore,
adding or subtracting from the combined amplitude of the
signal at that frequency. [7] To overcome these disadvan-
tages, OFDM was developed.

2.2. Orthogonal Frequency Division Multiplexing
OFDM is a digital modulation form of FDM in which

the subbands are orthogonal to each other. This means
the adjacent sub-carriers do not interfere with each other
because the maximum power of each sub-carrier corre-
sponds directly to the minimum power of all the other
sub-carriers as seen in Fig. 2. [8] This orthogonality is
archived by using sine (or cosine) waves with frequencies
of k·∆f with k ∈ Z and ∆f = 1

τ , where τ is the window
length of the rect-function.

Through this, the distance between two adjacent car-
rier frequencies can be controlled by choosing a fitting
τ and the need for guard-bands is eliminated. Therefore,
higher spectral efficiency is archived compared to FDM.
However, due to multipath propagation and the possibility
of dispersion in the frequency domain, most OFDM sys-
tems use a Cyclic Prefix (CP) to reduce the ISI as seen in
Fig. 3. The CP is a part of the signal that is repeated at the
beginning of the next signal and is used to compensate for
the delay of the channel. The length of the CP is chosen
to be longer than the maximum delay of the channel. The
receiver removes the CP, and the signal is processed as if
it was not delayed. [10]

Figure 3: Diagram in frequency-amplitude-time-
domain of an OFDM channel with 8 orthogonal sub-
bands modulated with rect-function on combined to
OFDM-symbols. Between the OFDM-symbols in the
time domain guard interval are inserted to reduce
Inter Symbol Interference (ISI). [11]

The carrier-frequencies have data streams with a certin
maximum length modulated onto, are then combined into
one signal via an IFFT. This OFDM symbol is transmitted
over the channel to the receiver. The receiver then uses
a Fast Fourier Transform (FFT) to split the signal into
the sub-carriers and demodulates the data streams. [11]
The advantages of OFDM are the high spectral efficiency,
resistance to multipath propagation and no ISI. OFDM
comes at the cost of increasing the complexity of the
implementation.

3. Radio Detection and Ranging
This section gives an overview of the basics of Ra-

dio Detection And Ranging (RADAR) systems and the
calculations needed to determine the angle, distance and
velocity of a target. It also gives an overview of the
different types of RADAR systems and their waveforms.

3.1. Basics of RADAR
A RADAR system uses electromagnetic waves in the

frequency range of 3MHz to 100GHz to detect targets in
its range. A pulse, the transmitted pulse (TP), is trans-
mitted via an antenna and the echo, the received pulse
(RP), is processed to determine the target’s angle, distance
and angular velocity. The RP can vary from the TP in
frequency and amplitude. The components of a RADAR
system vary, but all have at least one oscillator to create
the TP, one or multiple antennas and a logic to process
the RP. If only one antenna is used for transmission and
receiving, a RADAR system is called monostatic, quasi-
monostatic if transmitting and receiving antennas are close
to one another and bistatic if the antennas are at different
locations from the target’s viewpoint. On top of the angle,
range, and velocity sensing functions, RADAR systems
can also detect the size of the target, shape, material
and moving parts. However, the complexity of RADAR
systems and their cost and size increase with the number
of functions they can perform. [12]

RADAR waveforms. There are two basic options for a
waveform when designing a RADAR system: a Continu-
ous Wave (CW) or a pulse. With a CW RADAR system,
the TP is a constant wave, and the receiver is continuously
active. Therefore, the RP can only be separated from the
current TP through a frequency change induced by the
movement of the transmitter, target or receiver (Doppler

Seminar IITM SS 23 32 doi: 10.2313/NET-2023-11-1_06

shift), mixing the CW with the received signal or via
spatial separation of transmitter and receiver. The pulse
RADAR transmits a pulse and then waits for the echo.
Both intervals together are called Pulse Repetition Interval
(PRI). [12], [13]
Classification of RADAR systems. RADAR systems can
be classified in different ways. One way is to classify
them by the way they transmit the TP. This can be done
by classifying them in CW and pulse RADAR systems.
Another way is to classify them by the amount of transmit
and receive antennas, if there are multiple receive antennas
and one transmit antenna the system is called Single Input
Multiple Output (SIMO) and when there are multiple
transmit and receive antennas Multiple Input Multiple
Output (MIMO). [13]

3.2. The RADAR equation
Every signal transmitted from an antenna or received

by one is damped by a certain factor, depending on the
used antenna. This is the result of its gain. Every antenna
has a specific amount of gain G, that is its radiation effi-
ciency η multiplied by the directivity D. As a result, the
power of the RP depends on the power of the signal before
transmission, the gain, the wavelength and the distance to
the target and its RADAR-cross-section. The equation to
determine this power is given by Pr = PsGtGrσλ

2

(4π)3R4 with
Pr denoting the power of the RP in W, Ps the power of
the original signal in W, Gt the gain of the transmitting
and Gr the gain of the receiving antenna, σ the RADAR-
cross-section of the target in m2, λ the wavelength of the
TP and R the distance to the target. The RADAR-cross-
section is the area of the target TP illuminates. It can
be reduced by using RADAR-wave dampening materials
or with an optimized shape, e.g. fewer 90-degree angles.
The power is also dampened by the distance to the target
with a factor of the distance to the power of four due
to the quadratic dampening of the TP over the one-way
distance. Due to the dampening of the TP by multiple
factors, the echo of a target might be too weak that its
Signal to Noise Ratio (SNR) is so low that the echo is not
distinguishable from the noise, making it undetectable. To
combat this, the signal is filtered with filters matched to
the TP and possibly integrated between pulses (adding up
the magnitudes from multiple echoes) increasing the SNR,
if the PRI is small enough that the target has only moved
a negligible distance. [12]
Clutter detection and suppression. Clutter is any un-
wanted signal echo that is not from a target, e.g. the echo
of a rock face or a bird. The simplest way to detect clutter
is by comparing the RP to the RPs of previous cycles. If
the echo is similar to the echoes in RPs of previous cycles
with similar range, angle and velocity in relation to the
movement of the RADAR system during the cycles, the
echo is considered clutter. It is also possible to use the
staticity of most clutter to detect it. To suppress detected
clutter, its echo in the RP can be ignored, or the average
of previous echoes can be subtracted from the current
echo, and the threshold for target detection can be raised
resulting in fewer false positives.

3.3. Range detection
To estimate the distance to a target, the time between

the transmission of the TP and the reception of the RP is

needed. As a result, CW RADAR needs to assign the echo
to an earlier point in time to determine the range. This can
be archieved via frequency modulation, e.g. increasing the
frequency of the TP with time and dropping back to the
base frequency after a certain time tc. This interval is
called a chirp, and the system is called Frequency Mod-
ulated Continuous Wave (FMCW) RADAR. The range
formula for (quasi-)monostatic PRI systems is Rt =

cTR

2 ,
with c being the speed of light, Rt the distance between
the transmitter and the target and TR the time between
transmitting the pulse and receiving it the round trip time
which can be measured. In contrast, bistatic RADAR PRI
systems need a synchronization element to determine the
delay. This can be done via a reference channel if the
distance between transmitter and receiver is known. The
range formula for bistatic systems is Rt+Rr = cTR, with
Rt and Rr being the distance between the transmitter and
the target and the receiver and the target. The noise and in-
terference in real-world applications adds some ambiguity
to the range detection. Furthermore, if the range exceeds
the maximum unambiguous range Rmaxu = c·PRI

2 [14]
the target seems to be closer than it is. This is called
range ambiguity. A target might not be detected at all
due to overlapping echoes. This occurs when there are
multiple targets in the same direction and with a distance
smaller than the range resolution Rres. For pulse RADAR
systems the Rres = c·PRI

2 [15] and for FMCW systems
the Rres = c

2BTcfs [16], with B being the bandwidth
of the FMCW, Tc the duration of the cycle and fs the
sampling rate.

3.4. Radial velocity detection
As mentioned before, the RP will be shifted in

the frequency domain through any distance change be-
tween transmitter and target, and target and receiver. This
Doppler shift will be positive if the distance is decreasing
and be negative if it is increasing. If the Doppler shift
induced by the target is known, the radial velocity of the
target can be calculated with vr = fdλ

2 . If it is unknown,
it can be estimated with the range of the target at multiple
pulses. For a target moving faster than the maximum
unambiguous Doppler velocity vmax = λ

4·PRI an exact
velocity can not be calculated. On top of that, when the
target is moving at the radial velocity of n·vblind = λ

2·PRI
with n being an integer or fd being an integer multiple
of 1

PRI , the target appears not to be moving at all. This
is called blind speed. [12], [17]

3.5. Angle detection
With an isotropic antenna, i.e., the antenna emits

equally in all directions, only the range and velocity of
the target can be detected. This can be resolved by using
a directional antenna and moving the antenna in azimuth
(horizontally) and elevation (vertically) mechanically or
by using beamforming. Thus, the angle of the target can
be estimated to be in the direction of the transmit beam.
Better accuracy of angle detection can be archieved by
using multiple receive antennas spaced apart by dr = 1

2λ.
Those receive the same signal, but through the space
between them, the signal travels an additional distance
of dr sin θ. This results in a phase shift (see Fig. 4).
This phase shift ω has to be measured so the angle of
arrival θ can be calculated with θ = sin−1

(
ωλ

2πdr

)
. Due

Seminar IITM SS 23 33 doi: 10.2313/NET-2023-11-1_06

Figure 4: Schematic of a RADAR system with 4 re-
ceiving antenna spaced apart λ

2 with λ being the
wavelength. The received wavefront appears linear
through the distance to the source at the angle θ. This
angle results in a different time of arrival and therefore
with a shifted phase. [18]

to the fact that ω can only be estimated in the range of
(−π, π), the unambiguous Field Of View (FOV) is limited
to θfov = ± sin−1

(
λ

2dr

)
. If more antennas are used ω can

be estimated more reliable, and a FFT can be performed
on the signal sequence. The peaks of the result indicate
the angle of arrival. Increasing the number of receiving
antennas Nr leads to sharper peaks, thus higher accuracy.
If the antennas are spaced apart by the distance dr the
angle resolution is θres = 2

N with N = Nt · Nr, if
the transmitting antennas are spaced apart by the distance
dt = Nr · dr. This positioning allows the detection of
Nt different transmission, which increases the sensing
capabilities of the RADAR system. [13]

4. RADAR and communication systems
JRC or RADAR and Communications (RadCom) sys-

tems combine RADAR and communication systems. The
idea of JRC systems is to share the components of the
RADAR, such as transmitting and receiving antennas,
signal generators and signal processing logic. JRC systems
also have the upside of sharing information between the
subsystems, which can be used to enhance both, e.g.
by using the RADAR to detect communication partners
and using beamforming to increase the range and SNR
of the communication system. The targets are to reduce
the interference between the RADAR and communication
system, cost and space. There are two main approaches to
JRC systems, the first is to use the TP of the RADAR to
send data to a communication partner and to detect targets
in one pulse. The second approach is to switch between
the TP for radar and for communication dynamically,
depending on the need for communication. Of course,
FMCW JRC systems can be used, but the transfer rates
are currently not high enough. A combination of the two
is feasible but loses the ability to sense continuously, as
well as other downsides. [16]

Possible applications. There are many areas that could
profit from JRC systems. The two focus points are intel-
ligent transport systems, e.g. self driving cars or adaptive

cruise control, and the military. JRC systems could enable
cars to communicate with each other about their properties
like position, speed and predicted route and with infras-
tructure like traffic lights or sensors in the road through
protocols like Vehicle to Everything (V2X). This should
be archivable, while not making the car dependent on
market penetration, making it more reliable and secure
by its sensing capabilities and attractive to car manufac-
turers. The military could use JRC systems to detect and
track targets and to communicate with allied assets and
command centers while reducing the cost of acquisition
space and power needed for two separate systems. [19]

Waveform. Designing a wave that satisfies prerequisites
for both RADAR and communication is the main chal-
lenge of JRC systems. Stand-alone RADAR systems use
waves specifically designed for a high autocorrelation, i.e.,
the similarity between the wave at one time and at a later
point in time. [20] Using regular RADAR waves would
result in orders of magnitude lower symbol rates com-
pared to a communication system in the same bandwidth.
One option to decrease the need for autocorrelation in a
wave, is using multicarrier waveforms such as OFDM.
Those also solve the problem of the low transfer rates
of normal RADAR waves. Additionally to the need for
a specific autocorrelation and bit rate, there might be
other requirements for the wave, such as certain sensing
capabilities, a low Bit Error Rate (BER), low probability
of being detected or increased resistance to jamming. All
those properties need to be considered when designing a
JRC waveform. OFDM has many of the most commonly
needed properties, such as a high bit rate, resistance to
multipath fading, low BER and cost of implementation,
due to its extensive use in communication systems and the
resulting availability and low cost of components. [19]

5. Current State of RadCom Systems
The current state of JRC systems is mainly theoretical,

with only prototypes and simulations created to prove
some of the proposed concepts. This is because the JRC
systems are still in the research phase and are not yet ready
for commercial use. This section will give an overview
of current proven implementations of JRC systems in
scientific papers. The primary focus lies in designing the
waveform, as it is the main challenge of JRC systems.
This, combined with the different demands of the use
cases, results in many propositions for waveform designs
for JRC systems. However, due to the need for a high
data rate in most RadCom systems, a particular focus is
put on OFDM-based waveforms, as they are known to
achieve high data rates.

Shared OFDM subchannels. One of the more unique
suggested solutions is using precoded OFDM symbols in a
MIMO RADAR system. The precoder is designed to mini-
mize a specific sensing-communication metric and can be
used for beamforming. On top of that, the OFDM sub-
channels are divided into two groups, private and shared.
A sub-carrier is shared when all transmitting antennas in
the RADAR system can transmit on it, enabling high data
transmission rates. The parallel transmission on the same
sub-carrier leads to the carriers losing their orthogonality
and creates coupling between the transmitted symbols.

Seminar IITM SS 23 34 doi: 10.2313/NET-2023-11-1_06

The loss of orthogonality complicates the estimation of the
target properties by preventing the formation of a virtual
array. The number of private sub-carriers and the assign-
ment to a transmission antenna to increase the accuracy of
the RADAR system is dynamically decided on, depending
on the situation. The private sub-carrier can be used to
create a virtual array and for pilot transmission for channel
estimation, but they decrease the archivable transfer rates.
[1]
Non-contiguous OFDM subbands. Another proposition
is to use non-contiguous OFDM subbands for data trans-
mission located in a large spectrum for sensing. However,
using regular OFDM waves has the downside, of a high
Peak to Average Power Ratio (PAPR) resulting in lower
amplifier efficiency, and in-band and out-of-band distor-
tion. To combat this, the sensing bands need to transmit
waves with good autocorrelation, optimized with a unique
algorithm to decrease the PAPR of the entire spectrum.
[21]
Downsides of OFDM-based waveforms. The downsides
of OFDM-based waveform are mainly the same as normal
OFDM has, combined with the high PAPR. However, the
main disadvantage of OFDM-based waveforms in JRC
systems is the reduction of SNR compared to traditional
RADAR systems, resulting in lower accuracy of the target
parameters estimations, probability of detection and higher
BER. This effect can be reversed to within a margin by
transmitting the OFDM symbol multiple times until the
next symbol and using specific pilot symbol patterns and
modulation schemes to decrease the BER. However, the
sending of symbols continuously makes currently widely
used access patterns like Carrier Sense Multiple Access
(CSMA) harder to implement. [16]

6. Conclusion and future work
This paper has given an overview of the basics of

FDM, OFDM, RADAR and JRC, and the current state of
RadCom systems. It shows that OFDM is a good candidate
for RadCom systems due to its high data rates and the
possibility of a low PAPR. However, the use of OFDM
in RadCom systems is not without downsides. The use
of normal OFDM in RadCom systems does not reach
the possible maximum transmission rates. To reach these
rates, extra steps in the signal creation and processing
are needed. Overall, we believe that OFDM is the best
candidate for a JRC waveform due to the availability
and low cost of components and their for JRC systems’
favorable properties. In the future, more research has
to be done in the field of RadCom waveform design,
their implementation, robustness to jamming, multipath
fading and beamforming. Furthermore, protocols might be
needed for the communication part of the JRC system
as some propositions are making it impossible to use
currently widely used access control protocols.

References

[1] Z. Xu and A. Petropulu, “A bandwidth efficient dual-function
radar communication system based on a mimo radar using ofdm
waveforms,” IEEE Transactions on Signal Processing, vol. 71, pp.
401–416, 2023.

[2] B. D. Cordill, S. A. Seguin, and L. Cohen, “Radar performance
degradation with in-band ofdm communications system interfer-
ence,” pp. 1–1, 2013.

[3] e. a. Xiao, B., “Ofdm integrated waveform design for joint radar
and communication.” Wireless Networks (2023), 2023.

[4] Elektonik Kompendium. Multiplex und multiplexing. Ac-
cessed on 03.26.2023. [Online]. Available: https://www.
elektronik-kompendium.de/sites/kom/0211292.htm

[5] ——. Fdm - frequency division multiplex (frequenzmulti-
plexverfahren). Accessed on 03.26.2023. [Online]. Available:
https://www.elektronik-kompendium.de/sites/kom/2305151.htm

[6] R. Awati. frequency-division multiplexing (fdm). Version
of 08.2021. [Online]. Available: https://www.techtarget.com/
searchnetworking/definition/frequency-division-multiplexing

[7] Geeks for Geeks. Frequency division and time
division multiplexing. Accessed on 03.25.2023.
[Online]. Available: https://www.geeksforgeeks.org/
frequency-division-and-time-division-multiplexing/

[8] National Instruments. Ofdm and multi-channel commu-
nication systems. Accessed on 01.06.2022. [Online].
Available: https://www.ni.com/de-de/innovations/white-papers/06/
ofdm-and-multi-channel-communication-systems.html

[9] MathWorks. ofdmmod. Accessed on 03.27.2023. [Online]. Avail-
able: https://de.mathworks.com/help/comm/ref/ofdmmod.html

[10] S. B. Thomas Strohmer. Optimal ofdm design for time frequency
dispersive channels. Version of 07.2003. [Online]. Available:
https://ieeexplore-ieee-org.eaccess.tum.edu/document/1214833

[11] Keysight Technologies, Inc. Concepts of orthogonal
frequency division multiplexing (ofdm) and 802.11
wlan. Accessed on 03.26.2023. [Online]. Available:
https://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/
Subsystems/wlan-ofdm/content/ofdm_basicprinciplesoverview.htm

[12] P. D. Jenn. Radar fundamentals. Accessed on 03.28.2023. [Online].
Available: https://faculty.nps.edu/jenn/seminars/radarfundamentals.
pdf

[13] S. Rao. Mimo radar. Version of 7.2018. [Online]. Available: https:
//www.ti.com/lit/ml/swra554a/swra554a.pdf?ts=1679955023785&
ref_url=https%253A%252F%252Fwww.google.com%252F

[14] A. M. Society. maximum unambiguous range. Version of
04.25.2012. [Online]. Available: https://glossary.ametsoc.org/wiki/
Maximum_unambiguous_range

[15] D. Koks. How to create and manipulate radar range-doppler plots.
Version of 12.2014. [Online]. Available: https://apps.dtic.mil/sti/
pdfs/ADA615308.pdf

[16] K. B. S. A. Dapa, G. Point, S. Bensator, and F. E. Boukour. (2023)
Vehicular communications over ofdm radar sensing in the 77 ghz
mmwave band.

[17] Dav University. Blind speed and staggered prf
notes final. Accessed on 03.29.2023. [Online]. Avail-
able: https://www.davuniversity.org/images/files/study-material/
Blind%20Speed%20and%20staggered%20PRF_notes%20final.pdf

[18] mathscinotes. Beamforming math. Accessed on 03.30.2023.
[Online]. Available: https://www.mathscinotes.com/2012/01/
beamforming-math/

[19] C. Sturm and W. Wiesbeck, “Waveform design and signal pro-
cessing aspects for fusion of wireless communications and radar
sensing,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1236–1259,
2011.

[20] Pennsylvania State University. Autocorrelation and time series
methods. Accessed on 04.01.2023. [Online]. Available: https:
//online.stat.psu.edu/stat462/node/188/

[21] Y. Huang, S. Hu, S. Ma, Z. Liu, and M. Xiao, “Designing low-papr
waveform for ofdm-based radcom systems,” IEEE Transactions on
Wireless Communications, vol. 21, no. 9, pp. 6979–6993, 2022.

Seminar IITM SS 23 35 doi: 10.2313/NET-2023-11-1_06

Seminar IITM SS 23 36

Current State of Hardware and Algorithms in WiFi Radars

David Pop, Leander Seidlitz∗, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: {popda,seidlitz,andre}@net.in.tum.de

Abstract—Recent advances in wireless sensing demonstrate
the ability of commodity WiFi waves to detect human activ-
ity. Using IEEE 802.11 WiFi instead of cameras, wearable
sensors and LiDARs can be a widely available and cost-
effective solution to the human surveillance and detection
problem. It can play a crucial role in applications, such as
healthcare, intrusion detection systems and smart homes.

WiFi sensing schemes rely on using the fine granularity
of the physical layer CSI made possible by the OFDM
modulation technique. This paper introduces the necessary
theoretical background to cover wireless sensing. The most
relevant state of the art is analyzed to determine the per-
formance of WiFi based on different metrics and scenarios.
Recent works are able to accurately estimate human pose
using deep learning approaches. WiFi-based human recog-
nition proves to be a reliable detection mechanism using
off-the-shelf and low-cost hardware.

Index Terms—wifi, ofdm, csi, human detection

1. Introduction

Human activity detection and sensing has been ana-
lyzed for various surveillance and monitoring applications
for years. Such solutions are widely applicable in domains
such as intrusion detection systems [1], healthcare [2],
smart home [3], monitoring of children and elderly [1] or
even augmented reality [3] and gaming [4].

When considering approaches for the estimation of
human positioning, there are mainly three solutions. The
first option relies on approaches based on visualization [5],
such as 3D cameras. In this case, the cameras are used
to capture images of humans to then recognize and match
their activities [3]. However, the performance of this ap-
proach can be altered by physical factors, e.g., lighting
conditions or angles blocked by objects [3]. A second
solution to the detection problem is the use of wear-
able sensors [5], such as LiDAR and radar sensors [6].
Nonetheless, such devices have to be attached to the
targets of the detection, which is not always feasible. Both
of these approaches are characterized by high costs, power
and energy consumption, and may sometimes be out of
reach for daily use. This work focuses on another de-
tection method which uses 1D sensors, more specifically,
commodity WiFi signals for sensing.

The use of wireless signals for activity recognition
has been receiving attention due to its cost-efficiency and
high availability. Initial research has used the received
signal strength indicator (RSSI) for indoor localization

WiFi Device

TargetsWall

Figure 1: Environment for through-wall detection of hu-
man activity using WiFi signals.

[7]. However, using the physical (PHY) layer for channel
state information (CSI) proves to be more accurate for
indoor localization than RSSI [7]. This is due to CSI’s
ability to have multipath characteristics, which offers
a more accurate representation of the environment [7].
Multiple detection approaches use the PHY layer CSI
provided by WiFi. The accuracy of this solution relies
on the fine granularity of channel information offered by
the orthogonal-frequency-division-multiplexing (OFDM)
modulation, which is the standard for IEEE 802.11 a/g/n
WiFi standards [7], [8]. For this approach, any activity
in the environment is detected using the amplitude and
phase information of the OFDM sub-carriers. The use
of WiFi for indoor detection can be more effective than
its counterparts since it is not prone to errors caused by
illumination, dead angles and it also offers an off-the-shelf
solution [6]. When comparing it to wearable sensors, it
is also "non-invasive", since it is not required that the
targets wear any additional equipment [1]. Thus, using
commodity WiFi signals to detect human activity through
walls can be a cost-effective, widely available and more
private approach.

Figure 1 displays a typical system for through-the-
wall detection using standard IEEE 802.11 WiFi. The blue
highlighted area represents the sent WiFi signals coming
from the transmitter antennas. Note that in this case, the
WiFi device stands for both transmitter and receiver. The
radio frequency (RF) signal crosses the wall and reflects
off objects and targeted humans [4]. The detection of
human activity is realized by capturing and analyzing
these reflections. The main challenge is to distinguish

Seminar IITM SS 23 37 doi: 10.2313/NET-2023-11-1_07

between reflections that generate from the wall itself and
from other objects in the room from the actual target. The
power of the received signal is also highly reduced, since
it has to pass through the wall twice [4]. The initial strong
reflection from the wall creates a "flash effect" [4], which
can hinder the sensing of the environment behind the wall.
The CSI shows the correlation between transmitted and
received signal waves, making it possible to detect motion
in the environment [6].

The paper is organized as follows. Relevant properties
of the used signal processing techniques, such as OFDM
and CSI are described in 2. Section 3 shows the com-
mon approaches to the through-wall detection and sensing
problem by presenting relevant state of the art. Finally, the
conclusion and key findings are given in Section 4.

2. Preliminaries

This section offers background information needed to
determine how WiFi signals are used to detect and sense
humans through surfaces. The underlying multiplexing
technique used by WiFi is the OFDM. Furthermore, the
PHY layer CSI uses information offered by OFDM to
detect motion between transmitted and received signal
waves. Therefore, the two are introduced below.

2.1. Orthogonal Frequency-Division Multiplexing

OFDM is a multiplexing technique used in wireless
applications, such as the IEEE 802.11 WiFi [8]. The main
principle of OFDM is to split a high volume of data into
smaller parts which are then transmitted simultaneously
through sub-carriers. This makes OFDM a multi-carrier
system [9], meaning that the channel is transformed into
a set of multiple orthogonal carriers, which do not in-
terfere with each other. The total bandwidth from the
spectrum is split into multiple bands corresponding to
each carrier, making it possible to transmit data in parallel
[10]. In OFDM, the sub-channels are able to overlap
without having interfering frequency spectra at the peak
of the subband due to the orthogonality [8], given by the
following condition:

∫ T

0

cos(2πnf0t) cos(2πmf0t) d t = 0, n ̸= m (1)

where n,m ∈ Z̸=0, f0 is the fundamental frequency and
T the time period of the integration [10]. Furthermore,
one sub-carrier signal can be described as follows [8]:

sn(t) = ane
j2πfnt (2)

for the transmitted data {a0, a1, ..., aN−1} and carrier fre-
quency fn. The sum of these signals of the N sub-carriers
represents the whole sent signal, which corresponds to the
following equation [8]:

sk =

N−1∑

n=0

ane
j2πnk

N (3)

Using the discrete Fourier transform (DFT) on the signal
defined in 3, the received data can be recovered [8].

Figure 2 depicts a typical OFDM system, contain-
ing an OFDM transmitter and receiver part. The input

Input
Sequence QAM IFFT D/A

OFDM
Signal

Modulation

OFDM transmitter

Output
Sequence QAM FFT A/D

OFDM
Signal

Demodulation

OFDM receiver
Figure 2: OFDM system based on [8], [10].

information sequence is modulated using quadrature am-
plitude modulation (QAM), thus modulating the OFDM
subcarriers. The signals are then transformed using inverse
fast Fourier transform (IFFT). The resulting OFDM signal
is completed after being transported through a digital-to-
analog (D/A) converter. On the receiving end, the process
is similar, but uses an analog-to-digital (A/D) converter,
FFT and is demodulated to create the resulting output data.

In a real OFDM application, for IEEE 802.11n WiFi,
a 20 MHz bandwidth centered around a 2.4 GHz or
5 GHz central frequency is used [3]. Depending on the
scenario, 30 up to 64 sub-carriers can share the channel.
The bandwidth and sub-carrier number may also deviate.

2.2. Channel State Information

The first step towards human activity detection using
wireless signal relies on the CSI given by the PHY
layer. CSI describes the relation between transmitted and
received signal wave [6]. Previously, the MAC layer re-
ceived signal strength indicator (RSSI) was mainly used
for wireless detection. Together with the sub-channel in-
formation of multiple-input-multiple-output (MIMO) and
OFDM in IEEE 802.11 WiFi, CSI is able to deliver finer-
grained information of the environment [5]. Being able to
use the phase and amplitude information of each OFDM
sub-carrier makes it more suitable and performant than its
data-link layer counterpart [7].

In a WiFi channel, for each sub-carrier, transmitting a
signal x and receiving a signal y denotes to:

y = Hx+ n (4)

Hi = |Hi|ej∠Hi (5)

where H is the CSI matrix and n the noise vector [11].
The CSI matrix estimates the modulated activity in the
environment given the WiFi waves [5]. The three dimen-
sions for the complex CSI matrix are for the i-th subcar-
rier with NT transmitter and NR receiver antennas [5].
Furthermore, the amplitude |Hi| and phase ∠Hi for each
complex CSI value Hi of a sub-carrier can be denoted as
in equation 5 [5], [7].

3. WiFi Detection Implementations

There are multiple approaches possible to the WiFi
sensing problem. This Section gives an overview of the
most relevant state of the art in the domain. Works that do

Seminar IITM SS 23 38 doi: 10.2313/NET-2023-11-1_07

Environment
Activity

Contact State
Information (CSI)

• Reducing Noise
• Transformations
• Filtering

Model-based

Learning-based

Detection

Recognition

EstimationSignal Processing Approach
Applications

Figure 3: Approaches for through-wall human sensing using WiFi based on [3], [5], [11].

not necessarily cover through-wall detection play an im-
portant role in the ongoing research and are thus analyzed
as well. Table 1 gives an overview of the main characteris-
tics of the works, such as accuracy scores, used hardware
and covered human positioning during the experiments.
Even though there are multiple implementations, most of
them follow a similar pattern. Figure 3 depicts a block
diagram of the typical flow when it comes to human
detection using WiFi waves. The first step is to generate
the WiFi signals to capture environment activity. The fine
granularity of CSI is used to extract information from the
received signal. The captured CSI measurements are then
processed by applying noise reduction, transformations
(e.g., FFT, discrete wavelet transform) and filtering tech-
niques to eliminate outliers and increase performance [11].
Processed CSI can be used by a model-based or learning-
based approach for different applications, such as human
detection, recognition or estimation.

Passive Bistatic WiFi Radar (PBWR). In [12], Chetty
et al. present one of the first attempts (2012) for through-
the-wall (TTW) detection with WiFi by using a passive
bistatic WiFi radar. The authors test their implementation
to detect a moving human. The WiFi wave signal trans-
mitter is a 802.11 WiFi AP placed in the same room,
4 m away from the target. The passive bistatic radar
consists of two receivers placed outside the room at a
standoff distance. The data is processed offline first by
applying range-Doppler mapping. The CLEAN algorithm
is then introduced to remove digital signal interference
(DSI) and additional stationary clutter. For target detec-
tion, a 2D constant false alarm rate is used. The signal-to-
interference ratio (SIR) is the main metric for the TTW
target responses. Results show that using CLEAN, the SIR
is decreased by 19 dB, creating a more accurate detection.

Wi-Vi. Adib and Katabi [4] present Wi-Vi, a TTW de-
tection device. The main components of the Wi-Vi device
are two transmitter and one receiver antennas. Compared
to the previous implementation, Wi-Vi does not need to
have any device located within the same room as the
target. One main aspect analyzed by this work is the
initial reflection from the wall that is much stronger than
the reflections off the objects behind the wall, creating a
"flash effect". The authors use iterative nulling together
with power boosting to tackle this challenge, by nulling
the strongly reflected signal. An inverse synthetic aperture
radar (ISAR) is used for motion tracking. Experiments
are carried within a conference building having walls
of different building materials and thickness. Wi-Vi can
detect one or multiple moving human targets and gestures.
The detection scores are 100% for 0 to 1 targets. For

multiple humans, Wi-Vi shows an accuracy of 85%. When
considering gesture detection, the accuracy reaches 93%
for closer and 75% for longer standoff distances. Wi-Vi
delivers high detection accuracy for thin building materials
(wood, glass, door, 15 cm hollow wall), but drops at 87%
for a concrete 20 cm wall.

DeMan. Wu et al. introduce DeMan [1], a solution for
"non-invasive DEtection of moving and stationary hu-
MAN with commodity WiFi devices". Unlike previous
works, DeMan also focuses on detecting stationary hu-
mans by choosing breathing (chest motions) as a sensing
factor. However, this work does not cover through-wall
detection. The scheme is based on the amplitude and
phase values of the OFDM sub-carriers given by CSI. The
experimental hardware consists of a IEEE 802.11n WiFi
AP transmitter and a laptop equipped with a NIC receiver.
DeMan delivers high accuracy for the conducted experi-
ments in true positive scenarios: 99.86% for absent, 93%
for stationary and 95% for moving humans respectively.

WiSpy. Hanif et al. propose WiSpy [13], a CSI-based
through-wall movement sensing and person counting
scheme, which uses commodity WiFi waves. Two Intel
NUCs are placed in front of a 33 cm brick wall. In
their approach, the authors use machine learning (ML)
algorithms on the processed CSI data to predict the
amount of people behind the wall. Principal component
analysis (PCA) is applied on the CSI measurements for
dimensionality reduction. This work also compares mul-
tiple ML algorithms on the PCA data. Results show, that
using decision trees (DT) delivers the best results, i.e.,
a detection accuracy of 96.97%. On the other hand, k-
nearest neighbor (KNN) delivers the poorest performance,
having a detection accuracy of under 80%.

Person-in-WiFi (PiW). In [14], Wang et al. introduce
one of the first WiFi-based person perception schemes,
implementing body segmentation and pose estimation. A
deep learning approach is used to map WiFi samples
to 2D human body segmentation using recorded RGB
videos. During the experiments, subjects are placed be-
tween transmitter and receiver, without having any walls
or obstructing stationary objects in-between. The setup
consists of two WiFi NICs, one used for transmission,
one for receiving, each having 3 antennas. To implement
a deep learning approach for person perception, CSI mea-
surements and video frames are taken at the same time
stamps. Body segmentation maps are constructed using
region-based convolutional neural networks (R-CNN). For
pose estimation, however, the Body25 model of OpenPose
is used. The proposed approach shows high performance

Seminar IITM SS 23 39 doi: 10.2313/NET-2023-11-1_07

TABLE 1: WiFi radar sensing implementations comparison.

PBWR [12] Wi-Vi [4] DeMan [1] WiSpy [13] PiW [14] HARNN [3] DensePose [6] GoPose [15]

General

accuracy – >85% >94% 96.97% >85% >95% >87% <5cm error
carrier freq. 2.4 GHz 2.4 GHz 2.4 GHz 5.18 GHz 2.4 GHz 5 GHz 5 GHz 5.32 GHz
bandwidth 16 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 20 MHz 40 MHz

hardware DWL
2000AP+

WiFi
antennas

Intel 5300
NIC

Intel
NUC

Intel 5300
NIC

Intel 5300
NIC

WiFi
antennas

Intel 5300
NIC

Human position

moving ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
stationary ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓
pose estimation ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓
through-wall ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓

for whole person profiles, having detection scores between
85% and 91%. Low performance of WiFi signal detection
is demonstrated for small body parts due to WiFi’s wave-
length of 12.5 cm.

HARNN. A CSI-based WiFi detection scheme for hu-
man activity recognition using recurrent neural networks
(HARNN) is introduced by Ding et al. in [3]. This work
firstly uses a two-level decision tree leveraging the vari-
ance and correlation coefficient of the CSI measurements
to detect activity in the environment. Moreover, the noise
is eliminated from the raw CSI using channel power
variation (CPV) and time-frequency analysis (TFA) in
time and frequency domain respectively. Detection of
various human activities (e.g., running, walking, sitting
etc.) is achieved using a RNN model with a long short-
term memory (LSTM) block. A WiFi device is used for
transmission together with a Intel 5300 NIC as a receiver.
The experiments are carried in a closed off environment,
through-wall detection, however, is not covered. HARNN
reaches detection accuracies of 95% and 96% for all
the mentioned activities. The authors also point out, that
increasing the amount of receivers yields better detection
rates of 96% up to 98% on average.

DensePose. Geng et al. propose DensePose [6], a study
that aims to achieve body segmentation and key-point
body detection using commodity WiFi signals. Simi-
lar to HARNN, after sanitizing the raw CSI data, the
amplitude and phase of the 30 OFDM sub-carriers are
mapped to 2D feature maps. The data is passed through a
DensePose-RCNN architecture, used to predict UV coor-
dinates of the human body. UV maps create a correlation
between 3D and 2D human data. The main goal here
is to map 1D CSI data to UV maps, thus transforming
the data into spatial domain. The correlation between
CSI samples and video captures is achieved similar to
HARNN. In addition, DensePose uses transfer learning
from the image-based network to the WiFi-based one to
reduce training time. The testing environment uses three
transmission and three emission antennas. The authors test
out their approach in multiple layout scenarios. The imple-
mentation yields high accuracies of over 87% for the same
layout used in training. However, when deployed within an
unknown layout, the average precision (AP) of the model
drops (e.g., from 43 AP to 27 AP). The detection accuracy
also suffers when faced with human body poses, which
did not occur during training. Moreover, the results are not

entirely clear once there are more than three human targets
in the testing space. The authors thus motivate generating
more training data to solve the failure cases.

GoPose. In [15], Ren et al. present GoPose, a scheme used
to estimate human pose using WiFi signals. The novelty
relies on the tracking of 3D skeleton-based human poses,
compared to the 2D version of PiW. The implementation
is able to track both stationary and moving targets. Un-
like previous works, GoPose manages to estimate unseen
activities as well. It also works when being faced with
walls, screens or other stationary objects. The scheme
builds up on sanitized CSI measurements of 30 OFDM
sub-carriers. In addition, it uses the 2D angle of arrival
(AoA) spectrum to determine between reflections off ob-
jects and targeted bodies. To map 2D AoA spectra to
3D skeletons of humans, the authors use a deep learning
approach based on CNN and LSTM. Estimating the 3D
pose of people requires a higher amount of devices for the
setup. One transmitter and four receivers are used in the
testing environment. The transmitter uses three linear an-
tennas, whereas the receivers are equipped with L-shaped
antennas. Results are evaluated using joint localization
errors. GoPose is able to accurately track stationary human
targets, having low errors of 0.4 cm. Testing through-wall
detection yields errors of an average 4.7 cm. Similar to
prior works, the estimation success rate decreases when
faced with multiple people due to multiple reflections.

4. Conclusion

This paper analyzes the use of commodity WiFi signal
waves for human sensing. Preliminaries required for the
standard IEEE 802.11 WiFi signal analysis, such as CSI
and OFDM, are introduced. The analyzed related works
show that WiFi radar is a competitor to cameras or wear-
able sensors due to its wide availability, power efficiency
and low cost. Under normal circumstances, most imple-
mentations reach detection accuracies over 85%.

With the rise of machine learning over the years,
previous CSI-based sensing schemes have been improved
using more complex deep learning architectures to be
able to estimate 3D posing of humans. Current research
still faces issues when it comes to detecting smaller body
parts, large stand-off distances and multiple human targets.
Moreover, the proved accurate WiFi sensing also raises an
issue to the networking community regarding security and
regulations of WiFi signals.

Seminar IITM SS 23 40 doi: 10.2313/NET-2023-11-1_07

References

[1] C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, and J. Cao,
“Non-Invasive Detection of Moving and Stationary Human with
WiFi,” IEEE Journal on Selected Areas in Communications,
vol. 33, no. 11, pp. 2329–2342, 2015. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7102722

[2] Y. Wang, K. Wu, and L. M. Ni, “WiFall: Device-Free Fall
Detection by Wireless Networks,” IEEE Transactions on Mobile
Computing, vol. 16, no. 2, pp. 581–594, 2017. [Online].
Available: https://www.researchgate.net/publication/316561246_
WiFall_Device-Free_Fall_Detection_by_Wireless_Networks

[3] J. Ding and Y. Wang, “WiFi CSI-Based Human Activity
Recognition Using Deep Recurrent Neural Network,” IEEE
Access, vol. 7, pp. 174 257–174 269, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8918311

[4] A. Fadel and K. Dina, “See Through Walls with Wi-
Fi!” ACM SIGCOMM’13, 2013. [Online]. Available: https:
//people.csail.mit.edu/fadel/papers/wivi-paper.pdf

[5] Y. He, Y. Chen, Y. Hu, and B. Zeng, “WiFi Vision: Sensing,
Recognition, and Detection with Commodity MIMO-OFDM
WiFi,” IEEE Internet of Things Journal, vol. 7, no. 9, pp.
8296–8317, 2020. [Online]. Available: https://ieeexplore.ieee.org/
document/9076313

[6] J. Geng, D. Huang, and F. De la Torre, “DensePose From WiFi,”
arXiv preprint arXiv:2301.00250, 2022. [Online]. Available:
https://arxiv.org/abs/2301.00250

[7] Z. Yang, Z. Zhou, and Y. Liu, “From RSSI to CSI:
Indoor Localization via Channel Response,” ACM Comput.
Surv., vol. 46, no. 2, dec 2013. [Online]. Available: https:
//doi.org/10.1145/2543581.2543592

[8] S. B. Weinstein, “The history of orthogonal frequency-
division multiplexing [History of Communications],” IEEE
Communications Magazine, vol. 47, no. 11, pp. 26–35, 2009.
[Online]. Available: https://ieeexplore.ieee.org/document/5307460

[9] D. Tse and P. Viswanath, “Fundamentals of wireless
communication.” USA: Cambridge University Press, 2005,
ch. 3, pp. 35–101. [Online]. Available: https://web.stanford.edu/
~dntse/wireless_book.html

[10] M. Bhardwaj, “A Review on OFDM: Concept, Scope & its
Applications,” IOSR Journal of Mechanical and Civil Engineering,
vol. 1, pp. 07–11, 01 2012. [Online]. Available: https://www.
iosrjournals.org/iosr-jmce/papers/vol1-issue1/B0110711.pdf

[11] Y. Ma, G. Zhou, and S. Wang, “WiFi Sensing with Channel
State Information: A Survey,” vol. 52, no. 3, jun 2019. [Online].
Available: https://doi.org/10.1145/3310194

[12] K. Chetty, G. E. Smith, and K. Woodbridge, “Through-the-Wall
Sensing of Personnel Using Passive Bistatic WiFi Radar at
Standoff Distances,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 50, no. 4, pp. 1218–1226, 2012. [Online].
Available: https://ieeexplore.ieee.org/document/6020778

[13] A. Hanif, M. Iqbal, and F. Munir, “WiSpy: Through-Wall
Movement Sensing and Person Counting Using Commodity WiFi
Signals,” in 2018 IEEE SENSORS, 2018, pp. 1–4. [Online].
Available: https://asif-hanif.github.io/_pages/SENSORS2018.pdf

[14] F. Wang, S. Zhou, S. Panev, J. Han, and D. Huang,
“Person-in-WiFi: Fine-Grained Person Perception Using WiFi,”
in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), 2019, pp. 5451–5460. [Online]. Available:
https://arxiv.org/abs/1904.00276

[15] Y. Ren, Z. Wang, Y. Wang, S. Tan, Y. Chen, and J. Yang,
“GoPose: 3D Human Pose Estimation Using WiFi,” vol. 6, no. 2,
jul 2022. [Online]. Available: https://doi.org/10.1145/3534605

Seminar IITM SS 23 41 doi: 10.2313/NET-2023-11-1_07

Seminar IITM SS 23 42

Prediction of Rare Latency Events

Leonard Scheerer, Max Helm∗, Benedikt Jaeger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: leonard.scheerer@tum.de, helm@net.in.tum.de, jaeger@net.in.tum.de

Abstract—An increasing number of safety critical applica-
tions rely on networks and their latency bounds. Thus, pro-
viding estimates of worst case latencies is crucial for ensuring
the quality-of-service requirements of such systems. This
paper presents an approach to acquire these estimates using
Extreme Value Theory, a statistical method that bases its pre-
dictions on models derived from real-world measurements.
In particular, we analyze the latency values of a single flow
of a virtualized network topology. Additionally, we compare
the approach with alternative methods and present current
applications of Extreme Value Theory in the networking
area. We consider Extreme Value Theory a powerful tool
for estimating the tail-end of network latency distributions.
In many cases, it outperforms alternative approaches with
similar goals.

Index Terms—extreme value theory, latency measurement

1. Introduction

Safety-related systems, such as those in medical,
aerospace and security fields are known to be time-critical.
That is to say, missing a deadline can have drastic conse-
quences on the environment, on equipment or even human
lives. More and more of these critical systems are now
distributed and therefore rely on networks. One prominent
example are vehicular networks that need to exchange
real-time status updates between individual vehicles. For
this reason, ultra-reliable and low-latency communication
is a key service type in the next generation (6G) commu-
nication systems. Realizing networks with low end-to-end
latency guarantees represents a major challenge facing 6G
[1] [2].

This paper utilizes Extreme Value Theory (EVT) to
model the extreme latency events of a single network
flow. The raw latency data originate from an experiment
conducted by Wiedner et al. The authors make use of
real networking hardware to create a virtualized network
topology on a single physical host. The detailed mea-
surement setup is described in [3]. All code used to
visualize and analyze the described data is available online
at https://github.com/leonardscheerer/rare-latency-events.

The remainder of this paper is structured as follows:
Section 2 introduces the theoretical background of Ex-
treme Value Theory. In Section 3, various approaches to
the prediction of extreme events are discussed. Section 4
applies EVT to real-world latency data. After presenting
other applications of EVT in the networking area in Sec-
tion 5, some concluding remarks are made in Section 6.

2. Background

This section introduces basic concepts and results in
the field of Extreme Value Theory.

2.1. Extreme Value Theory

EVT is a branch of probability theory with the aim of
describing the stochastic behavior of extremes, i. e., events
on exceptionally large or small scales. The derived models
are a solid theoretical basis for predicting the occurrence
and extent of rare events and enable extrapolations to un-
observed levels. This goal is unique amongst the statistical
disciplines, as commonly, the objective is to model the
ordinary, rather than the unordinary [4].

EVT had its first applications in the 1950’s in the area
of civil engineering, in which the frequency and magni-
tude of natural phenomena such as floods or earthquakes
can be crucial information for the design of structural
components of buildings [4]. In recent years, EVT has
gained considerable traction in various other fields such
as the social sciences, the medical profession, economics
and even astronomy [5].

Conforming to the extreme value paradigm, the ex-
trapolations used to predict extreme values are based on
asymptotic arguments, i. e., on using mathematical limits
as finite-level approximations. As a consequence, the re-
sults of EVT cannot be regarded as exact when applied
to finite samples [4, Chapter 1].

Before trying to model the behavior of extreme events,
it is first necessary to define what constitutes an extreme
occurrence. There are two main ways to define such
events, leading to two alternative methods of mathematical
modeling [6]. Both approaches, termed the Block Maxima
approach and the Peaks over Threshold approach, are used
in practice and are briefly explained in the following two
sections.

