
Combining Machine Learning With Back-Pressure-Based Routing

Pauline Laßmann, Christoph Schwarzenberg∗, Florian Wiedner∗
∗Chair of Network Architectures and Services, TUM School of Computation, Information, and Technology

Technical University of Munich, Germany
Email: ga27vit@mytum.de, schwarzenberg@net.in.tum.de, wiedner@net.in.tum.de

Abstract—The back-pressure routing algorithm guarantees
optimal throughput but has poor delay performance. A
variety of approaches have been proposed to solve the delay
and also memory consumption problems. One way is to use
machine learning. The goal of this paper is to find different
back-pressure routing policies that are supported by machine
learning. Two methods are presented, one using Q-learning
and the other using predictive scheduling.

Index Terms—back-pressure routing, machine leaning, Q-
learning, predictive scheduling

1. Introduction

Nowadays, applications in areas such as sensor net-
works, wired flow-based networks and traffic systems
require a reliable method to distribute heavy traffic loads
across the entire system or network. The back-pressure
routing (BP) algorithm offers great potential for such
a task. The algorithm examines all possible routes to
balance traffic loads across an entire queuing network,
thus guaranteeing network-wide throughput optimality [1].

When traffic loads are high, this algorithm works,
and available network resources can be used in a highly
dynamic manner. However, excessive route searching at
low and medium traffic loads can lead to unnecessarily
long routes or even routing loops. This leads to poor delay
performance [2] [3].

Improvement approaches on various fronts have been
made over the years one of them being machine learning
aided back-pressure routing. Using prediction its imple-
mentations see an overall improvement in delay perfor-
mance while still being able to efficiently forward packets
with near-optimal throughput, having low computational
complexity, a distributed implementation and not requiring
statistical information about the system dynamics [2] [4].

In the next section of this paper, an overview of differ-
ent BP algorithms is given. The third section briefly intro-
duces the original BP concept and then presents various
framework parameters under which it can be realized. The
fourth section deals specifically with BP routing policies
supported by machine learning.

2. Related Work

The back-pressure routing algorithm was first intro-
duced 1990 by Tassiulas and Ephremides [1] and initially
proposed for wireless multi-hop radio networks. One of
its main shortcomings is its poor delay performance.

Over the years there have been a variety of different
approaches trying to solve this problem. Each one builds
its improvements on a different aspect such as:

• Using shadow queues
• Separating intra-cluster routing from inter-cluster

routing
• Using the shortest path algorithm
• Using the last-in-first-out algorithm
• Considering local queue length information
• Eliminating loops in the network
• Introducing a delay parameter

Bui et al. [5] and Athanasopoulou et al. [6] improve
the original algorithm with the help of shadow queues.
Bui et al. [5] propose shadow queuing as a way of im-
proving delay performance of the original back-pressure
algorithm. Athanasopoulou et al. [6] combine the original
algorithm with probabilistic routing tables and shadow
queues. This way routing and scheduling is decoupled in
the network.

In [7] Ryu et al. separate intra-cluster routing from
inter-cluster routing. This is done using a two-phase
routing method by combining back-pressure routing with
source routing. This results in only a subset of nodes
having large queues, thus improving delay performance.

The improved algorithms introduced in [8], [9]
and [10] make use of the shortest path algorithm to
archive better delay performance. Neely et al. [8] in-
troduce BPbias. It combines the information of queue
and shortest path length to shorten packet routes. The
algorithm of Ying et al. [9], when making each scheduling
decision based on the current network load, has a choice
between shortest path routing and adaptive routing. The
route searching process for the algorithm introduced by
Yin et al. [10] dynamically switches between shortest path
mode and traditional back-pressure routing mode based on
a threshold.

The last-in-first-out algorithm (LIFO) is used in the
works of [11] and [12] to improve the original back-
pressure algorithm. Moeller et al. [11] combine it with
LIFO queuing. Huang et al. [12] prove that near-optimal
utility-delay trade-off is achievable with the help of LIFO.

Cui et al. [3] proposed a back-pressure routing algo-
rithm considering local queue length information of up to
two-hop nodes and another one considering global queue
length information of all nodes, called BPmin.

To eliminate loops in the network Rai et al. [13]
propose to use directed acyclic graphs, which in turn
improves the delay performance.
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The works in [14] and [15] introduce a delay parame-
ter for delay improvement. Ji et al. [15] introduce a back-
pressure routing algorithm using a new delay metric to
reduce packet delay for light traffic loads. Ji et al. [14] use
a new queue management policy with a delay parameter
that makes the algorithm select favorable routes by con-
sidering both delay requirements and network throughput.