2.2. Block Maxima Approach

In the Block Maxima approach the observation period
is divided into n non-overlapping blocks of equal size.
The maximum of each block is deemed to be an extreme
value. Figure 1a shows the raw latency data and Figure 1b
highlights the extreme values when applying the Block
Maxima approach with n = 15. When interested in
exceptionally small events, extreme values are derived
analogously with minima instead of maxima.

Seminar IITM SS 23 43 doi: 10.2313/NET-2023-11-1_08

0 40 80 120 160
Time [s]

100

200

300

400

500
La

te
nc

y
[

s]

(a) Raw data

0 40 80 120 160
Time [s]

100

200

300

400

500

La
te

nc
y

[
s]

(b) Block Maxima approach

0 40 80 120 160
Time [s]

100

200

300

400

500

La
te

nc
y

[
s]

Threshold

(c) PoT approach

Figure 1: Latency data of a single network flow and their extreme values according to the Block Maxima and PoT
approach.

The Block Maxima are subsequently modeled using
the Fisher-Tippett-Gnedenko theorem. It states that un-
der certain assumptions, mainly that these maxima are
samples of independent and identically distributed random
variables, the distribution of the maxima converge to one
of three probability distributions: the Gumbel Distribution,
the Fréchet Distribution or the Weibull Distribution. The
distributions are also referred to as the extreme value type
1, type 2 and type 3 distributions, respectively [6].

All three distributions can be represented with a single
distribution, the Generalized Extreme Value Distribution
(GEV). The cumulative distribution function F (x;µ, σ, ξ)
of the GEV is given by (1). It measures the probability
that the random variable will take a value less than or
equal to x.

F (x;µ, σ, ξ) = exp(−max{1 + ξ
x− µ

σ
, 0}− 1

ξ) (1)

ξ is termed the extreme value index and maps to the
aforementioned three distributions. To derive a robust
model, ξ as well as the scale parameter σ and location
parameter µ have to be fitted to the observed data using
a suitable estimation method [5, Chapter 4].

2.3. Peaks over Threshold Approach

In the Peaks over Threshold (PoT) approach, we spec-
ify some threshold u. All values that exceed this threshold
are considered extreme values. Figure 1a shows the raw
latency data and Figure 1c highlights the extreme values
when applying the PoT approach with u = 400 µs. When
interested in exceptionally small events, extreme values
are derived analogously with threshold subceedances in-
stead of threshold exceedances.

The obtained excesses, i. e., the amounts that the peaks
exceed the threshold, follow the Pickands-Balkema-De
Haan theorem. It states that with a sufficiently high thresh-
old and under similar conditions to the Fisher-Tippett-
Gnedenko theorem, the values of the excesses will con-
verge to the Generalized Pareto Distribution (GPD). The
cumulative distribution function G(x;σ, ξ) of the GPD is
given by

G(x;σ, ξ) = 1−max{1 + ξx

σ
, 0}− 1

ξ (2)

Similarly to (1), ξ determines the shape and σ the scal-
ing of the distribution. Equation (2) does not contain a

location parameter, as it is fixed to the previously chosen
threshold [5, Chapter 4] [7].

3. Analysis

In this section we argue that dedicated methods are
necessary to accurately predict extreme behavior. After-
wards we analyze selected modeling approaches for ex-
tremes, particularly in the context of latency events.

3.1. Traditional Methods

Traditional parametric statistical methods are ill-suited
to model values at the very tail-end of a distribution.
These statistical methods typically aim to be a good fit for
a large proportion of the observed data, thus, accurately
representing regions where most of the data fall. However,
this comes at the price of a worse fit in the tails and
therefore justifies the usage of dedicated approaches. Nev-
ertheless, separate methods for modeling extreme values
such as EVT are not needed – and possibly not suited –
for estimating values that make up the top 10 %, 5 % or
perhaps even 1 %. Rather, these methods focus on extreme
(e. g. 0.1 %) outliers [8].

3.2. Modeling Approaches

Machine Learning. One possible approach to
predicting rare latency events is machine learning. This
method has emerged as a fast and reliable means to
data-driven predictions. Wambura et al. [9] propose using
a deep neural network for real-time stochastic extreme
events prediction. The authors empirically confirm that
their approach is fast and accurate. Their experimental
results also suggest superior performance compared to
well-known prediction methods. Nevertheless, application
of deep learning to latency events is not straightforward
and requires a large number of training samples due
to a slow convergence in the training phase. Low
learning efficiency can be combatted by the integration of
knowledge of the environment such as estimated packet
loss [10].

Network Calculus. Another possible approach to
modeling and preventing high latencies are provable
worst case upper latency bounds. This can be achieved

Seminar IITM SS 23 44 doi: 10.2313/NET-2023-11-1_08

via network calculus, a system theory for communication
networks. The theoretical framework is built on the non-
traditional min-plus and max-plus algebras [11]. Network
Calculus and similar formal methods work on simplified
assumptions and do not incorporate environmental events
such as electromagnetic interferences. Additionally, the
derived bounds are not tight [12].

Extreme Value Theory. The remainder of this paper
focuses on applying EVT to the prediction of rare latency
events. As discussed in Section 2, both the Block Max-
ima as well as the PoT approach are used in practice.
The Block Maxima approach particularly lends itself to
modeling data sets that already consist of block maxima,
e. g. records of annual maximum sea-levels. In this case,
the approach can incorporate all of the measurements and
formulate accurate predictions. In practice, however, it is
uncommon to have data of this form and following the
Block Maxima approach may entail a wastage of informa-
tion. Suppose, for example, that there are several recorded
high events during one block. The block maximum takes
precedence over all other events of a block. They are
ignored as a consequence of this approach – even if they
were noteworthy in the sense that they exceed the Block
Maxima of other blocks [4]. This is not the case for
the threshold exceedances in the PoT method. For this
reason, the PoT approach is considered to utilize extreme
observations more efficiently than the Block Maxima ap-
proach [13]. Note that both the maxima as well as the
threshold excesses are assumed to be independent of each
other in the respective theorems described in Section 2.2
and 2.3. Whereas this is often a reasonable assumption
in the Block Maxima approach, as they are spaced out
by construction, this cannot be said for the PoT approach.
Thus, the PoT approach is often used in combination with
special techniques such as declustering that aim to ensure
that the data are independent [4, Chapter 5]. Based on
the aforementioned benefits and drawbacks of the Block
Maxima and PoT approaches, we deem the PoT technique
to be more suitable for the characterization of the tail
distribution of latencies.

4. Rare Latency Estimation

This section applies Extreme Value Theory to the real-
world latency data introduced in Section 1 in order to
predict rare latency events. We use the PoT approach de-
scribed in Section 2.3 and assume that the raw data consist
of a sequence of independent and identically distributed
measurements.

4.1. Inference

To fit the generalized Pareto family to the observations,
we first select a suitable threshold and subsequently
estimate the characterizing scale parameter σ and shape
parameter ξ.

Threshold Selection. Threshold selection is a crucial
part of extreme value analysis following the Peaks over
Threshold method. Too low a threshold is likely to lead to
the Generalized Pareto Distribution not being a good fit for
the threshold excesses, as a sufficiently high threshold is a

requirement of the Pickands-Balkema-De Haan theorem.
Too high a threshold results in very few exceedances – and
thus less information – for the estimation of the model.
One tool for the selection of an appropriate threshold is the
mean residual life plot. Figure 2 shows the mean residual
life plot of the latency data and its approximate 95 %
confidence intervals based on the approximate normality
of sample means.

0 100 200 300 400 500
Threshold u [s]

0
25
50
75

100
125
150
175

M
ea

n
E

xc
es

se
s

[
s]

Figure 2: Mean residual life plot for the latency data of a
single network flow.

The mean residual life plot depicts the average excess
value over the given threshold for a set of different values
of the threshold u. According to [4, Section 4.3.1], the
mean residual life plot should be approximately linear
in u above a threshold u0 at which the GPD provides
a valid approximation for the threshold excesses. In
practice, the interpretation of the mean residual life
plot often proves to be difficult as it involves a great
deal of subjective judgement. Based on Figure 2, we
decide to use a threshold of u = 370 µs because of the
approximate linearity for from u = 370 µs to u = 425 µs.
This leads to 42 threshold exceedances, a proportion of
about 3.32 %. It might be tempting to suggest a higher
threshold such as u = 425 µs as there is some evidence
for a linear relationship. However, this would result in
only 4 exceedances, too few for a meaningful inference.
Similarly, lower thresholds provide an excessive number
of exceedances violating the asymptotic assumption of
Extreme Value Theory.

Parameter Estimation. There are several fit methods
to derive the parameters of (2). Using maximum likelihood
estimation, we get

(σ, ξ) ≈ (27.813,−0.064) (3)

The 95 % confidence intervals for σ and ξ are [16.141,
39.485] and [−0.356, 0.227], respectively. We omit tech-
nical details and simply refer to [7, Chapter 3] and [4,
Section 4.3.2].

4.2. Model Checking

Model checking consists of assessing the quality of
a fitted generalized Pareto model based on plots and
different metrics. In this paper, we focus on probability

Seminar IITM SS 23 45 doi: 10.2313/NET-2023-11-1_08

plots as a graphical technique to evaluate the quality of the
parameter estimates in (3). In practice, however, various
other means such as quantile plots, return level plots or
density plots can also be useful to determine the goodness-
of-fit of a model. The probability plot for the fitted model
is shown in Figure 3.

0.00 0.25 0.50 0.75 1.00
Empirical Probability

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 P

ro
ba

bi
lit

y Unit Diagonal

Figure 3: Probability plot for the latency data of a single
network flow.

In general, probability plots are a tool for assessing the
degree to which a data set follows a given distribution. In
Figure 3, the data are plotted against the GPD with the
model parameters of (3). The construction of probability
plots ensures that the points should lie close to the unit
diagonal if the data set follows the given distribution [4,
Section 4.3.5]. No substantial departures from linearity
can be seen, so that we deem our model to be suitable for
extrapolation.

4.3. Extrapolation

After having estimated suitable parameter values, it is
possible to utilize the derived model to predict extreme
values. Usually, it is convenient to interpret extreme value
models in terms of return periods and return levels. The
former, the return period, corresponds to the average time
between extreme events. The latter, the m-observation
return level, describes the value that is expected to be
exceeded exactly once in the next m observations [4,
Section 4.3.3].

Using the model parameters of (3), the 10 000-
observation return level is calculated to be approximately
505 µs, i. e., a latency value above 505 µs is expected to be
witnessed only once every 10 000 observations. Assuming
that the number of network packets per second stays
constant at 7.7 packets/s, 10 000 observations correspond
to about 22 min. Note that this is an extrapolation to an
unobserved level. The data set only consists of 1264 ob-
servations sent over a period of 2.7 min with a maximum
latency of about 491 µs.

The 95 % confidence interval is calculated to be ap-
proximately [429 µs, 580 µs] via the Delta Method. The
confidence intervals often tend to be large, as uncertainty
can be magnified in extrapolation.

5. Applications

This section is dedicated to presenting applications of
Extreme Value Theory in the networking area.

CBA-EVT. Wang et al. [14] propose to use EVT
in a medium access control (MAC) protocol designed
for battery-powered wireless sensor networks (WSNs).
WSNs are networks of spatially dispersed sensors that
monitor physical conditions of the environment. Amongst
other areas, they are used in earth sensing, e. g. for natural
disaster prevention. It is paramount that MAC protocols
for WSNs are energy-efficient to ensure that the sensors
can serve their intended functions longer. CBA-EVT is
such a MAC protocol that aims to be energy-efficient
while also avoiding long latencies. It is named after
the two theoretical methods that are the foundation of
the protocol: Cost Benefit Analysis and Extreme Value
Theory. For a given time slot, Extreme Value Theory in
CBA-EVT is used to estimate the completion time of
each node, i. e., the time after which no further packets
will have to be received in this time slot. This can be
used to enable the node to enter a low-power mode early
during one time slot and thus saving energy without
sacrificing latency.

Vehicular networks. Extreme Value Theory is
also used to ensure stringent latency and reliability
constraints in vehicular networks. Vehicle-to-vehicle
safety applications are inherently time-critical, as
individual vehicles rely on acquiring real-time status
updates from each other. One commonly used metric
is the age of information (AoI). It measures the time
elapsed since the latest status update that reached its
intended destination has been generated at its source. As
argued by Abdel-Aziz et al. [2], minimizing the average
AoI in vehicular networks cannot fulfill the unique
requirements of ultra-reliable and low-latency vehicular
communication. Instead, the authors use Extreme Value
Theory to reduce the probability of outliers in the AoI
distribution and show the achieved improvements of their
approach with simulation results.

Wireless networks. Vehicular networks are a special
case of wireless networks. As shown by Mouradian [12],
Extreme Value Theory is particularly attractive for study-
ing worst case delays in wireless networks. In contrast to
wired networks, wireless networks are more susceptible
to unpredictable behavior of the environment such as
electromagnetic interference. These disturbances cannot
be captured by formal methods like network calculus.
As a result, statistical methods, especially Extreme Value
Theory, are a valuable tool for the study of worst case
delays in wireless networks.

6. Conclusion and Future Work

In this paper we discussed different prediction ap-
proaches for rare latency events. In particular, we looked at
a general statistical method called Extreme Value Theory
and the two main approaches therein: the Block Maxima
approach and the Peaks over Threshold approach.

Seminar IITM SS 23 46 doi: 10.2313/NET-2023-11-1_08

To investigate the Peaks over Threshold method in
greater detail, we modeled the tail-end of the latency
distribution of a single network flow. The latency data
originated from a network experiment on a single physical
host using real networking hardware. We consider this
approach a powerful tool not only for estimating worst
case latencies but also for many other applications in the
networking area. However, the accuracy of the predictions
is limited by the quality and amount of measurement data
and by the assumptions about the data.

To reduce the complexity of the analysis, we assumed
that the measurements are independent and identically
distributed. The assumption of independence has already
been relaxed by Helm et al. [15]. Future work can explore
further relaxation of these assumptions and their effect
on the accuracy and reliability of the predictions. The
consequences of following the Block Maxima approach
instead of the PoT method in the context of predicting
high latencies also require further investigation.

References

[1] S. R. Pokhrel, J. Ding, J. Park, O.-S. Park, and J. Choi, “Towards
enabling critical mMTC: A review of URLLC within mMTC,”
IEEE Access, vol. 8, pp. 131 796–131 813, 2020.

[2] M. K. Abdel-Aziz, C.-F. Liu, S. Samarakoon, M. Bennis, and
W. Saad, “Ultra-reliable low-latency vehicular networks: Taming
the age of information tail,” in 2018 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2018, pp. 1–7.

[3] F. Wiedner, M. Helm, S. Gallenmüller, and G. Carle, “HVNet:
Hardware-Assisted Virtual Networking on a Single Physical Host,”
in IEEE INFOCOM 2022-IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS). IEEE, 2022, pp.
1–6.

[4] S. Coles, J. Bawa, L. Trenner, and P. Dorazio, An introduction to
statistical modeling of extreme values. Springer, 2001, vol. 208.

[5] J. Galambos, “Extreme value theory for applications,” in Extreme
Value Theory and Applications: Proceedings of the Conference on
Extreme Value Theory and Applications, Volume 1 Gaithersburg
Maryland 1993. Springer, 1994, pp. 1–14.

[6] M. I. Gomes and A. Guillou, “Extreme value theory and statistics
of univariate extremes: a review,” International statistical review,
vol. 83, no. 2, pp. 263–292, 2015.

[7] L. Haan and A. Ferreira, Extreme value theory: an introduction.
Springer, 2006, vol. 3.

[8] F. X. Diebold, T. Schuermann, and J. D. Stroughair, “Pitfalls and
opportunities in the use of extreme value theory in risk manage-
ment,” The Journal of Risk Finance, vol. 1, no. 2, pp. 30–35, 2000.

[9] S. Wambura, H. Li, and A. Nigussie, “Fast memory-efficient ex-
treme events prediction in complex time series,” in Proceedings
of the 2020 3rd International Conference on Robot Systems and
Applications, 2020, pp. 60–69.

[10] C. She, C. Sun, Z. Gu, Y. Li, C. Yang, H. V. Poor, and B. Vucetic,
“A tutorial on ultrareliable and low-latency communications in 6G:
Integrating domain knowledge into deep learning,” Proceedings of
the IEEE, vol. 109, no. 3, pp. 204–246, 2021.

[11] A. Van Bemten and W. Kellerer, “Network calculus: A compre-
hensive guide,” 2016.

[12] A. Mouradian, “Extreme value theory for the study of probabilistic
worst case delays in wireless networks,” Ad Hoc Networks, vol. 48,
pp. 1–15, 2016.

[13] A. Bücher and C. Zhou, “A horse race between the block maxima
method and the peak–over–threshold approach,” Statistical Science,
vol. 36, no. 3, pp. 360–378, 2021.

[14] T.-L. Wang, J.-C. Kao, and S. A. Ciou, “CBA-EVT: A traffic-
adaptive energy-efficient MAC protocol for wireless sensor net-
works,” in 2014 Wireless Telecommunications Symposium. IEEE,
2014, pp. 1–6.

[15] M. Helm, F. Wiedner, and G. Carle, “Flow-level Tail Latency
Estimation and Verification based on Extreme Value Theory,”
in 2022 18th International Conference on Network and Service
Management (CNSM). IEEE, 2022, pp. 359–363.

Seminar IITM SS 23 47 doi: 10.2313/NET-2023-11-1_08

Seminar IITM SS 23 48

Digital Twins of Computer Networks

Martin Tonauer, Kilian Holzinger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: m.tonauer@tum.de, holzinger@net.in.tum.de

Abstract—Usage of a digital twin (DT) is already an es-
tablished technology in various industries like aerospace,
construction or traffic analysis. However, in the field of
computer networks its utilization is still rare. Although
already in usage for example in the roll-out of 5G networks,
the true potential of a digital twin network (DTN) has yet
to be developed.

This paper tries to contribute a concise overview of DTN
technology not only by giving an insight into the background
of this technology and some of the nomenclature but also by
summarizing properties and requirements for a functioning
DTN. The paper also remarks the problems surrounding the
implementation of a working DTN. To help in mitigating
these, it offers a simple conceptual implementation model to
promote further research into designing DTNs. The paper
also presents current and possible future use cases as well
as open questions for further attention.

Index Terms—Digital Twin (DT), Digital Twin Network
(DTN)

1. Introduction

The concept of a digital twin (DT) has been used in
different types of industries for the purpose of simulating
real world hardware, applications or whole scenarios with-
out interfering with the physical system (PS) itself. Born
out of the desire to monitor, test or experiment on these
systems in a safe environment, DTs have seen widespread
usage in many industries, from automotive production all
the way to weather forecasting [1] [2]. Given the broad
range of utilization it would seem logical for DTs to have
a similar share in computer networks, but the potential
and abilities of such a digital twin network (DTN) are
only starting to be valued [3]. A DTN in the scope of this
paper is the simulated counterpart to a real and physical
computer network. The goal of this essay is to give the
reader an overview of this technology and outline some
applications and their benefits to designing, constructing
and maintaining computer networks.

The rest of this paper is structured as follows: Sec-
tion 2 will give a brief overview of the historical back-
ground and motivate the usage of DTs, while Section 3
will define the terminology that is used in this paper.
Section 4 introduces properties and requirements of DTs
and DTNs. A possible model of a DTN is presented in
Section 5 with some application examples following in
Section 6. Section 7 discusses the shown concepts and
corresponding open questions. A concluding summary of
this paper can be found in Section 8.

2. Background and Current Status

Having a first, second or third draft of something
is probably as old as human craftsmanship. But what
happens when the desired product becomes final and goes
into production? With increasing complexity of systems,
the need to test or experiment before actually committing
new features to a real world product becomes ever more
important. Being able to verify that the addition of new
machines to an existing production line will not uninten-
tionally alter the functionality or output of the line before
the actual installation of the hardware is an important
capability of a production plant. Similarly, testing a new
software patch on a real satellite while it is in orbit can
have drastic repercussions maybe even to the point where
it can no longer communicate. Therefore, the roll-out of
this patch and the correct subsequent operation of the
satellite have to be checked beforehand. Using a stand-
in is an intuitive way of achieving this goal.

The approach of having an identical copy of a real,
physical system - effectively a twin - has been around for
quite some time. Famously being used since the 1960s
by NASA to verify new procedures from the ground for
spacecraft already in orbit, this technique gained momen-
tum in the following years in many other industries as
Grieves and Vickers noted in [1]. Because of advance-
ments in processing power it became unnecessary for that
twin to be a physical instance itself. Starting with CAD
models, where there is no direct feedback from the product
to the now digital twin, evolving all the way to DTs
which are constantly fed by data from their real world
counterparts [1]. A recent example is an Earth observation
DT currently in development. It is supplied with data from
both space and ground based sensors to achieve better
weather forecasting [2].

The formal beginning of DTs, albeit as a tool for
product life-cycle management, happened at a University
of Michigan presentation in 2002 by Dr. Grieves. Since
then it has become a widely used technique to monitor,
test and experiment with real world systems in a controlled
and digital environment [1].

Both Wu et al. [3] and Vaezi et al. [4] have noted that
despite promising use cases, DTs in computer networking
have not gained as much traction - at least for the time
being. One such use case is the simulation of new routing
strategies via a DT and the subsequent ability to predict
the real networking behavior. Those can be applied for
example to emulate, validate and optimize 5G network
roll-out as Nguyen et al. propose in [5]. Some telecom-
munication companies already use DTNs for exactly that

Seminar IITM SS 23 49 doi: 10.2313/NET-2023-11-1_09

purpose [6] or do see future use cases in implementing
next generation mobile networks [7].

3. Definitions and Terminology

While there is broad consensus in the literature about
the definition of DT, the term DTN has various meanings.
The following section will define the two terms for the
scope of this paper and describe them in greater detail.

3.1. Digital Twin (DT)

The optimal DT is a perfect representation of a yet
to manufacture or already existing product that holds
at least as much information about the real product as
the real product itself could. With that information it is
possible to create a physical copy of the DT and vice
versa. This definition also encompasses the state of the DT
when its physical counterpart is already in existence and
therefore linked to it for the remainder of the life cycle
or beyond. This digital representation can be connected
to a single physical entity or to a more complex system
comprised of multiple objects. The optimal DT should
also hold information about all previous and current states
of the physical twin to enable the prediction of its future
behavior. [1]

Vaezi et al. summarize slightly varying definitions
in the literature down to three distinct entities that are
needed: the represented physical system, the DT itself and
a communication or information link between the two. [4]

Due to this information-connection DTs have been
able to evolve from being simple digital copies to com-
plex representations that change and develop with their
respective PS. This link is what enables the DT’s broad
information capability in the first place. [3] [4]

3.2. Digital Twin Network (DTN)

The term is sometimes used to describe a network
consisting of at least two general DTs communicating with
each other. However, this paper is about the application
of DTs in computer networking specifically. Therefore the
term will be utilized in accordance with ITU-T recom-
mendation Y.3090: "A digital twin network is a virtual
representation of a physical network" [8]. In other words,
it is explicitly used to describe the virtual counterpart of
a yet to realize or already existing physical computer net-
work. Figure 1 clarifies this definition in a simple example,
depicting a PS consisting of a server and three clients that
communicate with each other. The DTN is the virtual
copy of this physical network with every real hardware
and communication link having a virtual counterpart. The
bidirectional information connection between the PS and
DTN enables the correct representation.

4. Properties and Requirements of DTs and
DTNs

There need to be some representable properties to be
able to qualitatively and quantitatively describe DTs in
detail. Vaezi et al. [4], Minerva et al. [9] and [3] give some

DTN

Figure 1: Representation of a physical network and its
digital twin network (DTN)

TABLE 1: Properties of DTs based on [3] [4] [9]

Property Explanation

Promptness Intuitively, this is the reaction time of the DT to
its PS. Or more generally the time it takes for
information from the PS to reach the DT and
change its state.

Similarity Reflects the difference of information between the
PS and DT in the same state. For example, trans-
mission noise can alter the signal and therefore the
information.

Replicability Refers to the ability to replicate a single PS into
multiple DTs at the same time. This should also
encompass the possibility to create a PS from an
existing DT.

Composability Describes the ability of multiple smaller DTs to be
integrated into fewer but larger ones. This adds the
capability to form ever more complex systems.

Scalability If a PS grows in system size, it is desirable for
the DT not to increase its network footprint ex-
ponentially. Scale in this context also includes
geographical size.

Reliability A DT is considered to be reliable when its data
and operational integrity can be verified. This also
includes the persistency and availability of infor-
mation.

Predictability Since DTs can be comprised of vast amounts of
data, they still need to be predictable in precise
environments when simulating their behavior with
other entities.

Accountability As a DT can be a set of smaller DTs, the collected
information has to be traceable to a specific DT.
This property not only includes origin but also the
ownership of data and its usage rights.

Adaptability Is the capability of a DT to adapt in accordance
with its PS dynamically. This can involve new
models, different data collection or change in
needed network resources.

examples which are compounded in Table 1 for easier
reference.

Seminar IITM SS 23 50 doi: 10.2313/NET-2023-11-1_09

ITU-T recommendation Y.3090 assigns some of the
properties mentioned in Table 1 discrete value require-
ments. For example, the reliability level of a DTN is spec-
ified to be at least 99.99%. A selection of requirements
can be found in Table 2. The interested reader is kindly
referred to [8] for the complete set.

TABLE 2: Requirements for DTNs based on [8]

Requirement Explanation

Data
collection

For a DTN to work, it has to collect vast amounts
of data in an efficient manner. The required type
of data can vary with use cases but may include:
logs, records and status of all network elements;
flow statistics like latency, throughput or packet
loss; device-specific data such as port information
or link status.

Data
repository

Storage and retrieval of data is essential to the
intended capability of DTNs. Huge amounts of
data have to be stored in a way to allow parallel
processing and real-time access. For backups and
rollbacks it is required to have historical data at
hand.

Security As there is a significant amount of stored infor-
mation, security is very important. Therefore, the
DTN should be able to defend against already
happening attacks to the physical network and also
attacks against itself.

Privacy Data protection laws are as applicable to the DTN
as they are to the physical network. A DTN must
be able to comply with these rules both within its
own layer and during communication with the PS.

Compatibility To fully support future technology, the DTN should
be compatible and adhere to established network
standards and support various physical interfaces
and topologies, different types of databases as well
as existing network measurement tools.

Outlined above and in Section 3.1, a DT will and
should have comprehensive data from and about its corre-
sponding PS. It has to be noted that in reality the amount
of information which a DT can hold is limited. Possible
reasons for this are [4]:

• updating of states in regular intervals leads to discrete
data points which implies missing information;

• every form of processing by the DT has to take at
least some time so delays are inevitable;

• there are limits in terms of resources available to the
DT so the capabilities are limited as well.

Nevertheless, a DT is considered to be fully func-
tional when it delivers information with accuracy in an
expected and acceptable range while working within these
constraints and satisfying the mentioned requirements. It
does not have to represent the PS as closely as possible,
just as closely as required for the specific use case [4].

5. Modeling a DTN

As of yet, there is no standard model for DTNs so
the following example is exactly that: one example. The
simple structure in Figure 1 is meant as a quick visual
representation. What it lacks to be a real world usable
model is a third layer that adds network applications
and their requirements for the PS. One such possible
description is given in [8] and by Almasan et al. in [10].

This model is comprised of three layers: the physical
network is at the bottom, the digital twin network is the

middle layer and the top layer is the network applications
layer. Figure 2 gives a visual representation for this model.

Network applications

DTN

Physical network

Figure 2: Visualization of the three-layer DTN based on
models in [8] and [10]

The leading thought of this model is that instead
of deploying network services directly to the PS, they
are first fed into the DTN. This way the DTN exposes
the capabilities of the physical network to the network
applications. In turn, it receives information about the
intention of the network application. Based on collected
data from the physical network and modeled for example
through the use of machine learning on previous traffic,
the virtual twin now generates predicted network metrics.
These can be used to analyze, verify and optimize the
network application services and deploy them to the PS -
possibly even without human intervention [8] [10]. This
represents the most obvious differentiating factor to a mere
simulation since the DTN is able to both control and
manage the PS.

Following, the three layers are described in more
detail.

5.1. Bottom Layer - Physical Network

This layer is comprised of all physical devices in the
network. It is connected to and shares extensive amounts
of data with the DTN. The extent of this exchange de-
pends on the specific use case and its requirements. See
Sections 3 and 4 for further information. [8]

5.2. Middle layer - DTN

There are three main subsystems that can be identified
in a DTN and their interaction attempts to fulfill the
requirements given in Table 2. [8]

Seminar IITM SS 23 51 doi: 10.2313/NET-2023-11-1_09

5.2.1. Unified Data Repository. Responsibilities include
the collection and storage of data via the southbound
connections to the physical layer but also the process of
updating the current state.

5.2.2. Unified Data Models. This subsystem offers,
among others, instances of modeled network applications
which in turn allow the prediction and data processing
capabilities of the DTN.

5.2.3. Digital Twin Entity Management. This allows
easy maintenance, logging, control and visualization of
the DTN and its data models. It is also responsible for
the internal and external security of the DTN.

5.3. Top Layer - Network Applications

The top layer is comprised of the network applications
and their services. It is connected to the DTN and relays
current or prototype services and requirements to the DTN
which then sets up new emulating instances. Upon verifi-
cation that predefined metrics, such as traffic parameters,
coincide with modeled and expected behavior, the DTN
proceeds with deploying those services to the physical
layer. [8]

6. Practical Applications

There is one empowering capability that the litera-
ture is in consensus about: the predictive potential of
DTNs [4] [5] [6] [7] [10]. So it seems obvious that this
is a centerpiece of many use cases - some of which will
be discussed in this section.

• Planning and construction: Wang et al. discuss
in [11] the possibility of DTNs for use during the
complete life-cycle of a network. Because of DTs’
property of replicability it is possible to create a new
physical system from the DTs’ information alone.
So it is feasible to begin the implementation of a
physical network with the creation of a DTN, con-
tinue with running numerous scenarios, optimizing
and verifying the network, all before a single phys-
ical device is installed. This not only reduces cost
but also risk especially with rising system complex-
ity. [10] [11]

• Maintenance and troubleshooting: A DTN with its
vast amount of meta information about a network has
the potential to find the root of an error very quickly.
Possible solutions can then be verified inside the
DTN and transferred to the physical network. [5] [11]

• Detection of abnormal behavior: A functioning
DTN mirrors the current operating state of its net-
work which means that deviations from the expected
behavior in the physical traffic from the one in the
DTN can be telltale signs for anomalies. This can
lead to earlier recognition or even prevention of
errors. [10]

• Optimization: Through the use of various data
driven models, a DTN can offer easier network op-
timization capability because it does not impact the
current active physical network. One particular cate-
gory of models can offer very promising outcomes:

machine learning technologies. They can benefit from
faster and more efficient operation compared to tra-
ditional optimization algorithms because of their
awareness of previous optimizing runs. [8] [10] [11]

• Innovation: Trial runs in physical networks can have
multitudes of negative outcomes due to various rea-
sons for example unavailability of the network during
the run or risk of damage to the system. Naturally,
network operators are therefore very cautious and
conservative when testing innovative technology in
real world surroundings. A DTN offers an environ-
ment in which new protocols, applications or devices
can be scrutinized in a safe manner. It also provides
the possibility for in-advance-testing of edge cases
like network failures, misconfigurations or security
breaches. [8] [10]

7. Discussion and Open Questions

Condensing the findings of this paper, DTNs offer
many capabilities and advantages, especially for complex
and big networks. Because of the deep interaction with the
PS, the DTN is able to manage and control the physical
network in real-time.

What remains to be discussed however, is the practical
implementation of a DTN that fully satisfies the presented
requirements and delivers on the promises. Since tech
companies that already use DTNs are generally anything
but open about their implementations, this is a big ob-
stacle in experimenting and iterating over different design
possibilities of DTNs. Generalizing complex and huge net-
work topologies while still allowing for those predictive
capabilities is an open research question. Furthermore, the
collection, storage and processing of the desired amount
of data is everything but trivial, especially in real time
environments. [3] [10]

Future work is necessary to come up with possible
implementations that do not rely on broad financial and
subsequent technical capabilities which currently only big
tech companies seem to be able to provide. Further re-
search into DTN technology for small and medium sized
networks can also shed light on whether those would
benefit from this technology as well.

8. Conclusion

In this paper the technology of DTs was introduced
and their application in computer networking was dis-
cussed. These DTNs can offer solutions to questions
concerning vast and interconnected networks like mobile
telecommunication networks. Properties of and require-
ments for DTs and DTNs from different sources of litera-
ture [3] [4] [8] [9] were identified and presented, as well as
the suggestion for a conceptual model of a DTN [8] [10].
Applicable use cases include the complete life cycle man-
agement of a network spanning from planning all the way
to maintenance, troubleshooting and upgrading [5] [11].
The predictive capabilities of DTNs also allow for the
detection of abnormal network behavior and time and
cost effective integration of new technologies into the
network [10]. One of the most promising areas of interest
is the optimization of network traffic and topology. With

Seminar IITM SS 23 52 doi: 10.2313/NET-2023-11-1_09

its rich amount of data about the state of a network, the
DTN technology in combination with machine learning al-
gorithms can offer faster and probably better optimization
results than current network simulation [10] [11]. Lastly
the question of actual implementation was discussed and
underlying problems presented like the requirement for
storing and processing huge amounts of data in real-time.
In case these problems are successfully tackled, DTNs
have many possible applications for designing, optimizing
and maintaining computer networks.

References

[1] M. Grieves and J. Vickers, Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems. Springer
International Publishing, 2017, pp. 85–113.

[2] S. Chin, “Using the Digital Twin to Improve Weather
Forecasting,” https://www.designnews.com/artificial-intelligence/
using-digital-twin-improve-weather-forecasting, 2022, [Online;
accessed 20-March-2023].

[3] Y. Wu, K. Zhang, and Y. Zhang, “Digital Twin Networks: A
Survey,” IEEE Internet of Things Journal, vol. 8, no. 18, pp.
13 789–13 804, 2021.

[4] M. Vaezi, K. Noroozi, T. D. Todd, D. Zhao, G. Karakostas, H. Wu,
and X. Shen, “Digital Twins From a Networking Perspective,”
IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23 525–23 544,
2022.

[5] H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, “Digi-
tal Twin for 5G and Beyond,” IEEE Communications Magazine,
vol. 59, no. 2, pp. 10–15, 2021.

[6] S. Communications, “Simplifying 5G with a Net-
work Digital Twin,” https://www.spirent.com/assets/wp_
simplifying-5g-with-the-network-digital-twin, Tech. Rep., 2022,
[Online; accessed 30-March-2023].

[7] P. Öhlén, “The Future of Digital Twins: What will they mean
for Mobile Networks?” https://www.ericsson.com/en/blog/2021/7/
future-digital-twins-in-mobile-networks, 2021, [Online; accessed
30-March-2023].

[8] “ITU-T Y.3090; Digital Twin Network – Requirements and Ar-
chitecture,” http://handle.itu.int/11.1002/1000/14852, International
Telecommunication Union, Recommendation, Feb. 2022.

[9] R. Minerva, G. M. Lee, and N. Crespi, “Digital Twin in the
IoT Context: A Survey on Technical Features, Scenarios, and
Architectural Models,” Proceedings of the IEEE, vol. 108, no. 10,
pp. 1785–1824, 2020.

[10] P. Almasan, M. F. Galmés, J. Paillisse, J. Suárez-Varela,
D. Perino, D. R. López, A. A. P. Perales, P. Harvey, L. Ciavaglia,
L. Wong, V. Ram, S. Xiao, X. Shi, X. Cheng, A. Cabellos-
Aparicio, and P. Barlet-Ros, “Digital Twin Network: Opportunities
and Challenges,” CoRR, vol. abs/2201.01144, 2022. [Online].
Available: https://arxiv.org/abs/2201.01144

[11] D. Wang, J. Guo, Y. Ouyang, S. Wang, A. Yang, Z. Ren, Y. Ding,
G. Chen, C. Zhou, and D. Chen, “Leverage Digital Twins Tech-
nology for Network Lifecycle Management,” in 2022 IEEE 2nd
International Conference on Digital Twins and Parallel Intelligence
(DTPI), 2022, pp. 1–5.

Seminar IITM SS 23 53 doi: 10.2313/NET-2023-11-1_09

Seminar IITM SS 23 54

Positioning in 5G Networks - Overview and Security Threats

Lukas Wittmer, Leander Seidlitz, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: lukas.wittmer@tum.de, seidlitz@net.in.tum.de, andre@net.in.tum.de

Abstract—Determining your position is something humans
always wanted to do. In present times many different
technologies, like GPS, assist this process. As Satellite-
based positioning struggles in environments where the sky
is obstructed, like forests or indoors, new technology has to
cover these areas. This technology is positioning via the 5G
mobile communications network as the 5G coverage grows
better and better. This paper will provide an overview of
positioning metrics, like Time-of-Arrival measurements, and
the approaches to determine an exact location from these
measurements. Furthermore this paper gives an overview of
the security aspects of the 5G positioning ecosystem. This
overview includes possible attack targets, like the Location-
Information-Service-Provider, and possible threats to the
system and their consequences. These threats range from
interferences to Man-in-the-Middle-Attacks by an active
attacker, which can steal or alter the location information of
a user.

Index Terms—5G networks, positioning, security

1. Introduction

With 5G rising in popularity and its coverage growing
dense, other features than communication are becoming
much more viable. One of these features is the increased
usability for positioning a device located in the 5G net-
work. This is especially useful in indoor environments
where traditional positioning techniques like the Global
Navigation Satellite System (GNSS), better known as
one of its subsystems GPS, fail to provide sufficient
coverage. This paper aims to explain the basics of 5G-
based positioning by covering the most relevant metrics
and approaches to archieve an accurate position estimate.
Furthermore, as security is and always will be a relevant
topic in mobile communications, this paper will explore
the different threats and attack targets a 5G positioning
system offers.

1.1. Related Work

With 5G positioning being a topic of current research,
an increasing number of papers have been published deal-
ing with different aspects of position estimation using the
5G infrastructure. Some of these papers deal with similar
topics to this paper and are referenced in the following
section.

A paper that is similar to this paper is "Positioning
in 5G and 6G networks—A Survey" by Mogyorósi, Re-
visnyei et al. [1]. It provides an overview of positioning

methods while focusing on machine learning assisted ap-
proaches. It also provides an outlook on the influence of
the introduction of 6G on the presented approaches.

Another paper with a similar topic is "A Look at the
Recent Wireless Positioning Techniques With a Focus on
Algorithms for Moving Receivers" by Tahat, Kaddoum et
al. [2]. This paper deals with the general use of wireless
networks for positioning. The wireless networks that are
referenced in this paper include Bluetooth, WLAN and
RFID.

The book " A comprehensive guide to 5G security" by
Liyanage, Madhusanka et al. [3] deals with the security
aspect of 5G positioning. After giving an overview of
positioning mechanisms in 5G, it deals with threats to
security in the 5G positioning network. It also provides
an overview of the security mechanisms of 5G that help
to mitigate the mentioned threats.

2. Measurement Modes

Positioning in mobile environments can be done in
different ways. These ways differ in the active communi-
cators, like the base stations, the device whose position is
to be estimated and possible other devices helping with
the positioning. They also differ in the devices calculating
the distance.

The first measurement mode to be presented, is
network-centric positioning. In network-centric position-
ing the network is doing the computation, while the device
to be located is sending signals needed for measuring and
receiving its estimated position. For the user device to use
the estimated position in e. g. a navigation application, the
position data has to be sent to the device via the network.
A graphic representation of this approach can be seen in
Figure 1 (a).

In device-centric positioning, the roles of the network
and the device are reversed. While the network sends
measuring signals, the device receives them and does the
position computation on its own. Therefore, no position
estimates need to be sent over the network, which is
beneficial to privacy (more on that in Section 5). An
example of a device-centric architecture can be seen in
Figure 1 (b).

While device- and network-centric positioning are two
opposed approaches, both can be supplemented by coop-
erative positioning. In Figure 1 (c) one can see that while
doing cooperative positioning, other devices, that are not
base-stations of the network can also send measurement
signals or their position estimates to the device to be

Seminar IITM SS 23 55 doi: 10.2313/NET-2023-11-1_10

located. This additional data increases the accuracy of the
estimated position.

Figure 1: Different measurement modes [3]

In the rest of this paper network centric positioning
will be used as the default measurement mode, but the
metrics and approaches presented, work with other modes.
The explanations in this chapter are based on [3, Chap-
ter 13].

3. Position Metrics

The metric that takes the least computational effort
that can be used to estimate the position of a device is
whether its present within a certain base station’s range.
This metric is known as Cell-ID and can be used to give
a rough position estimation of the device as described by
Larsson in [4].

A metric for accurate positioning is the Time of Ar-
rival (ToA). When the sending time of a signal is known,
the time in flight of the signal can be calculated. From
this, the distance between the origin of the signal to the
receiver can be computed. This metric needs the sender
and receiver to sync their clocks, in order to provide
accurate measurements. The modus operandi for such a
measurement is described by Van Haute, Verbeke et al. in
[5].

When synchronisation of receiver and sender is not
feasible, ToA measurements are not possible. If the dis-
tance measurement should still use time as its primary
measurement, the time difference between the arrival of
multiple signals, known as Time Difference of Arrival
(TDoA), can be used. In this approach, the receivers still
have to be synchronised, but no synchronization between
the sender and receiver is necessary. A brief overview of
TDoA measurement is given by Tahat et al. in [2].

Another metric for positioning is the Angle of Arrival
(AoA) or Direction of Arrival (DoA). This metric uses
the fact that base stations receive the same signal on
multiple antennas. The angles at which the signal arrives
at the receiver can be computed by measuring the time
difference with which it arrives at the different antennas
of the receiver. When this measurement is combined with
the knowledge of the distance between the antennas at
the receiver, the angle of Arrival can be computed, using
trigonometric functions. A more in-depth analysis of this
metric is provided by Tuncer and Friedlander in [6]. This
metric is supported by 5G in particular, as 5G base-
stations are equipped with up to thousands of antennas,
providing a good basis for AoA measurements [1].

The Received Signal Strength (RSS) is one of the
oldest metrics used in positioning. This metric dates back
to 1969, as it was developed as a method to locate moving
vehicles, e. g. police cars as stated by Figel, Sheperd

and Trammell in [7]. This metric uses the fact that the
signal strength scales with the distance it has to traverse.
The method to derive a distance from the strength of
the received signal is described by So and Lin in [8].
A problem with RSS as a metric is that it is susceptible
to environment interference, as described in [2].

4. Approaches to Positioning

As the different metrics explained in the previous
chapter, except for the Cell-ID approach, compute only a
distance or an angle but no location, these measurements
need to be processed further. This processing can happen
differently based on the chosen approach.

4.1. Cell-ID-based Positioning

Cell-ID-based positioning is a basic form of position-
ing in mobile networks. In this approach the location of
the connected base station is assumed as its location,
as described by del Peral-Rosado, Raulefs et al. in [9].
However, this technique is imprecise in regions with low
population density and sparse cell coverage as a single
base station covers a large area in these regions. Better
accuracy can be archieved by this method, if multiple
base-stations are combined [1]. If a device is or was re-
cently present in more than one base-stations cell the area
in which the device is probably located can be narrowed
down to the area that is covered by both base-stations.

4.2. Angle-based Positioning

Angle-based positioning is one of two approaches that
use geometric properties. It uses the AoA metric to deter-
mine the position of a device. With the position of the base
station and the angle at which the signal arrived, a Line of
Bearing (LOB) can be computed. If the LOBs of multiple
base stations are combined, the device can be positioned
at the intersection of the lines. As the intersection of lines
only requires two LOBs, two base stations are sufficient
for an angle-based positioning approach [2]. More base-
stations can help to improve the accuracy by eliminating
outliers or false measurements. This approach is also
known as triangulation. A challenge to the angle based
approaches are the non line of sight (NLOS) conditions.
The NLOS conditions are that without a line of sight
between the device and a base station the accuracy of
the corresponding measurement drops dramatically, which
can lead to a wrong position estimation due to multipath
propagation of the signal. Multipath propagation describes
the reflection of a radio signal from surfaces and can
therefore existence of multiple paths from the sender to
the receiver. This results in different angles from which
the signal can arrive. Approaches using ToA or TDoA (see
Section 4.3 and 4.4) also struggle with NLOS conditions
but not to the extent of angle based approaches, as there
are methods to mitigate their effects in timing based
systems.

4.3. Range-based Positioning

Another approach that uses geometric properties is
range-based positioning. This approach uses the distance

Seminar IITM SS 23 56 doi: 10.2313/NET-2023-11-1_10

Figure 2: Range-based positioning with RSS or ToA [2]

from the device to multiple base stations. This distance
can be derived from time measurements (ToA or TDoA
metric) or signal strength (RSS metric). Range-based
positioning needs at least three involved base-stations,
instead of the two needed by angle-based positioning.
While the geometric representation for the position esti-
mation involving RSS and ToA is using the intersection of
three circles around the base stations, with the respective
distances as radii, also known as trilateration (as seen in
Figure 2) the TDoA approach instead uses the intersection
of hyperbolas around the base stations as no ranges but
only range differences are know [2].

4.4. Fingerprinting-based Positioning

While the previously mentioned approaches use ad
hoc measurements, fingerprinting-based positioning uses
another method to estimate positions. The typical pro-
cedure for this approach consists of two phases: the
offline or training phase and the online phase. During
the training phase, the observed area is divided into a
grid of measurement points. Multiple measurements of
the chosen metric are then acquired at each measurement
point. These metrics can be any metric from Cell ID to
RSS, but some, like RSS, are more suitable to be used by
a fingerprinting approach. These metrics are combined in
a fingerprint that is identifying each measurement point.
These fingerprints are inserted into a database that is
used during the online phase. In the online phase the
same measurements are repeated and combined into an-
other fingerprint. This fingerprint is matched against the
fingerprints within the database generated in the offline
phase. As these measurements are influenced by NLOS
conditions (Section) 4.2), the measurements are extended
to minimize the effect of these conditions. As the grid
divides the measurement area into discrete intervals, but
the position is on a continuous scale, the coordinates of
the nearest points are averaged to find the position. This
procedure is described using RSS measurements by Yu,
Jiang et al. in [10].

4.5. AGNSS Positioning

Assisted Global Navigation Satellite System (AGNSS)
positioning is an approach that uses the mobile network

differently than others. Its primary use is for indoor po-
sitioning, while still using a Global Navigation Satellite
System (GNSS) like GPS. As these systems struggle to
lock onto their positioning satellites while indoors due
to effects like NLOS conditions (Section 4.2), additional
data transmitted via a 5G network can help the devices
to lock onto the satellites. The functionality of AGNSS is
described by Mautz in [11].

5. Security

As a device’s location is sensitive information, it
attracts the attention of parties that want to abuse it.
This abuse can range from location-specific advertise-
ments without the users’ permission, to attackers altering
the reported location of a device to steal it. To better
understand the vulnerability of the 5G positioning system,
the attack targets and security threats are shown in the
following sections.

5.1. Attack Targets

In the 5G positioning network, every participant can
be an attack target, but not every target is equally sus-
ceptible to every threat. The three main categories of
targets in attacks on 5G positioning are the Location
Information Service Provider (LISP), the Location Based
Service Provider (LBSP) and the User Equipment (UE).
The UE can be divided further into the end-user equipment
and the Location Information Collaborators (LIC).

The LISP is the provider of the positioning infrastruc-
ture, e. g. the base stations that either send out the mea-
surement signals in device-centric positioning or receive
the measurement signals in network-centric positioning.
They also provide the LBSP access to their positioning
database, if the positioning is network-centric. In a device-
centric environment the location is provided by the device
itself.

The LBSP, on the other hand, is the provider of the
service the UE needs its location for. This service can be
a navigation app, a running app or even the tracking of
autonomous robots in, e.g. a factory.

The end-user device is by far the most commonly
known participant in the system. This device can be any
device with access to the 5G network, like a mobile phone,
a car with a built-in SIM-Card or a mobile robot in a
factory.

The LIC is an optional participant in the system as
its only present in a cooperative positioning environment.
LICs can be from the same device spectrum as the end-
user device and help the end-user device estimating its
position, as 5G allows device-to-device communication.
While using an LIC can improve the accuracy of position
estimation, it is also the device type with the greatest
potential to be malicious.

Figure 3 shows important traffic that for position es-
timation, like position or service data, is transported via
the UE. This fact makes the UE a prime target for attacks
on location privacy.

5.2. Security Threats

The threats to security in the 5G positioning system
can be categorized by the participants they affect. These

Seminar IITM SS 23 57 doi: 10.2313/NET-2023-11-1_10

Figure 3: 5G positioning targets [3]

threats can have different effects on the system, ranging
from a financial loss at an LBSP, e. g. if a user can use the
service without paying for it, up to position information
theft, e. g. if a location database gets compromised.

The first category of threats are threats affecting
multiple participants or every participant of the system.
This category includes Denial-of-Service- or Distributed-
Denial-of-service-attacks that saturate any participant,
therefore making it unavailable for the whole system.
Depending on the attacked participant, this can either
decrease the estimations accuracy, e. g. if only a single
base station is unavailable, or render the whole system
inoperable, e. g. if the UE is saturated. Also in this
category is the Man-in-the-Middle (MiM)-attack. In this
context, the main target for a MiM-attack would be the
communication between the UE and the LBSP, as this
communication will include information about the loca-
tion and authentication. An eavesdropping attack is also
possible in a network-centric system. If an attacker has
multiple nodes positioned in the area covered by the target
UE it can record the measurement signals emitted by the
UE and perform a TDoA, AoA or RSS measurement by
itself. A ToA measurement is impossible in this scenario
as the attacker is purely passive and therefore can not
synchronize its clocks with the UE.

The next category includes threats that affect the LISP.
One of these threats is the presence of malicious nodes
in the system that send fake signals to the base stations,
to create errors in the position estimate. Another threat to
the LISP, that does not require an attacker, is interference.
As 5G is using radio signals to send messages, these
signals can be jammed either intentionally by an attacker,
or unintentionally by other participants or natural causes,
like a storm. The jamming of signals can alter or prevent
measurements, making the positioning system unusable.

Threats that affect the LBSP are also a category of
threats that the 5G positioning system has to deal with.
This category includes the unauthorized use of the LBSPs
service, either being unpaid use, in case of a paid service,
by hijacking the signals or the misuse of the service,
e.g. an employer tracking the phones of his employees
to detect if they are working or not. Another threat to the
LBSP is the leakage or theft of information from the LBSP
database. This threat is a concern for privacy reasons, as
the location of any user using an LBSPs service e. g.
Google Maps, could be obtained if the location database
is breached.

As stated in the closing paragraph of Section 5.1, the

UE may be the prime target for an attack as it is the central
part of the positioning calculation. It also is the weakest
part of the system, from a security perspective, as the
users of the UE tend to be careless about restricting how
their data is used, as described by Gašparović, Nicolau and
Marques in [12]. A threat that comes from this category
is location-tracking malware that is installed directly on
the UE. This malware can report the location of the UE
without the user knowing. Another threat to the UE is the
loss of accuracy when using a fingerprinting approach that
can come from errors in the communication between the
measuring UE and the LISP while building the database in
the training phase. These errors, if not corrected, can lead
to inaccuracies in the position estimation during the online
phase of the positioning. Another threat for the UE, that
is also a threat to the LISP, is interference, as they prevent
both the LISP and the UE from communicating. Another
threat that was mentioned above is location theft. When
location theft is mentioned in the context of the UE, it is
not about the location of a device becoming public but
rather about a device reporting a fake location. This can
result in e. g. identity theft if a user is authenticated via his
location. A deeper explanation of these threats and others,
as well as some methods for protection against them, can
be found in [3, Chapter 13].

6. Conclusion and future work

We gave an overview of the current positioning metrics
and approaches using the 5G mobile communications
network. Additionally, we presented an overview of at-
tack targets and threats to security in the 5G positioning
ecosystem. The 5G system provides several metrics for
position estimation, including Time-of-Arrival, Angle-of-
Arrival and Received-Signal-Strength. Multiple measure-
ments of these metrics have to be combined to result
in an exact position. The approach and the metrics that
are used for estimating the position determine the min-
imum of required base stations to determine an exact
location. Range-based approaches, that use trilateration
as their theoretical foundation, need three base-stations
while angle based approaches, using the AoA metric and
triangulation as their theoretical foundation, need only
two base stations. Additional base stations can increase
the accuracy by providing additional information or by
elimination outliers, caused by interferences or NLOS
conditions. From the security point of view, the system
provides three main attack targets. The LISP, the LBSP
and the UE, are susceptible to several threats, that are
either unintentional, like interferences caused by storms,
or intentional, like DoS-Attacks or MiM-Attacks by an
adversary.

As the newer generation of mobile communications
is rising on the horizon with 6G, it will be interesting to
see what additional features for positioning come with it
and how current metrics and approaches will be improved.
Furthermore, it will be interesting to dive deeper into the
security topic and analyse different concrete attacks on
the mobile positioning architecture. Methods to prevent
these attacks could be learned and the security of the
infrastructure and location privacy could be improved.
These two topics provide a first basis for possible future
research and papers.

Seminar IITM SS 23 58 doi: 10.2313/NET-2023-11-1_10

References

[1] F. Mogyorósi, P. Revisnyei, A. Pašić, Z. Papp, I. Törös, P. Varga,
and A. Pašić, “Positioning in 5g and 6g networks—a survey,”
Sensors, vol. 22, no. 13, p. 4757, 2022.

[2] A. Tahat, G. Kaddoum, S. Yousefi, S. Valaee, and F. Gagnon, “A
look at the recent wireless positioning techniques with a focus on
algorithms for moving receivers,” IEEE Access, vol. 4, pp. 6652–
6680, 2016.

[3] M. Liyanage, I. Ahmad, A. B. Abro, A. Gurtov, and M. Ylianttila,
A comprehensive guide to 5G security. Wiley Online Library,
2018.

[4] J. Larsson, “Distance estimation and positioning based on bluetooth
low energy technology,” 2015.

[5] T. Van Haute, B. Verbeke, E. De Poorter, and I. Moerman, “Opti-
mizing time-of-arrival localization solutions for challenging indus-
trial environments,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 3, pp. 1430–1439, 2016.

[6] E. Tuncer and B. Friedlander, Classical and modern direction-of-
arrival estimation. Academic Press, 2009.

[7] W. Figel, N. Shepherd, and W. Trammell, “Vehicle location by
a signal attenuation method,” IEEE Transactions on Vehicular
Technology, vol. 18, no. 3, pp. 105–109, 1969.

[8] H. C. So and L. Lin, “Linear least squares approach for accurate
received signal strength based source localization,” IEEE Transac-
tions on Signal Processing, vol. 59, no. 8, pp. 4035–4040, 2011.

[9] J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and
G. Seco-Granados, “Survey of cellular mobile radio localization
methods: From 1g to 5g,” IEEE Communications Surveys & Tuto-
rials, vol. 20, no. 2, pp. 1124–1148, 2017.

[10] F. Yu, M. Jiang, J. Liang, X. Qin, M. Hu, T. Peng, and X. Hu,
“Expansion rss-based indoor localization using 5g wifi signal,” in
2014 International Conference on Computational Intelligence and
Communication Networks. IEEE, 2014, pp. 510–514.

[11] R. Mautz, “Overview of current indoor positioning systems,”
Geodezija ir kartografija, vol. 35, no. 1, pp. 18–22, 2009.

[12] M. Gašparović, P. Nicolau, A. Marques, C. Silva, and L. Marcelino,
“On privacy in user tracking mobile applications,” in 2016 11th
Iberian Conference on Information Systems and Technologies
(CISTI). IEEE, 2016, pp. 1–6.

Seminar IITM SS 23 59 doi: 10.2313/NET-2023-11-1_10

Seminar IITM SS 23 60

Content and API Acceleration Using Content Delivery Networks

Tom Maximilian von Allwörden, Markus Sosnowski∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: tom.von-allwoerden@tum.de, sosnowski@net.in.tum.de

Abstract—Modern web services are accessed all over the
world by potentially many users. Content Delivery Networks
(CDNs) play an integral role in lowering the latency for end-
users that are using these services by caching objects like a
website’s source code and images close to the user. Tradition-
ally, CDNs have been used for static content, but with the rise
of personalized user experiences and dynamically changing
content, new requirements for CDNs emerged. APIs are the
most common way such content is accessed, so an effort is
made to accelerate these.

This paper will give a brief introduction into how CDNs
work, how virtual network optimize routing and then exam-
ine how dynamic content and APIs can benefit from CDNs
via different invalidation techniques and what tradeoffs to
consider. Furthermore the paper collects diverse approaches
in the field of edge computing for moving the application
logic itself close to end users.

Index Terms—cdn, internet, api acceleration, dynamic con-
tent, virtual network, edge computing

1. Introduction

Content Delivery Networks (CDNs) bring web-
services like websites or APIs closer to the end-user by
deploying various globally distributed replica- or edge
servers that cache the content of the origin server. Such
locations are called Point of Presences (PoPs) and typ-
ically consist of Internet Exchange Points or locations
inside of an Internet Service Provider (ISP)’s networks [1].
Sitaraman et al. [2] show the main business incentive: high
load times of a website can avert potential users away from
a commercial site. A large CDN provider like Akamai
therefore deploys over 170 000 edge servers in about 1300
networks to accommodate todays needs [3,4], especially
in times where latency is the single biggest influence on
web performance, according to Ilya Grigorik [5].

When a user tries to access a web-service, instead of
visiting the origin server directly, they get directed to a
geographically close edge server by the CDN’s request-
routing system. If the content is cached, it is then im-
mediately returned, thus lowering the latency; however if
the content is not cached the CDN must fetch it from the
origin [6]. This can be done effectively using a CDN’s
virtual overlay network [2].

Beheshti [7] mentions that caching is especially ef-
fective for static content like images or script files, but
dynamic content and APIs are traditionally harder to cache
because simple caching could lead to the user getting stale,
outdated content.

This paper is structured as follows: Section 3 presents
an overview of different request routing methods. We take
a closer look at before mentioned virtual networks and
how connections to the origin are accelerated in Section 4.
Section 5 is about handling dynamic content with a focus
on a technique called invalidation. Lastly, in the umbrella
edge computing fall various approaches that improve a
site’s performance, which we discuss in Section 6.

2. Related Work

Two of the focal points of this paper are cache invali-
dation and consistency. We will not touch on the protocols
that different CDNs use to implement their invalidation
strategies, such as leases. This is discussed in more detail
by Ninan et al. in [8]. Wingerath et al. describe their ap-
proach for handling dynamic content in [9]. They focus on
the refresh procedure to detect stale content and afterwards
invalidate it automatically. We, on the other hand, will
look at manual invalidation, where we invalidate instantly
when events cause data to become stale.

3. Request Routing

Katz-Bassett et al. [10] state that the request-routing
system is responsible for directing a user from the origin
server to one of the CDN edge servers. There are three
common approaches CDNs use: Domain Name System
(DNS)-based, IP anycast-based and HTTP 304-based redi-
recting, where the user first contacts the origin, which then
redirects the user to a CDN server. We take a look at the
former two in more detail.

Gang Peng [6] presents more advanced methods, such
as those based on Peer-2-Peer systems, but these are
beyond the scope of this paper.

3.1. Domain Name System

With the DNS-based approach, which is covered by
Hung et al. [11], the administrator of a domain origin
places a CNAME entry pointing to the CDN’s DNS server
entry in its domain name server.

When a user requests a website, their local DNS
(LDNS) resolver, most commonly provided by their ISP,
will recursively query the domain name and contact the
CDN’s DNS server. This server then selects the edge
server PoP based on the LDNS IP-address [11]. This is
usually a good indicator for the approximate geographical
location of a user when not using a public resolver [10].

Seminar IITM SS 23 61 doi: 10.2313/NET-2023-11-1_11

Other metrics, such as the network load and previous
edge server choices are also taken into account when
selecting the edge server within a PoP [2].

Notice that with this scheme the end user’s IP-address
is not directly used for selecting an edge server. Sitaraman
et al. [12] and [10] discuss the proposed EDNS-Client-
Subnet DNS extension that allows the LDNS server to
send the user’s /24 IP-address-prefix along with the re-
quest, thus allowing the CDN to make a better decision.

This approach is widely popular. Examples of CDNs
using DNS-based approaches include Akamai [2], Ed-
genext [13] and AWS Cloudfront [14].

3.2. IP Anycast

With the IP Anycast approach, every edge server is
assigned the same IP-address. This method makes use of
the fact that when a network router gets the same route
announced from different interfaces, it chooses only the
one with the lowest hop count. A disadvantage with this
is that CDNs have less control over which edge server the
client connects to, but studies have shown that the method
leads to the optimal edge server in 80% of the time [10].

Popular CDNs, which use this approach include
Cloudflare [10], Microsoft Azure Front Door [15] and
Google Cloud CDN [16].

4. Virtual Network

CDN’s Network
User Origin

Figure 1: Routing using a CDN’s virtual network

Classical internet routing has several disadvantages:
The Border-Gateway Protocol that ISPs use to exchange
routes is known to lead to sub-optimal routing since it
has no topology information and solely uses hop-count as
its main metric [2]. The propagation of failed routes can
also take a significant amount of time. Furthermore, ISPs
are also driven by financial incentives and could prefer
routes over cheaper but slower peering-partner compared
to costly Customer-Provider (C2P) connections [2].

To mitigate this, CDNs influence the routing path
of a package by adding their servers as intermediate
hops, resulting in an overall more optimal route. They
do this by continuously measuring latency and package
drop between their edge servers and taking the topology
information of their server locations into account [2].

Some big players like AWS Cloudfront [17] and Mi-
crosoft Azure [18] come with their own backbone infras-
tructure between different PoPs, circumventing subopti-
mal internet routing even further. Common optimizations
when using the virtual network include:
Long-Term TCP& SSL connections A user’s TCP &

SSL connections are terminated close to them at
the edge. From there on, the edge server uses pre-
established TCP & SSL connections between the

origin and various edge servers. As the respective
handshakes require several round-trips, the saved cost
quickly accumulates [2,19].

No slow start TCP normally begins in a "slow start"
phase with small window sizes. CDNs skip this
phase and choose larger window sizes by taking
the previously mentioned network measurements into
account [2,19].

Data Compression : Images and other objects can be
compressed on the edge close to the origin server,
and thereby loaded quicker [2,19].

Abundant packages : CDNs can try to send the same
packages over multiple routes and then take the one
that arrives first. This also helps against package loss,
but can cause more congestion [2].

Virtual networks thus accelerate the content fetch from
the origin in case of a cache-miss and are therefore impor-
tant for uncacheable and dynamic content. It was shown,
that in Asia the use of a CDN’s more optimized routing
can lead to a 30-50% performance improvement [2].

5. Caching of Dynamic Content

In the last section we saw a general way to speed
up requests to the origin, but we did not make use of
a CDN’s caching capability yet. This section introduces
dynamic content and discuss techniques of caching it.

Dynamic content is content that changes over time
but might be the same for all users while personalized
content refers to dynamic content that is different for
each user. For example, a site presenting the top 10 most
viewed news articles of the day is dynamic content, while
a user’s shopping cart is personalized content. As the
storage requirements for the latter scale with the number
of users with each entry only relevant for a single user,
caching it might be of little value for a service, but we
will see a way of handling this content in Section 6.

Lawrence et al. [20] highlights that not all dynamic
content is the same: some content is valid for a long time,
while other might change with every request made. The
update trigger might be an external event, such as a new
blog post release, or it might simply be after a certain
period of time has passed. The latter would be easier to
handle, as one could just choose this period as the cache’s
Time-To-Live (TTL).

The main problem we face with caching is consistency,
as we have multiple, distributed copies of an object that
might become stale at any time. But even for dynamic con-
tent that normally changes with every request, a site owner
might choose to intentionally give up on consistency and
decide to cache it for a brief period, a practice referred
to as micro-caching, as this alone can take a considerable
load off the origin [9]. This is especially true for large
services that deal with hundreds to thousands of requests
per second.

Another way CDNs can benefit APIs is by accumu-
lating multiple requests over a short period of time and
sending them bundled to the origin. Therefore, taking load
and overhead off of the origin [21].

As APIs usally interface with a database at the origin,
there are efforts that try to map the cache objects to this
underlying relational data. The analysis is typically done
by observing the traffic between web listeners, databases

Seminar IITM SS 23 62 doi: 10.2313/NET-2023-11-1_11

and web services, but the analysis of this mapping is too
expensive and unreliable to use in practice [20].

Therefore, we will focus on the most common way
dynamic content is cached, namely, fine-grained cache
control and invalidation.

5.1. Cache Control and Invalidation

In comparison to the difficult and expensive task of
maintaining and modeling data dependencies between
cache objects, invalidation is a cheap and simple alterna-
tive [20]. We want to cache dynamic content for as long as
possible and invalidate it as soon as it becomes stale. The
most common way invalidation occurs is simply when the
set livetime of a cached item expires. This livetime can
be controlled via the "Expires" header and is passed in
the response from the origin [22]. Another option is to
invalidate the cash manually. This can be done via the
CDN’s API, also refered to as purging [23,24].

We generally want to invalidate as little as necessary
so that we reduce the number of cache misses. Fine-
grained invalidation is generally more difficult to do and
costs the CDN more resources. CDNs commonly provide
different purging methods that vary in their level of gran-
ularity [23,24]:
By URL Invalidates the cache object that is associated

with the URL.
By Prefix Invalidate all objects with a given URL prefix
By Tag The origin Server can associate cache objects

with a tag by adding a "Cache-Tag" header to the
response. This way many possibly by path unrelated
endpoints can be purged with a single request.

By Geo Only invalidate cache objects at certain PoPs.
Even with purging, users could still get stale content

if the CDN only provides weak consistency. Weak consis-
tency means that the cached objects on the different PoPs
only eventually get invalidated instead of instantly as it is
the case with strong consistency [25]. Even CDNs such as
Fastly that advertise a "instant purge" feature do not have
strong consistency across different PoPs [26]. Although
this can already be enough for services, where users
requesting the same content tend to be geographically
close together. When we look at a typical restful API,
there are generally two types of requests [24]:
state requesting GET
state changing POST, PUT, DELETE
The former can usually be cached, while the latter are
commonly passed through to the origin [24]. In response
to a state changing request, the corresponding cache en-
tries need to be invalidated. Let us explore how invalida-
tion mechanics can be used in practice by examining the
following example of a video watching & commenting
platform with the following endpoints:

• PUT /api/<videoid>/comment: users can leave
comments with their username attached.

• GET & PUT /api/<userid>/profile: users can re-
trieve or change their profiles e.g. their username.

In the event that a user changes their username, we
want to invalidate all comments made by them to reflect
this change. In this scenario, invalidating every object
separately is a costly task. Instead, we use tags to as-
sociate each comment and possibly other user-related

endpoints with the user’s id and purge them with one
purge call [24,27,28]. Another possibility is to handle
purging and other logic on the edge servers themselves.
We highlight this in more detail in Section 6.

Further techniques to to improve invalidation include:
Cache-keys The index into the cache to associate an URL

with a cached object is called the cache-key. Modern
CDNs allow one to include or exclude certain parts
and parameters of the URL and request headers into
the key to avoid unnecessary cache-misses [29].

Auto revalidation A CDN might try to fetch the newest
state of an object once the TTL has expired. If
the content was invalidated via a message from the
origin, the origin could pass the newest version of
that object along [25].

Invalidation order Monitoring the popularity of objects
allows a CDN to invalidate the popular ones first as
these affect the most users [20].

In recent years, GraphQL APIs have become a modern
alternative to RESTful APIs. Wundergraph and Hygraph
are examples of services that specialize in GraphQL API
management and include CDN-like caching capabilities.
These can handle invalidation automatically to some ex-
tent, but use relatively simple approaches: Wundergraph
allows the developer to define dependencies between APIs
but not the data dependencies within an API [5,30]. It
caches all objects for 10 seconds. Hygraphs supports
invalidation and does this based on the GraphQL schema
and content changes, but only with weak consistency [31].

6. Edge Computing

Invalidation is not perfect for applications with a high
number of uncacheable requests or whenever we have a
cache-miss, as the origin is the sole producer of fresh
content and needs to be contacted.

The idea behind edge computing is to move as much
application logic as possible close to the user onto edge
servers. When a request can be completely handled on the
edge, no additional overhead is needed to reach out to the
origin server, thus decreasing latency and taking load of
the origin. For this, applications are usually split into an
edge and an origin component [21].

One popular approach is the deployment of edge
functions. Edge functions run in response to incomming
requests. These can then modify the request, interact with
the CDN’s caching system, or implement entire API-
endpoints on edge, and thus behave similarly to an API-
gateway [2]. For example, the invalidation logic discussed
in the previous section can be implemented as edge func-
tions. Most CDNs offer such functions, for example AWS
Lambda@Edge [32] or Cloudflare Worker [33].

Applications that only need a static database to func-
tion are prime candidates to be moved completely onto the
edge. For example encyclopedias, dictionaries or product
catalogues of e-commerce businesses with a fixed number
of products [21]. In the following sections, we will discuss
various techniques in more detail.

6.1. Normalization

URL normalization is applied to the HTTP path and
parameters of incoming requests and ensures the same

Seminar IITM SS 23 63 doi: 10.2313/NET-2023-11-1_11

encoding for all paths in compliance with RFC3986 [34].
As the path is a common component of the cache key,
different encodings of the same object can lead to unnec-
essary cache misses.

For example, these two URLs refer to the
same object: "example.com/api/./user/青 沼" and
"example.com/api/user/%E9%9D%92%E6%B2%BC".
Since these would hit in different cache keys,
normalization is applied to map the former path
into the latter.

6.2. Edge Site Includes

Personalized sites are created explicitly for the user re-
questing them, and it thus provides little value for a CDN
to cache the site as is, especially because the presented
content might become stale fast anyway [20]. But looking
at how personalized sites are constructed one might notice
that they are often built using shared fragments [20].
For example, Figure 2 shows different fragments of the
bing.com website with fragments such as recent news or
weather that could be shared across users of the same city.

Edge-Site-Includes (ESI) allow for the creation of
dynamic, fragmented websites by assembling the web-
site on the edge. Here, a website consists of an HTTP
template with special ESI tags, that describe the type
and location of the fragments that should be included in
the final site. The fragments are shared between different
templates and can each be individually cached and have
their own TTL [2,20]. The ESI environment allows one
to encapsulate personalized information into a fragment
that itself can be cached [20]. A edge server might also
speculatively assemble a site beforehand, based on the
user’s last visited sites [35].

Figure 2: Sample fragmentation of bing.com

6.3. Validation & Authorization

Before forwarding a request to the origin it can be
checked for ill-formatted content [2]. A certain kind of
validation is authorization, where we check if the user
has the necessary access rights. JSON Web Tokens are
a popular method to authenticate users. We assume that
the user got a API token from an issuer (most likely the
origin) in advance. The client then includes this token in
the "Authentication" header within each request. The edge

which is provided a JSON Web Key Set by the Issuer,
checks the user token against this set [36].

Other authorization schemes like OAuth or openid
connect can also be handled on edge [37,38].

6.4. Aggregation

Some simple API endpoints might only consist of
requests to other external services like cloud databases or
weather APIs. These requests can be moved from origin to
edge servers and format the responses on edge [2]. Addi-
tionally, the responses of those endpoints might be cached
on the edge server. More advanced handling can also be
achieved using edge functions. Even transactional tasks
can benefit from solely exchanging raw and compressed
data between the origin and edge servers, where the final
product is then assembled on edge [21].

6.5. Session Handling

Websites commonly keep sessions with clients to rec-
ognize users and keep temporary data across multiple
requests. Often, the returned websites embed this tempo-
rary information based on the session token. For example,
current shopping cart items can be associated with the
session. Edge servers can be used to replace placeholders
in a generic HTML site with the content acquired by the
state. The other way around is also possible: If no session
token is found, the edge can directly return the default site
for anonymous users [20].

7. Conclusion and Future Work

CDNs are an essential part of accelerating web ser-
vices and APIs through the caching of both static and
dynamic content. They rely on a request-routing system
to connect a user to an edge server and thus lower the main
factor that contributes to a site’s loading time: latency. We
looked at the concept of virtual networks, which lower
latency between the edge and origin servers and ways
to accelerate dynamic content and APIs. The different
methods of invalidation and cache control are tricky to
facilitate correctly and demand careful consideration from
developers with respect to the application build.

This paper also laid out how edge computing can be
used to move different aspects of applications onto edge,
like authentication, site assembly or endpoints based on
accumulative requests. To conclude, these approaches can
not only take load off the origin, lowering the bandwidth
needed, but also make end user’s experience better through
faster loading times, especially when their request can
completely be handled on edge.

To lessen the design complexity of edge functions for
custom purging, research should be conducted to look at
how invalidation can be done more automatically by using
assumptions about data dependencies in the cached objects
and API endpoints, and how unified API Guidelines can
help in this endeavour.

References

[1] “Cloudflare Glossary - Internet exchange points,”
https://www.cloudflare.com/de-de/learning/cdn/glossary/internet-
exchange-point-ixp/, [Online; accessed 28-March-2023].

Seminar IITM SS 23 64 doi: 10.2313/NET-2023-11-1_11

[2] J. S. Erik Nygren, Ramesh K. Sitaraman, “The Akamai Network:
A Platform for High-Performance Internet Applications,” SIGOPS
Oper. Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010. [Online].
Available: https://doi.org/10.1145/1842733.1842736

[3] B. M. Maggs and R. K. Sitaraman, “Algorithmic Nuggets
in Content Delivery,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 3, pp. 52–66, Jul. 2015. [Online]. Available:
https://doi.org/10.1145/2805789.2805800

[4] “Why Akamai,” https://www.akamai.com/why-akamai, [Online;
accessed 28-March-2023].

[5] I. Grigorik, High Performance Browser Networking: What every
web developer should know about networking and web perfor-
mance. "O’Reilly Media, Inc.", 2013.

[6] G. Peng, “CDN: Content Distribution Network,” 2004. [Online].
Available: https://arxiv.org/abs/cs/0411069

[7] H. Beheshti, “Fastly - Leveraging your CDN to cache "un-
cacheable" content,” https://www.fastly.com/blog/leveraging-your-
cdn-cache-uncacheable-content, [Online; accessed 28-March-
2023].

[8] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R. Tewari,
“Cooperative Leases: Scalable Consistency Maintenance in
Content Distribution Networks,” in Proceedings of the 11th
International Conference on World Wide Web, ser. WWW ’02.
New York, NY, USA: Association for Computing Machinery,
2002, pp. 1–12. [Online]. Available: https://doi.org/10.1145/
511446.511448

[9] W. Wingerath, F. Gessert, E. Witt, H. Kuhlmann, F. Bücklers,
B. Wollmer, and N. Ritter, “Speed Kit: A Polyglot and
GDPR-Compliant Approach For Caching Personalized Content,”
in 2020 IEEE 36th International Conference on Data Engineering
(ICDE), 2020, pp. 1603–1608. [Online]. Available: https:
//doi.org/10.1109/ICDE48307.2020.00142

[10] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and
J. Padhye, “Analyzing the Performance of an Anycast CDN,” in
Proceedings of the 2015 Internet Measurement Conference, ser.
IMC ’15. New York, NY, USA: Association for Computing
Machinery, 2015, pp. 531–537. [Online]. Available: https:
//doi.org/10.1145/2815675.2815717

[11] Z. Wang, J. Huang, and S. Rose, “Evolution and challenges
of DNS-based CDNs,” Digital Communications and Networks,
vol. 4, no. 4, pp. 235–243, 2018. [Online]. Available: https:
//doi.org/10.1016/j.dcan.2017.07.005

[12] F. Chen, R. K. Sitaraman, and M. Torres, “End-User Mapping: Next
Generation Request Routing for Content Delivery,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 167–181, Aug. 2015.
[Online]. Available: https://doi.org/10.1145/2829988.2787500

[13] “EdgeNext CDN Introduction,” https://
home.console.edgenext.com/#/doc/content/cdn/Product%
20Introduction/Product%20overview, [Online; accessed 28-
March-2023].

[14] “How CloudFront delivers content,” https://
docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
HowCloudFrontWorks.html, [Online; accessed 28-March-2023].

[15] “Microsoft Azure Front Door - Traffic acceleration,”
https://learn.microsoft.com/en-us/azure/frontdoor/front-door-
traffic-acceleration, [Online; accessed 28-March-2023].

[16] “Google Cloud CDN - Choose a CDN Product,” https://
cloud.google.com/cdn/docs/choose-cdn-product, [Online; accessed
28-March-2023].

[17] “Amazon CloudFront Key Features,” https://aws.amazon.com/
cloudfront/features/?nc1=h_ls&whats-new-cloudfront.sort-by=
item.additionalFields.postDateTime&whats-new-cloudfront.sort-
order=desc, [Online; accessed 28-March-2023].

[18] “How Microsoft builds its fast and reliable global network,”
https://azure.microsoft.com/en-us/blog/how-microsoft-builds-its-
fast-and-reliable-global-network/, [Online; accessed 28-March-
2023].

[19] “Microsoft CDN - Dynamic Site Acceleration,”
https://learn.microsoft.com/en-us/azure/cdn/cdn-dynamic-site-
acceleration, [Online; accessed 28-March-2023].

[20] J. Anton, L. Jacobs, X. Liu, J. Parker, Z. Zeng, and T. Zhong, “Web
Caching for Database Applications with Oracle Web Cache,” in
Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’02. New York, NY,
USA: Association for Computing Machinery, 2002, pp. 594–599.
[Online]. Available: https://doi.org/10.1145/564691.564762

[21] A. Davis, J. Parikh, and W. E. Weihl, “Edgecomputing: Extending
Enterprise Applications to the Edge of the Internet,” in Proceedings
of the 13th International World Wide Web Conference on Alternate
Track Papers and Posters, ser. WWW Alt. ’04. New York, NY,
USA: Association for Computing Machinery, 2004, pp. 180–187.
[Online]. Available: https://doi.org/10.1145/1013367.1013397

[22] “Amazon CloudFront - Managing how long content stays in the
cache,” https://docs.aws.amazon.com/AmazonCloudFront/latest/
DeveloperGuide/Expiration.html, [Online; accessed 31-March-
2023].

[23] “Cloudflare CDN - Purge Cache,” https://
developers.cloudflare.com/cache/how-to/purge-cache/, [Online;
accessed 31-March-2023].

[24] “Fastly - API Caching, Part 1,” https://www.fastly.com/blog/api-
caching-part-i, [Online; accessed 30-March-2023].

[25] M. Hossein Sheikh Attar and M. Tamer Özsu, “Alternative
Architectures and Protocols for Providing Strong Consistency
in Dynamic Web Applications,” World Wide Web, vol. 9,
no. 3, pp. 215–251, Oct. 2006. [Online]. Available: https:
//doi.org/10.1007/s11280-006-8563-1

[26] “Fastly - Purging,” https://developer.fastly.com/reference/api/
purging/, [Online; accessed 31-March-2023].

[27] “Fastly - API Caching, Part 2,” https://www.fastly.com/blog/api-
caching-part-ii, [Online; accessed 30-March-2023].

[28] “Fastly - API Caching, Part 3,” https://www.fastly.com/blog/api-
caching-part-iii, [Online; accessed 30-March-2023].

[29] “Amazon CloudFront - Controlling the Cache Key,”
https://docs.aws.amazon.com/AmazonCloudFront/latest/
DeveloperGuide/controlling-the-cache-key.html, [Online; accessed
31-March-2023].

[30] “Wundergraph Architecture - Manage API Dependencies explic-
itly,” https://docs.wundergraph.com/docs/architecture/manage-api-
dependencies-explicitly, [Online; accessed 31-March-2023].

[31] “Hygraph - Caching,” https://hygraph.com/docs/api-reference/
basics/caching, [Online; accessed 31-March-2023].

[32] “AWS Lambda Features,” https://aws.amazon.com/lambda/
features/, [Online; accessed 31-March-2023].

[33] “Cloudflare - How Workers work,” https://
developers.cloudflare.com/workers/learning/how-workers-works/,
[Online; accessed 01-April-2023].

[34] T. Berners-Lee, R. T. Fielding, and L. M. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” RFC 3986, Jan. 2005.
[Online]. Available: https://doi.org/10.17487/RFC3986

[35] Suresha and J. R. Haritsa, “On Reducing Dynamic Web
Page Construction Times,” in Advanced Web Technologies and
Applications, J. X. Yu, X. Lin, H. Lu, and Y. Zhang,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
722–731. [Online]. Available: https://doi.org/10.1007/978-3-540-
24655-8_78

[36] “Google Cloud CDN - Using JWT to authenticate users,” https://
cloud.google.com/api-gateway/docs/authenticating-users-jwt, [On-
line; accessed 31-March-2023].

[37] J. T. Zhao, S. Y. Jing, and L. Z. Jiang, “Management of
API Gateway Based on Micro-service Architecture,” Journal
of Physics: Conference Series, vol. 1087, no. 3, p. 032032,
sep 2018. [Online]. Available: https://doi.org/10.1088/1742-6596/
1087/3/032032

[38] “Wundergraph - OpenID Connect-Based Authentication,”
https://docs.wundergraph.com/docs/features/openid-connect-
based-authentication, [Online; accessed 31-March-2023].

Seminar IITM SS 23 65 doi: 10.2313/NET-2023-11-1_11

Seminar IITM SS 23 66

Wireless Time Synchronization in IEEE 802.11

Ulkar Aslanova, Leander Seidlitz∗, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: ulkar.aslanova@tum.de, {leander.seidlitz, jonas.andre}@net.in.tum.de

Abstract—IEEE 802.11 Wireless Local Area Networks
(WLANs) are extensively utilized for communication among
multiple devices within a limited geographical area. In
comparison to Ethernet-based networks, WLANs provide
users with mobility and flexibility. However, wireless com-
munication technologies have introduced new challenges,
one of which is time synchronization, which is essential
for network management and monitoring. While the syn-
chronization issue has been extensively researched in con-
ventional wired networks, the physical limitations of the
wireless medium have presented a new set of difficulties. The
lasting problem with the lack of synchronized timing support
has been addressed in IEEE 802.11-2012. This amendment
introduced two methods: Timing Advertisement (TA) and
Timing Measurement (TM). This paper analyzes the time
synchronization mechanisms included in the IEEE 802.11
standard, along with exploring non-IEEE solutions. It also
examines the various factors that influence synchronization
performance.
Index Terms—IEEE 802.11 WLAN, Time Synchronization,
Timing Synchronization Function (TSF), Timing Adver-
tisement (TA), Timing Measurement (TM), Network Time
Protocol (NTP), IEEE 1588 Precision Time Protocol (PTP)

1. Introduction
Wireless communication has brought major changes

to data networking and telecommunications. In today’s
world, wireless networks are widely employed in fields
that formerly relied on traditional wired networks. One
such network is the Wireless Local Area Network
(WLAN), which offers users high bandwidth connectivity
within a limited geographical area [1]. The adoption of
IEEE 802.11 standards has had a significant influence on
the both public and private domains. 802.11 has developed
into a common option for a constantly growing application
field due to its cost-effective chipsets and support for
high data rates [2]. In modern times, WLANs are utilized
to provide a communication infrastructure for a wide
range of applications, spanning from small-scale in-home
networks to large-scale deployments in office buildings,
as well as mobile networks in airports and other public
spaces.

1.1. Infrastructure Mode in IEEE 802.11

In IEEE 802.11, there are several communication
modes defined for the transmission of data between de-
vices. These communication modes control the interac-
tion and information exchange among devices within the

network. The basic service set (BSS) is a fundamental
component of IEEE 802.11 WLAN. It is a group of
wireless stations (STAs) that communicate at the physical
layer (PHY). Depending on the communication mode,
BSS can be classified into three categories: independent
BSS (IBSS), infrastructure BSS and Mesh BSS (MBSS).
This paper will focus on investigating time synchroniza-
tion techniques designed for the infrastructure mode in
IEEE 802.11-based networks.

The infrastructure mode of WLAN enables communi-
cation between STAs through a centralized entity called
an access point (AP). The AP manages the network and
coordinates communication between devices. This mode
is particularly suitable for use in centralized architectures
utilized in various applications, such as smart grids [3]
and industrial automation [4].

1.2. Time Synchronization Problem

In an ideal clock, the rate remains constant over time,
while an ordinary clock develops an offset. So, if an
ordinary clock Cord has a rate of a and an offset b to
the ideal clock t, then Cord can be calculated using (1).

Cord(t) = a · t+ b (1)

The goal of time synchronization is to minimize the error
ϵ (2) between two clocks.

ϵ = Cord(t)− t (2)

Time synchronization among wireless nodes is one of
the key functions for controlling and monitoring activities
within wireless networks. It is essential not only for
network management but also for MAC layer protocols
such as Time Division Multiple Access (TDMA), which
relies on synchronized timing for achieving collision-free
channel access in shared medium networks. Moreover,
time synchronization is essential for power management
in IEEE 802.11 networks [5], real-time applications [6],
and Internet of Things (IoT) applications [7]. In IEEE
802.11, proper time synchronization enables power-saving
features, allowing devices to coordinate wake-sleep sched-
ules efficiently. For real-time applications, accurate time
synchronization is crucial to minimize jitter and latency.
In IoT applications, time synchronization is fundamental
for synchronizing data from multiple sensors and devices.

Despite the fact that synchronizing wireless nodes is
essential, there has not been much support for providing
synchronized clocks until the introduction of the IEEE
802.11-2012 amendment. Prior to this amendment, the

Seminar IITM SS 23 67 doi: 10.2313/NET-2023-11-1_12

preferred approach to achieve synchronized clocks in
IEEE 802.11 networks was the utilization of synchro-
nization protocols such as the Network Time Protocol
(NTP) and the IEEE 1588 Precision Time Protocol (PTP)
over WLAN. The 802.11-2012 standard has expanded the
methods available for clock synchronization in wireless
LANs with two mechanisms: Timing Advertisement (TA)
and Timing Measurement (TM).

The remaining sections of the paper are structured as
follows: Section 2 examines alternative clock synchro-
nization protocols that are not part of the IEEE 802.11
standard; Section 3 provides an overview of the clock
synchronization mechanisms included within the IEEE
802.11-2012 standard; and Section 4 analyzes the perfor-
mance aspects of wireless time synchronization.

2. Non-IEEE 802.11 Protocols for Time Syn-
chronization

Due to the lack of time synchronization support in
IEEE 802.11, other protocols such as IEEE 1588 Precision
Time Protocol (PTP) and Network Time Protocol (NTP)
have been used for synchronization. These protocols were
originally designed for synchronization purposes in wired
networks and later adapted for wireless networks.

Both of these protocols can be utilized for relative
and absolute time synchronization. The goal of absolute
synchronization, also known as external synchronization,
is to align devices within a network to a universal refer-
ence such as International Atomic Time (TAI) or Universal
Coordinated Time (UTC). This ensures that all devices
maintain a consistent time with respect to the specified
reference. Relative synchronization (or internal synchro-
nization) is employed solely to establish a shared timebase
among synchronized devices within a network.

2.1. PTP over WLAN

PTP, introduced in the IEEE 1588 standard, is com-
monly used in LAN networks. It is based on a master-
slave approach, where the master node is responsible for
synchronizing slaves in the network. In PTP, the default
Best Master Clock Algorithm (BMCA) is used. In infras-
tructure mode WLAN, the AP can be considered as the
master and other STAs as slaves. Therefore, a custom
BMCA can be implemented, which will choose AP as
the master clock [8]. Several ways have been researched
in order to employ PTP over WLAN. The prototypes
using software and hardware-based timestamping were
first presented in [9].

PTP uses a two-way packet exchange for synchroniza-
tion. The master clock periodically sends synchronization
messages (SYNC) every two seconds (by default), which
contain an estimated timestamp of the message transmis-
sion time t1. Upon receiving the SYNC message, the
slave stores a timestamp of the reception time t2. The
master clock can also send a follow-up message with a
more precise value of the transmission time timestamp.
The difference t2 − t1 could be used for calculating the
offset; however, it includes not only the offset from slave
to master osm, but also the propagation delay dms from
master to slave (3).

t2 = t1 + dms + osm (3)

For this reason, the slave clock periodically sends a delay
request (DELAY_REQ) message to the master clock and
records the transmission time timestamp t3. In response
to the request, the master clock sends a delay response
(DELAY_RESP) message containing the reception time
of the received request message t4 [9]. The difference t4
- t3 includes the propagation delay dsm from slave to
master (4).

t4 = t3 + dsm − osm (4)

With this information, the slave can calculate the offset
to the master osm using (5), and adjust its clock accord-
ingly [8].

osm =
(t2 − t1)− (t4 − t3)

2
− dms − dsm

2
(5)

Figure 1: Message exchange in PTP [10];

If the propagation delays dms and dsm are equal,
then it is possible to calculate the offset precisely. PTP
assumes that the propagation delay is symmetric in both
directions, but this assumption is not always true and can
result in synchronization bias. As shown by Mahmood
et al. in [11], in wireless networks, asymmetry comes
from the multicasting of packets from STA to AP, and the
propagation delay in the direction from slave to master is
commonly greater than from master to slave.

One of the main problems that arises when using PTP
over WLAN is the handover of STAs from one AP to
another, which is one of the requirements for use in large
industrial environments where mobility is important. As
PTP is designed for wired networks, it does not provide a
fast handover of slaves from one master to another. A
broader discussion of this problem has been presented
in [11].

2.2. NTP over WLAN

NTP is a client-server protocol which can be used for
time synchronization over WLAN. In client-server syn-
chronization clients should request synchronization from
the server. In a WLAN setup, the AP can be seen as
a server, while the STAs function as clients. NTP uses
a two-way packet exchange and can calculate the offset
using (5). Similar to PTP, NTP also makes the assumption
of symmetric propagation delays.

Seminar IITM SS 23 68 doi: 10.2313/NET-2023-11-1_12

Timestamping in NTP can be implemented using both
software-based and hardware-based approaches. In the
case of software timestamping, the performance depends
on where the timestamping is done. When timestamping
is done at the application level, the timestamping jitter can
increase due to random channel access delays. Timestamp-
ing can also be done in the device driver to avoid channel
access delays. Using hardware timestamping can provide
more accurate and reliable timestamps [8].

3. Synchronization over IEEE 802.11

Various synchronization methods included in IEEE
802.11 are shown in Figure 2.

Figure 2: Synchronization Schemes in IEEE 802.11 [7];

3.1. Relative Synchronization Methods in IEEE
802.11

As all STAs communicate through the AP in infras-
tructure mode, it is essential that their clocks are syn-
chronized with the AP. For internal synchronization, IEEE
802.11 uses the Timing Synchronization Function (TSF)
timer with modulus 264, counting in increments of mi-
croseconds, which is present within every STA. In order to
synchronize other STAs in a BSS, AP sends special frames
called Beacon frames. These frames contain the TSF timer
of the AP. STAs receive Beacon Frames at a regular rate,
with the interval determined by their dot11BeaconPeriod
parameter. The value of this parameter is included in Bea-
con frames and is defined by the AP. When a STA joins
the BSS, it should adjust its beacon period to match the
one specified in the Beacon frame [12]. As soon as a STA
receives the Beacon frame, it should accept the timing
information contained within this frame. If the STA’s TSF
timer differs from the received timestamp, it should update
its local timer by adding the delay introduced by the STA’s
local PHY components and the time elapsed since the
first bit of the timestamp was received at the MAC/PHY
interface to the received timestamp.

It should be noted that the TSF method applies only
offset correction and does not include rate correction.
Additionally, it does not estimate propagation delay when
calculating the offset. Both of these can lead to synchro-
nization bias. However, the accuracy requirement for the
TSF timer in IEEE 802.11 is achievable even without per-
forming propagation delay compensation [8]. As the TSF
timer’s accuracy shall be within a tolerance of ±0.01%,

it can still be met using hardware timestamps from TSF
timers.

3.2. Absolute Synchronization Methods in IEEE
802.11

Alongside relative synchronization, IEEE 802.11-2012
has introduced two external synchronization mechanisms.

3.2.1. Timing Measurement (TM) Method. The TM
method employs a two-way packet exchange between STA
and AP for end-to-end synchronization. To initiate the
Timing Measurement Procedure, the STA sends a request
to the AP in the form of an Action frame, with the trigger
value set to 1. Then, the AP starts transmitting action
frames. The initial frame is transmitted by the AP at time
t1 and received by the STA at time t2. Upon receiving
this frame, the STA promptly sends an acknowledgement
frame at time t3. The AP receives this frame at time t4
and responds with an action frame containing the values
t1 and t4.

Figure 3: Message exchange in TM method [13];

With these values, the STA can calculate its time offset
O from the AP using (5). Now, using the computed offset
and the time reference provided by the AP, the STA can
synchronize its own clock with the reference clock. To
stop the timing measurement procedure, the STA should
send a new action frame with the trigger value set to
0 [12].

In this method, the timestamping timer has a resolution
of 10 ns, which is different from the TSF timer used in
IEEE 802.11 networks, with a resolution of 1 µs. The
IEEE 802.11 standard does not provide specific details
regarding the timer used for timestamping in the TM
method, so it’s assumed that this timer is implemented
as a vendor-specific timer and is capable of carrying TAI
or UTC time [14].

3.2.2. Timing Advertisement (TA) Method. The TA
method uses the TSF timer of the AP along with ex-
ternal timing standards such as UTC or TAI to achieve
synchronized time across the STAs within a BSS. The
AP shares a timestamp from its TSF timer and the offset
between the TSF and the local clock (system clock). When

Seminar IITM SS 23 69 doi: 10.2313/NET-2023-11-1_12

a STA receives a frame containing TA information, it
generates a timestamp using its TSF timer. Then, it passes
this timestamp and the received TA information to higher
layers in order to synchronize its local clock with the AP’s
local clock.

Since the local timer and the TSF timer of the AP
operate on different oscillators, the offset between them
can change due to the skew between the two oscillators,
which can affect synchronization. Also similarly to inter-
nal synchronization with TSF, the TA method can also
lead to synchronization bias as it does not include the
propagation delay between the sender and receiver. In [15]
Mahmood et al. performed a performance analysis of the
TA method.

4. Factors Influencing Synchronization Per-
formance

Time synchronization performance is affected by sev-
eral factors, such as the oscillator, quality of timestamps,
clock adjustments, and synchronization rate. In this sec-
tion, the effects of the mentioned factors will be discussed.

4.1. Oscillator Impact

A clock consists of an oscillator, which serves as the
fundamental source of clock ticks. The main time source
in modern-day devices is a quartz crystal oscillator (XO).
In an ideal clock, the frequency of the oscillator remains
constant over time. However, XOs frequency stability and
accuracy are affected by various physical and electrical
factors such as temperature, voltage, noise, and other
conditions [16]. In order to achieve high accuracy and
precision, it is important to minimize the error originating
from the oscillator.

4.2. Timestamping Accuracy

In packet-based networks like IEEE 802.11, times-
tamps can be included in packets to distribute time in-
formation throughout the network. An important factor
is when and how the timestamps are drawn. To en-
sure accurate offset calculation and avoid asymmetry, the
timestamps should be drawn based on a common reference
point, for example, upon detecting the start of the frame
delimiter or packet preamble [8]. There are two methods
for drawing timestamps: hardware-based and software-
based. Hardware-based timestamps are generated by the
hardware at the physical (PHY) layer and are known for
their high accuracy. The TSF and TM methods utilize
hardware timestamps. In contrast, software timestamps,
typically generated within the device’s operating system
(OS) at higher protocol layers, are generally less accurate
as they do not provide the exact departure and arrival
times of packets. When using software timestamping, it is
crucial to employ a stable clock in order to minimize the
variation in access time when deriving timestamps. One
important aspect is determining the location for software
timestamping. As Mahmood et al. mentioned in [8], the
device driver is often the initial point where software
timestamping can be implemented. The timestamp can
be captured within the interrupt service routine (ISR)

in the driver, as this is the earliest point in time when
the operating system (OS) is notified of an incoming or
outgoing packet. The TA method is one of the software-
based approaches for time synchronization. Table I in [7]
presents the timestamping type and achievable accuracy
for each of the mentioned methods.

4.3. Clock Adjustment

The clock adjustment is performed when a STA syn-
chronizes its local clock with the reference clock, which
is the AP in infrastructure mode. This adjustment aims
to minimize the offset between the STA’s clock and the
reference clock. Various approaches can be employed
for this process, including linear least-squares regression,
statistical methods, and control theory-based approaches.
Depending on the chosen method, an adaptive methodol-
ogy should be implemented to account for the variations
in error sources [8].

4.4. Synchronization Rate

The synchronization rate determines the frequency at
which synchronization packets are exchanged between the
AP and the STAs. The goal of selecting an appropriate
synchronization rate is to minimize the combined effect
of errors introduced by the oscillator, propagation delays,
and other factors. Hardware timestamps, when used with a
higher synchronization rate, can lead to higher accuracy in
time synchronization as they rely on hardware components
that provide precise and consistent timing measurements.
On the contrary, software timestamps may not effectively
improve accuracy with higher synchronization rates, as
the software will frequently collect timestamps, including
those with potential noise and jitter. Bringing noisy times-
tamps into the controller more frequently can result in
inaccurate time measurements and introduce instability in
the synchronization process [13]. However, it’s important
to note that lower synchronization rates can result in larger
deviations from the reference clock, so finding the right
balance is essential.

5. Conclusion and Future Outlook
This paper analyzed different time synchronization

methods for the IEEE 802.11 infrastructure mode. This
work presented non-IEEE protocols such as PTP and
NTP and examined their applications in wireless networks.
However, it is important to note that these are not the
only non-IEEE solutions available. There are some other
custom designed protocols. For example, in [15], a new
protocol called SyncTSF was introduced, which provides
relative time synchronization. Additionally, this paper dis-
cussed the new methods introduced in the IEEE 802.11-
2012 amendment. The utilization of the TSF scheme
in ad-hoc and mesh BSS modes can be found in [7].
Furthermore, different factors that have an impact on time
synchronization have been presented in this work. It is
essential to consider all of the factors introduced in order
to achieve high performance.

Future work may include the development of proto-
cols that can handle propagation delays. Also, it should
be noted that fault tolerance and robustness should be
considered in future development.

Seminar IITM SS 23 70 doi: 10.2313/NET-2023-11-1_12

References

[1] B. Crow, I. Widjaja, J. Kim, and P. Sakai, “IEEE 802.11 Wireless
Local Area Networks,” IEEE Communications Magazine, vol. 35,
no. 9, pp. 116–126, 1997.

[2] G. R. Hiertz, D. Denteneer, L. Stibor, Y. Zang, X. P. Costa, and
B. Walke, “The IEEE 802.11 universe,” IEEE Communications
Magazine, vol. 48, no. 1, pp. 62–70, 2010.

[3] P. P. Parikh, M. G. Kanabar, and T. S. Sidhu, “Opportunities and
challenges of wireless communication technologies for smart grid
applications,” in IEEE PES General Meeting. IEEE, 2010, pp.
1–7.

[4] S. Ivanov, E. Nett, and S. Schemmer, “Automatic WLAN lo-
calization for industrial automation,” in 2008 IEEE International
Workshop on Factory Communication Systems. IEEE, 2008, pp.
93–96.

[5] J. Singh, “PERFORMING CLOCK SYNCHRONIZATION FOR
POWER MANAGEMENT IN MULTI-HOP AD HOC NET-
WORKS,” International Journal on Intelligent Electronic Systems,
vol. 3, 01 2009.

[6] M. Mock, R. Frings, E. Nett, and S. Trikaliotis, “Continuous clock
synchronization in wireless real-time applications,” in Proceedings
19th IEEE Symposium on Reliable Distributed Systems SRDS-
2000, 2000, pp. 125–132.

[7] A. Mahmood, T. Sauter, H. Trsek, and R. Exel, “Methods and
performance aspects for wireless clock synchronization in IEEE
802.11 for the IoT,” in 2016 IEEE World Conference on Factory
Communication Systems (WFCS). IEEE, 2016, pp. 1–4.

[8] A. Mahmood, R. Exel, H. Trsek, and T. Sauter, “Clock Syn-
chronization Over IEEE 802.11—A Survey of Methodologies and
Protocols,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 2, pp. 907–922, 2017.

[9] J. Kannisto, T. Vanhatupa, M. Hannikainen, and T. Hamalainen,
“Software and hardware prototypes of the IEEE 1588 precision
time protocol on wireless LAN,” in 2005 14th IEEE Workshop on
Local & Metropolitan Area Networks. IEEE, 2005, pp. 6 pp.–6.

[10] A. Mahmood, R. Exel, and T. Sauter, “Delay and Jitter Charac-
terization for Software-Based Clock Synchronization Over WLAN
Using PTP,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 2, pp. 1198–1206, 2014.

[11] A. Mahmood, G. Gaderer, H. Trsek, S. Schwalowsky, and N. Kerö,
“Towards high accuracy in IEEE 802.11 based clock synchro-
nization using PTP,” in 2011 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control and
Communication. IEEE, 2011, pp. 13–18.

[12] “IEEE Standard for Information Technology - Telecommunica-
tions and Information Exchange Between Systems - Local and
Metropolitan Area Networks - Specific Requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications,” IEEE Std 802.11-2007 (Revision of IEEE
Std 802.11-1999, pp. 1–1076, 2007.

[13] A. Mahmood, R. Exel, and T. Sauter, “Impact of hard-and software
timestamping on clock synchronization performance over IEEE
802.11,” in 2014 10th IEEE Workshop on Factory Communication
Systems (WFCS 2014). IEEE, 2014, pp. 1–8.

[14] J. Henry, “Indoor Location : study on the IEEE 802.11 Fine
Timing Measurement standard,” Ph.D. dissertation, Ecole nationale
supérieure Mines-Télécom Atlantique, 2021.

[15] A. Mahmood, R. Exel, and T. Sauter, “Performance of IEEE
802.11’s Timing Advertisement Against SyncTSF for Wireless
Clock Synchronization,” IEEE Transactions on Industrial Infor-
matics, vol. 13, no. 1, pp. 370–379, 2017.

[16] H. Zhou, C. Nicholls, T. Kunz, and H. Schwartz, “Frequency
Accuracy & Stability Dependencies of Crystal Oscillators,” 2023.

Seminar IITM SS 23 71 doi: 10.2313/NET-2023-11-1_12

Seminar IITM SS 23 72

Machine Learning Applications In 5G Network Orchestration

David Friedlein, Philippe Buschmann∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: david.friedlein@tum.de, phil.buschmann@tum.de

Abstract—The ability to virtualize and separate multiple
networks on top of a common physical infrastructure al-
lows network providers to serve different needs. With this
approach, 5G networks can better support new technologies
such as self-driving cars, which is not possible with tradi-
tional one-size-fits-all architecture. This is possible while also
reducing the cost for the operators. The drawback is that it
requires a lot of configuration and management to function
optimally. Machine learning is a possible solution to simplify
and automate this work.

This paper analyses and compares multiple different pro-
posed implementations of machine learning in the network
slicing process. We see that all approaches provide benefits
but they can not be directly compared to each other, because
the measurements are too different.

Index Terms—5G, network slicing, machine learning,
software-defined networks

1. Introduction

Earlier mobile standards like 4G and 3G are mainly
designed for smartphones and thus have a design solely
focused on this purpose. With ongoing technological
development, new and different use cases arise. These
include self-driving cars, telemedicine and Internet of
Things (IoT). All use cases for mobile networking can
be divided into three classes following specifications from
the International Telecommunication Union (ITU):

• enhanced mobile broadband (eMBB) Mainly
meant for smartphones which need high data rates
and a large area covered due to their mobility.

• massive machine type communication (mMTC)
Sporadical communication of a large number of
devices in a small area. It is used for IoT devices
like sensors, which only send small amounts of
data in large timeframes. Packet loss is not a
significant problem.

• ultra reliable low latency communication
(uRLLC) Communication with access over
99.9999% and end-to-end latency of less than 50
ms is required for some industrial use cases. For
example smart connected fabrication plants.

For every class the network has to fulfill different
needs. Serving all of these classes with one network while
providing a consistent quality of service (QoS) is hard to
achieve. A potential solution could be to build multiple
different radio access networks, each specialized for one

class. However, the development of multiple networks
leads to a high amount of additional costs for network
providers.

A better solution is network slicing. It allows network
providers to use one physical network to serve all traffic
classes while still providing a consistent QoS. It works by
separating the network into multiple network slices (NS),
which are tailored to a specialized purpose.

The management of all these slices can be quite com-
plicated. Machine learning can simplify and automate this
management.

The remainder of this paper analyzes three different
approaches. Section 2 explains the background of network
slicing and the enabling technologies. Section 3 explains
three different papers and their results, which are then
discussed in Section 4. Section 6 concludes the paper.

2. Background

In this section we explain the key technologies that
enable network slicing.

2.1. Network Function Virtualization

Network function virtualization (NFV) is a concept
that enables virtualization to separate hardware from func-
tionality [1]. Network functions (NF) like virtual firewalls
or virtual load balancers can be deployed on servers to
run these network functions on any server. This helps
create flexible networks by deploying necessary NFs on
servers when needed. It reduces the dependency on special
hardware and the placement of servers in the network.

This technology is crucial for network slicing

2.2. Software Defined Networking (SDN)

Software defined networking (SDN) physically sepa-
rates the network control plane from the forwarding plane
[2]. The forwarding plane consists of all the hardware
that forwards packets while the control plane consists
of one or more SDN controllers. The control plane has
knowledge about the whole network and its policies.
With this information, it makes all the routing decisions
and communicates them via different protocols to the
forwarding plane. Then routers and switches follow the
decisions of the control plane and forward the packets.
In comparison to a classical network where every router
makes its own decisions about forwarding packets, SDN
centralizes the routing process. These differences allow

Seminar IITM SS 23 73 doi: 10.2313/NET-2023-11-1_13

the network a faster adaption to changes in the network
or the users’ needs.

SDN is necessary for network slicing to adjust the
routing decisions to changing network slices and their
different routing needs.

2.3. Network Slicing

Using the above explained technologies modularizing
networks is possible. The NGMN (Next Generation Mo-
bile Network) has introduced network slicing for 5G in
[3]. It allows the creation of multiple logically independent
networks that operate on top of a unified physical infras-
tructure. Network providers can customize these logical
networks to provide different services and performance
levels to meet the demand of multiple clients at the same
time.

For the creation of these slices three required layers
were defined by the NGMN [3]:

• The infrastructure resource layer comprises all
the physical resources, which includes access
nodes, cloud nodes, end-user devices such as
smartphones and wearables and even the links
between these devices. All devices have differ-
ent capabilities and can fulfill different roles in
the network. These capabilities and roles can be
controlled and monitored through an application
programming interface (API).

• The business enablement layer contains all of
the functions and configuration parameters of the
network devices. Some of these functions offer
different levels of performance, which are used
to differentiate the network slices. They are sepa-
rated into modular blocks and can be loaded onto
required devices by an API.

• The business application layer contains all ap-
plications and services provided by the network
operator or different enterprises.

The 3 layers are connected by the E2E management
and orchestration entity. This entity controls the cre-
ation, scaling and geographic distribution of resources of
all network slices. It defines a slice depending on the
use case and applications needed. It chooses the required
network functions with specific performance levels to map
those onto the device in the infrastructure resource layer.
It makes decisions about the scaling for the lifetime of
the slice. It shifts resources between slices to optimize
performance.

2.4. 3GPP Specification

The 3GPP defines a management and orchestration ar-
chitecture. The communication service management func-
tion (CSMF) translates incoming requests for services
into requirements for the network. These requirements are
sent to the Network Slice Management Function (NSMF),
which chooses or generates the slice blueprint optimal for
the requirements. A slice blueprint contains all needed
NFs, their connections and configurations. After the slice
is instantiated the NSMF manages it until it is decommis-
sioned.

A Network Slice instance (NSI) is a group of NFs.
"An NSI is composed of NFs shared between two or more
slices, as well as dedicated NFs" [4].

3. Network Slicing with Machine Learning

In recent years a lot of research about the usage of ML
for resource orchestration has been conducted. Multiple
research groups have proposed different methodologies to
include machine learning in the decision process. Some
of these are explained in the following.

3.1. Artificial Intelligence for Slice Deployment
and Orchestration

Dandachi et al. [4] propose two new approaches for
ML based on the 3GPP NSMF architecture. They define a
novel architecture that is compatible with the 3GPP design
and includes three new functions:

The slice analytics (SA) function minimizes required
resources by sharing them between slices. If multiple
slices want to use the same NF they can be grouped in a
common NSI.

The admission control (AC) decides whether new
slices can be created or have to be dropped because of
resource shortage.

This function can be combined with the congestion
control (CC) function, which scales slices up and down
as needed, to build a cross-slice admission and congestion
control (CSACC).

3.1.1. Slice Analytics (SA). The two main tasks of the
SA are the classification of slices and the reduction of
required resources. For this purpose, it receives the slice
blueprint and the resource requirements for new slices. If
the requested slice requires NFs and resources that are
already used by other slices, they can be shared between
the two slices. This reduces the number of new resources
that have to be allocated, which then reduces the rate of
denied requests due to a shortage of available resources.

Depending on the specific slices and services running
on them, the amount of NFs that can be shared is different.
This allows the classification into elastic and non-elastic
slices [5]. The authors of [4] only consider elastic slices
in their research. The usage is explained in the setting
of a sports event: Different broadcasts will use the same
images, which can be shared, but will provide different
commentary, which has to be separated.

The performance of two different algorithms for the
grouping are analysed. The first algorithm finds an existing
NSI with the highest amount of overlapping NFs using the
Jaccard similarity. For each new slice, the best group can
be calculated and only the missing NFs are created and
added to the NSI.

The second algorithm uses spectral clustering [6] to
create NSIs that reduce resource usage. This algorithm
does not find an existing NSI to which new slices fit
but calculates an optimal grouping for all existing and
new slices. This has a the higher complexity (O(N3)) [6]
compared to calculating the Jaccard similarity (O(N)) and
thus the authors recommend executing this recalculation
in larger time intervals or when the system is overloaded.

Seminar IITM SS 23 74 doi: 10.2313/NET-2023-11-1_13

Dandachi et al. classify all slices into either guaranteed
quality-of service (GS) slices, which have a high priority,
or best effort (BE) slices, which have a lower priority.
Additionally, if the system needs more resources for GS
slices these can be taken from BE slices. For each class,
a queue exists, in which new slice requests are inserted
until they are created. After the new slice request has been
grouped with other slices it is inserted into one of two
queues depending on the class of the slice.

3.1.2. Cross-slice admission and congestion control
(CSACC). The CSACC function decides which queued
slices are accepted and how many resources get assigned
to the slices. The goal is to maximize the number of
accepted slices while reducing the probability that a new
slice request has to be dropped because the queue is full.
The resources of each slice can not be reduced beyond
a minimum level to prevent extreme degradation in the
QoS.

For this, reinforcement learning is employed. State-
Action-Reward-State-Action (SARSA) aims to find a pol-
icy that maps the state of the system to an action, which
maximizes the reward. To enhance this model the authors
use linear function approximation.

3.1.3. Performance results. Comparing only the slice
admission with SARSA to the CSACC with SARSA, the
latter method shows an improvement with up to 23%
reduction in dropped slice requests. However, this im-
provement is only possible if new GS slices are requested
with a probability of less than 70%. Higher values show
no difference between the two methods.

Using the SA function, the rate of dropped slices is
even further reduced. Up to 44% reduced drop rate is
achieved by using CSACC with SARSA and SA with
spectral clustering compared to not using any function,
as seen in Figure 1.

Figure 1: Slice dropping rate as a function of arrival
probability from [4]

3.2. Artificial Intelligence for Elastic Manage-
ment

In a paper from Gutierrez-Estevez et al. [7] the concept
of resource elasticity (which was defined in an earlier
paper from the same group) is being used as the basis of
multiple ML approaches. Resource elasticity describes the

ability of a network to automatically and smoothly adapt
to changes in the system. This elasticity can be applied to
three areas:

• computational elasticity in the operation of VNFs
• orchestration-driven elasticity in the placement

of VNFs
• slice-aware elasticity in the distribution of re-

sources between slices

3.2.1. Computationally Elastic Scheduler. One of the
more computationally expensive NF is the media access
control (MAC) scheduler. It is responsible for assigning
bandwidth resources to different devices in a network and
deciding on which modulation and coding scheme (MCS)
to use. Depending on the signal-to-noise ratio (SNR) in
the connection, different MCSs are best suited and have
different computational complexities. Contextual bandits
are an ML approach that tests different randomized poli-
cies. The policies are finetuned regarding environmental
conditions. The predicted SNR for a given user is a
necessary condition for the contextual bandits. Applying a
long short term memory network to this predicts the SNR.

3.2.2. Slice-Aware Resource Management. The authors
of [7] design algorithms, which are supposed to optimally
allocate/de-allocate resources to individual slices. They
have to consider QoS requirements, Service Level Agree-
ments (SLAs) and demands of the slices. These algorithms
can be applied to different problems.

The authors use a deep neural network to forecast the
amount of traffic in the future. This helps to allocate addi-
tional resources, if a large group of users, which increases
the demand, is predicted, or de-allocate resources at day
times when little to no traffic is expected. Algorithms
to adjust different settings in the network can also be
improved with this data.

Predicting the movement of people helps to adjust the
settings of cell towers such as the beam pattern or even
allocate towers at different locations to the slice. Identify-
ing groups of people and predicting their movement can
be done by ML algorithms. The position and demand of
users are necessary to guarantee reliable coverage.

Figure 2: Traffic prediction results from [7]

3.3. Machine Learning Based Resource Orches-
tration for 5G Network Slices

The group of Salhab et al. [8] proposes a novel
architecture that includes ML in the management and

Seminar IITM SS 23 75 doi: 10.2313/NET-2023-11-1_13

orchestration process.

3.3.1. System design. The proposed network architecture
is not based on the 3GPP architecture but contains four
other components as seen in Figure 3. The first part is
the gatekeeper. To aggregate and sort traffic into the
correct slices, first a marking and classification phase is
needed. Using the slice blueprints and tenant requests,
the gatekeeper generates requirements using supervised
learning. This allows us to choose the correct blueprint
for each requested slice.

These policies are then handed to the decision maker,
which is composed of a forecast aware slicer and an
admission controller. The forecast aware slicer uses re-
gression trees to predict the required ratio of all network
slices. It achieves this using different information about
the traffic. Using this and the current load on the network,
the admission controller decides whether to grant requests
for new slices or not.

If the request is accepted it gets sent to the slice
scheduler. Its purpose is to find a schedule that serves
all slices and minimizes the total time needed. Salhab et
al. prove this to be an NP-hard problem [9] and provide
a heuristic for solving it.

Denied requests are sent to the resource manager,
which uses micro-services to automatically scale re-
sources. If additional resources are needed to allow a
new slice to be accepted it reduces the resources for
other slices. Available resources can be assigned to slices,
increasing their performance. The authors use Reinforce-
ment learning to optimize decision making and improve
the system’s utilization.

Figure 3: Block diagram of the architecture from [8]

3.3.2. Performance. The paper compares different ma-
chine learning algorithms running on the above-mentioned
architecture. The first benchmark compares different mod-
els used for the classification. Most of the models achieve
a prediction accuracy of over 90%. The highest accuracy
of 98% was produced using a linear discriminant model.

The second benchmark compares different models
used to predict the optimal slice ratios. Different tree
algorithms (simple trees, medium trees and complex trees)
achieved the lowest root mean squared error (around 5%)
and the highest prediction speeds. These results, however,
come at the expense of a longer training time compared
to linear models. Since the models’ training is infrequent,
this tradeoff can be accepted. To validate the usefulness
of the tree models, the authors compare them to the
theoretical optimum, a static slice ratio and a random slice

ratio. The ML model performed the best, with an average
5% gap to the theoretical optimum. The random approach
performed the worst with a 30% gap.

For the last test, the setup was run with and without
traffic forecasting. Using the forecasting the throughput of
the system increased by approximately 30%.

4. Evaluation

All approaches are shown to be beneficial in some
aspect. But comparing them against each other is difficult
because different papers use ML to improve other aspects
of the system. Moreover, all of the approaches analyzed in
this paper measured different metrics of the network or the
ML models. The authors of [7] only show the accuracy of
the ML models, but not any performance results obtained
from implementing them. Paper [4] focuses on the proba-
bility, that a new slice request has to be dropped. The last
paper [8] includes the ML accuracy and the throughput of
the system with the implemented methods.

Some aspects of an approach can not be measured
with numbers. For example, the system architecture in
[4] is based on the 3GPP architecture and the system
in [8] introduces a completely new architecture. Both
provide certain advantages and disadvantages. A standard-
ized system makes it easier to expand and compare to
other systems on the same architecture. Creating a new
architecture allows the system to be better specialized for
a certain use case.

Some current problems in this research area include
the lack of data for training supervised models. Because
5G is not widely deployed and the hardware is expensive,
collecting real-world data for training is difficult.

5. Related work

There have been multiple other surveys about this
research area, which focus on certain types of approaches.
Some focus on the applications of 5G and ML for IoT
devices Wijethilaka et al. [10], Khan et al. [11]. Oth-
ers concentrate on deep reinforcement learning Hurtado
Sánchez et al. [12]. The survey from Su et al. [13]
concentrates on mathematical models.

6. Conclusion and future work

In this paper, we examine different approaches to
utilizing ML in the management and orchestration process
for network slicing.

We found that ML seems to improve many aspects
of the management and orchestration process. One archi-
tecture has been shown to increase the throughput of the
system [8] other designs increase the number of slices that
can be run on a system.

A possible solution to better compare different ap-
proaches would be to implement different designs on the
same setup and measure the same parameters. This could
be done in future work.

References

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-Art and
Research Challenges,” vol. 18, no. 1, 2016, pp. 236–262.

Seminar IITM SS 23 76 doi: 10.2313/NET-2023-11-1_13

[2] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A Survey on
Software-Defined Networking,” vol. 17, no. 1, 2015, pp. 27–51.

[3] “NGMN 5G white paper,” 2015.

[4] G. Dandachi, A. De Domenico, D. T. Hoang, and D. Niyato,
“An Artificial Intelligence Framework for Slice Deployment and
Orchestration in 5G Networks,” IEEE Transactions on Cognitive
Communications and Networking, vol. 6, no. 2, pp. 858–871, 2020.

[5] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis,
and X. Costa-Perez, “Optimising 5G infrastructure markets: The
business of network slicing,” in IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, 2017, pp. 1–9.

[6] S. Tsironis, T. Mauro Sozio, and M. Vazirgiannis, “Accurate Spec-
tral Clustering for Community Detection in MapReduce,” 2013.

[7] D. M. Gutierrez-Estevez, M. Gramaglia, A. D. Domenico, G. Dan-
dachi, S. Khatibi, D. Tsolkas, I. Balan, A. Garcia-Saavedra,
U. Elzur, and Y. Wang, “Artificial Intelligence for Elastic Man-
agement and Orchestration of 5G Networks,” IEEE Wireless Com-
munications, vol. 26, no. 5, pp. 134–141, 2019.

[8] N. Salhab, R. Rahim, R. Langar, and R. Boutaba, “Machine
Learning Based Resource Orchestration for 5G Network Slices,”

in 2019 IEEE Global Communications Conference (GLOBECOM),
2019, pp. 1–6.

[9] N. Salhab, R. Rahim, and R. Langar, “Throughput-Aware RRHs
Clustering in Cloud Radio Access Networks,” in 2018 Global In-
formation Infrastructure and Networking Symposium (GIIS), 2018,
pp. 1–5.

[10] S. Wijethilaka and M. Liyanage, “Survey on Network Slicing for
Internet of Things Realization in 5G Networks,” vol. 23, no. 2,
2021, pp. 957–994.

[11] L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han, and C. S. Hong,
“Network Slicing: Recent Advances, Taxonomy, Requirements,
and Open Research Challenges,” vol. 8, 2020, pp. 36 009–36 028.

[12] J. A. Hurtado Sánchez, K. Casilimas, and O. M. Caicedo Rendon,
“Deep Reinforcement Learning for Resource Management on
Network Slicing: A Survey,” Sensors, vol. 22, no. 8, 2022.
[Online]. Available: https://www.mdpi.com/1424-8220/22/8/3031

[13] R. Su, D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, F. Jiang,
and Z. Zhu, “Resource Allocation for Network Slicing in 5G
Telecommunication Networks: A Survey of Principles and Mod-
els,” IEEE Network, vol. 33, no. 6, pp. 172–179, 2019.

Seminar IITM SS 23 77 doi: 10.2313/NET-2023-11-1_13

Seminar IITM SS 23 78

Survey On The Current State Of Tor Over QUIC

Mohamed Mehdi Gharam, Lion Steger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: mehdi.gharam@tum.de , stegerl@net.in.tum.de

Abstract—Despite its popularity, Tor is currently bugged with
high latency and other performance issues. In response, a
transition in Tor’s transport layer protocol to QUIC has been
proposed, aiming to solve many of the problems caused by
TCP’s inherent limitations.
In this paper, we present a literature survey on the current
state of Tor over QUIC. We examine proposed designs
and evaluate their impact on performance and security. We
conclude that transitioning Tor to QUIC holds significant
potential, yet further work on fully examining the security
and performance impacts of such a transition still remains
to be done.

Index Terms—Tor, QUIC

1. Introduction

Anonymity networks have become a very important
tool to face the increasing trend of tracking users and
infringing on their privacy rights. Tor is the most popular
anonymity network, currently used by over 3 Million
clients [1]. Yet, it has long suffered from performance
problems that stood in the face of its adoption. Many
of the underlying causes, such as Head-of-Line blocking,
unfairness in bandwidth allocation, and inefficient con-
gestion control are caused by multiplexing Tor circuits
over TCP connections [2]. While a lot of research has
been done on improving Tor, most attempts have failed
because they either compromise security or introduce
additional performance overhead [3]. This motivates the
choice behind a change in Tor’s transport layer protocol
to the UDP-based QUIC.
In this paper, we present two proposed designs for a
Tor over QUIC implementation: an end-to-end design
proposed by the Tor community that aims to improve
end-to-end congestion control, and a hop-by-hop design
adopted by the research community that aims to use
QUIC’s features to improve fairness and decrease latency.
We then proceed to evaluate these designs from a security
and performance perspective while giving an overview of
the current state of research in the process.

2. Background

In this section, we introduce the most important con-
cepts discussed in this paper. We give a brief overview
of how Tor works, introduce the QUIC communication
protocol, and go over the reasons behind changing Tor’s
transport layer to QUIC.

Figure 1: A visualization of a Tor circuit. Taken from [5].

2.1. TOR

Tor is a low-latency anonymity network that allows
users to communicate online without exposing their iden-
tity [4]. It does this by relaying all traffic over multiple
nodes in a process known as Onion Routing. Onion Rout-
ing allows the anonymisation of TCP traffic by rerouting
it over multiple volunteer relays, known as Onion Routers
(OR). By default, Tor uses three of these routers to build
what is called a circuit. A circuit is first established when
a client, also called an Onion Proxy (OP), attempts to
connect to a server and proceeds to pick 3 Onion Routers:
a guard node, a middle (or relay) node, and an exit node,
as shown in Figure 1.
A TLS-protected TCP connection is then formed between
each part of the circuit and the node directly following
it. Each node of the circuit only knows its immediate
predecessor and successor, making it so that only the
guard node is aware of the client’s identity and only the
exit node knows the server. The middle node then ensures
that the guard and exit nodes are unaware of each other.
To further guarantee anonymity, messages are encrypted
multiple times using pre-exchanged symmetric keys with
the onion routers, with each OR adding or only removing
its own layer of encryption so that messages are only
revealed on the last node, by which time the sender’s
identity is already anonymous.
It’s important to mention that there’s only one TCP con-
nection between Tor nodes. This means that circuits be-
longing to different clients are multiplexed over the same
OR-OR connection. This has the obvious performance
benefit of saving the time needed to establish such a
connection every time it is needed, and it also increases the
security of the network, as it makes it significantly harder
to identify traffic of different circuits if the connection

Seminar IITM SS 23 79 doi: 10.2313/NET-2023-11-1_14

is compromised. On the other hand, Tor also multiplexes
several end-to-end TCP streams belonging to the same OP
into the same circuit since establishing a circuit for each
stream would increase latency.

2.2. QUIC

QUIC is a transport layer network protocol based on
UDP, developed by Google as a new alternative to TCP
[6]. It aims to solve many of the problems caused by
TCP and comes with several features, such as integrated
TLS1.3 encryption, user space implementation, and mid-
dlebox resistance through encryption of packet headers,
making it easier to roll out updates. It also attempts to
improve latency through decreasing handshake delay by
reducing the required round-trip time (RTT) to establish
a connection. Since security is an integral part of Tor, it
is important to mention that the offered 0-RTT handshake
raises some security concerns, as extra protection against
replay attacks is needed [7].
Most importantly, QUIC offers native support for multi-
plexing multiple data streams over a single connection.
These streams represent bidirectional byte-streams, and
each comes with its own priority, flow control, and con-
gestion control. Re-transmission also occurs on a per-
stream basis so that dropped packets in a stream do not
inhibit the performance of other streams sharing the same
connection, effectively solving the Head-of-Line blocking
problem outlined in Section 2.3.1.

2.3. The Current State of Tor

Tor has long suffered from serious performance prob-
lems. Some of the notable causes include ineffective con-
gestion control, unfair path selection, and low network
capacity [2]. And while a lot of research efforts have gone
into addressing these issues, many of them proved either
ineffective or raised security concerns, proving the need
for further research on the matter [3]. In this subsection,
we will go over two particular problems affecting Tor’s
performance that can be potentially solved using QUIC.

2.3.1. Head-Of-Line Blocking. Head-Of-Line (HoL)
blocking is a problem that occurs because of TCP’s in-
order property, which ensures that data is received in
the same order it was sent in. When a TCP segment is
lost, all succeeding packets must wait for successful re-
transmission. Since multiple Tor circuits are multiplexed
over a single TCP connection, this puts a halt to data
transmission over all circuits, even if they are unrelated
to the lost segment. As shown in Figure 2, if a high-
bandwidth, high-latency stream (e.g. bulk transfer) shares
a TCP connection with an unrelated low-bandwidth, low-
latency stream (e.g. web browsing), the latter could ex-
perience throttling, affecting the fairness of the network
[2]. Basyoni et al. mention in [8] that as the popularity
of Tor increases, it is expected that this will occur more
frequently.
Nowlan et al. [9] attempted to address this with uTor: a
Tor implementation that used un-ordered TCP to ensure
that data is transmitted despite lost packets. However,
this approach showed "modest performance gains", likely
because of the additional processing of packets it required
[2].

Figure 2: The Head-of-Line blocking problem in Tor. The
blocks represent packets, their color corresponding to the
originating client. Since one of OP1’s packets is lost,
all other packets in transit are blocked until successful
re-transmission, including OP2’s unrelated packet. Taken
from [5].

2.3.2. Congestion Control. Ineffective congestion control
is a major contributor to Tor’s performance issues. Hop-
by-hop congestion is managed by the TCP connections
between nodes. However, due to Tor multiplexing multiple
circuits over a single TCP connection, any slowdown
caused by congestion will affect all the circuits over the
connection, causing the same effects discussed in the
previous section (2.3.1).
More importantly, end-to-end congestion control is simply
ineffective. Unlike circuit level congestion control, there
is no end-to-end TCP connection between the client and
the exit relay. Because Tor connections are composed
of multiple independent TCP connections, Tor does not
currently have a "low latency method of informing the
client of congestion in later links of the circuit" [10].
When a Tor relay receives a cell, it is required to forward
it reliably. This makes it unable to drop the cell and causes
its buffer to fill up when it receives more than it can send.
Combined with other scheduling issues [11], [12], this
results in relays being overburdened, with no effective way
of informing the client to decrease its sending rate [10].
Currently, Tor uses a sliding window mechanism for end-
to-end congestion control, but it has not been effective at
reducing latency [13].

3. Proposed Designs for Tor over QUIC

In this section, we will go over the current proposed
designs for Tor over QUIC that were briefly mentioned in
the previous section. Most of the research community has
adopted the hop-by-hop design, making use of QUIC’s
powerful streams to replace the existing TCP connections
with QUIC ones [5], [8], [10], [14]–[16]. On the other
hand, members of the Tor community have proposed an
alternative end-to-end design that aims to solve Tor’s
congestion control problems [17]. In this section, we will
examine these designs, their purposes, and their draw-
backs.

3.1. End-To-End

Members of the Tor community have taken a very
different approach to the research community, strongly
deviating from Tor’s current design that was presented in
Section 2.1. In this design [17], Tor’s circuit is replaced by
a single end-to-end QUIC connection between the client

Seminar IITM SS 23 80 doi: 10.2313/NET-2023-11-1_14

Figure 3: End-To-End Design. Taken from [10].

and the exit node and the TCP connections between Onion
Routers are replaced with DTLS connections. DTLS is a
protocol based on TLS that aims to secure datagram-based
communication, such as UDP traffic [18]. This enables an
unreliable and faster encrypted connection between relays,
leaving congestion control to the inner traffic layers. The
client and the exit node are then able to establish a
QUIC connection by sending QUIC packets packaged into
onion-encrypted Tor cells through the circuit (Figure 3).
At the end of the circuit, the exit node then converts the
connection back to TCP to communicate with the server.
This design aims to solve Tor’s inefficient congestion
control by adding end-to-end congestion feedback be-
tween the client and the exit node, making use of QUIC’s
powerful and flexible congestion control.
Research has proven that congestion and other queuing-
related problems are significant contributors to Tor’s la-
tency, even more than HoL blocking [11], [12], [19].
But while this design may have the greatest potential to
improve Tor’s performance, it comes with serious draw-
backs. Kyle H. [10] points out several major flaws within
this design. First, it completely changes Tor’s original
design, making it difficult to implement and deploy. This
means that it could compromise Tor’s security by causing
unintended side effects. In fact, Sy et al. [20] show that
end-to-end connections over QUIC facilitate web tracking,
potentially compromising client anonymity. On the other
hand, Tscorsch et al. [19] showed that end-to-end paths
with high round trip times can impact fairness and increase
latency due to longer reaction times.

3.2. Hop-By-Hop

Most existing proposals from the research community
follow the same hop-by-hop design, staying faithful to
Tor’s current protocol [5], [8], [10], [14]–[16]. In this
design, Tor’s existing TCP connections are simply re-
placed by QUIC connections, and different circuits are
multiplexed over different QUIC-streams within the same
connection. Note that the connection between the exit
node and the server has been kept as it is, as shown in
Figure 4. The reason for this is that many servers do not
support QUIC yet. In fact, QUIC traffic only represented
7% of all internet traffic in 2017 [21].
This approach has two major advantages: It immediately
solves the HoL blocking problem because QUIC provides
several logical streams over a single connection, making it
so that loss of data in a stream does not affect the others.
Furthermore, QUIC comes with a pluggable congestion
control module that can be configured separately for each
stream. This can be used to improve fairness between
multiple Tor circuits, as congestion on one connection no
longer affects all streams that use that connection.

Figure 4: Hop-By-Hop Design. Taken from [10].

However, it is important to note that this does not solve
most of Tor’s congestion control problems that were dis-
cussed in Section 2.3.2. In fact, most implementations of
this design completely ignore end-to-end congestion and
do nothing to address it. While the end-to-end design has
its fair share of problems, it can still serve as inspiration
on how to fix Tor’s lack of end-to-end congestion control.
Kyle H. [10] was the first to consider the potential for
backpressure-based congestion control using QUIC. Es-
sentially, this was achieved using QUIC’s per-stream flow
control, by allowing Onion Routers that experience con-
gestion caused by a specific circuit to reduce the maximum
data it accepts from the stream associated with that circuit.
This, in turn, forces the previous relay to reduce its
sending rate, potentially propagating this information back
until the client’s sending rate is reduced.

4. Results

Ideally, a Tor over QUIC implementation would solve
the HoL problem, improve fairness in the network, im-
prove congestion control, and ultimately not compromise
Tor’s security. In this section, we will proceed to exam-
ine whether these design goals have been successfully
achieved or not, from both a performance and security
standpoint.
Note that we will only examine the hop-by-hop design,
as no implementations currently exist for the end-to-end
one.

4.1. Performance

In this subsection, we will focus on the performance
evaluation of the Tor over QUIC implementations pro-
posed by Basyoni et al. and J. Heijligers [8], [16], as they
are the most recent and come with detailed performance
evaluations.
There are 2 important metrics that are used to evaluate
the performance of a Tor implementation. Time to First
Byte (TTFB) represents the time it takes for the client to
establish a circuit and receive its first byte. Similarly, Time
to Last Byte (TTLB) represents the time it takes for the
client to establish a circuit and receive the last byte from
the server.
All performance measurements outlined in the section
follow the model laid out by Jansen et al. in [22] for
accurate performance evaluations. Specifically, there were
two types of simulated clients: low-bandwidth clients
sending regular HTTP requests to represent web browsing
and high-bandwidth clients performing bulk downloads
(e.g. over BitTorrent).
QuicTor [8] reported very minimal improvement regarding
TTFB for low-bandwidth clients. However, it managed to

Seminar IITM SS 23 81 doi: 10.2313/NET-2023-11-1_14

reduce the TTLB for high-bandwidth clients by almost
80%, likely because these clients are more prone to being
affected by HoL blocking. It also reported significant
improvements for video streaming applications. Overall,
it managed to outperform vanilla Tor in all scenarios and
even mostly outperformed two other Tor implementations
designed to address the problem of circuit multiplexing
[23], [24].
Similarly, J. Heijligers [16] reported a 50% performance
improvement over vanilla Tor. It also showed more fair-
ness in distributing bandwidth among clients, reaching
a near-perfect score on Jain’s fairness index [25]. Al-
though these measurements may not be perfect and do
not exactly simulate real-time conditions, they show very
promising results. It’s also worth mentioning that these
improvements are mostly attributed to improved circuit-
level congestion control, since the hop-by-hop design does
not address end-to-end congestion control.

4.2. Security and Privacy

Security and Privacy are fundamental aspects of Tor,
as client anonymity is the major goal of the network. It is
therefore important that Tor over QUIC implementations
do not compromise security, either through exposing new
attack vectors, aggravating existing ones, or undermining
Tor’s current defense mechanisms. In this subsection, we
will focus on examining [8] and [10], as they include a
comprehensive security analysis.
QuicTor [8] investigated the impact of switching to QUIC
on traffic correlation attacks, as they are more likely to be
impacted by a change in the transport layer protocol. In
such an attack, an adversary would try to correlate traffic
observed at one of Tor’s nodes and one of its endpoints
to deanonymize the client. The authors implemented two
known attacks [26], [27] and observed that QuicTor did
not behave much differently than vanilla Tor, even show-
ing better resistance in some cases. This is due to timing-
based attacks becoming less effective because of QUIC
since they assume that one stream can influence all other
streams passing through the same node [26].
Kyle H. [10] provided a more in-depth security analysis
of his proposal by investigating whether QUIC leaks any
extra information that may be used for an attack vector.
The author concluded that it was important not to use more
than a QUIC-stream per Tor-circuit, as per-object streams
could leak detailed information about client traffic. 0-RTT
connections also come with some security concerns, as
they can allow client-tracking across different sessions,
but countermeasures against this exist [20].
Furthermore, the author investigated whether his proposal
for backpressure-based congestion control comes with any
security risks, and concluded that these could be mitigated
by only backpropagating limited information at set inter-
vals.
However, some concerns remain about website fingerprint-
ing (WF) attacks. These aim to analyze traffic to conclude
which website the client visited. Nie et al. [28] developed
QUIC-CNN, a novel model for WF attacks on QUIC
traffic on Tor, and even found that it performs better than
the current state-of-the-art model.

5. Conclusion and Future Work

In this work, we presented a literature review over the
current state of Tor over QUIC. Tor currently has signif-
icant performance problems, and it is the main motive
behind this change in its transport layer protocol to solve
them without compromising security.
We examined two proposed designs: an end-to-end design
that tunnels a QUIC connection between the client and the
exit node, aiming to solve Tor’s congestion related issues,
and a hop-By-hop design that replaces Tor’s current TCP
connections with QUIC ones, aiming to solve the Head-of-
Line blocking problem and improve fairness. Although the
former is riddled with performance and security concerns,
an ideal Tor over QUIC implementation should still strive
for its goal of improving end-to-end flow control. We
presented one design proposal [10] that suggested doing
this through backpropagation of flow control information.
While performance tests have been promising so far, more
work still needs to be done on the matter. The aforemen-
tioned design proposal has still not been implemented,
and its claims about improving performance still need to
be corroborated. Furthermore, the security behind these
designs still needs to be studied, as current research only
provided a purely theoretical analysis or only considered
one specific type of attack vectors.
Although these designs seem promising, we still have a
long way to go before Tor finally switches over to QUIC.

References

[1] “Welcome to Tor Metrics,” https://metrics.torproject.org, [Accessed
30-May-2023].

[2] S. J. M. Roger Dingledine, “Performance Improvements on Tor
or, Why Tor is slow and what we’re going to do about it,”
Tor Tech Report 2009-11-001, [Online; accessed 15/05/2023;
https://research.torproject.org/techreports/performance-2009-11-
09.pdf].

[3] I. G. Mashael AlSabah, “Performance and Security Improvements
for Tor: A Survey,” ACM Comput. Surv., vol. 49, no. 2, 2016.

[4] R. Dingledine and N. Mathewson, “Tor Protocol Specification,”
(visited on 28-05-2023). [Online]. Available: https://gitweb.
torproject.org/torspec.git/tree/tor-spec.txt

[5] W. Sabée, “Adding QUIC support to the Tor network,” 2019.

[6] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. B. Krasic, C. Shi,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. C.
Dorfman, J. Roskind, J. Kulik, P. G. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, and W.-T. Chang, “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” 2017.

[7] M. Fischlin and F. Günther, “Replay Attacks on Zero Round-Trip
Time: The Case of the TLS 1.3 Handshake Candidates,” in 2017
IEEE European Symposium on Security and Privacy (EuroS&P),
2017, pp. 60–75.

[8] L. Basyoni, A. Erbad, M. Alsabah, N. Fetais, A. Mohamed, and
M. Guizani, “QuicTor: Enhancing Tor for Real-Time Communi-
cation Using QUIC Transport Protocol,” IEEE Access, vol. 9, pp.
28 769–28 784, 2021.

[9] M. F. Nowlan, D. I. Wolinsky, and B. Ford, “Reducing Latency
in Tor Circuits with Unordered Delivery,” in 3rd USENIX
Workshop on Free and Open Communications on the Internet
(FOCI 13). Washington, D.C.: USENIX Association, Aug.
2013. [Online]. Available: https://www.usenix.org/conference/
foci13/workshop-program/presentation/nowlan

[10] K. Hogan, “Security analysis of Tor over QUIC,” 2020.

Seminar IITM SS 23 82 doi: 10.2313/NET-2023-11-1_14

[11] Rob Jansen and John Geddes and Chris Wacek and Micah
Sherr and Paul Syverson, “Never been KIST: Tor’s congestion
management blossoms with Kernel-Informed socket transport,” in
23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, Aug. 2014, pp.
127–142. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/jansen

[12] R. Jansen and M. Traudt, “Tor’s Been KIST: A Case Study of
Transitioning Tor Research to Practice,” 2017.

[13] F. Tschorsch and B. Scheuermann, “Mind the gap: towards a
backpressure-based transport protocol for the Tor network,” Net-
worked Systems Design and Implementation, Mar 2016.

[14] R. Aissaoui, O. Erdene-Ochir, M. Al-Sabah, and A. Erbad,
“QUTor: QUIC-based Transport Architecture for Anonymous
Communication Overlay Networks,” in Qatar Foundation Annual
Research Conference Proceedings Volume 2016 Issue 1, vol. 2016,
no. 1. Hamad bin Khalifa University Press (HBKU Press), 2016,
p. ICTPP2961.

[15] A. Clark, “Quux: a quic un-multiplexing of the tor relay transport,”
2016.

[16] J. Heijligers, “Tor over QUIC,” 2021.

[17] M. Perry, “[tor-dev] The case for Tor-over-QUIC,” [On-
line; accessed 22/05/2023; https://lists.torproject.org/pipermail/tor-
dev/2018-March/013026.html].

[18] E. Rescorla, H. Tschofenig, and N. Modadugu, “The Datagram
Transport Layer Security (DTLS) Protocol Version 1.3,” RFC
9147, Apr. 2022. [Online]. Available: https://www.rfc-editor.org/
info/rfc9147

[19] F. Tschorsch and B. Scheuermann, “How (not) to build a transport
layer for anonymity overlays,” ACM SIGMETRICS Performance
Evaluation Review, vol. 40, no. 4, pp. 101–106, 2013.

[20] Sy, Erik and Burkert, Christian and Federrath, Hannes and Fischer,
Mathias, “A quic look at web tracking.” Proc. Priv. Enhancing
Technol., vol. 2019, no. 3, pp. 255–266, 2019.

[21] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey,
J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC
Transport Protocol: Design and Internet-Scale Deployment,” in
Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, ser. SIGCOMM ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 183–196.
[Online]. Available: https://doi.org/10.1145/3098822.3098842

[22] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine, “Methodically
Modeling the Tor Network,” in 5th Workshop on Cyber Security
Experimentation and Test (CSET 12). Bellevue, WA: USENIX
Association, Aug. 2012. [Online]. Available: https://www.usenix.
org/conference/cset12/workshop-program/presentation/Jansen

[23] M. AlSabah and I. Goldberg, “PCTCP: Per-circuit TCP-over-IPsec
transport for anonymous communication overlay networks,” 11
2013, pp. 349–360.

[24] J. Geddes, R. Jansen, and N. Hopper, “IMUX: Managing Tor
Connections from Two to Infinity, and Beyond,” 11 2014, pp. 181–
190.

[25] R. Jain, D. M. Chiu, and H. WR, “A Quantitative Measure Of
Fairness And Discrimination For Resource Allocation In Shared
Computer Systems,” CoRR, vol. cs.NI/9809099, 01 1998.

[26] S. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
2005 IEEE Symposium on Security and Privacy (S&P’05), 2005,
pp. 183–195.

[27] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov,
“Stealthy traffic analysis of low-latency anonymous communication
using throughput fingerprinting,” in Proceedings of the 18th ACM
conference on Computer and Communications Security, 2011, pp.
215–226.

[28] M. Nie, F. Zou, Y. Qin, T. Zheng, and Y. Wu, “QUIC-CNN:
Website Fingerprinting for QUIC Traffic in Tor Network,” in 2022
IEEE 24th Int Conf on High Performance Computing & Communi-
cations; 8th Int Conf on Data Science & Systems; 20th Int Conf on
Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big
Data Systems & Application (HPCC/DSS/SmartCity/DependSys),
2022, pp. 663–671.

Seminar IITM SS 23 83 doi: 10.2313/NET-2023-11-1_14

Seminar IITM SS 23 84

Structure and Origin of CT Based Domain Lists

Lorenz Lehle, Patrick Sattler∗, Johannes Zirngibl∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: lorenz.lehle@tum.de, sattler@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—The participation of Certificate Authorities in Cer-
tificate Transparency has the side effect of publicly accessible
certificates from which domain lists can be derived. In this
paper we analyse such domain lists and lay special focus on
wildcard domains because of their ability to prevent infor-
mation leakage. We find that of all domains in the domain
list 18.0 % are wildcard domains, and 8.6 % are wildcard
domains at the first level. Most of these immediate wildcard
domains appear in a certificate with the corresponding eSLD
and no other domain. Furthermore we find several patterns
in the distribution of domains, such as more eSLD with an
even rather than an odd number of subdomains. Additionally
we find that the leftmost labels of domains correlate with
used services and reveal more information about the domain
holders internal structure.

Index Terms—domain lists, certificate transparency logs,
internet scans

1. Introduction

Domain lists are an integral part of many areas of re-
search regarding network architectures. Researchers con-
duct Internet measurements to obtain information about
the distribution of IP addresses, reachable hosts, and used
protocols or services. Conventionally such scans require
iterating through the whole IP address range, which is
impossible for IPv6 due to the vast and largely unused ad-
dress space. This is where domain lists prove useful. They
contain domains of actually existing and used services,
thereby alleviating the necessity to scan all addresses.

An alternative to these conventional domain lists are
Certificate Transparency (CT) based domain lists. These
are obtained by extracting the domain names noted in
certificates issued by Certificate Authorities (CAs). In this
paper we present an overview of Certificate Transparency
and how CT based domain lists are created. Furthermore
we analyse the structure and labels of domains that are
contained in domain lists available to the Chair of Network
Architectures and Services.

Firstly we present the necessary background about
Certificate Transparency and introduce the terminology
used for domain names. In Section 3 we present studies
that examine the applicability of CT log based domain
lists and security implications of CT logs. In Section 4
we analyse the structure and distribution of domains con-
tained in a CT log based domain list. For this purpose
we explore which domain labels are used in practice and
how wildcards affect the obtainable information. Lastly

we conclude our findings and discuss how these domain
lists can be used in further research.

2. Background

This section explains the details of Certificate Trans-
parency, outlines terminology used later in the analysis
of the domains and explains the importance of wildcard
domains in the context of this paper.

2.1. Certificate Transparency

Certificates are the basis of confidential and authentic
communication in the modern Internet and are issued by
Certificate Authorities. The obtained authenticity is based
on the chain of trust which reaches from a root Certificate
Authority over intermediate CAs to issued certificates. If
a client trusts a root CA, it implicitly trusts all certificates
issued by intermediate CA. Therefore authenticity is based
solely on trust into one or only few entities without further
means of verification. If adversaries gain access to key
material of a CA, it is possible that illegitimate certificates
are issued to entities which are not the owners of the
respective domains. An instance of such a misissuance
occurred in 2011 where a breach at DigiNotar resulted in
fraudulently issued certificates. [1]

To combat misissuance or malpractice of CAs, Cer-
tificate Transparency was introduced by Google follow-
ing the DigiNotar misissuance incident. It is defined in
RFC 6962 [2] and provides a way to monitor CAs and
the certificates they produce. CT logs are append-only
data structures that are operated by CAs or independent
organisations like Google. A participating CA appends
issued certificates to one or multiple CT logs. These CT
logs can then be audited by domain owners or independent
monitors. This way CAs can be held accountable and
misissued certificates can be detected faster [3]. Modern
browsers like Google Chrome only accept certificates for
web traffic if they have been recorded in at least one
CT log [4]. Additionally Chrome enforces a maximum
validity duration of 398 days for certificates [5]. This
creates an incentive for service providers to regularly
renew certificates and for CAs to append them to CT logs.

While monitoring for misissuance is the primary pur-
pose of CT logs, these public logs can also be parsed
to obtain a list of domains for which certificates have
been issued. This is done by extracting the Common
Name (CN) and Subject Alternative Names (SAN) from
a certificate which specify the Fully Qualified Domain
Names (FQDNs) the certificate is valid for [6].

Seminar IITM SS 23 85 doi: 10.2313/NET-2023-11-1_15

labelb︸ ︷︷ ︸
Label 2

. labela︸ ︷︷ ︸
Label 1

. example.

SLD︷ ︸︸ ︷

co.

TLD︷︸︸︷
uk︸ ︷︷ ︸

eTLD︸ ︷︷ ︸
eSLD

.

Figure 1: Structure of an FQDN with distinction between
conventional TLD and SLD, and the introduced effective
TLD (eTLD) and effective SLD (eSLD) with sub labels

2.2. DNS Terminology

According to RFC 8499 [7] a domain name consists of
one or more labels that are separated by dots. Convention-
ally, the rightmost label is the Top Level Domain (TLD)
and the label to its left in combination with the TLD is
called the Second Level Domain (SLD) (see Figure 1).

For the analysis, we split a domain into a public suffix
and private user-controlled part. The public suffix is in
most cases equivalent to a TLD, but can also be a SLD be-
cause some registries use fixed SLDs for certain purposes.
Examples for such domains are co.uk and com.au. The
public suffix list [8] is a comprehensive list of these public
suffixes. We call the public suffix the effective TLD and
define the effective SLD, which is also called the private
suffix, analogously to the SLD. Any further sub labels are
the first, second, third, . . . label of a domain.

2.3. Wildcard Domains

The domain name system allows the creation of
records for wildcard domains. RFC 4592 [9] states that
wildcard domains are domains where the leftmost la-
bel is an asterisk (⁎). A domain matches a wildcard
domain when all labels of the domain, except for the
label where the the asterisk is located in the wildcard
domain, are identical. This specifically means that the
domain example.com and domains with more labels like
a.b.example.com do not match ⁎.example.com.

Wildcard domains are especially relevant in the con-
text of CT based domain lists, because they can hide infor-
mation about operated services. If individual certificates
are created for all subdomains (i.e. services) of an organ-
isation, they are logged in a CT log. This unintentionally
publishes identifiers that can be used to estimate the type
of operated services, assuming that sensible names are
chosen for the subdomains. When creating a certificate
for the wildcard domain instead, the subdomains are not
published.

3. Related Work

With certificate transparency being a relatively new
component of the Internet, it has just been picked up by
research in recent years.

Marquardt and Schmidt [10] examined whether CT
based domain lists can be a viable alternative to other
common domain top lists such as the Majestic or the, now
discontinued, Alexa domain lists. Their reasoning for the
search of alternatives was that the acquiration of these top
lists is often not clearly defined and that CT based domain

lists may be a well defined alternative. They used the
FQDNs obtained from logged certificates and performed
active measurements to compare the created list against
the conventional domain lists. They found that while there
are 30 % to 50 % less responsive hosts and in general more
errors in name resolution with the CT based domain list,
such lists can be used as a supplement for the conventional
domain lists.

Scheitle et al. [11] examined the implications on secu-
rity and privacy that arise when certificates are logged in
CT logs. The use of CT has the consequence that FQDNs
and therefore information about the structure of services
is publicly logged. They performed a static analysis of
domains to find labels of commonly used services. How-
ever they did not consider the depth of the label. They
have also set up a CT honeypot to see whether CT logs
are monitored by active parties. The honeypot hosts were
reachable under random domain names which were only
published in CT logs. They found that the domains were
queried shortly after the certificates were published in a
CT log by both presumably well intentioned services like
Google or DigitalOcean, but also by suspicious sources.
They conclude that CT does remedy one attack vector of
certificate misissuance, but argue, that it may introduce
new attack vectors based on the suspicious queries.

Pletinckx et al. improved this honeypot experiment
in [12]. They ran the experiment for a longer time, used
a larger number of hosts, and had a control group where
the hosts had self signed certificates installed that were
not submitted to any CT log. They noticed that the
hosts with the logged certificates received significantly
more traffic than the hosts with the unrecorded certificate,
especially immediately after the certificate was issued,
thereby confirming the previous work of Scheitle et al.
They performed these experiments with both IPv4 and
IPv6 hosts and the IPv6 hosts with self signed certificates
experienced no traffic at all. This is explained by the
mostly unused IPv6 address space, which, compared to the
IPv4 address space, cannot be scanned on a regular basis.
Third parties are therefore bound to rely on information
like domain names obtained from CT logs to facilitate
scanning in the IPv6 address space.

4. Analysis

In this section we analyse domain lists that were
extracted from CT logs as described in Section 2.1. The
domain lists are available on a per day basis since August
of 2022 and contain only unique domains. In the analysis
we use domain lists that represent a full month. The
month lists contain all unique domains retrieved from
certificates issued on the different days of the month.
Because the lists contain unique names, there is no bias
through multiple certificates issued for the same domain.
This analysis focuses on the distribution of registered
domains across the available eSLDs and the structure of
subdomains configured by the respective domain holders.

The data set used for this analysis is the domain list
retrieved in March 2023. We conducted the same analysis
shown below for the neighbouring months of January
and February and obtained similar results. Therefore we
consider one month a representative time frame.

Seminar IITM SS 23 86 doi: 10.2313/NET-2023-11-1_15

4.1. Number of Domains

Figure 2: Absolute distribution of both unique eSLDs and
all domains across various eTLDs.

Figure 3: Number of exactly n subdomains per eSLD and
eTLD

We begin the analysis by inspecting how many do-
mains are in the data set and how they are distributed
across eTLDs and eSLDs. The public suffix list [8] used
here contains roughly 6800 unique public suffixes. Be-
cause of this large number of suffixes we limit our analysis
to the prevalent generic Top Level Domains (gTLDs)
com, net, and org and selected Country Code Top Level
Domains (ccTLDs) which are de as a regular country code
domain and cc. We chose the latter one because it is a
popular open ccTLD that can be registered by anyone.
These openTLDs are often used as replacement for the
more conventional TLDs like com [13]. All other ccTLDs
are grouped and represented with ccTLD; all remaining
public suffixes are represented with other.

In Figure 2 we see that most of the domains read
from the CT log are under the com eTLD. The number of
eSLDs under org and net is by a factor of 10 to 15 less
than of the com eTLD and in the same magnitude as the
country code domain de. We observe that the single com
eTLD has more eSLDs and domains than all country code
TLDs or all gTLDs combined. In addition to the absolute
number of domains, the graph shows the average number
of domains under a single eSLD per eTLD. Here we see
that the net eTLD has the most logged domains per eSLD
with an average of 7.2, while the eSLDs in other eTLDs
have an average of 2 to 3 domains.

Figure 3 shows the number of eSLDs in an eTLD that
have exactly a specific number of domains. This includes
the eSLD itself, conventional subdomains, and wildcard
subdomains. Here we see an exponential drop, where most
eSLDs do not have more than 10 domains. There are three
noticeable deviations from the curve:

• In all cases there are slightly more eSLDs with
exactly two domains than with exactly one domain.

• There is a burst of domains at 8 and 9 domains. An
inspection of the eTLDs and eSLDs where 8 and 9
domains were present did not yield any pattern that
would explain this phenomenon.

• Additionally there is a repeating zig-zag pattern that
indicates that there are more eSLDs that have an even
number of domains rather than an odd number. This
pattern begins to emerge at a number of about 10
domains per eSLD and is especially pronounced in
the de eTLD.

4.2. Wildcard Certificates

Figure 4: Relative amount of eSLDs per eTLD that fulfil
the corresponding criterion

We pay special attention to wildcard domains, because
of their ability to hide information as explained in Sec-
tion 2.3. In this section we analyse how wildcard domains
are distributed and used.

We label eSLDs depending on whether the eSLD it-
self, any wildcard domain, the immediate wildcard domain
(in the form ⁎.eSLD), or a wildcard subdomain are con-
tained in the domain list. Figure 4 shows that, with a share
of 80.5 % to 90.5 %, nearly all eSLDs have a certificate for
the eSLD itself and about 19 % to 50 % have one for the
wildcard domain, which is in most cases the immediate
wildcard. There are very little eSLDs that have a certificate
for a wildcard subdomain in the form ⁎.label.eSLD. The
most significant set of domains are these where there is a
certificate for both the eSLD and the immediate wildcard:
The number of eSLDs where this is the case is only
marginally higher than the number of domains where only
these domains had a certificate. In total 10.5 % of domains
were immediate wildcard domains.

This phenomenon generalises across all eTLDs and
has an apparent reason. It is a widely adopted use case to
obtain a certificate for both the eSLD and the immediate
wildcard domain and no other domains. This approach is
suitable if there is no need for subdomains with more than

Seminar IITM SS 23 87 doi: 10.2313/NET-2023-11-1_15

one label and makes the deployment of new services under
additional first level subdomains very simple because no
new certificates have to be generated and the wildcard cer-
tificate is sufficient. However, this does hide the internal
structure and information about existing hosts reachable
under that domain. While this is a privacy improvement,
it hinders the usage of CT based domain lists for host
reconnaissance.

4.3. Leftmost Label

Figure 5: Distribution of most prevalent leftmost labels
across different depths in all read domains including the
absolute occurrence count of the respective label

The leftmost label of a domain allows for an estima-
tion of the service available on the target host. Figure 5
shows the leftmost labels that were most prevalent across
all evaluated domains along with their depth distribution.
Labels that were found at a depth of 8 or more are grouped
into a single section, however there are almost no popular
labels at a depth higher than 7.

We distinguish three different types of distributions
that emerge in the most popular labels:

• Distribution that decreases exponentially with in-
creasing depth as seen with, among others, the labels
⁎ (wildcard), www, and blog and also less pronounced
with e.g. mail and cpanel.

• Occurrence almost exclusively at a certain depth as
seen with, among others, the iam, tls, and bucket
labels.

• Mostly equal distribution across all depths as seen
with the git and gitlab labels.

4.3.1. Exponential Decrease. The exponentially decreas-
ing distribution is what one would normally expect for
user facing domains. Domains with more labels are not
that common for this use case and instead mostly used in
the context of deployments or deep internal hierarchies of
large organisations. Conventionally www is used for web
services and makes up for 19.7 % of all read domains
alone. Compared to this we see that the wildcard label
⁎ occurs equally as often as the www label with 18.0 %.
Combined with the results from Section 4.2, this means
that a large number of wildcard labels at deeper levels are
concentrated towards a low number of eSLDs.

The labels mail or webmail hint at the use for
a web interface to manage an email inbox. Other
labels like cpanel, webdisk, cpanelcalendars, and
cpanelcontacts also allow for a specific service esti-
mation. These labels are commonly used by instances of
the web hosting management software cpanel [14]. We
see that at least 95 % of user targeting domains such as
www, mail or cpanel are only one or two labels long. Of
all read domains 30.2 % we such user facing domains.

4.3.2. Equal Distribution. The equal distribution across
the depths 1 through 7 is only present with git and
gitlab. There is a pattern in the data set, where the labels
git and gitlab are permuted for up to 6 labels like
(gitlab|git).(gitlab|git).... There is no apparent
correlation to any eTLD or eSLD in the domains with
that behaviour. In fact the distribution across the public
suffixes was comparable to the distribution of all domains.

4.3.3. Single Depth Labels. The labels iam, tls, and
scram and the duplicates with suffix 2 appear only at
depth 6 and the labels bucket and accesspoint similarly
only appear at depth 5. This differs from labels such as
cpanel which, even though they occur at multiple depths,
predominantly occur at depth 1. An inspection of the
domains with these labels showed that the corresponding
eSLD is amazonaws.com in 95 % of all cases for bucket
and accesspoint and in 92 % of all cases for iam, tls
and scram. The correlation with amazon is backed up
by the fact that amazon uses the term bucket for its
cloud object storage S3 web service [15] and iam for
Identity and Access Management [16]. In these cases,
the intermediate labels of the domain encode location
information. These domains related to Amazon cover a
total of 2.44 % of all domains in the used domain list.

5. Conclusion and Future Work

From our analysis we can see that the com eTLD is still
the most prevalent one, despite the rising number of other
gTLDs. We also find patterns like an accumulation at 8
and 9 subdomains or the preference for an even number
of domains in the distribution of subdomains. Further re-
search might clarify the underlying cause of these patterns.
The evaluation of wildcard domains yields that certificates
are widely used in the common configuration where the
eSLD and the immediate wildcard domain are covered
by the certificate. Inspecting the leftmost labels of the
domains also makes it possible to identify the associated
services as we have seen with the Amazon and cpanel
services.

The combination of these findings might make it
possible to work around the information hiding ability
of wildcard domains. Future work may experiment with
substituting the wildcard label with other common and
concrete leftmost labels from non-wildcard domains. This
could yield further host names that resolve and complete
a CT based domain list to make it more comparable to
other domain lists.

Seminar IITM SS 23 88 doi: 10.2313/NET-2023-11-1_15

References

[1] H. Hoogstraaten, “Black Tulip Report of the Investigation into the
DigiNotar Certificate Authority Breach,” August 2012.

[2] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,”
RFC 6962, Jun. 2013. [Online]. Available: https://www.rfc-editor.
org/info/rfc6962

[3] O. Gasser, B. Hof, M. Helm, M. Korczynski, R. Holz, and
G. Carle, “In Log We Trust: Revealing Poor Security Practices
with Certificate Transparency Logs and Internet Measurements,”
in Passive and Active Measurement, R. Beverly, G. Smaragdakis,
and A. Feldmann, Eds. Cham: Springer International Publishing,
2018, pp. 173–185.

[4] Chromium, “Google Chrome Certificate Transparency Pol-
icy.” [Online]. Available: https://github.com/GoogleChrome/
CertificateTransparency/blob/master/ct_policy.md

[5] ——, “Google Chrome Certificate Lifetimes.” [Online].
Available: https://github.com/chromium/chromium/blob/main/net/
docs/certificate_lifetimes.md

[6] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and
D. Cooper, “Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile,” RFC 5280, May
2008. [Online]. Available: https://www.rfc-editor.org/info/rfc5280

[7] P. E. Hoffman, A. Sullivan, and K. Fujiwara, “DNS Terminology,”
RFC 8499, Jan. 2019. [Online]. Available: https://www.rfc-editor.
org/info/rfc8499

[8] Mozilla Foundation, “Public Suffix List,” 2022. [Online].
Available: https://publicsuffix.org/

[9] E. P. Lewis, “The Role of Wildcards in the Domain Name
System,” RFC 4592, Jul. 2006. [Online]. Available: https:
//www.rfc-editor.org/info/rfc4592

[10] F. Marquardt and C. Schmidt, “Don’t Stop at the Top: Using
Certificate Transparency Logs to Extend Domain Lists for Web
Security Studies,” in 2020 IEEE 45th Conference on Local Com-
puter Networks (LCN), 2020, pp. 409–412.

[11] Q. Scheitle, O. Gasser, T. Nolte, J. Amann, L. Brent, G. Carle,
R. Holz, T. C. Schmidt, and M. Wählisch, “The Rise of
Certificate Transparency and Its Implications on the Internet
Ecosystem,” ser. IMC ’18. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 343–349. [Online]. Available:
https://doi.org/10.1145/3278532.3278562

[12] S. Pletinckx, T.-D. Nguyen, T. Fiebig, C. Kruegel, and
G. Vigna, “Certifiably Vulnerable: Using Certificate Transparency
Logs for Target Reconnaissance,” 2005. [Online]. Available:
https://hdl.handle.net/21.11116/0000-000C-F940-3

[13] “Country Code Top-Level Domain.” [Online]. Available: https:
//icannwiki.org/Country_code_top-level_domain

[14] cPanel, L.L.C., “cPanel Products.” [Online]. Available: https:
//www.cpanel.net/products/

[15] Amazon Web Services, Inc., “Amazon S3.” [Online]. Available:
https://aws.amazon.com/s3/

[16] ——, “Amazon IAM - AWS Identity and Access Management.”
[Online]. Available: https://aws.amazon.com/de/iam/

Seminar IITM SS 23 89 doi: 10.2313/NET-2023-11-1_15

Seminar IITM SS 23 90

Introduction to BBRv2 Congestion Control

Joji Mathew, Benedikt Jaeger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: joji.mathew@tum.de, jaeger@net.in.tum.de

Abstract—Congestion happens when an overflow occurs due
to more data being sent than the bandwidth and this leads
to loss. Congestion control algorithms try to prevent this
and the ones currently used widely are TCP algorithms
which are loss-based and delay-based starting only once a
loss has occurred leading to retransmissions due to which
further congestion occurs. Google proposed BBR in 2016
using another approach called congestion-based congestion
control which acts at an earlier stage compared to TCP
algorithms promising maximum throughput and minimum
queuing delay. But it still comes with drawbacks that Google
is trying to solve with the second version BBRv2 which is
still in the testing stage. In this paper, we give an overview
on congestion control overall, BBR, and introduce BBRv2.

Index Terms—congestion control, TCP, BBR, CUBIC, bot-
tleneck bandwidth

1. Introduction

TCP (Transmission Control Protocol) is a protocol in
the transport layer that ensures to establish end to end
connection between two hosts and is also responsible for
the safe transmission of data between the two. Whenever
a data packet is lost it makes sure to re-transmit it. When
multiple senders, unaware of the bandwidth of the connec-
tion send lots of data, it leads to congestion in the network
which causes buffer overflow and packet loss. TCP uses
congestion control algorithms to avoid this situation [1].
TCP has several implementations for the same starting
with RENO to the present-day CUBIC.

Excessive buffering and delays were reported on the
Internet in 2011 [2]. This was mainly due to the fact that
TCP operates only having loss as a parameter and starts
operating too late once congestion has occurred. By this
time senders re-transmit lost data which leads to further
congestion. BBR which was developed by Google tries to
operate at Kleinrock’s optimal point [3] way before a loss
occurs.

The paper is structured as follows. Section 2 talks
about the different approaches used in congestion control.
An introduction to BBR, it’s working, and performance
analysis is discussed in Section 3. Section 4 talks about
some drawbacks of BBR. BBRv2 is introduced briefly and
an elaboration of its algorithm and performance analysis
is done in Section 5. Finally, the conclusion and future
work is given in Section 6.

2. Different approaches in congestion control

These are some terms needed for later and their ex-
planations according to Scholz et al. in [3].

• BtlBW- Bottleneck is a link in the network path
with the lowest bandwidth and this bandwidth is
called Bottleneck bandwidth(BtlBW).

• RTT- Round Trip Time(RTT) is the time required
for a data packet to reach the receiver plus the
time for the acknowledgment to reach the sender.

• RTprop- It is the round trip propagation delay
when there is no queuing delay and very less data
in the buffer.

• Inflight data- Amount of data in the buffer.
• BDP- RTprop · BtlBW is called a pipe’s

Bandwidth-Delay Product(BDP).
• cwnd- Amount of data being sent in each RTT

2.1. TCP congestion control algorithms

TCP has primarily two congestion control approaches.
Even though it has a lot of algorithms in development. The
following are the ones used widely:

Loss-based congestion control. This approach identifies
loss as congestion and is used in implementations like
RENO, CUBIC. The basic idea of the implementation
is that it starts with a small cwnd, then increases ex-
ponentially after each RTT, and whenever a loss occurs,
it interprets it as congestion and reduces the cwnd by a
certain amount and now increases it unlike earlier only in
small amounts. This process of reducing cwnd and slow
incrementation keeps on repeating whenever a loss occurs
[4].

Delay-based congestion control. This other approach
identifies delay as a parameter for congestion instead of
loss and starts working when it sees an increase in RTT.

2.2. Congestion based Congestion control

The problem with loss-based congestion is that it
only starts acting when a loss occurs. When the Amount
Inflight > BDP queue starts slowly building up in the
buffer, increasing RTT, and when the Amount inflight=
BDP + Bottleneck buffer size, the buffer becomes full,
leading to congestion and packet loss [5].

In bigger buffers loss-based congestion control algo-
rithm sends data at full bandwidth causing buffer bloat,

Seminar IITM SS 23 91 doi: 10.2313/NET-2023-11-1_16

loss-based
operating
point

Kleinrock’s optimal
operating point

BDP BDP+BtlneckBufSize

RTprop

R
T
T

BtlBw

Amount Inflight

D
el
iv
er
y

R
a
te

Figure 1: Amount Inflight vs Delivery Rate and RTT [3]

and only starts acting at BDP + Buffer size, where it
is already too late since the loss of packets causes re-
transmission resulting in further delays [6]. In the older
days, it used to make sense since memory was expensive
and buffers were smaller so it minimized the delay of
reaching BDP + Buffer size. But nowadays, with lesser
prices and more memory available, it causes a delay
of seconds. In the case of small buffers, this algorithm
is also overly sensitive and bring about low throughput
because it misinterprets loss as congestion, which could
have occurred due to other reasons like flows entering the
pipe.

The optimal point to start congestion control is when
Amount Inflight = BDP, as shown in Figure 1, also known
as Kleinrock’s optimal point [6]. This condition ensures
that the bottleneck does not starve, and at the same time,
the data does not overfill the pipe. Also the bottleneck
could be fully utilized if the sending and arrival rate of
packets at the bottleneck are equal. BBR tries to satisfy
both of these conditions.

3. BBR

BBR(Bottleneck Bandwidth and Roundtrip) was pro-
posed as an alternative approach by Google in 2016 [3].
It is a congestion-based congestion control approach that
mainly tries to achieve high throughput with a small queue
and can withstand random losses upto 15%, according to
Cardwell et al. in [7]. BBR operates on the parameter
BDP mainly, and to measure BDP, it has to constantly
determine BtlBW and RTT. But they cannot be observed
simultaneously, since as shown in Figure 1, RTT can be
measured accurately when Amount Inflight < BDP so that
there is no congestion resulting in RTT = RTprop and
BtlBW has to be measured when Amount Inflight > BDP
so that we get the maximum bandwidth.

3.1. Algorithm

According to Scholz et al. in [3], BBR algorithm
operates in 4 phases.

Phase 1(Startup): Pacing gain is a parameter that
controls the amount of data sent, that when multiplied
with the BtlBW shows the current sending rate. The
sending rate is doubled after each roundtrip, and once the
bandwidth has reached its maximum value, which BBR
assumes as the BtlBW, it continues with the second phase.

Phase 2(Drain): Here, BBR tries to reduce the queue
created at the bottleneck due to the first phase by tem-

porarily decreasing the pacing gain and starts with next
phase.

Phase 3(Probe Bandwidth): In this phase, with a
total of 8 cycles BBR tries to estimate the BtlBW. In
the first cycle, the pacing gain is set to 1.25 to probe
for extra bandwidth and then at 0.75 to drain the queues
created. Then for the rest of the phase, i.e., six cycles,
the pacing gain is set to 1. The bandwidth is sampled
constantly throughout the time and the maximum is used
as the BtlBW. This value holds for a period of 10 RTprop.
Then it enters the next phase.

Phase 4(Probe RTT): In this phase, which is about
200ms plus one RTT, bandwidth is set to four packets
to drain any possible queues created by the third phase
to get the current estimation of RTT. RTprop value is
updated if a new minimum is measured and is valid for
tens seconds.Both Probe_BW and Probe_RTT phase are
repeated continuously and updated.

3.2. Performance Analysis of BBR

When we look at the performance analysis of BBR and
CUBIC done by Cardwell et al. in [7], it is to be seen that
BBR achieves high bandwidth despite losses. At a loss
rate of 0.01%, CUBIC lowers the throughput to around
30MB s−1 and at 0.1%, further lowers to 12.5MB s−1

while BBR maintains the maximum at around 90MB s−1,
which shows that even small losses lead to low throughput
in a loss-based congestion control approach. When mea-
suring the buffer size(MB) against latency (s), CUBIC has
a linear increase in latency while BBR maintains a low
queue delay despite bloated buffers.

4. Problems of BBR

Even though BBR promised to solve a lot, it still
comes with problems. According to experiments done by
Ma et al. in [8], Song et al. in [5], and Scholz et al. in
[3], the following drawbacks were observed:

4.1. RTT unfairness

With multiple flows, flows with longer RTT recieve a
larger share of bandwidth compared to flows with smaller
RTT is the opposite of traditional loss-based and delay-
based algorithms, which favor flows with shorter RTT.
This leads to the following problems. There is an un-
pleasant trade-off between low latency and high delivery
rates. It no longer makes any sense to find a route that
has minimum RTT since flows with longer RTT receive
more bandwidth leading to a high delivery rate. Secondly,
since BBR is also a sender-based congestion control like
TCP, it will be easier to manipulate and increase the RTT
from the receiver side to get more share of bandwidth, and
the sender would be totally unaware of the situation. This
could lead to worse outcomes if all the receivers compete
and try to inflate their RTT constantly.

4.2. Unresponsive to packet loss

BBR overestimates the bottleneck bandwidth and ac-
cording to the analysis done by Hock et al. in [9], the

Seminar IITM SS 23 92 doi: 10.2313/NET-2023-11-1_16

throughput in networks that delay or aggregate ACKs, BBR
maintains an inflight cap which allows an increase in the cwnd
upto a maximum of (cwnd gain x BDP), where cwnd gain is a
constant. The bottleneck bandwidth is estimated by calculating
the delivery rate of the packets as the amount of data delivered
divided by the time taken to deliver the data. The delivery
rate is tracked for a moving window of 10 RTTs and the
highest value observed is set as the maximum bandwidth
(MaxBW). Similarly, the minimum RTT (minRTT) is the least
value seen over a period of 10 seconds. Subsequently, MaxBW
and minRTT are used to estimate the BDP. The cwnd and
pacing rate are adjusted by scaling factors cwnd gain and
pacing gain, respectively. Both the BBR versions have 4
phases (Fig. 1a). BBRv2 further divides its PROBE BW phase
into 4 sub-phases (Fig. 1b).

STARTUP

DRAIN

PROBE_BW

PROBE_RTT

(a) Phases of BBRv1 & BBRv2

PROBE_DOWN

PROBE_CRUISE

PROBE_REFILL

PROBE_UP

(b) PROBE BW in BBRv2

Fig. 1: Phases in BBRv1 and BBRv2
Algorithm 1: STARTUP phase

1: if MaxBW < 1.25 * prev MaxBW for 3 consecutive RTTs then
2: Exit STARTUP, Enter DRAIN // BBRv1 & BBRv2
3: else if lost packets > 2% of total packets inflight & loss gaps > 8 then

Save current inflight as inflight hi

Exit STARTUP, Enter DRAIN

}
// BBRv2

4: else if marked packets > 50% of delivered packets for 2 consecutive
RTTs then

Save current inflight as inflight hi

Exit STARTUP, Enter DRAIN

}
// BBRv2

5: else
6: Increase cwnd and pacing rate // BBRv1 & BBRv2
7: end if

During the STARTUP phase, cwnd and pacing rate are in-
creased by setting both cwnd gain and pacing gain to 2/ln(2)
(≈2.89) [3]. This exponential increase in the pacing rate and
cwnd can lead to queue buildup at the router. As shown in
Algorithm 1, BBRv1 exits this phase if the MaxBW does not
increase by at least 25% for 3 consecutive RTTs (lines 1-2).
BBRv2 has two additional conditions: it exits if the packet
loss or ECN marking rate is high (lines 3-4). loss gaps is
the number of times packet loss events occurred which helps
to differentiate transient bursts from persistent congestion.
inflight hi indicates the maximum value of cwnd observed so
far. BBRv1 is agnostic to packet losses and ECN marks.

The DRAIN phase clears the surplus queue from the pre-
vious phase by reducing the pacing gain to ln(2)/2 (≈0.35)
[3]. cwnd gain is unchanged (2/ln(2)) to keep the pipe full.
This phase terminates when the amount of inflight data < the
estimated BDP. This phase is same for BBRv2.

BBRv1 has 8 cycles in PROBE BW: the first cycle uses
a pacing gain of 1.25 to probe for more bandwidth, and the
next cycle uses pacing gain of 0.75 to drain the queue created.
Subsequently, the sending rate of BBRv1 is set to MaxBW

for the next 6 cycles using a pacing gain of 1. cwnd gain
is fixed to 2 in this phase, which implies that the inflight
cap is fixed to 2xBDP. Some studies have shown that inflight
cap is the primary source of unfairness in BBRv1 [6][7]. In
BBRv2, PROBE UP and PROBE DOWN use a pacing gain
of 1.25 and 0.75, respectively, whereas PROBE CRUISE and
PROBE REFILL use a pacing gain of 1. The bandwidth
probing time in BBRv2 is adaptive (unlike 8 cycles in BBRv1)
to improve the coexistence with Reno and CUBIC. Algorithm
2 shows the working of PROBE BW phase in BBRv2, where
probe wait is a random amount of time (between 2-3 seconds)
that BBRv2 waits before probing, and next loss epoch time
is the estimated time between two packet loss events of a
coexisting CUBIC or Reno flow.

Depending on the current estimate of bandwidth (bw) and
the data inflight, BBRv2 derives long-term upper bounds and
short-term lower bounds for bw and inflight because the
operating point of BBRv2 is given by a tuple (bw, inflight).
bw lo, bw hi and bw latest represent the lower bound, upper
bound and latest estimate of the bw, respectively. Similarly,
inflight lo, inflight hi and inflight latest are analogous to slow
start threshold (ssthresh), maximum cwnd observed so far and
the present value of cwnd, respectively.

inflight lo and bw lo are reduced if there are ECN marks
or packet losses when BBRv2 is not probing for bandwidth.
If there are ECN marks, DCTCP-style reduction is applied,
which is proportional to the number of packets marked in that
RTT. If there is a packet loss, CUBIC-like 30% reduction is
applied. If there are ECN marks and packet losses, the largest
reduction factor among those indicated by both is applied.
However, the maximum reduction factor is 50%. Note, these
lower bounds are short-term, and are reset whenever BBRv2
exits PROBE RTT or enters PROBE REFILL. When BBRv2
is probing but there are no ECN marks or packet losses,
inflight hi and bw hi are raised. If inflight latest > inflight hi,
then inflight hi is set to inflight latest, and if bw latest >
bw hi, then bw hi is set to bw latest. Besides, BBRv2 adapts
inflight hi and bw hi as shown in Algorithm 2.

BBRv1 enters the PROBE RTT in every 10 seconds. The
cwnd is set to 4 segments for 200ms. This is done to obtain a
better estimate of minRTT, which is devoid of queuing delay.
BBRv2 enters this phase every 5 seconds, and instead, sets
the cwnd to 50% of BDP to avoid loss of throughput.

III. EXPERIMENTAL SETUP AND SCENARIOS

The experiments are conducted on an emulated testbed
which is set up using network namespaces and virtual Ethernet
in Ubuntu 18.04. Flexible Network Tester [11] is used to run
tests and collect the results. Google’s Linux repository1 with
the implementation of BBR versions has been used for the
evaluation. The default implementation of CUBIC in Linux has
been used to study the inter-protocol fairness of BBR versions.

We use the simple topology shown in Fig. 2 for evaluation,
as it is adequate to obtain an initial understanding of the

1https://github.com/google/bbr/tree/v2alpha-experimental-pacing

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 11,2023 at 14:03:19 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Phases of BBR and BBRv2 algorithm [10]

Amount Inflight is between 2 BDP and 2.5 BDP, most
of the time. This could lead to problems when the buffer
size is less than 1 BDP since BDP + Buffersize, in this
case,would be less than 2 BDP. Due to the overestimation
BBR might start operating only at 2BDP, whereas loss has
already started occurring at BDP + Buffersize and BBR
would not reduce the amount of data sent since it does
not respond to loss, leading to further retransmissions and
delays.

4.3. Fairness between BBR and other algorithms

When BBR operates together with loss-based con-
gestion like CUBIC, the share of the bandwidth varies
according to the buffer size. When the buffer is shallow,
BBR occupies more bandwidth and in the case of deep
buffers CUBIC occupies a major share. In each of these
cases, this behaviour leads to starvation of flows using the
other algorithm leading to high retransmissions.

5. BBRv2

BBR was proposed by Google in 2016 [3] as an
alternative to traditional loss and delay-based algorithms,
promising maximum throughput with minimum queuing
delay. To achieve this, BBR tries to work at Klienrock’s
optimal point. It was deployed in Google B4 WAN,
Google.com and Youtube video servers [6]. B4 is a high-
speed Wide Area Network from Google, and in B4, it
was to be seen that BBR had a throughput 2 to 25
times greater than CUBIC, and when the receiver window
was raised, BBR was 130 times faster than CUBIC. In
Google.com, web page downloads were faster mainly in
the developing world. On Youtube, playbacks using BBR
had less rebuffering, and BBR was also able to achieve a
median RTT of 53% and 80% in developing world.

Even though BBR showed promising results in the
deployments, it still came with flaws. Apart from the ones
discussed earlier, BBR also does not respond to ECN
signals (Internet Protocol provides an extension called Ex-
plicit Congestion Notification(ECN) to notify TCP about
network congestion without dropping the packet, thus
avoiding retransmission [11]), and it has low throughput
for paths with high aggregation(wifi). BBRv2, the newest
version of BBR with modifications, was developed by
Google in 2018 to solve these problems [12]. To coexist
better with algorithms like CUBIC, it adapts bandwidth
probing. BBRv2 also responds to loss and uses DCTCP-
style ECN. Finally, it estimates the recent degree of ag-
gregation to avoid low throughput problems [13].

CUBIC BBR BBRv2

Parameters None BtlBW,
RTT

BtlBW,
RTT, max
aggrega-
tion,max
inflight

Response to
loss Yes No Yes

Response to
ECN Yes No Yes

Startup
slow until
RTT rise or
any loss

slow
start
until
thresh-
old

slow
start until
threshold or
ECN/loss
rate > target

cwnd in
Probe RTT
phase

N/A 4 pack-
ets BDP/2

TABLE 1: Comparison table based on [12], [16]

A current draft for the BBRv2 is available on the
internet [14] and as per the draft BBRv2 is currently
available publicly for Linux TCP and QUIC. QUIC is a
transport layer protocol like TCP implemented by Google
and deployed in 2012. It is supported in major web
browsers like Google Chrome, Firefox, and Microsoft
Edge. It tries to establish a connection with less latency
than TCP. QUIC also aims at bandwidth estimation in
both directions, which in turn helps the BBRv2 at BtlBW
estimations [15].

5.1. Algorithm

Explanation of the algorithm according to [14] and
[10]. BBRv1 and BBRv2 algorithms work similarly in
most cases. BBRv2 has some additional modifications on
how it responds to loss and ECN. The Probe_Bandwidth
phase is adaptive and therefore helps to coexist bet-
ter with algorithms like CUBIC solving the interpro-
tocol fairness problem. BBRv2 keeps tabs on the cur-
rent estimate(.._latest), lower bound(.._lo), and higher
bound(.._hi) values of the bandwidth and amount of data
in flight. The congestion window is bounded by these
lower and upper bound values instead of the inflight cap
of 2 BDP, like in BBRv1. BBRv2 also has some minor
changes with the congestion window in the drain phase.

Both BBR and BBRv2 exit the startup phase and enter
the drain phase when there has been no significant increase
of a minimum of 25% in the bandwidth in the last three
RTTs. In addition to this condition, BBRv2 also goes to
the drain phase if there is packet loss or when ECN marks
50% of the delivered packets for two consecutive RTTs.

The main difference in the algorithm is in the
Probe_Bandwidth phase. According to Nandagiri et al. in
[10], BBRv2 further breaks Probe Bandwidth into four
sub-phases, as shown in Figure 2. In the Probe_Down
phase BBR tries to reduce the amount of data in flight
by lowering the sending rate to 90% of the bottleneck

Seminar IITM SS 23 93 doi: 10.2313/NET-2023-11-1_16

bandwidth. It exits this state when there is free headroom.
So if the inflight_hi value is set, it remains in this state
until the volume of inflight data is less than inflight_hi.
The inflight_hi helps prevent loss and leaves space for
other flows or cross traffic. Also, any queues created at
the bottleneck have to be drained. Both of these conditions
have to be met to exit this phase. In the Probe_Cruise
phase, BBRv2 tries to send data at the same rate as
the delivery rate, i.e., data is sent at 100% capacity of
bottleneck bandwidth. In this phase, it responds to loss and
ECN by reducing bandwidth_lo and inflight_lo, indicating
that the delivery rate and amount of data inflight need to
be reduced. This phase holds adaptively and exits when
it needs to probe for more bandwidth. In the Probe_Refill
phase, BBRv2 has a goal of refilling the pipe. It attempts
to send at 100% of bottleneck bandwidth for just one
more RTT, with bandwidth_hi and inflight_hi restraining
the connection. In the Probe_Up phase, BBRv2 tries to
probe for more bandwidth. The pacing gain is set to
1.25 which when multiplied by the bottleneck bandwidth,
gives the current sending rate. When higher bandwidth and
amount inflight values are measured, the bandwidth_hi
and inflight_hi values are updated. It exits this phase when
there is either a loss of 2% or when the queue is high
enough that the flow judges that it has probed adequately.

In the Probe RTT phase, which BBRv1 enters every 10
seconds to estimate the latest RTprop, BBRv1 sends only
four packets to drain the queues created in Probe_BW
whereas BBRv2 enters the phase every 5 seconds and
maintains the throughput by draining it only to half the
BDP in this phase.

Table 1, based on [16] and [12], shows the difference
in how CUBIC, BBR, and BBRv2 work.

5.2. Performance analysis of BBR v2

Response to loss. As it can be seen in Figure 3 from
Song et al. in [12], CUBIC is overly sensitive and starts
reducing throughput from a loss of 0.001%, BBR is loss
agnostic and continues to deliver maximum throughput
up to around 15% and BBRv2 provides a good middle
ground providing maximum throughput until about 1%
loss.

Inter-protocol Fairness. Experiments were conducted by
Nandagiri et al. in [10] to check the Inter-protocol fairness.
In the experiment, ECN was disabled since CUBIC and
BBRv2 work with different types of ECN. In shallow
buffers, BBRv1 had more share than CUBIC as pointed
out earlier. But in the case of BBRv2, the sharing of band-
width with CUBIC is fairer than BBRv1. This behaviour
attributes to BBRv2 being bounded by lower and upper
bound values and not having an inflight cap like BBRv1,
preventing losses in the startup phase, helping CUBIC
to maintain its throughput and not reduce the congestion
window. After Startup both BBRv2 and CUBIC reduce
throughput when they encounter loss. During the probing
phase, the bandwidth of BBRv2 remains somewhat con-
stant, but CUBIC on the contrary, increases its bandwidth
after each RTT leading to having a slightly larger share.

In the case of deep buffers BBRv2 has a throughput
way less than its fair share. Both CUBIC and BBRv2
have an equal throughput in the beginning and reduce

Y.-J. Song et al.: Understanding of BBRv2: Evaluation and Comparison With BBRv1 Congestion Control Algorithm

ProbeBW:Up phase is terminated immediately after the
inflight data exceeds the previously set 1.25 × BDP, even
though a newBDP has not been updated as shown in Fig. 7(a).
In addition, BBRv2 repeated the ProbeBW:Up phase once
after random intervals (2 to 3 s), so that it takes quite a long
time to probe the full bandwidth.

Fig. 6(b) shows that BBRv2 quickly adapts to the new
test environment where the bandwidth decreases from 80 to
40 Mbps in terms of throughput. However, BBRv2 takes
about 9 seconds to operate at the optimal operating point that
provides the maximum throughput and the minimum latency
as shown in Fig. 7(b). When BBRv2 detected the packet
loss, it sets the inflight_lo to temporarily reduce the
amount of inflight data and waits for the lower BDP to be
calculated. That is, BBRv2 controls the amount of inflight
data depending on the inflight_lo until it estimates the
lower bottleneck bandwidth close to the actual bottleneck
bandwidth.

3) ACCORDING TO RANDOM PACKET LOSS
We measured the average throughput of BBRv1, BBRv2,
and CUBIC that operated on the link where the random
packet loss rate ranging from 0.000001% to 10% occurred,
and Fig. 8 shows the results of the experiments. CUBIC
shows a significant performance degradation despite a small
packet loss rate of 0.01%. That is because CUBIC rec-
ognizes the packet loss as the network congestion signal
and repeatedly reduces the congestion window. Unlike the
loss-based congestion control algorithm, BBRv1 does not
directly reduce the congestion window size no matter how
much packet loss occurs. Hence, BBRv1 achieves a high
data rate despite the high packet loss rate. However, this
operating characteristic caused BBRv1’s aggressiveness in
the coexistence with other TCP flows. To compromise
between the aggressiveness and robustness, BBRv2 reduces
the inflight data if it detects the packet loss that exceeds the
predefined threshold (loss_threshold=2%). Therefore,
BBRv2 shows high link utilization when packet loss rate is
less than 2%, and the throughput rapidly decreases in the
environment where the packet loss rate is more than 2%.

FIGURE 8. Throughput according to random packet loss rate.

C. INTRA-PROTOCOL CONVERGENCE
We configured an experimental environment in which two
BBR flows transmit data for 100 s on the common bottleneck

FIGURE 9. Throughput according to bottleneck buffer size when two
identical BBR flows start at different times. (Flow 1: 0 second, Flow 2:
2 second).

link to evaluate how fast the throughput for two flows with
different start times converge for the existence of two BBR
flows. We set the bottleneck bandwidth to 50 Mbps and
1 Gbps and the round-trip propagation time to 30 ms. The
bottleneck buffer sizes were varied from 0.1 to 16 BDP
according to the test scenarios. One flow (Flow 1) first
started sending data at 0 s, then the other (Flow 2) entered
the bottleneck link after 2 s. In addition, Fig. 9 shows the
average throughput for each flow repeated 10 times in the
same scenario, and Fig. 10 presents the change in throughput,
the buffer backlog of Switch 2, and the timestamp of packet
retransmissions when each version of BBR flows operated on
links of 0.2, 2, and 4 BDP bottleneck buffers.

Considering only the throughput, in Fig. 9(a),(b), two
BBRv1 flows that originate at different times fairly share
the bottleneck link regardless of the bottleneck bandwidth
and buffer size because two BBRv1 flows measure similar
BtlBw and RTprop and calculate a similar BDP. There-
fore, they inject a similar amount of inflight data into the
network. However, the behaviors of the two BBRv1 flows
show significant differences depending on the size of the
bottleneck buffer when analyzed from the standing queue
viewpoint. During the coexistence of two BBRv1 flows, each
BBRv1 host overestimates the bottleneck bandwidth to send
out about 200 KB more data than the actual BDP of the link
as shown in Fig. 10. If the bottleneck buffer is sufficiently
large to prevent buffer overflow like Fig. 10(b),(c), no packet
retransmissions occur except in the startup phase. Otherwise,
BBRv1 flows experience excessive packet retransmissions
as described in Fig. 10(a). Moreover, the duration of the
throughput fluctuation that occurs when the second flow
enters increases with the bottleneck buffer size increases
in Fig. 10(b),(c). As the buffer size increases, the size of the
RTprop increasedwhen the second flow commenced, result-
ing in a superior delivery rate and long-standing queue until
the first flow enters the next ProbeRTT phase. The first flow

37138 VOLUME 9, 2021

Figure 3: Throughput vs loss for CUBIC,BBR and BBRv2
[12]

throughput encountering a loss. But when CUBIC starts
increasing its sending rate BBRv2 is still in the drain
phase, trying to reduce the queues created at Startup phase.
By the time BBRv2 enters the Probe_Bandwidth phase,
it experiences loss due to CUBIC reaching the threshold
forcing BBRv2 to reduce its bandwidth’s higher bound
further.

RTT fairness and Intra-protocol fairness. Experiments
were conducted by Song et al. in [12] to determine the
RTT and Intra-protocol fairness of BBRv2. It was done
with two flows, with the first flow having a fixed RTT
of 30ms and the second flow with varying RTT. In
BBRv1 flows with larger RTT received a bigger share
of bandwidth than the shorter flows. In BBRv2 a similar
behaviour is observed. For flows with the same RTT, the
flow starting first gets a bigger share of throughput, but
according to Nandagiri et al. in [10], similar flows have
better fairness when ECN is enabled. Experiments on RTT
fairness were also conducted by Gomez et al. in [17]
with 50 flows of 10ms RTT and 50 flows of 50ms RTT.
It is shown that both BBRv1 and BBRv2 allocate more
bandwidth to flows with bigger RTT when buffer size is
above 0.6 BDP, but when the buffer size is above 12 BDP,
BBR v2 has a very high fairness index, whereas BBRv1
is still unfair.

6. Conclusion and future Work

BBRv2 is the best version of BBR, as of now. BBRv2
when deployed on Youtube had lesser RTT than CUBIC
and BBRv1. It is currently deployed as the default TCP
congestion control for internal Google traffic [16]. It pro-
vides maximum throughout till 1% loss, is more efficient
using ECN signals, reduces queuing delay, and has better
throughput in wifi. BBRv2 alpha is the current version
which has some shortcomings which Google is working
on fixing with the final version. BBRv2 has a fairness
issue when ECN is disabled and is a bit too complex to
deploy in WAN like b4 due to its dependency on DCTCP
like ECN [10]. Although RTT fairness issues are better
compared to BBRv1, it has not been solved completely.
The same situation remains with inter-protocol fairness in
the case of deep buffers. According to [18], Google is
trying to add BBR.Swift extension to BBRv2. It aims to
use delay also as a parameter without changing the BBR
core. Google is also planning for a full-scale rollout in
their company.

Seminar IITM SS 23 94 doi: 10.2313/NET-2023-11-1_16

References
[1] GeeksforGeeks, “Transport Layer Responsibilities,” [accessed 24-

May-2023]. [Online]. Available: https://www.geeksforgeeks.org/
transport-layer-responsibilities/

[2] Engagement and P. operations center, “20200504 - Neal Cardwell
- BBR: A Model-based Congestion Control,” https://www.youtube.
com/watch?v=mpbWQbkl8_g, [accessed 17-July-2023].

[3] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of tcp bbr congestion
control,” in 2018 IFIP networking conference (IFIP networking)
and workshops. IEEE, 2018, pp. 1–9.

[4] GeeksforGeeks, “TCP Congestion control,” [accessed 3-
June-2023]. [Online]. Available: https://www.geeksforgeeks.org/
tcp-congestion-control

[5] Y.-J. Song, G.-H. Kim, and Y.-Z. Cho, “Bbr-cws: improving the
inter-protocol fairness of bbr,” Electronics, vol. 9, no. 5, p. 862,
2020.

[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacob-
son, “Bbr: congestion-based congestion control,” Communications
of the ACM, vol. 60, no. 2, pp. 58–66, 2017.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, I. Swett,
J. Iyengar, V. Vasiliev, and V. Jacobson, “Bbr congestion control:
Ietf 99 update,” in Presentation in ICCRG at IETF 99th meeting,
2017. [Online]. Available: https://www.ietf.org/proceedings/99/
slides/slides-99-iccrg-iccrg-presentation-2-00.pdf

[8] S. Ma, J. Jiang, W. Wang, and B. Li, “Fairness of congestion-
based congestion control: Experimental evaluation and analysis,”
arXiv preprint arXiv:1706.09115, 2017.

[9] M. Hock, R. Bless, and M. Zitterbart, “Experimental evaluation of
bbr congestion control,” in 2017 IEEE 25th international confer-
ence on network protocols (ICNP). IEEE, 2017, pp. 1–10.

[10] A. Nandagiri, M. P. Tahiliani, V. Misra, and K. K. Ramakrishnan,
“Bbrvl vs bbrv2: Examining performance differences through ex-
perimental evaluation,” in 2020 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN, 2020, pp. 1–6.

[11] Wikipedia, “Explicit Congestion Notification,” accessed 12-June-
2023]. [Online]. Available: https://en.wikipedia.org/wiki/Explicit_
Congestion_Notification

[12] Y.-J. Song, G.-H. Kim, I. Mahmud, W.-K. Seo, and Y.-Z. Cho,
“Understanding of bbrv2: Evaluation and comparison with bbrv1
congestion control algorithm,” IEEE Access, vol. 9, pp. 37 131–
37 145, 2021.

[13] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha,
Y. Seung, M. Mathis, and V. Jacobson, “Bbr v2 a model-based con-
gestion control,” 2019. [Online]. Available: https://datatracker.ietf.
org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00

[14] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, and V. Jacobson,
“BBR Congestion Control,” Internet Engineering Task Force,
Internet-Draft draft-cardwell-iccrg-bbr-congestion-control-02, Mar.
2022, work in Progress. [Online]. Available: https://datatracker.
ietf.org/doc/draft-cardwell-iccrg-bbr-congestion-control/02/

[15] Wikipedia, “QUIC,” accessed 12-June-2023]. [Online]. Available:
https://en.wikipedia.org/wiki/QUIC

[16] N. Cardwell, Y. Cheng, S. H. Yeganeh, P. Jha, Y. Seung,
K. Yang, I. Swett, V. Vasiliev, B. Wu, L. Hsiao et al., “Bbrv2:
A model-based congestion control performance optimization,” in
Proc. IETF 106th Meeting, 2019, pp. 1–32. [Online]. Available:
https://lafibre.info/testdebit/linux/201911_bbr_v2_doc_ietf106.pdf

[17] J. Gomez, E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava,
“A performance evaluation of tcp bbrv2 alpha,” in 2020 43rd Inter-
national Conference on Telecommunications and Signal Processing
(TSP), 2020, pp. 309–312.

[18] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev,
P. Jha, Y. Seung, M. Mathis, V. Jacobson, N. Dukkipati, and
G. Kumar, “Bbr update : 1:bbr.swift; 2:scalable loss handling,”
2020. [Online]. Available: https://datatracker.ietf.org/meeting/109/
materials/slides-109-iccrg-update-on-bbrv2-00

Seminar IITM SS 23 95 doi: 10.2313/NET-2023-11-1_16

Seminar IITM SS 23 96

The Evolution of Top-Level Domains: A Comparative Study of .org and .dev

Florian Pfisterer, Johannes Zirngibl∗, Patrick Sattler∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: florian@pfisterer.dev, zirngibl@net.in.tum.de, sattler@net.in.tum.de

Abstract—The Domain Name System (DNS) is key to the
modern Internet. Many studies investigate the changes of
domain names over time. We argue that the the development
of top level domains (TLDs) as a whole can introduce bias
into such DNS measurements, leading researchers to draw
conclusions about patterns in the data that actually stem
from how the TLD changes over time. Additionally, one
needs to take the churn of a given TLD into account when
assessing the validity of DNS data given its age.

To investigate how DNS data change varies across TLDs,
we analyze the recent development of two very different
TLDs between 2019 and 2023. By studying the zone files, we
compare the almost 40 year old .org TLD with the much
newer .dev TLD first made available only in 2019.

We aggregate zone file data over time and show that
.org and .dev differ in a variety of aspects – .org is almost
30 times larger, grows only about three percent as fast,
and exhibits 29 % less churn. We introduce the idea of the
“core” of a zone (the domains that are registered for the full
investigated period) and find that .org’s core is 14 % larger
than .dev’s core, suggesting that we can consider .org a
more stable TLD.

Index Terms—top-level domains, DNS, CZDS, zone files

1. Introduction

Centralized Zone Data Service (CZDS) [1] is an online
portal provided by the Internet Corporation for Assigned
Names and Numbers (ICANN) that provides access to
zone files of a variety of TLDs (including .com, .net and
.org). With daily updates to the zone files, it offers the
opportunity to study the Domain Name System (DNS) as
a whole and to do DNS measurements on a large scale.

It is important for researchers doing such studies (e.g.,
[2]–[4]) to assess the validity of their measurements, given
the age of their data. The correlation between validity and
age can vary based on the corresponding TLD: if the TLD
has very high churn, more recent data is to be preferred.
Futhermore, the development of a TLD as a whole can
introduce bias into the patterns that researchers study in
their DNS measurement data.

Therefore, it is important to consider the TLD-specific
changes within DNS data. In order to examine these
differences, we study the development of the old .org
TLD (which has been available for almost 40 years [5])
and compare it to the development of a much more recent
TLD, .dev (which has only been made available in 2019
[6]). We analyze how both of these TLDs changed from

2019 until 2023 by investigating the zone files for each
day provided by the CZDS.

The key research questions we seek to answer are:

• How did the number of resolvable domains in the
.org and .dev TLDs develop over this time span?

• How stable are the TLDs, i.e., how many domains
stay present in the zone file vs. how much churn
is there?

• What is the typical lifetime of a .org domain vs.
a .dev domain?

• If domains are not resolvable during the full con-
sidered timespan, how many of them are re-added
and how long are the periods in between?

2. Background

The DNS is used for resolving readable domain names
to IP addresses on the Internet [5]. It uses TLDs such
as .org, .com or .dev to partition the name space of
domain names [7]. A name server stores different kinds
of records for the set of domain names it is responsible
for and replies to DNS queries with this information [7].

TLD name servers maintain information on which
second level domains (SLDs) (e.g., tum.de) are registered
within the TLD and how to resolve them. The collection
of all such records stored on a name server is called a
zone file.

Following the introduction of many new TLDs and
the associated security risks, easier access to such zone
files has been required. Thus, the ICANN introduced the
CZDS, which is a service that provides easy access to the
zone file of all participating TLDs on a daily basis [8].

Domains are usually registered in the corresponding
TLD’s registry under contract with ICANN [9]. On behalf
of the buyer, the registry then communicates the name
servers of the domain to the name server maintaining the
zone file of the TLD. This allows DNS clients to find
the name servers responsible for the domain, which can
then provide information to correctly resolve the domain
to the corresponding IP address. In this paper, when we
say that a domain is registered or resolvable, we mean
that the domain’s name servers are present in the TLD’s
zone file.

3. Related Work

Past surveys have analyzed the kinds of TLDs par-
ticipating in the CZDS as well as the results of access
requests to the zone files [1], [8].

Seminar IITM SS 23 97 doi: 10.2313/NET-2023-11-1_17

While most domains are registered for at least one
year, Foremski et. al. [10] analyze domains with shorter
lifetimes, which they claim are used for abusive purposes.
They investigate the time it takes from the registration of
new domains until they “die” as well as the most common
“causes of death”. They do separate analyses of domain
mortality per TLD and find that old TLDs such as .org
or .com experience much less “domain deaths” than the
newer TLDs like .party or .work [10].

Similarly, Affinito et. al. [9] analyze the registration
periods of domains for different TLDs over a time frame
of ten years. They find that in ten prominent TLDs, 95 %
of registration periods are exactly the minimum period of
one year. They further identify that the share of malicious
domain registrations with shorter periods correlates to the
corresponding kind of TLD. The data they use comes
from zone files in the Domain Zone Database (DZDB)
by CAIDA, which provides a historical record of TLD
zone files [9].

This paper focuses instead on only two TLDs in detail
and does an in-depth analysis and comparison of the
stability and churn of domain names in those TLDs.

4. Methodology

This section describes the zone files and the aggrega-
tions we perform with them.

4.1. CZDS Zone Files

The zone file that CZDS provides on a daily basis is
a compressed, tab-separated file with one entry per line,
sorted by domain. Each entry is comprised of the domain
name, the cache TTL, the class (usually “IN” for Internet),
the type of record (especially relevant for this paper “NS”
records for the name servers of a domain) as well as the
value of the record (for “NS”, this is the domain name of
the name server responsible for the domain).

An uncompressed .org zone file for a single day in
May 2023 is about 1.8 GB large and contains almost 30 M
rows. An uncompressed .dev zone file for the same day
spans 2.1 M entries at 234 MB. For comparison: a zone
file of the largest TLD (.com) on the same day is 25 GB
large and contains over 410 M rows.

Thus, the raw data of the .org TLDs for the in-
vestigated timespan from November 2019 till May 2023
(1270 days in total) amounts to over 2 TB alone. Effi-
ciently processing and analyzing such large amounts of
data in a reasonable amount of time and with reasonable
computing resources poses a technical challenge, which
is discussed in more detail in the following sections.

4.2. Data Aggregation

To answer the research questions of this paper, compu-
tationally intensive aggregations of the raw zone file data
are needed. In principle, one could execute all required
queries on the raw data itself. Our approach however was
to first transform the zone files into a more compact and
aggregated form, materialize that form, and then perform
our analyses on the aggregates instead. This allowed us
to iterate on the downstream analysis tasks more quickly,
without constantly perfoming the low-level aggregations.

The two types of aggregates we materialized are: 1)
Distinct domains: We de-duplicate the NS records in the
zone file by domain and then count the unique number of
domains present in the zone file on each day.
2) Registration periods: For each time frame of consecu-
tive days on which a domain was present in the zone file,
we store the domain as well as the first and last date of
the time frame.

While the first aggregation allows us to investigate the
development of the size of the two TLDs as a whole,
the second gives us the opportunity to do more fine-
grained analyses such as studying the periods between
registrations, the registration periods and the churn.

4.3. Data storage

Operating on the raw compressed files would require
custom optimized programs to perform the aforemen-
tioned aggregations with reasonable computing resources.
Thus, we decided to use ClickHouse, an open-source,
column-oriented database management system suited for
analytical workloads such as our aggregations [11]. It
allowed us to simply access the data using SQL.

We imported the raw and compressed zone files pro-
vided by CZDS using the clickhouse-client CLI to
benefit from the built-in parallelization options it offers.
With this setup, the import took around 25 seconds per
.org zone file. Since only NS records are relevant for
the research questions of this paper, we filtered the DNS
records during the insert process already. By storing the
data ordered by domain, we can efficiently partition the
full name space and thus make aggregation queries more
efficient.

4.4. Challenges

While implementing the pipeline from raw CZDS
zone files to final aggregates, we faced several challenges,
which are discussed below.

4.4.1. Missing Days. Between November 2019 and May
2023, there have been seven days on which our automated
CZDS download process did not successfully acquire the
current zone files. This led to incorrect registration periods
in the corresponding aggregation (one additional period
for each missing day). The query assumed that a missing
(domain, date)-entry for such a day meant the domain
was not resolvable on that day. To solve this, we instead
explicitly determined the missing dates and adjusted the
query to not consider registration gaps on those dates.

4.4.2. Registration Periods Aggregation. If one consid-
ers only one registration period per domain, the aggre-
gation becomes a simple minimum and maximum of the
(domain, date)-entries grouped by domain. However, it
can happen that a domain is registered for some period,
then it is not present in the zone file for a while, and then
comes back later.

Since we need to distinguish separate registration peri-
ods, our approach was to group the (domain, date)-entries
by domain and collect the sorted dates in a list. We then
compare the i-th date with the (i+1)-th date in that list and
append a running sum of how often the two dates were

Seminar IITM SS 23 98 doi: 10.2313/NET-2023-11-1_17

not apart by exactly one day (and the day(s) in between
are not part of the missing dates, cf. Section 4.4.1). This
running sum provides an ID of the consecutive registration
period each (domain, date)-entry corresponds to. Finally,
we calculate the minimum and maximum date for each
domain and period.

By partitioning the .org and .dev name spaces based
on the domain and by indexing entries by the domain (cf.
Section 4.3), we were able to restrict the query to only
consider domains in pre-computed disjoint partitions. That
way, computing the aggregation query for one out of 1000
.org partitions only took 24 seconds on average and was
well within the resource constraints.

5. Analysis

Using our two exported aggregations, we examine at
the size of the .org and .dev TLDs as a whole and
investigate the domain churn.

5.1. Size Of The TLD

As one can see in Figure 1, the total size of the .org
TLD grew linearly by about 7 % in the investigated 3.4-
year timespan. At the same time, .dev more than doubled
its size. Notably however, in absolute numbers, .org grew
by around 700 k domains, while .dev added less than
200 k dinstinct domains. In May of 2023, .dev still only
contained a fraction of the domains of .org (368 k .dev
domains vs. 10.7 M .org domains). This shows the large
difference both in size and growth of these two TLDs.

20
20
−0

1

20
20
−0

7

20
21
−0

1

20
21
−0

7

20
22
−0

1

20
22
−0

7

20
23
−0

1

20
23
−0

7

Date

1.00

1.25

1.50

1.75

2.00

#
D

o
m

a
in

s
in

T
L

D
(n

o
rm

.)

.dev domains

.org domains

Figure 1: The number of distinct .org and .dev domains
between November 2019 and May 2023. (Both are nor-
malized to the number on November 28, 2019, which is
10 M for .org and 172 k for .dev)

One further pattern can be observed in the figure:
the number of registered .dev domains slightly drops in
periodic intervals of around one year, each time approxi-
mately in April. The magnitude of these drops decreases
over the years and is barely visible in 2023. These drops
supposedly come from the large amount of initial .dev
domains registered when the TLD first became available
in March 2019 [6]. Domains registrations are mostly sold
in one-year increments [9], which is why we observe the
small drops exactly one, two, three and four years after the

TLD’s inception. For .org, we do not see this behavior,
as it was first available almost 40 years ago [5].

While the number of simultaneously registered .org
domains increased only by around 7 %, the total number of
domains that were present in the .org zone file for at least
one day during the timespan is around 40 % larger. For
.dev, the size of the zone file increased by 114 %, but the
total number of seen domains is 61 % over that number.
This large difference is caused by churn – domains that
are registered at some point, and then later again removed
from the zone file.

In fact, only 40.4 % of all .org domains and 16.1 %
of all .dev domains ever seen in our data were registered
for the full duration. The other 59.6 % of .org domains
and 83.9 % of .dev domains were not present in the zone
file on at least one day. We can already see that .org
displays less churn than .dev. Below, we analyze churning
domains and the periods in which they were not registered
in more detail.

5.2. Periods Between Registrations

Of particular interest are the domains that are regis-
tered for some period, are not present in the zone file for
a while, and then come back. These domains allow us to
study the typical number of days a previously registered
domain was not registered for, before it came back. This
period represents an attack window for malicious users
to publish different name servers and temporarily hijack
traffick to a domain [12].

0 100 200 300

Interval length in days

104

105

N
u

m
b

er
o
f

in
a
ct

iv
e

p
er

io
d

s

Figure 2: Histogram of the number of days .org domains
are not present in the zone file after being registered for
some duration and before coming back again (logarithmic
scale). One vertical bar represents a bucket of 1 week
and its height describes the number of periods between
registrations we saw whose lengths was this particular
number of weeks.

Figure 2 shows a histogram of the duration of these
periods in which .org domains are not present in the
zone file. In total, 1.57 M of such periods from 1.31 M
re-appearing .org domains were analyzed. Notably, these
domains only represent a small fraction of all 10 M .org
domains. For illustration purposes, the histogram was cut
off at a period of 1 year, which represents 88 % of the total
data. For .dev, we see a very similar pattern, suggesting
that the two TLDs do not differ a lot in this regard.

Seminar IITM SS 23 99 doi: 10.2313/NET-2023-11-1_17

About a third of periods are less than a week long
(most of these – 60 % – are 3 days long). We suspect these
do not come from intentional de-registrations of domains,
but instead from temporary configuration issues or name
server changes.

A second peak occurs at around 35 days. When a
domain is not renewed, it is in the redemption grace period
status for 30 days, in which it may be re-registered by the
previous owner [9]. After that, it takes up to five days
until the domain is available to the public again [9]. We
assume the second peak comes from domains that were
re-registered as soon as they were available again, which
is exactly 30 to 35 days after de-registration.

After that, we consistently only see a lower number
of period lengths, suggesting that the reason for different
inactive durations is just that someone registers the same
domain again later. Overall, we can conclude that most
attack windows are very short for both .org and .dev.

5.3. Registration Periods

After analyzing the periods during which domains are
not present in a zone file, we study the periods during
which domains are registered. Figure 3 and Figure 4 show
the color-coded fraction of domains still active after a
given number of months, differentiated by when the do-
main was first seen. The first row represents the domains
that were present on the first day of our investigated time
frame. The other rows represent the domains that were
first registered during the month shown on the left (the
cohort), while the last row displays an average of all rows.
The color in each cell indicates the fraction of domains
(between 0 and 1) that are still present in the zone file
after the number of months indicated on the x-axis.

0 3 6 9 1215182124273033363942

Number of months after first seen

2019-11
2020-03
2020-07
2020-11
2021-03
2021-07
2021-11
2022-03
2022-07
2022-11
2023-03

C
o
h

o
rt

0.4

0.6

0.8

1.0

Figure 3: Cohort analysis of .org domains from Nov 2019
until May 2023. The last row displays the average over
all cohorts.

For both .dev and .org, one can clearly observe the
significant drops in the fraction of registered domains after
one, two, and three years for all cohorts except the first
– which is unsurprising, given that domain registrations
are mostly sold in one year increments [9]. The one- to
two-month deviations from the full 12 −month cycle that
can be observed in Figure 3 come from auto-renew grace
periods during which domains may still be in the zone
file.

0 3 6 9 1215182124273033363942

Number of months after first seen

2019-11
2020-03
2020-07
2020-11
2021-03
2021-07
2021-11
2022-03
2022-07
2022-11
2023-03

avg

C
o
h

o
rt

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: Cohort analysis of .dev domains from Nov 2019
until May 2023. The last row displays the average over
all cohorts.

The domains represented by the rightmost square in
the first row can be considered the “core” of the TLD –
these have been in the zone file without interruption since
the start of our investigated time frame in 2019. Most
notably, 63.6 % of .org domains present in the zone file at
the start of the investigated time frame are still present at
the end. Factoring in that additionally some of the domains
that were present at the start but not for the full period
might be so because of configuration errors (and the many
short 3-day periods between registrations, cf. Section 5.2)
we can conclude that the core of .org domains is quite
stable.

For .dev, slightly less domains are there for the full
time frame (55.6 %), suggesting that it has a smaller
stable core. In the first row of the cohort analysis of
.dev domains (Figure 4), we can additionally observe the
periodic drops in April of each year for the core. This
behavior supposedly comes from the considerable share
of .dev domains that were initially registered when the
TLD first became available (as previously discussed in
Section 5.1).

6. Conclusion and Future Work

In this paper, we analyzed the development of the old
.org TLD between November 2019 and May 2023 and
compared it to the development of the new .dev TLD
during the same time span.

We found that the development of .dev and .org
differs in a number of factors. Firstly, .org is a much
larger TLD, containing 10.7 M domains vs. .dev’s 368 k
domains in May 2023. Secondly, .org shows much less
relative growth - it only increased its size by 7 % in the
investigated time frame, while .dev more than doubled its
size. Thirdly, while analyzing the registration periods, we
recognized several patterns – the yearly registration period
increments as well as .dev’s initial registrations in March
of 2019. Finally, we showed that .org has a larger core
of domains that have been registered without interruption
since 2019, shows significantly less churn and thus can
be considered more stable than .dev.

Future work may analyze other large TLDs such as
.com or a regional TLD such as .bayern and investigate
differences to .org and .dev.

Seminar IITM SS 23 100 doi: 10.2313/NET-2023-11-1_17

References

[1] A. R. Kang and A. Mohaisen, “Transparency of the new gTLD’s
centralized zone data service: A measurement study,” in 2016 IEEE
Conference on Communications and Network Security (CNS),
2016, pp. 354–355.

[2] J. Zirngibl, S. Deusch, P. Sattler, J. Aulbach, G. Carle, and
M. Jonker, “Domain Parking: Largely Present, Rarely Considered!”
in Proceedings of the 6th edition of the network traffic measurement
and analysis conference (TMA conference 2022). International
Federation for Information Processing (IFIP). https://tma. ifip. org,
2022.

[3] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost, N. Vallina-
Rodriguez, and O. Hohlfeld, “Tracking the deployment of TLS 1.3
on the Web: A story of experimentation and centralization,” ACM
SIGCOMM Computer Communication Review, vol. 50, no. 3, pp.
3–15, 2020.

[4] J. Zirngibl, P. Buschmann, P. Sattler, B. Jaeger, J. Aulbach, and
G. Carle, “It’s over 9000: Analyzing Early QUIC Deployments
with the Standardization on the Horizon,” in Proceedings of the
21st ACM Internet Measurement Conference, 2021, pp. 261–275.

[5] J. Postel, “Domain name system structure and delegation,” Internet
Requests for Comments, RFC Editor, RFC 1591, 3 1994. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1591.html

[6] ICANNWIki, “.dev — icannwiki,,” 2019, [Online; accessed 15-
June-2023]. [Online]. Available: https://icannwiki.org/index.php?
title=.dev&oldid=1170428

[7] P. Mockapetris and K. J. Dunlap, “Development of the Domain
Name System,” in Symposium Proceedings on Communications
Architectures and Protocols, ser. SIGCOMM ’88. New York, NY,
USA: Association for Computing Machinery, 1988, p. 123–133.
[Online]. Available: https://doi.org/10.1145/52324.52338

[8] J. Park, J. Choi, D. Nyang, and A. Mohaisen, “Transparency in
the New gTLD Era: Evaluating the DNS Centralized Zone Data
Service,” IEEE Transactions on Network and Service Management,
vol. 16, no. 4, pp. 1782–1796, 2019.

[9] A. Affinito, R. Sommese, G. Akiwate, S. Savage, K. Claffy, G. M.
Voelker, A. Botta, and M. Jonker, “Domain Name Lifetimes:
Baseline and Threats,” in 6th Network Traffic Measurement and
Analysis Conference, TMA 2022. International Federation for
Information Processing (IFIP), 2022.

[10] P. Foremski and P. Vixie, “The modality of mortality in domain
names,” Virus, p. 1, 2018.

[11] I. ClickHouse. ClickHouse - fast open-source OLAP DBMS.
[Online]. Available: https://clickhouse.com/

[12] G. Akiwate, R. Sommese, M. Jonker, Z. Durumeric, K. Claffy,
G. M. Voelker, and S. Savage, “Retroactive identification of tar-
geted DNS infrastructure hijacking,” in Proceedings of the 22nd
ACM Internet Measurement Conference, 2022, pp. 14–32.

Seminar IITM SS 23 101 doi: 10.2313/NET-2023-11-1_17

Seminar IITM SS 23 102

Hardware-assisted virtual network benchmarking tools

Eric Rosche, Florian Wiedner∗, Christoph Schwarzenberg∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: eric.rosche@tum.de, wiedner@net.in.tum.de, schwarzenberg@net.in.tum.de

Abstract—Accurate network emulation plays an essential
role in research and development. Most of the time, only a
couple of hosts are used to emulate comprehensive networks.
This poses difficulties when focusing on singular network
characteristics and their tail-behavior such as latency and
throughput, as it is difficult to emulate all required aspects
realistically. However, this is necessary, especially when look-
ing at e.g. low-latency network emulation in aeronautics,
where accurate measurements are crucial. In this paper, we
examine how these realistic measurements are achieved by
different hardware-assisted network emulators. We achieve
this by comparing the different tools and drawing a conclu-
sion from this analysis.

Index Terms—hardware-assisted, network benchmarking,
network emulation, low-latency, high-throughput,

1. Introduction

Network emulation is not a new concept. Common
tools like Mininet [1] or NetEm [2] allow the emulation of
configurable network topologies and their characteristics.
Despite the existance of multiple tools that already allow
such emulation, new tools and frameworks continue to be
presented. Recent tools like Kollaps [3] and those by Sylla
et al. [4], Ryu et al. [5], and Morin et al. [6] for wireless
network emulation emphasize the ongoing relevance of
this topic. New tools often focus on specific emulation
features, such as low latency. When looking at low la-
tency application, fields like Time-sensitive Networking
and aeronautics, in which as-fast-as-possible and reliable
calculations are crucial, emulation is a valuable tool.
Other aspects like complexity and high throughput are
interesting to emulate, as the importance of data centers
with a huge amount of traffic over short links is only
rising with further people and systems transferring to the
cloud. These aspects are difficult to emulate only using
virtual networking devices and require hardware assis-
tance. This is made possible by specifications like Single-
root Input/Output Virtualization (SR-IOV), which allow
for Peripheral Component Interconnect Express (PCIe) to
be virtualized.

In this paper, we will review multiple of these
hardware-assisted tools, focusing on different network
characteristics such as low latency and high throughput,
and what design choices made this possible. In Section
2 Background about the topic will be provided. Section
3 presents the four different tools analyzed in this paper.
Afterwards, we compare the tools in Section 4 and draw
conclusions in Section 5.

2. Background and Related work

There are different types of network emulation tools.
Some tools, like Mininet, are purely virtual solutions.
These kind of tools are designed to emulate a full network
on a single host and use features like namespaces for this
purpose. Other tools can be defined as testbeds of multiple
hosts, which are used on a large scale and by multiple
people at once, spanning over one or multiple data centers.
These testbeds are in their core real networks designed
for emulating real traffic in a controllable environment.
Testbeds like FABRIC [7], which was presented 2019,
SCIONLab [8], which has been in use since 2016, or
PlanetLab [9], established in 2003, are examples in this
context.

In this paper, we will focus on a different kind of
network benchmarking tool, namely the hardware-assisted
variant. The tools analyzed in this paper all share the
characteristic that they use real networking hardware to
allow benchmarking, and are designed to only use a very
limited number of devices. Depending on which hardware
is used in the design, this allows for realistic data from
real devices. We will also focus on tools which use off-
the-shelf hardware.

2.1. Similar comparisons

Different comparisons of network emulation tools
have been done before this analysis, though they focus
on other aspects. In the article presenting the Kollabs
emulator Gouveia et al. [3] present a very recent listing of
available virtual network emulation tools. The main focus
there lies in the comparisons of features, like dynamic
changing of network properties, and in which manner the
tools are implemented.

The article presenting the SCIONLab testbed [8] fea-
tures a short table comparing different network testbeds
on their features against the presented SCIONLab. We
could not find a recent comparison of these large scale
testbeds on a set of universal features. Comparisons like
the one made by Mirkovic et. al in [10] from 2011 are
older and therefore do not reflect the current iterations of
these testbeds.

2.2. Simulators

In comparison to network emulation, network simu-
lation only tries to replicate network behavior. Network
simulators like OMNeT++ [11] and NS3 [12] therefore
serve a different purpose. Similarly to the comparison

Seminar IITM SS 23 103 doi: 10.2313/NET-2023-11-1_18

of network emulators, we were not able to find recent
network simulator comparisons. A comparison from 2014
by Kabir et. al [13] shows that with the huge amount
of simulators available for different platforms and with
different design goals, that a suitable simulator with the
required features should be identifiable.

2.3. SR-IOV

SR-IOV is a standard which allows a single PCIe
device to be split into multiple virtual devices, which can
then be used in virtualization. To achieve this, SR-IOV
uses virtual and physical functions. Physical function are
complete PICe functions, which allow for configuration of
the device in the standard way. Virtual Functions (VF) on
the other hand are soly capable of sending and receiving
data.

This allows for different Virtual Machines (VM) to use
the same PCIe device without any other kind of resource
allocation. The hypervisor or the managing operating sys-
tem of the VMs must support SR-IOV, as the physical
function could be required at some point in the virtualiza-
tion process. This can speed up the virtualization of e.g.
networking devices as are used by the tools discussed in
this paper [14].

3. Hardware-Assisted Virtual Network Emu-
lation Tools

In the following, we will introduce the tools we will be
comparing. All of the following tools provide the ability to
benchmark virtual network configurations while utilizing
hardware assistance. We have selected these tools for
comparison because they employ similar techniques, such
as SR-IOV, but they have different approaches and design
goals.

3.1. HVNet

N
ICLoadGen

Timestamper

VM 1

VM n

...

Server

Figure 1: Simplified HVNnet setup

HVNet [15] is an approach for creating virtual net-
work topologies utilizing real networking hardware, with
a focus on realistic timestamping of low-latency traffic.
To achieve this, a configuration with a load generator that
generates traffic, connected to a Device under Test (DuT)
using HVNet is used. For the evaluation, timestamping
hardware is used to ensure a minimal discrepency. The
traffic sent and received by the DuT is channeled over a
Network Interface Card (NIC) utilizing SR-IOV to sep-
arate it into multiple virtual links. VMs running on the
DuT are configured to have minimal overhead. To achieve
a setup with VMs instead of using the Data Plane De-
velopment Kit (DPDK) [16], like e.g. Mininet is using, a

kernel-based networking approach is employed. This setup
allows for extremely low-latency traffic emulation, where
the 99th percentile of logical link latency is approximately
100 µs for 2-hop measurements at 1 Mbit/s. This tool aims
for realistic network behavior, emulating low latency, low
jitter network traffic on a easily configurable setup with
minimal devices. HVNet setup is summarized in Figure 1.

3.2. NFV-TestPerf

Container 1

Container 2

N
IC

Container 1

Container 2

or

Container 1

Switch

Server Server

Figure 2: Simplified NFV-TestPerf single host setup

Another way to emulate multiple hosts on a single
computer is by using containers. Similar to VMs, con-
tainers can be assigned a virtual function on an SR-IOV
capable network card. A tool that allows this is NFV-
TestPerf [17]. This framework can be used to specify
network topologies and configure applications hosted in
containers to communicate over different connection types
like Linux bridges, virtual switches, or the aforementioned
SR-IOV-capable networking hardware. We will focus on
the usage of SR-IOV and also discuss the results using
VALE [18], a virtual networking switch.

Another feature achieved by this approach, is the
framework being very flexible. It allows for single and
multiple container communication on single or multiple
host configurations, each with different connection types
as described above. Six different connection types are
compared in multiple scenarios with single or multiple
hosts. To achieve network virtualization, DPDK’s Appli-
cation Programming Interface (API) is used. It allows
the virtual containers to access the VFs of the SR-IOV
capable hardware as well as the virtual software switches.
Therefore, the network virtualization runs in user space.

Using this method, tests performed on only a single
host with a low packet sending rate and a maximum burst
size of 128 achieved latencies below 200 µs using SR-IOV.
The NFV-Testperf is summarized in Figure 2.

3.3. TurboNet

A different approach to emulating network behavior
with the help of networking hardware is TurboNet [19].
The idea here is to use a programmable switch to emulate
multiple configurable virtual switches. The main goal
to TurboNet is, in contrast to the two tools mentioned
earlier, to emulate switching topologies. To achieve this,
the programmable switch is sliced into multiple emulated
switches and links. Packets are sent over physical links
only when they enter or exit the switch topology.

This is accomplished by assigning each virtual switch
a set of ports and emulating link delays via a queue.
Additionally, TurboNet allows for multiple programmable
switches to be used by connecting them via a physical
link.

Seminar IITM SS 23 104 doi: 10.2313/NET-2023-11-1_18

Switch 1

Switch 2

Switch 3

Switch n

Configuration Routing

Host 1

Host 2

programmable
switch

Figure 3: Simplified TurboNet setup

Configuration of TurboNet is available via an API,
which also allows for configuring link behaviors such as
loss and artificial delays. The TurboNet setup is summa-
rized in Figure 3.

3.4. ExRec

Rack 1 Rack n...

ToR nToR 1

DO Switch 1 DO Switch 1... DA Switch

Server 1

Figure 4: Simplified ExRec single host setup

As data centers become increasingly relevant and
continue to grow in size, they represent another cru-
cial application for network emulation. An example of
a framework tackling this issue with off-the-shelf hard-
ware is ExRec [20]. In the setup of ExRec, a variable
number of hosts M emulates N data center racks, which
are connected to top-of-rack switches emulated on the M
hosts with virtual machines. The ToRs are then connected
to an electric packet switch, which emulates k demand-
oblivious spine switches. An optical circuit switch is used
as a demand-aware switch. The framework also ensures
that network bottlenecks occur only as intended, and that
there are no bottlenecks on the VMs. For control mes-
sages, the most achievable inter-arrival time was 500 µs,
but the focus of the testbed is on high throughput with
realistic data center behavior. The ExRec setup is sum-
marized in Figure 4.

4. Comparison of the Tools

In the following, we will try to compare the designs,
features, and limitations of the previously presented tools.
We will focus on the purpose each tool serves and how
they achieve this in comparison to the other tools. The
comparison is summarized in Table 1.

4.1. Low Latency

Three of the four mentioned tools have low latency as
a requirement or feature. HVNet is specifically designed
with low latency in mind, as is NFV-TestPerf. In both
cases, SR-IOV capable network cards can be used to
transfer packets between different virtual network nodes.

TurboNet uses emulated switches, which only have a
nanosecond delay because of the use of loopback ports as
links. In the evaluation, a Tofino switch is used for which
the dequeuing plus enqueuing delay adds up to around
200 ns for all available bandwidths from 10 Gbit/s to 100
Gbit/s. As this is not a realistic representation of larger
networks, TurboNet uses queue depth in programmable
switches to bridge this delay to a more realistic value.
Even with passing a 10 Gbit/s delayed queue, the delay
ranges from 100 µs to 1000 µs.

ExRec does not have a focus on low latency directly.
Latency measurements are not directly highlighted in the
article describing the tool, but in the evaluation of the
testbed, switches are configured at runtime, which is dis-
played to be possible with an inter-arrival time of about
500 µs. This, however, only gives us a very low bound of
what the actual worst case latency of packets at full load
could be, which should be significantly higher. For latency,
however, only the worst case is an interesting metric, as a
big deviation can lead to unreliable results. In this regard,
it is, therefore, limited in comparison to the other tools.

When comparing HVNet and NFV-TestPerf, HVNnet
with its ≈ 200 µs worst-case latency for 2 hops, and NFV-
Testperf with a mean latency between 100 µs to 200 µs
for a burst rate of 128 and 1500-byte packets, seem to
both reach a good performance. It is, however, important
to note that virtual networking for HVNet is done in the
kernel space, where NFV-Testperf’s is done in user space.
Additionally, NFV-Testperf uses packets with a size of
1500 bytes, where HVNet uses packets with a size of
363 bytes. But when pulling Mininet as a fully virtual
alternative to the test, as has been done in the publication
presenting HVNet [15] it has worst-case latencies of about
600x (about 100 ms). This shows that to achieve these
kinds of latencies, optimized processes and hardware are
absolutely necessary.

4.2. Throughput

Another very interesting network metric is throughput.
Especially when emulating multiple virtual hosts on a
single real one, high throughput can be difficult to achieve
when using real networking hardware. Using an SR-
IOV capable network card for multiple virtual links, the
maximal achievable throughput for each virtual link is the
maximal throughput the network card can handle divided
by the amount of virtual links [15]. In more complex
emulated topologies, this can quickly become an issue.
Looking at a 10 Gbit/s network card, only 10 virtual
links can be assigned to physically reach a Gbit/s one-
directional link throughput. Additionally, packet size can
also have a big influence on throughput, as reducing the
packet size by half doubles the cost for the same through-
put. The second limit is, therefore, the emulation cost
coming from high throughput traffic. This can reduce the
emulatable network size in the worst case exponentially

Seminar IITM SS 23 105 doi: 10.2313/NET-2023-11-1_18

TABLE 1: Comparison of Tools

Tool Topology Networking Hardware Latency Throughput

Mininet fully virtual hosts - ≈ 200 ms 1 Gbit/s
HVNnet LoadGen, Timestamper, and DuT SR-IOV NIC worst-case ≈ 200 µs N/A
NFV-TestPerf Host spawning containers u.a. SR-IOV NIC mean ≈ 100 µs to 200 µs ≈ 13 Gbit/s
TurboNet Emulated switches in programmable switch programmable switch emulated ≈ 200 µs to 1000 µs 40 Gbit/s
ExRec hosts virtualizing racks connected to switches NIC and emulated switches min 500 µs 10 Gbit/s

It is important to add that these tools were evaluated in their presenting article and are therefore using different hardware. The displayed values are
to be viewed as a reference. Mininet throughput from [21]

if every virtual host would be connected to every other
virtual host.

TurboNet tackles this issue by implementing its own
background traffic emulation. This is done by using pro-
grammable switches to inject packets into the switch
pipeline. In a comparison made by Emmerich et al. in
the paper presenting MoonGen [22], a popular packet
creation tool, it is struggling to reach a comparable kind
of throughput for smaller packet sizes.

ExRec is another tool that focuses more on achieving
throughput goals, despite the emulation of switches. In
their evaluation, the tool could reach high throughput
levels extremely fast, right after a certain preconfigured
flow had been started.

As NFV-TestPerf’s primary goal is to emulate virtual-
ized network functions, which can also need high volumes
of data depending on the application, throughput is also
a metric interesting here. SR-IOV has some of the best
achieved results in the throughput evaluation of the tool,
only being beaten by VALE in some scenarios, where
throughput reaches up to 12 Gbit/s.

4.3. Results

After comparing the different tools, we can draw some
results and requirements for this kind of tools.

4.3.1. Low Latency. For measuring low latency traf-
fic, hardware supporting virtualization appears necessary
though measurements using VALE returned good results
in the evaluation of NFV-TestPerf [17]. This could be
interesting to analyze further for the other tools, especially
HVNet as it has a similar structure. In comparison, all the
tools achieve latencies that are far below what Mininet
and other purely virtual solutions can achieve.

4.3.2. High Throughput. When looking at throughput, a
different conclusion can be drawn. As throughput is lim-
ited by the hardware, using VALE achieved good results
in the evaluation of NFV-TestPerf [17]. The tests where
this was conducted were limited to a very small number of
containers. It is expected that for more virtualized nodes
this result will only strengthen, as then the worst-case ex-
ponential limitation of the hardware will come into effect.
It would however be interesting to analyze the load that is
then put on the CPU, as it would rise in the same manner
as the hardware limitation. Overhead from each host also
plays a role here, as it doesn’t limit the configuration using
hardware, but the software switching may be affected.
This is why NFV-TestPerf is implemented to only allow
network bottlenecks.

4.3.3. Final Points. The comparison with Mininet shows
that specialized setups can achieve realistic low latency
and also high throughput traffic even when simulating
bigger network topologies with only very few hosts. But
other than Mininet, which is designed to be as flexible
as possible, a lot of additional work is required to al-
low for more emulation configurations. Tools like ExRec
and TurboNet can only emulate a very specific setup
and cannot be used to emulate a more general network
topology. HVNet and NFV-TestPerf are designed to allow
a more general topology but may face challenges when
simulating more specific network types, e.g., switching,
like TurboNet is designed to, or data center behavior as is
done by ExRec. It, therefore, becomes clear that a tool for
all purposes, like Mininet, cannot create the best results
for specific network aspects, and that this focus requires
specialized setups in itself. So if an emulator is to be
chosen for a project and the standard tools do not meet the
requirements for the emulation, an emulator specialized in
the characteristics of the project may be hard to find. Some
of the tools that have been compared in this article are
available open source, namely ExRec and NFV-Testperf,
and the links to GitHub are still active and working at the
time of writing.

5. Conclusion and Future Work

In this paper, we compared different hardware-assisted
network emulation tools for their features. This allowed us
to verify the importance of hardware in emulators where
low latency is a design goal. We also learned that focusing
on a few characteristics of networks can easily lead to
restrictions concerning other characteristics. When using
NICs in the emulation process, the number of links that
are emulated over it imposes a harsh restriction on the
achievable throughput.

However, if no hardware is used, the tools have sig-
nificant downsides in these regards.

The comparison leaves a few open questions that could
be answered in future work. For example, the comparison
of the tools was done with a focus on the emulation of
low latency networks and throughput. Other, more abstract
characteristics of networks could be compared, like the
emulation of a network with a high number of nodes
or different scenarios like cross-traffic load. Additionally,
the tools could be compared in a more practical way by
setting them up and running tests on them. Other aspects
mentioned in Section 4.3 could also be compared, like the
performance of VALE in the other tools.

Seminar IITM SS 23 106 doi: 10.2313/NET-2023-11-1_18

References

[1] “An Instant Virtual Network on your Laptop (or other PC),”
mininet.org, [Online; accessed 14-July-2023].

[2] S. Hemminger, “Network Emulation with NetEm,” April 2005.

[3] P. Gouveia, J. a. Neves, C. Segarra, L. Liechti, S. Issa,
V. Schiavoni, and M. Matos, “Kollaps: Decentralized and
dynamic topology emulation,” 2020. [Online]. Available: https:
//doi.org/10.1145/3342195.3387540

[4] T. Sylla, L. Mendiboure, M. Berbineau, R. Singh, J. Soler,
and M. S. Berger, “Emu5gnet: an open-source emulator for 5g
software-defined networks,” in 2022 18th International Conference
on Wireless and Mobile Computing, Networking and Communica-
tions (WiMob), 2022, pp. 474–477.

[5] B. Ryu, R. Knopp, M. Elkadi, D. Kim, and A. Le, “5g-emane:
Scalable open-source real-time 5g new radio network emulator with
emane,” in MILCOM 2022 - 2022 IEEE Military Communications
Conference (MILCOM), 2022, pp. 553–558.

[6] D. G. Morin, P. P. ManuelJ. López Morales, and A. G. A. A.
Villegas, “FikoRE: 5G and Beyond RAN Emulator for Application
Level Experimentation and Prototyping,” 2022.

[7] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, and P. Ruth, “Fabric: A national-scale programmable
experimental network infrastructure,” IEEE Internet Computing,
vol. 23, no. 6, pp. 38–47, 2019.

[8] J. Kwon, J. A. García-Pardo, M. Legner, F. Wirz, M. Frei,
D. Hausheer, and A. Perrig, “Scionlab: A next-generation internet
testbed,” in 2020 IEEE 28th International Conference on Network
Protocols (ICNP). IEEE, 2020, pp. 1–12.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman, “Planetlab: an overlay testbed for broad-
coverage services,” ACM SIGCOMM Computer Communication
Review, vol. 33, no. 3, pp. 3–12, 2003.

[10] J. Mirkovic, A. Hussain, and H. Shi, “A comparative study of
network testbed usage characteristics.”

[11] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” in 1st International ICST Conference on Simulation
Tools and Techniques for Communications, Networks and Systems,
2010.

[12] “ns-3 Network Simulator,” https://www.nsnam.org, [Online; ac-
cessed 14-July-2023].

[13] M. H. Kabir, M. J. H. Syful Islam, and S. Hossain, “Detail
comparison of network simulators,” vol. 5, no. 20, 2019.

[14] P. Legros, “Why using Single Root I/O Virtualization
(SR-IOV) can help improve I/O performance and
Reduce Costs,” https://www.design-reuse.com/articles/32998/
single-root-i-o-virtualization.html, [Online; accessed 02-August-
2023].

[15] F. Wiedner, M. Helm, S. Gallenmüller, and G. Carle, “Hvnet:
Hardware-assisted virtual networking on a single physical host,”
in IEEE INFOCOM 2022 - IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), 2022, pp. 1–6.

[16] “Data Plane Development Kit,” https://www.dpdk.org/, [Online;
accessed 02-August-2023].

[17] G. Ara, L. Lai, T. Cucinotta, L. Abeni, and C. Vitucci, “A frame-
work for comparative evaluation of high-performance virtualized
networking mechanisms,” in Cloud Computing and Services Sci-
ence, D. Ferguson, C. Pahl, and M. Helfert, Eds. Cham: Springer
International Publishing, 2021, pp. 59–83.

[18] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual
machines,” in Proceedings of the 8th international conference on
Emerging networking experiments and technologies, 2012, pp. 61–
72.

[19] J. Cao, Y. Liu, Y. Zhou, L. He, and M. Xu, “Turbonet: Faithfully
emulating networks with programmable switches,” IEEE/ACM
Transactions on Networking, vol. 30, no. 3, pp. 1395–1409, 2022.

[20] J. Zerwas, C. Avin, S. Schmid, and A. Blenk, “Exrec: Experimen-
tal framework for reconfigurable networks based on off-the-shelf
hardware,” in Proceedings of the Symposium on Architectures for
Networking and Communications Systems, 2021, pp. 66–72.

[21] A. Al-Sadi, A. Al-Sherbaz, J. Xue, and S. Turner, Developing
an Asynchronous Technique to Evaluate the Performance of SDN
HP Aruba Switch and OVS: Proceedings of the 2018 Computing
Conference, Volume 2, 01 2019, pp. 569–580.

[22] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “Moongen: A scriptable high-speed packet generator,” in
Proceedings of the 2015 Internet Measurement Conference, 2015,
pp. 275–287.

Seminar IITM SS 23 107 doi: 10.2313/NET-2023-11-1_18

Seminar IITM SS 23 108

Current State of Hardware and Tooling for SDR

Nico Rumsch, Leander Seidlitz∗, Jonas Andre∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: nico.rumsch@tum.de, seidlitz@net.in.tum.de, andre@net.in.tum.de

Abstract—Software Defined Radios have become increasingly
important because of their unique feature to support a wide
multitude of frequencies, modulation modes, amplitudes and
waveforms which makes a single device useful for a variety
of applications. In the following, the history of SDR and
the current state in terms of use cases, applications and
hardware will be presented. Furthermore, a comparison of
GNU Radio, Matlab and SDR# regarding their support for
hardware and applications will be made. Lastly, a small
overview of the usage of Field Programmable Gate Arrays
to improve the performance of Software Defined Radios is
given.

Index Terms—software-defined radio, history, hardware,
software, fpga, gnu radio

1. Introduction

In the 1970s a need for more easily configurable
radios started to arise. Before the introduction of Soft-
ware Defined Radios (SDRs), it was always necessary to
implement the ability to, for example, receive different
frequencies by using more hardware components. With
SDR a hardware and software platform was created to
solve this problem. Its possibility to be controlled by soft-
ware to receive and transmit different radio signals without
requiring modifications to the hardware itself makes it a
versatile tool for any radio hobbyist or researcher. This
holds especially true for cellular network research where
hardware can be used to simulate different networks.
In an ideal scenario, a single hardware device can be
configured by software to transmit or receive any imagin-
able frequency, or waveform, at any data rate. However,
current hardware offers have physical limits and operate
in specific boundaries like frequency ranges. [1]

1.1. History

The first step towards the SDRs known today was done
by Joe Mitola when he defined the term Software Radio
(SR) in 1992 as a system that consists of a Radio Fre-
quency (RF)-frontend, Analog Digital Converter (ADC)
and Digital Signal Processor (DSP). His proposed archi-
tecture alleviated the hardware responsibility of decoding
the signal and moves it to a dynamically configurable
DSP which thereby can easily support different waveforms
or frequencies amongst others. [2] The term "Software
Defined Radio" was later introduced by Stephen Blust
in 1995 [3]. Before the term existed, already in 1984

E-Systems Inc. implemented the first SDR in 1984 [4].
Four years later, in 1988, researchers of the Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt
(DFVLR), the predecessor of today’s Deutsches Zentrum
für Luft- und Raumfahrt (DLR), developed the first SDR
transceiver which could be configured through software
as part of a digital satellite modem [5], [6]. Later in the
1990s, the first large-scale application of a SDR platform
was deployed by the US military, called SpeakEASY 1
and the next generation SpeakEASY 2 [7], [8]. After 2000,
SDRs matured to a point where no significant change
to the concept occurred. All newer developments are in
improved performance, smaller chip sizes, lower power
consumption and better affordability. For hobbyists, a
range of offers for cheap SDR receivers emerged, while
researchers benefit from better performance and a wider
range of applications.

1.2. Functionality of SDRs

Figure 1: Example SDR architecture [9]

Figure 1 describes a common architecture for a SDR
with the three main components being a radio frequency
frontend, a converter between digital and analog signals
and a processor for interpreting or producing the digital
values. The RF-frontend is responsible for receiving the
radio wave from the transmission medium. This incoming
signal is sampled twice with one sample being phase
shifted by 90 degrees which is called I/Q sampling and
simplifies the hardware requirements for the SDR. [10]

I/Q sampling works on the premise that any waveform
can be reconstructed by adding the amplitude of a sine and
a cosine wave [10]. This gives an unambiguous waveform,
which is not possible to achieve with the multiplication
of in-phase waves [11]. Furthermore, representing a wave
with the amplitude I and Q is easier than working with
the amplitude and phase of a wave. The final formula
to represent a wave can be seen in Equation 1. Here,
frequency is abbreviated by f , total wave amplitude by

Seminar IITM SS 23 109 doi: 10.2313/NET-2023-11-1_19

A, time by z, phase by φ, In-phase amplitude by I , and
Quadrature amplitude by Q. [12]

A ·cos(2πft+φ) = (
√

I2 +Q2) cos(2πft+arctan(
Q

I
))

(1)
In the formula, the cos component is called the carrier

because it is the base wave onto which the information
will be encoded. Changing the I and Q amplitude of the
sine and cosine wave is called modulating and encodes
said information. [10]

The two sampled amplitudes are converted by the
ADC to discrete digital values or created from digital
values in case of transmission by the Digital Analog Con-
verter (DAC). When sampling a frequency it is necessary
to sample at double the wanted frequency, called the
Nyquist frequency, to fully capture the characteristics of
it. For example, in the case of Bluetooth’s and WiFi’s
2.4GHz signals, it is required to sample at 4.8 GSps
which in turn can only be achieved with expensive
ADCs/DACs. To solve this problem, the incoming signal
is converted into an intermittent frequency before it is dig-
italized. This allows for the removal of the carrier from the
frequency, which creates a signal for the ADC/DAC that
is centered around 0Hz. This is known as the baseband.
[10]

The final I/Q values from the baseband signal can then
be used by the processor, which may be for example a
General Purpose Processor (GPP), a Field Programmable
Gate Array (FPGA), a Graphics Processing Unit (GPU),
or an Application-Specific Integrated Circuit (ASIC) to
decode the signal using available software.

2. State of the art

With advances in the hardware and software field,
modern SDR systems can, amongst others, operate on a
wider range of frequencies, and support more modulation
types and waveforms. In the last two decades, many new
systems were created that benefit from this dynamic usage
of hardware. One of the most prominent examples is
the development of cellular network standards (3G, 4G,
5G) [3]. Especially for 4G and 5G, the possibility for a
software-defined base station enables faster development
and updates to the mobile network with only software
changes [13].

2.1. SDR use cases

This section goes more into detail about cellular net-
works and describes the usage of SDRs in amateur radio.

2.1.1. Cellular networks and wireless communication.
Since the 4th generation of cellular networks, Software
Defined Networks are playing a more important role by
allowing for easy reconfigurability and dynamic deploy-
ments. This however does not yet extend to the physical
layer of the cell towers, where current research is propos-
ing to integrate SDRs as the missing building block. [13]–
[15]

In contrast, researchers and developers already
adopted SDRs for the field of cellular networks or wireless

communication which can be seen in Table 5, where two
of the three presented tools support the simulation of
cellular networks based on SDRs.

2.1.2. Amateur radio. SDRs play an important role in
amateur radio. Anyone can receive a wide range of fre-
quencies and modulations, which makes SDRs popular
among hobbyists. This interest is further increased by the
option for affordable hardware, like the RTL-SDR family.

One popular area, where many enthusiasts use SDRs,
is in the context of aircraft positional data (Automatic
Dependent Surveillance - Broadcast (ADS-B)). It is a
public, worldwide system where almost every commer-
cial aircraft broadcasts unencrypted details about itself,
amongst other information its position, on the 1090MHz
frequency. Many community-based projects use local, ter-
restrial SDRs to receive the data and send them to a
message broker, which combines all the received data and
provides a (public) dataset or live Application Program-
ming Interface (API). [16]–[19]

Other example use cases are RF fingerprinting, spec-
trum analysis, drone detection or decoding in general [20].
For a selection of further protocols which can be freely
received see the subsequent Section 2.2.

2.2. Protocols

The benefit of SDRs is the support for many different
applications and protocols via one single device. They
can be used by all computers or laptops, as the devices
are, in most cases, accessible via the Universal Serial Bus
(USB) or network. A selection of applications and their
corresponding frequency ranges can be found in Table 1.

2.3. SDR hardware

In Table 3 ten SDRs are presented with their hardware
specification. Compared are the available processor types
for which a more detailed comparison can be found in Ta-
ble 2. A SDR with an onboard FPGAs has the potential to
move some of the program logic onto the same for better
performance, as described in Chapter 3.2. This makes an
onboard FPGAs a key feature to consider. Furthermore,
it is indicated if the hardware is a receiver, transmitter or
transceiver and in which configuration it can be operated,
primarily half-duplex, full-duplex or both. For the ADC
and DAC the sampling rate and bit depth are listed where
it is better to have higher values in each category. The
bit depth indicates how precise a signal can be received
or reconstructed and the sampling rate of how often this
conversion can happen per second. The same applies to
the overall sampling rate, which might differ between the
ADCs and DAC. This can be caused by slower perfor-
mance in, for example, the communication interface on-
board processor. The frequency spectrum indicates which
frequency signals can be received or transmitted. A wide
frequency range, which goes into the upper and lower
bound extremes, is better than an SDRs with a more
narrow range. The bandwidth, as can be seen in figure
2, specifies which surrounding frequency range can be
observed around the tuned-to frequency of the SDR.

Seminar IITM SS 23 110 doi: 10.2313/NET-2023-11-1_19

TABLE 1: Protocols or applications in frequency ranges [21], [22]

Frequency range Application Protocol

30-300 kHz Navigation
300 kHz-3MHz Marine/Aircraft navigation, AM broadcast
3-30MHz Broadcasting, mobile radio NFC/EMV, Automatic Identification System (AIS)
30-300MHz FM radio broadcast
300MHz-1GHz Cell phones, mobile radio, Internet of Things (IoT), TV LoRa, SIGFOX, ZIGBEE, Z-Wave, DVB-T2
1-3GHz WLAN, Cell phones, IoT ZIGBEE, ANT+, WIFI, LoRa, Bluetooth, ADS-B
3-60GHz Radar, Cell phones WIFI(6)

TABLE 2: Technologies for signal processing on SDR
[21], [23]

Type Performance Power Size

GPP low/medium low medium
DSP medium medium large
FPGA/SoC high medium large
ASIC high low small

bandwidth

tuned-to frequency

frequency f

Figure 2: Explanation: Bandwidth

2.3.1. Receiver. In the hobbyist space receivers are pop-
ular because of their affordability with a multitude of
platforms, such as RTLSDR and Airspy, being available.
The typical frequency range of these systems is between
1MHz and 2GHz with varying resolutions and amounts
of DACs/ADCs. Devices supporting this range can there-
fore already receive more than half of the applications and
protocols mentioned in Table 1. The number of samples
per second increased in the past to about 200 MSps for
expensive systems, with some more exotic products being
able to achieve rates in the range of GS/s by using a high-
performance FPGA for the processing, combined with
high-performance ADCs and DACs. [21]

2.3.2. Transceiver. Transceivers are devices that can both
send and receive data. Generally speaking, the transmit-
ter part of an SDR transceiver is either equally or less
powerful than the receiving part. Compared to a device,
which can only receive, the receivers on a transmitter
are more powerful than their receive-only counterparts.
This includes, amongst other, support for larger frequency
ranges, higher bandwidths, higher samples per second and
better resolutions of the ADCs/DACs. [21] Following the
same trend, professional-grade transceivers have the same
benefit over consumer hardware with microcontrollers,
custom System on a Chip (SoC), FPGAs or even GPUs
(AIR-T [36]) for very high throughputs. Popular consumer
transceivers are from HackRF and LimeSDR, while in the
professional space devices from USRP are popular.

3. Software support for SDR protocols and
hardware

Over the years, hardware and software for different use
cases of SDRs got developed. Software for SDRs connects
to the hardware at the baseband processing step (see
Figure 1). The following section will present a selection
of software, their support for the previously presented
hardware, and support for different use cases.

3.1. Software

The available software for SDRs can range from sim-
ple command line tools to graphical user interfaces, some-
times with support for protocol-specific visualizations.
There are over 30 universal and even more single-purpose
tools available for the popular RTL-SDR platform alone.
[37]

3.1.1. GNU Radio. One of the most popular tools is GNU
Radio originally released by Eric Blossom in 2001 as an
official GNU project. It is being continuously developed
and uses the concept of flowgraphs to define block-based
transformations. While all processing operations are im-
plemented in C++, the definition of the flowgraphs can be
written in either C++ or Python. GNU Radio is supported
on Linux, Windows, and MacOS. [38]–[40]

3.1.2. Matlab and Simulink. Matlab and Simulink are
proprietary software products by MathWorks. The suite
supports a wide range of applications from linear alge-
bra and numeric computing to complex simulations. [41]
Amongst others, it offers functionality to simulate wireless
networks directly on hardware. For this, the software can
interface with a wide range of platforms and communi-
cates with the digital processing unit of the SDR. Matlab
is supported on Linux, Windows, and MacOS. [42]

3.1.3. SDR#. SDR# is a simple-to-use, general-purpose
visualization tool for SDRs, running on Windows only.
It visualizes real-time readings of the frequency and
spectrum from the SDR. [43] Furthermore, it has a rich
plugin system to enable support for more protocols and
SDR applications. [44] Hardware-wise it natively only
supports the Airspy platform but is extended by official
or community-developed plugins and can interface with a
wide variety of SDRs. [45]

3.2. Hardware

The support of GNU Radio, Matlab and SDR# for
hardware devices, as presented in Table 3, is indicated in

Seminar IITM SS 23 111 doi: 10.2313/NET-2023-11-1_19

TABLE 3: Comparison of selected SDR hardware

Hardware Chipset Processor Type RF Frontend Receiver/Transmitter Duplex ADC/DAC resolution [Bits] ADC/DAC sampling rate [MSps] Sampling rate [MSps] Frequency range
[MHz] Bandwidth [MHz] Interface

RTL-SDR [24] R820T2 n/a n/a 1/- n/a 8/- n/a 28.8 0.5 – 1766 2.4 USB
Airspy R2 [25] R860 GPP 35dBm IIP3 1/- n/a 12/- 20/- 10 24 – 1700 9 USB
Airspy Mini [26] R860 n/a 35dBm IIP3 1/- n/a 12/- 36/- 10 24 – 1700 6 USB
LimeSDR [27]–[29] LMS7002M FPGA n/a 2/2 full 12/12 n/a 61.44 0.1 – 3800 61.44 USB
LimeSDR PCIe [28]–[30] LMS7002M FPGA n/a 2/2 full 12/12 n/a 61.44 0.1 – 3800 61.44 PCIe
HackRF One [21], [31] MAX2837 GPP,FPGA n/a 1/1 half 8/10 20/20 20 1 – 6000 20 USB
USRP B200 [32] AD9364 FPGA 20dBm IIP3 1/1 both 12/12 61.44/61.44 61.44 70 – 6000 56 USB
USRP B210 [33] AD9361 FPGA 20dBm IIP3 2/2 both 12/12 61.44/61.44 61.44 70 – 6000 56 USB
USRP N320 [34] n/a GPP,FPGA 17dBm IIP3 2/2 both 14/16 250/250 250 3 – 6000 200 Ethernet
Per Vices Cyan [35] n/a GPP,FPGA n/a 1-16/1-16 both 16/16 1000/1000 1000 <18000 1000 Ethernet

Table 4. A unique feature of the USRP devices is, that
all of them can be controlled with the common interface
library USRP Hardware Driver (UHD) [46]. This means,
developers can support all devices from this vendor by
implementing support for the UHD interface.

While GNU Radio supports all in Table 3 listed de-
vices, both Matlab and SDR# only support a subset of
them. Generally speaking, Matlab is focussing more on
professional-grade products, in this case from USRP/Ettus
Research, and SDR# supports hardware targeted towards
enthusiasts.

TABLE 4: Software support for presented hardware [21],
[47], [48]

GNU Radio Matlab SDR#

RTL-SDR Yes Yes Yes
Airspy R2 Yes No Yes
Airspy Mini Yes No Yes
LimeSDR Yes No Yes
LimeSDR PCIe Yes No Yes
HackRF One Yes No Yes
USRP B200 Yes Yes No
USRP B210 Yes Yes No
USRP N320 Yes Yes No
Per Vices Cyan Yes Yes No

A recent development to achieve even higher perfor-
mance in SDRs is to utilize FPGAs and implement pro-
cessing logic in hardware. Three approaches are possible
to utilize FPGAs for processing:

1) Build a SDR out of a RF-frontend and FPGA
2) Additional FPGA as an accelerator
3) Utilize SDRs built-in FPGAs

Following the first approach, an implementation of the
IEEE 802.11 standard and ZigBee is described in [49]. In
contrast, the authors of [50] propose a framework to utilize
a FPGA as an accelerator in combination with GNU Radio
and show promising results. Lastly, in [8] the authors de-
scribe the communication with the host as one of the major
limitations of high performance SDRs, which follows the
third approach. The authors were able to achieve an up to
64 times higher data rate by moving the demodulation of
the signal onto the FPGA and thereby eliminating most
communication overhead. The interaction with the FPGA
could be performed by a utility from UHD.

Besides higher data rates, another benefit of using
FPGAs is faster development times compared to ASICs.
However FPGAs also require larger board sizes as more
additional hardware is needed. [21], [51]

3.3. Protocol support

As most transmitted data is encoded, software is
typically required to decode them and provide specific

visualizations, e.g. showing data on a map in the case of
ADS-B or AIS.

The support for the in Section 3.1 presented software
and the previously presented applications are described
in Table 5. Because SDR# itself mainly supports the
visualization of the baseband data, it relies on extensions
to support applications beyond the build functionality and
does not support most wireless communication protocols.
Matlab on the other hand has tools for most communica-
tion protocols. Lastly, GNU Radio supports a wide range
of applications because of its flow graph design and big
community support.

In Table 5, support for a protocol will be annotated
with "Yes", if additional software is required a "*" will
be added and no information available will be indicated
by "n/a".

TABLE 5: Protocol support of SDR software [52]–[67]

GNU Radio Matlab SDR#

WIFI Yes Yes n/a
ADS-B Yes Yes Yes*
FM radio broadcast Yes Yes Yes
LoRa Yes n/a n/a
ZigBee Yes n/a n/a
AIS Yes Yes Yes*
3G Yes n/a n/a
4G Yes Yes n/a
5G n/a Yes n/a
Bluetooth Yes Yes n/a

For cellular networks, there also exists the Open Air
Interface (OAI) developed by the OpenAirInterface Soft-
ware Alliance. Its goal is to lower the adoption barrier for
Radio Access Networks (RANs) by offering implementa-
tions for modern cellular network types like 4G and 5G.
[68]

4. Conclusion

Software Defined Radio supports a wide variety of
different use cases. It is especially dominant in cellular
networks in its recent versions, to enable dynamic up-
grades without requiring hardware changes. For enthusi-
asts, it allows an easy start in the field of radio networks,
because a single device can be used versatilely in terms
of frequency and application support, while still being
affordable. Because of the same features SDRs are largely
adopted in development and research to, for example, sim-
ulate cellular networks, WIFI or other protocols without
requiring specific hardware.

The field is under continuous development to achieve
the ideal SDR with its latest development being the inclu-
sion of FPGAs in the SDR. While they have been used
as an accelerator for quite a while now, using the SDR’s

Seminar IITM SS 23 112 doi: 10.2313/NET-2023-11-1_19

onboard FPGA is rather new and can greatly improve per-
formance by reducing the communication volume between
SDRs and hosts.

References

[1] T. Ulversoy, “Software Defined Radio: Challenges and Opportuni-
ties,” vol. 12, no. 4, pp. 531–550.

[2] J. Mitola, “Software Radios-Survey, Critical Evaluation and Fu-
ture Directions,” in [Proceedings] NTC-92: National Telesystems
Conference, pp. 13/15–13/23.

[3] R. Sahu, “Theoretical and Practical Approach to GNU Radio and
LimeSDR Platform.”

[4] M. T. Mushtaq, M. S. Khan, M. R. Naqvi, R. Khan, M. A. Khan,
and O. Koudelka, “Cognitive Radios and Cognitive Networks: A
short Introduction,” 2013.

[5] R. G. Machado and A. M. Wyglinski, “Software-Defined Radio:
Bridging the Analog–Digital Divide,” vol. 103, no. 3, pp. 409–423.

[6] Peter Hoeher and Helmuth Lan, “Coded-8PSK Modem for Fixed
and Mobile Satellite Services Based on DS,” in Coded-8psk Modem
for Fixed and Mobile Satellite Services Based on DSP, vol. January
1990, pp. 117–123.

[7] R. Lackey and D. Upmal, “Speakeasy: The Military Software
Radio,” vol. 33, no. 5, pp. 56–61.

[8] S. S. Hanna, A. A. El-Sherif, and M. Y. ElNainay, “Maximizing
USRP N210 SDR Transfer Rate by Offloading Modulation to the
On-Board FPGA,” in 2016 International Conference on Wireless
Networks and Mobile Communications (WINCOM), pp. 110–115.

[9] T. Juhana and S. Girianto, “An SDR-based Multistation FM
Broadcasting Monitoring System,” in 2017 11th International
Conference on Telecommunication Systems Services and
Applications (TSSA). IEEE, pp. 1–4, accessed 2023-05-29.
[Online]. Available: http://ieeexplore.ieee.org/document/8272943/

[10] Dr. Marc Lichtman, “3. IQ Sampling — PySDR: A Guide to
SDR and DSP using Python,” accessed 2023-06-10. [Online].
Available: https://pysdr.org/content/sampling.html

[11] Mikael Q Kuisma, “I/Q Data for Dummies,” 03/10/2023,
8:08:56 PM, accessed 2023-06-11. [Online]. Available: http:
//whiteboard.ping.se/SDR/IQ

[12] Dr. Marc Lichtman, “3. IQ Sampling — PySDR: A
Guide to SDR and DSP using Python — Carrier Down
Conversion,” accessed 2023-06-10. [Online]. Available: https:
//pysdr.org/content/sampling.html#carrier-and-downconversion

[13] H.-H. Cho, C.-F. Lai, T. K. Shih, and H.-C. Chao, “Integration of
SDR and SDN for 5G,” vol. 2, pp. 1196–1204.

[14] D. Kafetzis, S. Vassilaras, G. Vardoulias, and I. Koutsopoulos,
“Software-Defined Networking Meets Software-Defined Radio in
Mobile ad hoc Networks: State of the Art and Future Directions,”
vol. 10, pp. 9989–10 014.

[15] F. Xu, H. Yao, C. Zhao, and C. Qiu, “Towards next
Generation Software-Defined Radio Access Network–Architecture,
Deployment, and Use Case,” vol. 2016, no. 1, p. 264,
accessed 2023-05-29. [Online]. Available: https://doi.org/10.1186/
s13638-016-0762-6

[16] Flightradar24, “Live Flight Tracker - Real-Time Flight Tracker
Map,” Flightradar24, accessed 2023-05-31. [Online]. Available:
https://www.flightradar24.com/

[17] “The OpenSky Network - Free ADS-B and Mode S Data
for Research,” accessed 2023-05-31. [Online]. Available: https:
//opensky-network.org/

[18] “Home - Serving the Flight Tracking Enthusiast,” ADS-B
Exchange, accessed 2023-05-31. [Online]. Available: https:
//www.dev.adsbexchange.com/

[19] “ADSBHub - Free ADS-B Data Exchange and Plane Tracking,”
accessed 2023-05-31. [Online]. Available: https://www.adsbhub.
org/

[20] W. Jeong, J. Jung, Y. Wang, S. Wang, S. Yang, Q. Yan, Y. Yi,
and S. M. Kim, “SDR Receiver Using Commodity Wifi via
Physical-Layer Signal Reconstruction,” in Proceedings of the
26th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’20. Association for Computing
Machinery, pp. 1–14, accessed 2023-06-04. [Online]. Available:
https://dl.acm.org/doi/10.1145/3372224.3419189

[21] J. D. J. Rugeles Uribe, E. P. Guillen, and L. S. Cardoso,
“A Technical Review of Wireless Security for the Internet
of Things: Software Defined Radio Perspective,” vol. 34,
no. 7, pp. 4122–4134, accessed 2023-06-04. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1319157821000896

[22] L. Hui Fang, S. Hassan, M. AbdulMalek, M. Mazalan, S. Johari,
N. Safari, and Y. Wahab, “Development of Microstrip Chebyshev
Low Pass Filters using Laser Micromachining.”

[23] F. Karray, M. W. Jmal, A. Garcia-Ortiz, M. Abid, and A. M.
Obeid, “A Comprehensive Survey on Wireless Sensor Node
Hardware Platforms,” vol. 144, pp. 89–110, accessed 2023-06-05.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1389128618302202

[24] “Buy RTL-SDR Dongles (RTL2832U),” rtl-sdr.com, ac-
cessed 2023-06-18. [Online]. Available: https://www.rtl-sdr.com/
buy-rtl-sdr-dvb-t-dongles/

[25] “Airspy R2 - airspy.com,” accessed 2023-06-14. [Online].
Available: https://airspy.com/airspy-r2/

[26] “Airspy Mini - airspy.com,” accessed 2023-06-14. [Online].
Available: https://airspy.com/airspy-mini/

[27] “LimeSDR,” Lime Microsystems, accessed 2023-06-14. [Online].
Available: https://limemicro.com/products/boards/limesdr/

[28] “LimeSDR Comparison,” Crowd Supply, accessed 2023-06-
14. [Online]. Available: https://www.crowdsupply.com/lime-micro/
limesdr

[29] “LMS7002M Documentation,” MyriadRF, accessed 2023-06-14.
[Online]. Available: https://github.com/myriadrf/LMS7002M-docs

[30] “LimeSDR PCIe,” Lime Microsystems, accessed 2023-06-
14. [Online]. Available: https://limemicro.com/products/boards/
limesdr-pcie/

[31] “HackRF One - Great Scott Gadgets,” accessed 2023-06-14.
[Online]. Available: https://greatscottgadgets.com/hackrf/one/

[32] E. R. Brand, a National Instruments, “USRP B200 USB Software
Defined Radio (SDR),” Ettus Research, accessed 2023-06-18.
[Online]. Available: https://www.ettus.com/all-products/ub200-kit/

[33] ——, “USRP B210 USB Software Defined Radio (SDR),”
Ettus Research, accessed 2023-06-18. [Online]. Available: https:
//www.ettus.com/all-products/ub210-kit/

[34] ——, “USRP N320,” Ettus Research, accessed 2023-06-18.
[Online]. Available: https://www.ettus.com/all-products/usrp-n320/

[35] “Cyan – Per Vices,” accessed 2023-06-18. [Online]. Available:
https://www.pervices.com/cyan/

[36] “Artificial Intelligence Radio Transceiver (AIR-T),” Deep-
wave Digital, accessed 2023-06-05. [Online]. Available:
https://deepwavedigital.com/hardware-products/sdr/

[37] “The BIG List of RTL-SDR Supported Software,” rtl-sdr.com,
accessed 2023-06-14. [Online]. Available: https://www.rtl-sdr.com/
big-list-rtl-sdr-supported-software/

[38] “GNU Radio - The Free & Open Source Radio Ecosystem · GNU
Radio,” GNU Radio, accessed 2023-06-14. [Online]. Available:
https://www.gnuradio.org/

[39] “GNU Radio,” accessed 2023-06-14. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=GNU_Radio&
oldid=1159673658

[40] A. Marwanto, M. A. Sarijari, N. Fisal, S. K. S. Yusof, and R. A.
Rashid, “Experimental Study of OFDM Implementation Utilizing
GNU Radio and USRP - SDR,” in 2009 IEEE 9th Malaysia
International Conference on Communications (MICC), pp. 132–
135.

[41] “MATLAB,” accessed 2023-06-14. [Online]. Available: https://en.
wikipedia.org/w/index.php?title=MATLAB&oldid=1157953731

Seminar IITM SS 23 113 doi: 10.2313/NET-2023-11-1_19

[42] “What Is Software-Defined Radio (SDR)?” accessed 2023-06-
14. [Online]. Available: https://www.mathworks.com/discovery/
sdr.html

[43] J. R. Machado-Fernández, “Software Defined Radio:
Basic Principles and Applications,” vol. 24, no. 38,
pp. 79–96, accessed 2023-06-14. [Online]. Avail-
able: http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=
S0121-11292015000100007&lng=en&nrm=iso&tlng=en

[44] “List of SDRSharp Plugins,” rtl-sdr.com, accessed 2023-06-14.
[Online]. Available: https://www.rtl-sdr.com/sdrsharp-plugins/

[45] “SDR# and Airspy Downloads - airspy.com,” accessed 2023-06-14.
[Online]. Available: https://airspy.com/download/

[46] “USRP Hardware Driver (UHD™) Software,” Ettus Research,
accessed 2023-06-14. [Online]. Available: https://github.com/
EttusResearch/uhd

[47] “USRP Support from Communications Toolbox,” accessed
2023-06-18. [Online]. Available: https://www.mathworks.com/
hardware-support/usrp.html

[48] “Airspy@groups.io | USRP / UHD support,” accessed 2023-06-18.
[Online]. Available: https://groups.io/g/airspy/topic/7621279

[49] A. Di Stefano, G. Fiscelli, and C. Giaconia, “An FPGA-Based
Software Defined Radio Platform for the 2.4GHz ISM Band,” in
2006 Ph.D. Research in Microelectronics and Electronics, pp. 73–
76.

[50] C. R. Irick, “Enhancing GNU Radio for Hardware Accelerated
Radio Design,” accessed 2023-06-12. [Online]. Available: https:
//vtechworks.lib.vt.edu/handle/10919/33474

[51] M. Petri and M. Ehrig, “A SoC-based SDR Platform for Ultra-High
Data Rate Broadband Communication, Radar and Localization
Systems,” in 2019 Wireless Days (WD), Apr. 2019, pp. 1–4.

[52] T. Vilches and D. Dujovne, “GNUradio and 802.11: Performance
Evaluation and Limitations,” vol. 28, no. 5, pp. 27–31.

[53] cloud9477, “Gr-ieee80211,” accessed 2023-06-16. [Online].
Available: https://github.com/cloud9477/gr-ieee80211

[54] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “Decoding
IEEE 802.11a/g/p OFDM in Software Using GNU radio,”
in Proceedings of the 19th Annual International Conference on
Mobile Computing & Networking, ser. MobiCom ’13. Association
for Computing Machinery, pp. 159–162, accessed 2023-06-16.
[Online]. Available: https://doi.org/10.1145/2500423.2505300

[55] M. Hostetter, “Gr-adsb,” accessed 2023-06-16. [Online]. Available:
https://github.com/mhostetter/gr-adsb

[56] S. Meshram and N. Kolhare, “The Advent Software Defined Radio:
FM Receiver with RTL SDR and GNU radio,” in 2019 Inter-
national Conference on Smart Systems and Inventive Technology
(ICSSIT), pp. 230–235.

[57] D. Valerio, “Open Source Software-Defined Radio: A
Survey on GNUradio and its Applications,” accessed 2023-
06-16. [Online]. Available: https://www.semanticscholar.
org/paper/Open-Source-Software-Defined-Radio%
3A-A-survey-on-and-Valerio/90cdfd630dabf4ea75aea53bbc9c22ae2367e737

[58] B. Oumimoun, L. Nahiri, H. Idmouida, A. Addaim, Z. Guennoun,
and K. Minaoui, “Software Defined AIS Receiver Implementation
Based on RTL-SDR and GNU Radio,” in 2022 IEEE Asia Pacific
Conference on Wireless and Mobile (APWiMob), pp. 1–5.

[59] “GR-Bluetooth,” Great Scott Gadgets, accessed 2023-06-16. [On-
line]. Available: https://github.com/greatscottgadgets/gr-bluetooth

[60] “WLAN Toolbox,” accessed 2023-06-18. [Online]. Available:
https://www.mathworks.com/products/wlan.html

[61] W. Alqwider, A. Dahal, and V. Marojevic, “Software Radio with
MATLAB Toolbox for 5G NR Waveform Generation,” in 2022
18th International Conference on Distributed Computing in Sensor
Systems (DCOSS), pp. 430–433.

[62] “ADS-B and AIS - MATLAB & Simulink,” accessed 2023-06-
18. [Online]. Available: https://www.mathworks.com/help/comm/
ads-b-and-ais.html

[63] “FM Broadcast Receiver - MATLAB & Simulink Example,”
accessed 2023-06-18. [Online]. Available: https://www.mathworks.
com/help/supportpkg/rtlsdrradio/ug/fm-broadcast-receiver.html

[64] “Bluetooth LE Waveform Reception Using SDR -
MATLAB & Simulink,” accessed 2023-06-18. [On-
line]. Available: https://www.mathworks.com/help/bluetooth/ug/
bluetooth-low-energy-receiver.html

[65] “ADSB# Plugin for SDRSharp,” rtl-sdr.com, accessed
2023-06-18. [Online]. Available: https://www.rtl-sdr.com/
adsb-plugin-for-sdrsharp/

[66] “Getting Started with RTL-SDR and SDR-Sharp
and CubicSDR,” Adafruit Learning System, accessed
2023-06-18. [Online]. Available: https://learn.adafruit.com/
getting-started-with-rtl-sdr-and-sdr-sharp/sdr-number-fm-radio

[67] J. Demel, S. Koslowski, and F. K. Jondral, “A LTE Receiver
Framework Using GNU Radio,” Journal of Signal Processing
Systems, vol. 78, no. 3, pp. 313–320, Mar. 2015.

[68] “OpenAirInterface – 5G Software Alliance for Democratising
Wireless Innovation,” accessed 2023-06-16. [Online]. Available:
https://openairinterface.org/

Seminar IITM SS 23 114 doi: 10.2313/NET-2023-11-1_19

Temporal Graph Neural Networks

Erik Söhner, Max Helm∗, Benedikt Jaeger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: e.soehner@tum.de, helm@net.in.tum.de, jaeger@net.in.tum.de

Abstract—Graph Neural Networks (GNNs) have become a
fundamental tool for working with graph-structured data.
They have shown high accuracy in making predictions
in a wide range of applications and are now playing an
important role in the field of machine learning. To combine
the graph structure with temporal data, the Temporal Graph
Neural Network emerged, which brings improved predictive
performance to a variety of tasks. The paper shows common
patterns in temporal and traditional graph neural network
architectures and provides information on applications and
open challenges.

Index Terms—Temporal Graph Neural Networks

1. Introduction

Neural networks play an important role in machine
learning. These models help machine learning make accu-
rate and efficient predictions [1]. Their ability to recognize
patterns allows them to process data where traditional
machine learning algorithms struggle due to the com-
plexity of the data. As a result, many types of neural
networks are used in a wide range of real-world applica-
tions. These include image and speech recognition, natural
language processing, autonomous vehicles, and person-
alized recommendation systems [1]. For graph-structured
data, graph neural networks have emerged, contrary to the
traditional neural networks that are prevalent for grid-like
data. As neural networks show promise for more complex
tasks, new neural network architectures are rapidly being
developed. Temporal Graph Neural Networks (TGNN)
are one of the latest NN architectures. They extend the
graph neural network with additional modeling of tem-
poral dependencies on spatial features. In this paper, we
give some background on machine learning algorithms,
explain graph neural network architectures, and show
how temporal graph neural networks extend static GNN
architectures. We discuss the possibilities of TGNNs with
new frameworks such as PyTorch Geometric Temporal,
as well as future challenges in this area of research. The
paper also presents a TGNN architecture used for Internet
traffic prediction, as well as an overview of other TGNN
applications.

2. Background on Machine Learning Algo-
rithms

The most basic type of a Neural Network is the
Multi Layer Perceptron (MLP). It only consists of fully-
connected layers, namely an input layer, an output layer

and hidden layers in between. All nodes of a layer have
weighted edges, the learnable parameters, to all nodes of
their neighbor layers. The information of a node becomes
the weighted average of the node information from the
previous layer put in an activation function. This is known
as message passing. [2]

Another popular type is Convolutional Neural Net-
work (CNN). They consist of a number of convolutional
layers and a fully connected layer to generate the output.
As input, it takes a multidimensional array, typically an
image with its dimensions: height, width, color channels.
The convolution layer computes the convolution operation
on the layer’s input. This operation first applies filters con-
taining the learnable parameters, a matrix multiplication,
then it applies an activation function. Between the layers,
the sizes and number of dimension can change, for the
fully connected layer, it is arranged in single-dimension
array. [3]

2.1. Training of Neural Networks

The training of neural networks is an iterative process
in which the output of the neural network is used to
make a meaningful change in the learnable parameters of
the network. First, a cost function measures the discrep-
ancy between the network’s actual output and its optimal
output. The optimal output can either be known or the
plausibility of the actual output can be checked, depending
on the learning method of the neural network. Then, a
vector of optimal changes for all learnable parameters
is computed to minimize the cost function, called the
gradient, and applied to the parameters. [4]

3. Graph Neural Networks

Traditional neural networks perform well on a wide
range of tasks, but leave a lot of potential when working
with graph-structured data. Therefore, GNNs are designed
to exploit the existing dependencies. Consequently, GNNs
have shown superior performance in a number of domains
where they outperform other machine learning (ML) al-
gorithms. Examples of domains where GNNs are success-
fully used are social network analysis, drug discovery, or
recommendation systems. [5]

The architecture of GNNs can be broadly classified
into spatial and spectral GNNs [6]. Architectures of GNNs
are highly variant and difficult to generalize. The fol-
lowing descriptions of architectures can be understood
as feasible architectures that use common functions and
patterns across various GNN architectures.

Seminar IITM SS 23 115 doi: 10.2313/NET-2023-11-1_20

3.1. Spatial Graph Neural Networks Architecture

In spatial GNNs, each layer updates the graph repre-
sentation. Here we assume a traditional GNN with a static
graph, so the only thing that changes in each layer are the
node features. The message passing of a hidden layer is
processed for each node individually. The neighbor node
features are the input for a message-passing function,
which can be decomposed into four functions that may
occur. [6]

1) Transformation function is a matrix multipli-
cation on each input’s node feature map. This
is where attention mechanisms, a multiplication
by the corresponding edge’s weight, are usually
located. In general, this weight matrix can contain
learnable or static parameters or edge features.

2) Aggregation function takes the same feature
from all transformed node feature maps. The
aggregation is applied to each feature, creating a
single feature map. Typical aggregation functions
are min, max, sum, or average.

3) Update function combines the remaining fea-
tures from previous operations with the node
features in element-wise operations.

4) Activation function amplifies the node fea-
tures. Typical activation functions include sig-
moid, ReLU, and softmax.

3.2. Spectral Graph Neural Networks Architec-
ture

A major difference to spatial GNNs is the global
nature of message passing in the spectral domain. In order
to operate in the spectral domain, the feature matrix must
first be transformed by multiplying it by the eigenvector of
the graph’s Laplacian matrix. Then, the functions present
in a layer can be applied. [6]

1) Convolution is the multiplication of the trans-
formed matrix with a diagonal matrix of weights

2) Activation function
3) Pooling takes a single value from a neighborhood

of nodes, reducing the dimension of the feature
map. Typical pooling functions are max pooling,
average pooling, attention pooling. For node clas-
sification tasks, the output layer of the spectral
GNN is often a fully connected layer.

4. Temporal Graph Neural Networks

Traditional Graph Neural Networks are limited in ap-
plications that work with time-varying data. These GNN
models have difficulty modeling temporal dynamics be-
cause the graph structure they work with is static, ne-
glecting the changing relationships that actually exist. For
example, in social network analysis, a model must under-
stand the changing social interactions over time in order
to predict influential individuals or discover communities.
Similarly, in financial applications like risk assessment of
investment decisions, market dynamics must be taken into
account to make accurate predictions. To overcome these
limitations, Temporal Graph Neural Networks (TGNNs)

have become a promising extension to traditional GNNs
and a relevant area of research. The models allow the
modeling of temporal dependencies in addition to the
spatially arranged data. [7]

4.1. Temporal Graph Neural Network Architec-
tures

In the past, researchers have proposed a number of
TGNN architectures. In addition to the algorithmic classi-
fication of GNNs, namely spatial or spectral, there is an-
other major design decision for TGNNs in the time variant
method. The temporal information can be directly defined
in the graph structure, or the GNN can be extended by
operations handling the temporal information. A common
approach are Hybrid Graph Neural Networks, where time-
varying information is processed in another ML algorithm.
[7]

Temporal information can be a static information: a
time stamp, which can be modeled as a node feature, or
the temporal distance between nodes, which can be mod-
eled as an edge feature. An example for this is pandemic
forecasting [8].

Temporal information related to a node or an edge can
also be dynamic, it can be referred to as time varying
information, e.g. time series information. In this case,
GNN does not need to be extended yet, because the
information can be modeled as multidimensional features.
Time series information can also be passed as an argument
into the message passing function, where GNN layers
correspond to specific time steps [9]. In spectral GNNs,
this kind of information can be used to set the parameters
for convolution kernels [10].

If the graph is dynamic, i.e. links change over time,
an extension of the GNN is inevitable. A dynamic graph
representation can be a sequence of graph snapshots over
time, where the individual graphs serve as input for a
Graph Attention Network (GAT), to be later merged in
an output function [11]. Another option is the temporal
evolution of the graph, where in each layer the neighbor
nodes are defined by the corresponding graph snapshot of
the layer at a given time [12].

Hybrid GNNs for processing temporal information can
be used, too. There is no standard way for information
flow between time and graph modules. Nevertheless, the
capabilities of specific architectures can be used to take
advantage of the different ways of handling time. [7]

• 1D-CNN time module: A convolutional neural
network with one-dimensional input is used to
extract temporal patterns. The convolution oper-
ation allows the model to have a small number of
parameters as well as translation invariance, so that
patterns are detected regardless of their temporal
position. In addition, manual modification can help
the model to better fit the data. 1D-CNN can com-
plement the GNN in a way that can be considered
as sandwiched, where its input and output is the
output and input for a GNN layer, respectively.
[13]

• LSTM time module: Long Short-Term Memory
is a type of Recurrent Neural Network (RNN).
It allows the network to selectively remember

Seminar IITM SS 23 116 doi: 10.2313/NET-2023-11-1_20

and forget information based on its relevance to
the context. The component can model sequential
patterns, such as trends, and seasonality. An ap-
plication here is to predict PV power forecasting
by modeling spatial and temporal dependencies
between power plants. [14]

4.2. PyTorch Geometric Temporal

As machine learning algorithms evolve in research
and real-world applications, software emerges that enables
widespread use and rapid implementation of machine
learning models. However, in the early research stages of
new architectures, well-suited libraries often do not exist
and implementation tasks are complicated. Motivated to
create an open source machine learning algorithm that
could handle non-static node features in graphs, Rozem-
berczki et al. came up with the PyTorch Geometric Tem-
poral framework. [15]

Their goal was to create a user-friendly and functional
software. For easy inspection of the runtime state, they de-
signed the software in a modular way with limited number
of public methods. Furthermore, the system provides test
coverage, documentation, practical tutorials, continuous
integration, package indexing, and frequent releases.

Providing this framework, the authors claim that Py-
Torch Geometric Temporal is the first deep learning library
designed for neural spatiotemporal signal processing. Fig-
ure 1 shows the different scenarios of GNN’s non-static
properties that the framework is able to handle.

Figure 1: PyTorch scenarios [15]

Examining the framework’s predictive performance,
the authors find that PyTorch Geometric Temporal has
similar predictive performance to recurrent neural net-
works on regression tasks. Among possible future di-
rections, they mention considering continuous time or
time differences between temporal snapshots that are not
constant. Another possibility they see is the inclusion

of temporal models that operate on curved spaces, like
hyperbolic or spherical spaces.

4.3. Current Challenges in Temporal Graph Neu-
ral Network Development

While the potential of TGNNs is undeniable, there are
still challenges that may slow down TGNN research.

A prominent problem is the lack of benchmarking
capabilities. Models are trained for a specific problem,
but due to limited standardized datasets and evaluation
metrics, the models are not tested on datasets from dif-
ferent domains. This makes it uncertain whether they are
suitable for other applications. [7]

A further difficulty for the rather new TGNNs is
the need to adapt the learning methods to avoid over-
smoothing. For GNNs, techniques such as dropout, virtual
nodes, and neighbor sampling exist. Due to the variety
and complexity of architectures, no solution can serve as
a general solution [16]. Therefore, a lot of experiments
need to be done on the even more complex TGNNs.

Another well-known problem is that institutions work-
ing with privacy-critical data are often unable to pub-
lish data. This is related to missing methods to create
privacy-preserving representations. One solution is fed-
erated learning, a training method for dealing with data
isolation between different sources. Guannan Lou et al.
have demonstrated the effectiveness of a federated learn-
ing framework for a TGNN. [17]

5. Related Work

There is a range of applications where TGNNs show
good performance.

Traffic prediction is a major domain for TGNN re-
search. The temporal GNNs have superior performance
over traditional GNNs in tasks like traffic planning and
route planning. Their predictions show to be more accu-
rate and better handle dynamic traffic conditions, such as
traffic fluctuations and congestion. [18]

Pandemic forecasting for the TGNN became a big
research domain during covid pandemic. It has shown to
achieve state-of-art forecasting. [8]

PV production forecasting is of great importance for
the transition to renewable energy. TGNNs have shown
to outperform state-of-the-art methods for PV forecasting
[14]. Therefore, TGNNs have great potential for long-
term applications such as infrastructure planning as well
as short-term applications such as efficient dispatching
of other sources or informed decisions related to energy
markets.

5.1. Internet Traffic Forecasting using Temporal-
Topological Graph Convolutional Networks

A prospective application for TGNNs can be internet
traffic forecasting. Being part of everydays life, it is im-
portant the internet works on fast and reliable infrastruc-
ture. With billions of connected devices and exponentially
growing traffic it needs good solutions to master this
challenge. However, it opens up opportunities for con-
tinuous innovation in network technology and supporting

Seminar IITM SS 23 117 doi: 10.2313/NET-2023-11-1_20

algorithms. One advancement for infrastructure planning
and network resource management lies in accurate internet
traffic prediction.

Internet traffic prediction belongs to the class of time
series forecasting problems. In this field linear prediction
methods are used as well as neural networks, being ca-
pable to model non-linear data. However existing neural
network algorithms in internet traffic forecasting often
ignore network topology as they mainly model temporal
data of traffic flow series. [19]

Zhenjie Yao et al. [19] proposed "Temporal-
Topological Graph Convolutional Networks" (TTGCN),
a TGNN architecture modeling the links’ throughput of
internet traffic in time series with also capturing network
topology for predicting internet traffic. The graph repre-
sentation looks as follows: A network link makes a node
in the TTGCN graph, where edges exist, when the links
are connected to the same router. The model processes in
turn the temporal convolution and graph convolution, as
illustrated in Figure 2. The temporal convolution extracts
the temporal features while the graph convolution uses
the new representation connecting it to the topological
information. The temporal convolution is a gated linear
unit that takes as input the feature matrix of the graph,
initially the time series data of the links. Two matrices are
generated by multiplying the input by the two different
convolution kernels set in the current layer. A sigmoid
function is applied to one of the matrices, which is then
merged with the other matrix by computing the Hadamard
product. The output is an updated graph feature matrix
with one feature less. The new feature matrix is passed to
the graph convolution layer that works with the graph’s
spectral domain. Here the researchers came up with two
different approaches for representing the graphs adjacancy
matrix. One is a normal adjacancy matrix for the graph
as described before, the other is defined

Âi,j =





B, if link i heads to tail of link j

−1, if link i heads to tail of link j and v.v.
−1, if link i heads to head of link j

0, otherwise.
(11)

where the optimal parameter B is to be found by testing
for the smallest error. Head and tail are the routers that a
directed link passes traffic to and from respectively. The
main operation here is the multiplication of its input with
the graphs’s Laplacian matrix and a matrix of learnable
parameters. Following this structure, the final temporal
convolution layer’s output contains one remaining node
feature. At this stage the feature matrix is passed to a
fully connected layer, whose results are the predictions
for every network link. Obtaining only one time step’s
predictions, the later time steps’ predictions need to be
obtained recursively.

The model’s performance was tested with data from
the UKERNA academic network backbone by Simple Net-
work Management Protocol (SNMP). Traffic of 18 links
connecting 8 core routers was observed for over a month.
Samples for all links were taken every 10 minutes. In the
paper the MAE and RMSE are compared for different
prediction models, namely Historical Average, ARIMA,
a popular linear model for time-series forecasting, Gated
Recurrent Unit, Spatio-Temporal Graph Convolution Net-

works (STGCN), a TGNN showing good performance
in road traffic prediction. Both the temporal GNNs were
measured with the normal and the advanced adjecency
matrix: TTGCN+, STGCN+. In the test the model should
predict the next 9 time steps after being initialized with
data of 12 time steps. The models were trained with
data of 31 days and were tested on the data of the 8
remaining days. The test results show best performance for
TTGCN+ then STGCN+, TTGCN, STGCN, pointing out
the proposed model achieved the best prediction perfor-
mance. The paper does not provide information if the best
adjacancy matrix parameter was calculated for STGCN+,
too. With TTGCN+ having a 13.7% lower RMSE than
STGCN+ and over 10% lower RMSE than TTGCN+
with next higher parameter shows that having a good
data representation is crucial for exploiting a prediction
model’s potential.

Figure 2: Architecture of TTGCN [19] ©2021 IEEE

6. Conclusion

In this paper, Temporal Graph Neural Networks are
explained. It provides relevant information on machine
learning algorithms and describes how common spectral
and spatial GNNs are constructed. It can be concluded
that TGNNs show good prediction performance on data
with spatial and temporal relationships. Their architectures
are usually combinations of common patterns in machine
learning. One can expect that new TGNN architectures
will emerge to leverage their capabilities in even more
applications. However, there are challenges that need to
be addressed. Contributions to benchmarking tools are
needed, GNN methods against oversmoothing need to be
adopted, further advances for federated learning must be
driven.

References

[1] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A.
Mohamed, and H. Arshad, “State-of-the-art in artificial neural
network applications: A survey,” Heliyon, vol. 4, no. 11, 2018.

Seminar IITM SS 23 118 doi: 10.2313/NET-2023-11-1_20

[2] H. Taud and J. Mas, Multilayer Perceptron (MLP). Cham:
Springer International Publishing, 2018, pp. 451–455. [Online].
Available: https://doi.org/10.1007/978-3-319-60801-3_27

[3] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural
Networks,” 2015.

[4] F. Günther and S. Fritsch, “Neuralnet: training of neural networks.”
R J., vol. 2, no. 1, p. 30, 2010.

[5] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu,
“A Comprehensive Survey on Graph Neural Networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32,
no. 1, pp. 4–24, 2021.

[6] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang,
C. Li, and M. Sun, “Graph neural networks: A review of
methods and applications,” AI Open, vol. 1, pp. 57–81, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S2666651021000012

[7] Z. A. Sahili and M. Awad, “Spatio-Temporal Graph Neural Net-
works: A Survey,” 2023.

[8] A. Kapoor, X. Ben, L. Liu, B. Perozzi, M. Barnes, M. Blais, and
S. O’Banion, “Examining COVID-19 Forecasting using Spatio-
Temporal Graph Neural Networks,” 2020.

[9] L. Wang, A. Adiga, J. Chen, A. Sadilek, S. Venkatramanan,
and M. Marathe, “CausalGNN: Causal-Based Graph Neural
Networks for Spatio-Temporal Epidemic Forecasting,” Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 11, pp. 12 191–12 199, Jun. 2022. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/21479

[10] S. Hadou, C. I. Kanatsoulis, and A. Ribeiro, “Space-Time Graph
Neural Networks,” 2022.

[11] A. Fathy and K. Li, “Temporalgat: Attention-based dynamic graph
representation learning,” in Advances in Knowledge Discovery and
Data Mining, H. W. Lauw, R. C.-W. Wong, A. Ntoulas, E.-P.
Lim, S.-K. Ng, and S. J. Pan, Eds. Cham: Springer International
Publishing, 2020, pp. 413–423.

[12] Y. Fan, M. Ju, C. Zhang, and Y. Ye, Heterogeneous Temporal
Graph Neural Network, pp. 657–665. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611977172.74

[13] A. M. Karimi, Y. Wu, M. Koyuturk, and R. H. French,
“Spatiotemporal Graph Neural Network for Performance Prediction
of Photovoltaic Power Systems,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 17, pp. 15 323–
15 330, May 2021. [Online]. Available: https://ojs.aaai.org/index.
php/AAAI/article/view/17799

[14] J. Simeunović, B. Schubnel, P.-J. Alet, and R. E. Carrillo, “Spatio-
Temporal Graph Neural Networks for Multi-Site PV Power Fore-
casting,” IEEE Transactions on Sustainable Energy, vol. 13, no. 2,
pp. 1210–1220, 2022.

[15] B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel,
M. Astefanoaei, O. Kiss, F. Beres, G. López, N. Collignon, and
R. Sarkar, “PyTorch Geometric Temporal: Spatiotemporal Signal
Processing with Neural Machine Learning Models,” 2021.

[16] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Lio,
F. Scarselli, and A. Passerini, “Graph Neural Networks for temporal
graphs: State of the art, open challenges, and opportunities,” 2023.

[17] G. Lou, Y. Liu, T. Zhang, and X. Zheng, “STFL: A Temporal-
Spatial Federated Learning Framework for Graph Neural Net-
works,” 2022.

[18] Y. Li, W. Zhao, and H. Fan, “A Spatio-Temporal Graph Neural
Network Approach for Traffic Flow Prediction,” Mathematics,
vol. 10, no. 10, 2022. [Online]. Available: https://www.mdpi.com/
2227-7390/10/10/1754

[19] Z. Yao, Q. Xu, Y. Chen, Y. Tu, H. Zhang, and Y. Chen, “Internet
Traffic Forecasting using Temporal-Topological Graph Convolu-
tional Networks,” in 2021 International Joint Conference on Neural
Networks (IJCNN), 2021, pp. 1–8.

Seminar IITM SS 23 119 doi: 10.2313/NET-2023-11-1_20

Seminar IITM SS 23 120

Saving and Recovering Systems

Philipp Tekeser-Glasz, Sebastian Gallenmüller∗, Manuel Simon∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: philipp.tekeser-glasz@tum.de, gallenmu@net.in.tum.de, simonm@net.in.tum.de

Abstract—The Chair of Network Architectures and Services
operates multiple testbeds that allow researchers to develop
and run reproducible network experiments. Reproducibility
is achieved by running experiments on test nodes that have
no persistent storage. Instead, test nodes boot a live system
via PXE. This ensures that an experiment always starts
with the same initial state. Users can reserve test nodes in
advance using a calendar web interface. The facts that test
nodes cannot store data persistently and that they are shared
between users create a problem for users who are developing
new experiments since all development progress is lost after
a restart of the test node.

This paper presents an approach to overcome this prob-
lem by using virtual machines that can be saved to a host
with persistent storage and later restored on a test node.

Index Terms—virtualization, network experiments, testbeds,
reproducibility, development

1. Introduction

The testbeds at the Chair of Network Architectures
and Services are managed by the Plain Orchestration Ser-
vices (pos) which allows researchers to develop and run
reproducible network experiments [1]. One of the goals
of the testbeds and the pos framework is reproducibility,
which means that different researchers are able to obtain
the same result using the same experiment setup [2].
Each testbed consists of multiple test nodes that run the
experiment code and a management node that controls
the execution of the experiment. As a measure to achieve
reproducibility, test nodes run live systems and do not have
any persistent storage that could contain leftover data from
previous users. This ensures a clean state at the beginning
of an experiment.

However, during the development phase of an exper-
iment, this architecture prevents users from saving the
current state of a project between sessions since all data
is lost after a reboot. This paper presents an approach to
develop an experiment in virtual machines on a test node,
which can be saved to the management node and restored
later.

Section 2 gives a short introduction to architecture
and the technologies used in the testbed. The problem of
lost development progress that arises from the stateless
architecture is described in Section 3 and a possible
solution is explained. In Section 4, the implementation
of that solution is presented. Section 5 shows an example
workflow from the user’s perspective. The limitations of
the chosen approach are outlined in Section 6.

2. Background

This section explains the architecture of the testbed.
The testbed consists of a management node and multiple
test nodes. Test nodes run the experiment code. Some of
them contain specialized network hardware for specific
experiments. In order to guarantee a defined state at the
beginning of an experiment, these nodes do not have any
persistent storage that could contain leftover data from
previous experiments. A live operating system is loaded
over the network using the Preboot Execution Environ-
ment (PXE). Therefore, any changes to the system are
lost after a reboot. In addition to the test nodes, each
testbed has a management node to control the test nodes.
On the management node, each user has a persistent
home directory. Each test node contains a Baseboard
Management Controller (BMC); a device that allows the
management node to send commands to the test node
even if the operating system is unresponsive or has not
been started. The management node communicates with
the BMCs over the network using the Intelligent Platform
Management Interface (IPMI).

In order to ensure that users do not interfere with each
other by accessing a node at the same time, pos offers a
web interface through which nodes can be reserved in
advance. Users can then log in to the management node
using SSH and then use the pos command line tool to set
up their test nodes.

Only the management node is accessible from the
Internet. If a user wants to connect to a test node, they
first have to connect to the management node via SSH
and can then establish an SSH connection to the test node
from there.

For development purposes, pos also offers the option
to create multiple virtual machines on a physical test
node. This is done by setting up the physical test node
and launching virtual machines using the management
software libvirt [3]. Virtual machines are managed and
booted using the same protocols that physical test nodes
use. In order to allow pos to control virtual machines, the
host runs VirtualBMC [4] which accepts IPMI commands
and passes them on to the virtual machines running under
libvirt. The virtual machines receive their live operating
systems via PXE and do not have any persistent storage
either.

3. Problem

While the fact that test nodes do not store data per-
sistently allows researchers to run automated and repro-

Seminar IITM SS 23 121 doi: 10.2313/NET-2023-11-1_21

vm1 vm2

test node

eno0 eno1 eno2

eth0

macvtap

eth0

Figure 1: Networking on a test node

ducible network experiments, it is difficult to develop
experiments in this environment since all files are lost after
a reboot and users have to manually save and restore their
progress between sessions.

This paper presents an approach to automatically save
the state of virtual machines to the management node from
where it can later be restored on another test node.

The chosen approach consists of creating memory
images of the virtual machines on a test node, copying
them to the management node where each user has a
persistent home directory and later restoring the virtual
machines.

Additionally, it is necessary to save the network con-
figuration of the virtual machines. In a typical setup,
there is a virtual management network that connects all
virtual machines to the management interface of the host
using a macvtap bridge device, as shown in Figure 1.
The management interface is the one through which the
node can communicate with the management node. This
network allows pos to manage the virtual machines and
users to connect to them via SSH from the management
node. Other physical interfaces that are connected to other
nodes might be present for experiments. For this reason,
the correct interface has to be selected when setting up
the virtual machines for the first time and after restoring
since the new host could have other network interfaces
than the old one. This selection is done automatically by
searching the interface through which the default gateway
is reachable.

To ensure that pos can find and control the virtual
machines, the virtual network interfaces have to use MAC
addresses that are derived from the host’s IP address.
When restoring the machines on a different test node,
the MAC addresses have to be changed to match the
new host’s IP. This is done by removing the interface
from the virtual machines before saving and adding a new
interface with the updated MAC address after restoring.
After that, the guest system has to be reconfigured to
recognize the new interface with a different MAC address.
Since there is no working network connection at this stage,
the reconfiguration is performed using a virtual serial port.
This reconfiguration of the management network allows
restoring the virtual machines on any test node.

A simpler approach is to leave the network interfaces
untouched, but this comes with the limitation that the
virtual machines can only be restored on the test node

from which they were saved because the MAC addresses
will otherwise not match the pattern that is expected by
pos and it will not be possible to establish a connection to
the machine. The advantage of being able to freely choose
a host is that users can work at any time without having
to wait until a specific test node becomes available.

It is important to note that the chosen approach is
not meant to replace the reproducible architecture of the
testbed. While the approach simplifies the development
process of new experiments, actual measurement results
should only be acquired using the reproducible approach
described in [1].

4. Implementation

The development workflow consists of three steps that
will be explained in this section. For each step in the
workflow, there is a Bash script that the user executes on
the management node. The scripts connect to the specified
test node to perform the necessary tasks. A simplified
overview of the interactions between the nodes in each
step is shown as a sequence diagram in Figure 2. Each
of the following subsections corresponds to a frame in
Figure 2.

4.1. Creating virtual machines

This process is based on the existing example code
that is used to create virtual machines in the testbed [5]. In
this step, the user starts a Bash script on the management
node which starts the selected test node and installs the
necessary virtualization software. After that, the virtual
management network is created. Then a user-specified
number of virtual machines is created. Each virtual ma-
chine has a network interface that is connected to the
management network. The MAC address is calculated
based on the IP address of the host and the ID of the
virtual machine. For each virtual machine, a virtualBMC
is started on the host that listens on a specific port based
on the ID of the VM. Once this is done, pos can start
the VMs, which then load their live operating system via
PXE like physical machines. When the boot process is
completed, getty is started on the virtual serial port in
order to allow a reconfiguration of the network settings
after restoring. Users can now establish SSH connections
and start working on their projects.

4.2. Saving virtual machines

To save the virtual machines, a Bash script is executed
on the management host which launches another Bash
script on the test node that performs multiple steps. The
first step is to create a file that contains a list of all virtual
machines and their IDs. The second step is to remove
the management interfaces from the virtual machines. If
the user has configured other interfaces, the script will
ignore those. In the third step, the definitions of the virtual
machines are stored as XML files. These files contain
general configuration data, e.g. memory size and serial
ports. After that, the actual memory dump is created and
compressed using gzip. The last step is to export the
network configuration from libvirt and replace the host

Seminar IITM SS 23 122 doi: 10.2313/NET-2023-11-1_21

management
node test node

IPMI command

PXE image

SSH setup commands

virtual machine

IPMI command

PXE image

start VM

SSH save commands

create

save

create image

memory imagedirectory structure

end of user session
test node might be used by another user

IPMI command

PXE image

SSH restore
commands

directory structure

restore

restore VM

reconfigure
systemd-networkd

Figure 2: Simplified sequence diagram of the implemen-
tation

vm_save
|-- net
| ‘-- net.xml
|-- vm
| |-- vm1.gz
| ‘-- vm2.gz
|-- vmmacs
‘-- vmxml

|-- vm1.xml
‘-- vm2.xml

Figure 3: Directory tree after saving

specific interface name with a placeholder variable that
will be replaced on the new host when restoring. The final
directory tree on the test node after all steps are completed
is shown in Figure 3. This directory is then copied to the
user’s home directory on the management node using SCP.
The compressed memory image of a Debian 11 system
with no additional software installed has a size of 1 GB.

4.3. Restoring virtual machines

The restoration process begins like the creation pro-
cess by starting the test node and installing the virtual-
ization software. In addition to that, the saved directory
is copied from the management node via SCP. First, the
network configuration is read and the placeholder variable
is replaced with the management interface. Then, the
virtual machines are redefined using the XML files. After
that, the memory images are decompressed and restored.
Each virtual machine gets a new management interface
with a MAC address based on the host’s IP address and
the ID that is read from the vmmacs file. However, the
guest system does not recognize the new interface because
of the changed MAC address. For this reason, an expect
[6] script is launched to replace the MAC address in the
interface configuration file of systemd-networkd on the
guest. After this step, the virtual machines can be reached
from other hosts on the network. In order to allow pos to
send IPMI commands to the virtual machines, virtualBMC
is started on the host system. This allows the user to reset
the virtual machine to a clean state using the pos command
line tool.

5. Example Workflow

This section shows the development workflow using
the scripts. As an example, iperf3 will be installed on
two virtual machines on test node vmexp1. These virtual
machines will then be saved to the management node and
restored on test node vmexp0. All shown commands are
run on the management node.

First, two virtual machines with Debian 11 are created
on the test node vmexp1.

. / e x p e r i m e n t . sh vmexp1

After the script has finished executing, there are two
virtual machines called vmexp1-vm1 and vmexp1-vm2.

It is now possible to establish an SSH connection and
start developing. In this simple example, we will install
iperf3 on both virtual machines.

s s h vmexp1−vm1 a p t i n s t a l l i p e r f 3
s s h vmexp1−vm2 a p t i n s t a l l i p e r f 3

Then, iperf3 is run in server mode on vmexp1-vm1 and in
client mode on vmexp1-vm2.

s s h vmexp1−vm1 i p e r f 3 −s −D
s s h vmexp1−vm2 i p e r f 3 −c vmexp1−vm1

This command will measure the throughput of the virtual
network connection between the two virtual machines.

At the end of a session, the user can save all virtual
machines to a new directory called save_dir using the
following command.

. / save_vms . sh vmexp1 s a v e _ d i r

The directory save_dir will then contain the structure
shown in Figure 3.

In order to start a new session on the node vmexp0,
the following command is used.

. / r e s t o r e . sh vmexp0 s a v e _ d i r

Seminar IITM SS 23 123 doi: 10.2313/NET-2023-11-1_21

Now, the user can continue working on the virtual ma-
chines called vmexp0-vm1 and vmexp0-vm2. In this case
we can run iperf again in order to see that the installed
package is present and that the network connection has
been restored correctly. Note that the iperf server process
is still running on vmexp0-vm1 since we saved a full
memory image of the virtual machines.

s s h vmexp0−vm2 i p e r f 3 −c vmexp0−vm1

Like before, this command will show the throughput of
the virtual network connection between the two restored
virtual machines.

6. Evaluation

The chosen approach simplifies the development pro-
cess of new experiments by allowing users to create
backups of virtual machines and restore them later on a
different host. It makes a more effective use of testbed
resources possible since users only have to use one phys-
ical test node when developing experiments that would
normally require multiple nodes.

However, there are some limitations. First, it is only
possible to restore virtual machines on a different host
when there is only a management network that has the
structure shown in Figure 1. Other interfaces are ig-
nored by the script and might therefore lead to an error
when restoring on a new host where the interface is not
available. More complex network setups, e.g. passthrough
interfaces, are possible but restoring will only work on the
same host where these interfaces are available.

When restoring network interfaces of type virtio on
the new host, AppArmor caused an error. For this reason,
AppArmor had to be completely disabled via a kernel
parameter in order to be able to restore these network
interfaces.

Another limitation is that the network reconfigura-
tion on the guest system is currently only supported for
systemd-networkd. It is therefore only possible to use
specific operating systems in virtual machines. In this
case, only Debian 11 was tested, which is commonly used
on the testbed.

When an experiment is ready to run, it might be
necessary to make changes to the code in order to run
it on physical hardware.

7. Conclusion

We explained the stateless nature of nodes in the
testbed and the advantages it has for reproducible net-
work experiments. This created the problem of losing
progress during the development phase of an experiment.
We proposed a solution to this problem based on virtual
machines which can be saved to the management node
and restored on a different test node. An implementation
of this approach using Bash scripts was presented. We
also provided a demonstration of the implementation in
which we showed the steps to create, save and restore a
session.

In the future, this solution could be integrated into the
pos command line interface in order to simplify the de-
velopment workflow. Another topic for future work could
include the development of a more complex example
project using the presented approach.

References

[1] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: A methodology and toolchain for reproducible network
experiments,” in Proceedings of the 17th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 259–266. [Online]. Available: https://doi.org/
10.1145/3485983.3494841

[2] ACM, “Artifact Review and Badging - Current,” https://www.acm.
org/publications/policies/artifact-review-and-badging-current, 2020,
[Online; accessed 18-June-2023].

[3] “libvirt: The virtualization API,” [Online; accessed 18-June-2023].
[Online]. Available: https://libvirt.org/

[4] “How to use VirtualBMC — virtualbmc 3.0.2.dev5 documentation,”
[Online; accessed 18-June-2023]. [Online]. Available: https:
//docs.openstack.org/virtualbmc/latest/user/index.html

[5] S. Gallenmüller, “vm-example,” https://gitlab.lrz.de/I8-testbeds/
pos-examples/-/tree/master/tutorials/vm-example/bullseye, 2021,
[Online; accessed 18-June-2023].

[6] D. Libes, “expect: Scripts for controlling interactive processes.”
Computing Systems, vol. 4, pp. 99–125, 03 1991.

Seminar IITM SS 23 124 doi: 10.2313/NET-2023-11-1_21

Network Insights with P4 In-Band Network Telemetry

Sebastian Warter, Sebastian Gallenmüller∗, Kilian Holzinger∗
∗Chair of Network Architectures and Services

School of Computation, Information and Technology, Technical University of Munich, Germany
Email: sebastian.warter@tum.de, gallenmu@net.in.tum.de, holzinger@net.in.tum.de

Abstract—Understanding what happens to packets in layer 2
networks is inherently difficult. The transparent nature
of network switches can make the identification of faulty
network components a time-consuming search. The P4 In-
Band Network Telemetry (INT) can help by aggregating
switch telemetry information in the data packets. This paper
explains the concepts of INT in a simple use case where we
want to identify a high-latency link. With the P4 implementa-
tion from the GÉANT project, we demonstrate this scenario
in a virtual network. The evaluation of this experiment shows
that INT is suitable for the use case but has some overhead
in the emulated network.

Index Terms—P4, in-band network telemetry, INT, monitor-
ing

1. Introduction

The operation and administration of large networks
can be a challenging task. For example, assume that we are
dealing with a video conference company network. Such
a network usually has to transmit a considerable amount
of UDP packets with low latency. There is likely also a
monitoring system in place that can detect abnormal high
latencies or low data rates from an end-to-end perspective.

However, this information does not help to identify the
problematic network component. If the network consists
of layer 3 routers, a tool like tracepath can help to
narrow the issue down. Unfortunately, it does not work in
all cases. In complex networks, the routers might handle
the echo request differently than the real traffic without
triggering the problem. The problem might also involve a
layer 2 switch or a link between two switches. They are
transparent to the tracepath tool.

Ideally, we would have a technology that can track
on-demand how regular data packets move through the
switches in a layer 2 network. If a switch sends metadata
to a monitoring system every time it encounters a tracked
packet, we could reconstruct the layer 2 path of each
packet including time information. This approach would
still require a pre-existing identifier in the packets, which
is not always available.

A different approach is to add the metadata to the
packet itself at each switch it passes. The aggregated
metadata then has to be removed from the packet once
it leaves the network. This does not require unique IDs
for every packet.

The second approach can be realized using P4 pro-
grammable switches and the In-Band Network Telemetry
(INT) specification described in Section 2. The following

Section 3 describes how to solve the use case described at
the beginning with INT. In Section 4, we pick a suitable
P4 implementation to create a test setup in Section 5. This
test setup is then evaluated in Section 6 on our use case.

Similar demonstration setups were also described in
related work. For example, Kim et al. briefly described
a simple demonstration setup based on an older INT
specification [1]. Parniewicz et al. described their results
on more complex network environments [2]. This paper
focuses on a simple use case instead.

2. Background

Traditionally, professional network hardware is highly
specialized and has limited configuration possibilities.
Even though this usually means it operates efficiently,
it has the downside that new functionality or protocols
usually require buying expensive new hardware. The P4
ecosystem presented in Subsection 2.1 aims to change that
with a programming language for packet processing. In
order to emulate networks with P4 switches, the mininet
project described in Subsection 2.2 can be used. The
flexibility of P4 also allows to implement more advanced
monitoring systems like the In-band Network Telemetry
(INT) in Subsection 2.3.

2.1. P4

P4 stands for “Programming Protocol-Independent
Packet Processors” and was first described by Bosshart et
al. [3]. It is a programming language for packet processing
that describes detailed steps to perform on incoming net-
work packets. It does not assume the usage of standardized
protocols like IP or TCP, which is usually a prerequisite
for traditional network hardware. Instead, it allows the
programmer to define the header structures themselves.
Due to this flexibility, existing P4-based hardware can also
be used for network protocols that do not exist yet. [3].

The P4 language (more precisely, the 2016 revision
P416) has two essential language constructs. “Parsers”
parse the headers of an incoming packet. They use a
programmer-defined state machine to identify and parse
nested headers. “Control blocks” are imperative programs.
They can use tables to trigger programmer-defined actions
based on the value of header fields. The table entries are
usually not part of the program and are configured by the
control plane at startup or runtime (for example, a routing
table). [4].

The possible actions a switch can perform, and the
processing pipeline itself, is not enforced by P4. Instead,

Seminar IITM SS 23 125 doi: 10.2313/NET-2023-11-1_22

it provides the syntax to describe the capabilities of switch
architectures. For example, a certain switch model might
provide functions to calculate CRC checksums, while
other switch models do not support them. [4].

The reference switch architecture v1model1 is based
on a simple packet processing pipeline with six pre-
defined steps (including ingress/egress pipeline and emit-
ting headers at the end). The P4 project also provides
a software implementation of a switch called “Behavior
Model 2” (“bmv2”) that supports the v1model [5].

2.2. Mininet

Developing P4 applications using real hardware is
difficult. The hardware is usually expensive and difficult to
reset to a clean state or to debug. For developing systems
with P4-based switches, a virtual network setup is more
convenient. Although such an emulated network fails to
reflect real networks accurately, it can be a valuable tool
for network experiments [6].

A popular tool for creating virtual networks is mininet.
It is based on Linux’s built-in virtualization capabilities
for network interfaces. Similar to container solutions like
Docker, each virtual host is represented by a process with
virtual network interfaces. This way, hosts in a mininet
network can efficiently run normal applications. Switches
in a mininet network are OpenFlow-compatible software
implementations. [7].

The mininet command-line interface directly supports
the creation of simple, pre-defined network topologies.
Once it is running, it offers commands to inspect the
topology and run normal shell commands on the virtual
hosts. This way, the network settings of hosts can be
configured using normal Linux commands. If more com-
plex topologies are required, they can be defined using an
object-oriented Python API. [7].

In order to test P4 applications in mininet, the
OpenFlow-based switch can be replaced with a bmv2
switch. The P4 ecosystem offers the tool p4app for this
purpose. It is a convenient tool that can compile a P4
program, start a mininet topology, and configure the tables
on the switches. Because it is based on docker containers,
it offers a development environment with all necessary
tools without using resource-hungry alternatives like vir-
tual machines. [8].

2.3. P4 In-band Network Telemetry (INT)

Understanding what happens in layer 2 networks is
inherently difficult. The switches in the network are, by
design, supposed to be transparent to network traffic. This
means in practice, that it is not directly possible to know
which path a specific packet took through a network or
how individual links affect the total latency. With sophis-
ticated hardware, it is usually possible to access additional
information like packet rates. Unfortunately, they only
allow us to guess what is happening in the network.

To improve insights into networks, the P4 work-
ing group specified a protocol called “In-band network
telemetry (INT)”. It is designed to track the visited

1. https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

TABLE 1: INT Hop-by-hop header, adapted from [9]

0 1 2 3

Version Flags Reserved Hop ML Remaining Cnt

Instruction Bitmap Reserved

Last hop INT metadata

. . .

First hop INT metadata

switches and their states of any packet flow in a P4-
based network. For this purpose, INT allows storing the
instruction to collect telemetry and the switch states in the
already existing data packets. [9].

In INT 1.0, the instruction to collect telemetry origi-
nates from an “INT source” switch. It injects the header
in Table 1 into the forwarded packets. In particular, it sets
bits in the “Instruction Bitmap” which correspond to the
information that should be collected. This switch and all
“INT transit hop” switches can append their own state
to this header while forwarding the packet. Eventually,
an “INT sink” switch removes the header and sends the
collected data to a monitoring system. The report format
is not specified in INT 1.0. [9]

The collected metadata usually includes information
like device identifiers or timestamps. This information can
then be used to visualize the layer 2 path of packets. It
also allows to calculate the link and switch latencies from
timestamps in the metadata.

The previously described setup is called “INT-MD”
in the most recent version 2.1 of INT. The new version
also adds two additional modes. In “INT-MX” mode, the
telemetry is sent directly to the monitoring system by each
switch instead of appending it to the header. This avoids
packets that grow too large and exceed the MTU. The
“INT-XD” mode works similarly, but the switches do not
create an INT header and use built-in instructions to send
telemetry. [10].

3. A Simple Monitoring Use Case

In order to illustrate the potential of INT, this paper
demonstrates its benefits in a simple use case. We assume
that a network operator wants to localize latency issues in
a layer 2 network. With traditional tooling, this would be
difficult because layer 2 switches are usually transparent
to network traffic.

This problem can be solved with a simple INT setup.
In this setup, each monitored packet aggregates a history
of switch states as it passes the network. When the packet
leaves the network, this information is sent to a monitor-
ing system. The monitoring system can then be used to
analyze the data. In our use case, it can calculate latencies
for each link based on the INT timestamp differences.

To demonstrate this in practice, we create a virtual test
network. It uses

• mininet to create three bmv2 switches and two
hosts

• P4 code to create and process the INT headers
• a simple INT-MD configuration with one INT

source, one INT transit hop, and one INT sink

Seminar IITM SS 23 126 doi: 10.2313/NET-2023-11-1_22

TABLE 2: INT switch implementations

Name bmv2 INT version (mode) working
documentation

joshi × 1.0/2.1 (all) not tested
ONOS ✓ 1.0 (MD) ×
GÉANT ✓ 1.0 (MD) ✓

TABLE 3: INT collector implementations

Name Backend Works on
Linux 5.19

INTCollector InfluxDB, Prometheus ×
GÉANT InfluxDB ✓

• node ids, ingress timestamps, and egress times-
tamps, and

• a monitoring system that can collect and visualize
the INT data.

For a real INT deployment, it is usually desirable to
collect additional data like congestion indicators. Even
though they can provide valuable information to diagnose
network issues, they are omitted here to avoid additional
complexity.

4. P4 INT Implementations

Over time, many developers have implemented differ-
ent versions of the INT specification in P4-based projects.
This section briefly compares three well-documented im-
plementations in Subsection 4.1. After that, it describes
details about the GÉANT implementation in Subsec-
tion 4.2, which is used in the remaining sections of this
paper.

4.1. Choosing a Suitable Implementation

In practice, we use two main software components for
our test setup:

• a P4 implementation of a network switch with INT
support, and

• an application that collects the INT headers and
transforms them into a format compatible with an
existing database system.

This paper considers and compares the three P4 imple-
mentations summarized in Table 2 and the two collectors
summarized in Table 3. Numerous other implementations
exist, but many are based on the outdated version 0.4 of
INT or are not properly documented.

The implementation created by Joshi in [11] is one
of the most recent ones and supports the latest INT
version 2.1. Unfortunately, it is built solely for Intel Tofino
hardware and does not support the bmv2. The INT 1.0
implementation in the Open Network Operating System
(ONOS) uses the bmv2, but its documentation2 is outdated
and does not work in current versions of ONOS. The
last implementation described by Parniewicz et al. [2] as
part of a GÉANT project is similar but has a working
documentation.

2. https://wiki.onosproject.org/display/ONOS/In-band+Network+
Telemetry+(INT)+with+ONOS+and+P4

A frequently used collector is the INTCollector de-
scribed by Tu et al. [12], which can send data to InfluxDB
or Prometheus backends. Unfortunately, this implementa-
tion fails to start on current Linux versions. For demon-
stration purposes, we can also use the slower Python
implementation included in the GÉANT project to store
the data in InfluxDB.

Only the switch implementation from the GÉANT
projects seems suitable for our virtual test setup. We use it
in the following sections for our use case from Section 3.
For simplicity, we also use the INT collector included in
the GÉANT project.

4.2. The implementation of the GÉANT project

This P4 implementation of INT was created as part of
a GÉANT project about network monitoring. It includes
an implementation of INT 0.4 and 1.0 for both virtual
bmv2 switches and Intel Tofino switches. It also has
extensive documentation and also provides visualization
tools. [13].

Add INT header
(source)

Forward Clone
(sink)

Append metadata
(transit)

Transform to report
(sink)

Remove INT header
(sink)

src
port

clone

!clone

report
port

dst
port

Figure 1: GÉANT P4 pipeline based on int.p4

The used P4 processing pipeline is visualized in Fig-
ure 1. It is configured using P4 tables [14].

In the ingress pipeline, the switch first adds the INT
header if a packet should be monitored. This decision is
made based on a flag to use a port as an INT source and a
list of layer 3/4 endpoint addresses to monitor. Next, the
egress port is picked from a static layer 2 address forward
table. If it is a port configured as an INT sink, the packet
is also cloned to the reporting port. [14].

The egress pipeline first appends the local metadata
if there is already an INT header in the packet. If the
destination is an INT sink port, the INT headers are
removed in the next step. If it is a cloned packet sent
to the reporting port, the packet headers are wrapped with
a report header in order to send them to the IP address of
the collector. The GÉANT project seems to use the same
headers as the Telemetry Report 1.0 specification for this
purpose [15]. [14].

5. Creating the P4 INT Test Setup

In the P4 INT demonstration setup, we have to install,
configure, and start multiple software components for
monitoring and the virtual network. For our simple re-
quirements, the docker-based configurations shipped with
the GÉANT project allow us to create an environment that
matches our requirements:

Seminar IITM SS 23 127 doi: 10.2313/NET-2023-11-1_22

1) Follow the instructions3 to start and configure
docker containers for InfluxDB and the grafana
dashboard. These components act as the moni-
toring system that stores and visualizes the INT
metrics. The collector itself is part of the next
step.

2) Start the INT 1.0 mininet testbed that is shipped
with the P4 implementation of the GÉANT
project. The included instructions4 describe how
to start the collector and use p4app to create a
virtual network in a docker container (external
connectivity is not required). Note that the In-
fluxDB IP address should be a public IP of the
host.

In the default configuration, the setup consists of three
statically configured switches. Each can act as an INT
source, transit hop, or sink. The network parts relevant to
this paper are visualized in Figure 2 based on the dump/net
output of mininet [7].

h1

10.0.1.1

s1

1 3 s2
2

3
s3

1 3

h2

10.0.2.2

Figure 2: Layer 2 path between h1 and h2 with IP ad-
dresses and port numbers

This setup now includes all parts required for our
monitoring use case from Section 3. For example, if we
send data from host 1 to host 2, switch 1 acts as an
INT source and adds instructions to collect all INT fields
(due to the configuration in commands1.txt). All switches
then add INT headers with telemetry while forwarding the
packets. Switch 3 removes the headers and sends the INT
data to the collector, which processes them and sends the
telemetry to the InfluxDB server.

6. Evaluation of the Test Setup

We now use the previously created test setup to
demonstrate how INT can help to localize latency issues.
For this purpose, we first introduce a 5000ms delay for
data sent from s1 to s2. Next, we start sending packets
from h1 to the IP address of h2. The GÉANT project
provides us with the Python script h1_h2_udp_flow.py
for this purpose. Both steps can be achieved by executing
the commands in Figure 3 in the mininet prompt [7], [16].

The collected INT metadata can be analyzed in the
Grafana dashboard. For our use case, we want to find

3. https://github.com/GEANT-DataPlaneProgramming/int-analytics
4. https://github.com/GEANT-DataPlaneProgramming/int-platforms/

tree/master/platforms/bmv2-mininet

s1 tc qdisc add dev s1-eth3 root netem delay 5s
h1 python /tmp/host/h1_h2_udp_flow.py

Figure 3: Mininet commands used for our test setup

latency issues. The interesting values for this purpose are
the pre-hop link delays (see Figure 4).

In our experiment, the delay between Switch 1 and
2 is about 6 s. This is higher than the near-zero delay
between Switch 2 and 3. Therefore, we have identified
our high-latency link.

Unfortunately, this experiment also reveals some lim-
itations. There is an additional delay of about 1 s on the
link s1-s2 and not on the link s2-s3. We suspect that
it is caused by the overhead of the software switch, but
this hypothesis cannot be verified without tests on real
hardware.

0 50 100 150 200 250 300
0

2,000

4,000

6,000

Time [s]

D
el
ay

[m
s]

Switch 1 - 2
Switch 2 - 3

Figure 4: Link delays from experiment

Overall, this virtual experiment showed how it is pos-
sible to find high-latency links in an INT-capable network.
Unfortunately, there is a significant overhead which would
make it difficult to measure lower, more realistic latencies.
Further evaluation of INT’s accuracy in this use case
would likely require P4-capable hardware and is out of
the scope of this paper.

7. Conclusion

In this paper, we saw how INT can help to solve
network problems in previously not possible ways. Based
on a simple use case where we located latency issues in
layer 2 networks, we explained INT and created a virtual
demonstration setup. Our evaluation showed that INT is
suitable for the use case but, at least in our emulated
network, has a significant overhead.

Based on this setup, it is also possible to collect
other potentially helpful INT data. For example, a network
operator can decide to collect the queue occupancy or the
exact layer 2 path of a packet. Accurately evaluating the
precision of INT in these more complex use cases will
require real hardware and future work. Such future work
should also consider the newer version 2.1 of INT, which
can provide additional possibilities to debug network is-
sues.

References

[1] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J.
Wobker, “In-band network telemetry via programmable data-
planes,” in ACM SIGCOMM, vol. 15, 2015.

[2] D. Parniewicz, T. Martínek, F. Pederzolli, D. Ding, M. Campanella,
I. Golub, and T. Chown, “In-Band Network Telemetry Tests in
NREN Networks,” GÉANT Association, Tech. Rep., 2021.

Seminar IITM SS 23 128 doi: 10.2313/NET-2023-11-1_22

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, jul 2014.

[4] The P4 Language Consortium, “P4_16 Language Specification,”
https://p4.org/p4-spec/docs/P4-16-v1.2.4.pdf, 2023, [Online; ac-
cessed 15-June-2023].

[5] P4 Project, “The Reference P4 Software Switch,” https://github.
com/p4lang/behavioral-model, 2023, [Online; accessed 15-June-
2023].

[6] R. Oliveira, C. Schweitzer, A. Shinoda, and L. Prete, “Using
mininet for emulation and prototyping software-defined networks,”
06 2014, pp. 1–6.

[7] Mininet Project Contributors, “Mininet Walkthrough,” http://
mininet.org/walkthrough/, 2022, [Online; accessed 15-June-2023].

[8] P4 Project, “P4app,” https://github.com/p4lang/p4app, 2019, [On-
line; accessed 15-June-2023].

[9] The P4.org Applications Working Group, “In-band Network
Telemetry (INT) Dataplane Specification - Version 1.0,” https:
//p4.org/p4-spec/docs/INT_v1_0.pdf, 2018, [Online; accessed 15-
June-2023].

[10] ——, “In-band Network Telemetry (INT) Dataplane Specification
- Version 2.1,” https://p4.org/p4-spec/docs/INT_v2_1.pdf, 2020,
[Online; accessed 15-June-2023].

[11] M. Joshi, “Implementation and Evaluation of In-Band Network
Telemetry in P4,” Master’s thesis, KTH Royal Institute of Tech-
nology, 2021.

[12] N. V. Tu, J. Hyun, G. Y. Kim, J.-H. Yoo, and J. W.-K. Hong,
“Intcollector: A high-performance collector for in-band network
telemetry,” in 2018 14th International Conference on Network and
Service Management (CNSM), 2018, pp. 10–18.

[13] D. Parniewicz, “Common P4-based INT implementation
for bmv2-mininet and Tofino platforms,” https://github.com/
GEANT-DataPlaneProgramming/int-platforms, 2021, [Online;
accessed 15-June-2023].

[14] ——, “INT Configuration Guide,” https://github.com/
GEANT-DataPlaneProgramming/int-platforms/blob/master/
docs/configuration.md, 2021, [Online; accessed 15-June-2023].

[15] The P4.org Applications Working Group, “Telemetry Report For-
mat Specification - Version 1.0,” https://raw.githubusercontent.com/
p4lang/p4-applications/master/docs/telemetry_report_v1_0.pdf,
2018, [Online; accessed 15-June-2023].

[16] F. Ludovici and H. P. Pfeifer, tc-netem(8) Linux Manual Page,
2011.

Seminar IITM SS 23 129 doi: 10.2313/NET-2023-11-1_22

ISBN 978-3-937201-78-8

9 783937 201788

ISBN 978-3-937201-78-8
DOI 10.2313/NET-2023-11-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	MsQuic – A High-speed QUIC Implementation
	A Scheme Towards Reproducibility
	LXC Container Between cgroups v1 and v2: a Performance Evaluation
	Common Workflow Language Execution on the I8-Testbed
	Survey of Cryptographic Offloading Techniques for Blockchain Systems
	Joint OFDM for Radar and Communication
	Current State of Hardware and Algorithms in WiFi Radars
	Prediction of Rare Latency Events
	Digital Twins of Computer Networks
	Positioning in 5G Networks - Overview and Security Threats
	Content and API Acceleration Using Content Delivery Networks
	Wireless Time Synchronization in IEEE 802.11
	Machine Learning Applications In 5G Network Orchestration
	Survey On The Current State Of Tor Over QUIC
	Structure and Origin of CT Based Domain Lists
	Introduction to BBRv2 Congestion Control
	The Evolution of Top-Level Domains: A Comparative Study of .org and .dev
	Hardware-assisted virtual network benchmarking tools
	Current State of Hardware and Tooling for SDR
	Temporal Graph Neural Networks
	Saving and Recovering Systems
	Network Insights with P4 In-Band Network Telemetry