Improvement method Improvement

Using shadow queues - Improved delay performance
- Decoupling routing and schedul-
ing in the network

Separating intra-cluster routing
from inter-cluster routing

- Only a subset of nodes have large
queues
- Improved delay performance

Using the shortest path algorithm - Shorter packet routes
- Improved delay performance
- Dynamically switching between
shortest path mode and traditional
back-pressure routing

Using the last-in-first-out algo-
rithm

- Combining BP routing and LIFO
queuing
- Near-optimal utility-delay trade-
off
- Improved delay performance

Considering local/global queue
length information

- Improved delay performance

Eliminating loops in the network - Improved delay performance
Introduction of a delay parameter - Reduce packet delay for light

traffic loads
- Electing favorable routes by con-
sidering delay requirements and
network throughput
- Improved delay performance

TABLE 1: Different back-pressure routing improvement
methods and their improvements

3. Back-Pressure Routing Framework Pa-
rameters

BP uses time slots to operate. To balance the traffic
load in the network, it tries to forward data in each
time slot in a way that optimizes the differential backlog
between neighboring nodes. This is done by considering
all potential routes. In each timeslot, nodes can transmit
data that they store in different queues for each destination
to a neighboring node. The algorithm forwards packets
based on congestion gradients, so it checks which of its
neighbours queues for that destination is the smallest and
routes the data that way. Data transmitted from one node
to another is removed from the first node’s queue of the
destination and added to the second node’s queue of the
destination [1]. An example can be seen in figure 1.

As described in section 2, several versions of this algo-
rithm exist. These can have various framework parameters
under which they can be realized as seen in Figure 2.

First, back-pressure protocols can be divided into
centralized protocols [9], [15] and distributed proto-
cols [4], [2]. It differentiates on where routing and
scheduling decisions are made. A coordinator or central
server is responsible for routing and scheduling decision
making in centralized protocols [9], [15]. High perfor-
mance can be achieved with routing and scheduling deci-
sions, but on occasion scalability issues due to the high
computational complexity can be observed. Distributed
protocols [4], [2] are generally more scalable. Network

Figure 1: Workings of Back-pressure routing

nodes can use the network state information they maintain
to make routing and scheduling decisions. Maintaining
the consistency and accuracy of the queue backlog in-
formation stored in different network nodes however can
be a difficulty. Network performance can be affected by
inefficient scheduling and routing decisions when outdated
queue backlog information are used [16].

Existing protocols can be classified as adaptive back-
pressure routing protocol [11] or fixed back-pressure rout-
ing protocol [15]. In adaptive back-pressure routing pro-
tocols, the back-pressure scheduling decision based on
the queue length primarily determines the next hop of
each packet. Fixed back-pressure routing protocols pre-
determine the route for each flow before the packets are
delivered. Back-pressure-based transmission scheduling is
used to decide on packet forwarding. However, it has
the disadvantage of leading to a minor loss of network
capacity [16].

Over the course of time, the original algorithm has
been modified again and again in various ways to improve
it. Different information of queuing networks such as
queue length, path length, clusters and packet delay can
be incorporated into the algorithm. Additionally, back-
pressure routing in combination with machine learning
also gained popularity over the last years [2].

Figure 2: Back-pressure framework parameters overview

4. Back-Pressure Routing in Combination
With Data Science

In this section, back-pressure routing algorithms in
combination with Data Science are examined in more de-
tail. Q-learning in combination with back-pressure routing
is discussed as well as the back-pressure algorithm using
predictive scheduling.
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4.1. Q-Learning Aided Back-Pressure Routing

Before Q-learning aided back-pressure routing is dis-
cussed the concept of Q-learning is conveyed using the Q-
routing algorithm. Then the multi-agent Q-learning-based
back-pressure routing (QL-BP) algorithm and the adaptive
traffic control algorithm are presented.

4.1.1. Q-Routing as a Reinforcement Learning Ap-
proach for Packet Routing. Boyan et al. [17] present
Q-routing as an algorithm that learns a routing policy
which attempts to strike a balance between minimizing the
number of hops for packet delivery and the possibility of
congestion on popular routes. They refer to their algorithm
as a version of the Bellman-Ford shortest path algorithm.
For Q-routing to work, a reinforcement learning module
is embedded in each node of a network. To keep accurate
statistics on which routing decisions result in minimal
delivery times, only local communications are used. Fur-
thermore, the Q-routing algorithm is able to route effi-
ciently even when critical aspects of the simulation, such
as network utilization, are allowed to vary dynamically.

Based on experiments with different routing policies,
the algorithm selects the one to use. Reinforcement learn-
ing can be used to update the selected routing policy faster.
The performance of a policy is measured by the total time
it takes to deliver a packet. To calculate this, Q-learning
uses a "learning rate" parameter, as well as an old time
estimate and a revised time estimate for packet delivery,
to obtain a solution [17].

Q-learning has the disadvantage of being greedy and
therefore cannot fine-tune a shortcut discovery strategy.
One solution presented in the paper is for the algorithm
to select routing directions with a degree of randomness
in the initial learning phase. Since this would have an
extremely negative impact on congestion, a node uses
what is called a "full echo" modification instead of sending
actual packets in a random direction. Using this, a node
sends information requests to its immediate neighbors
each time it needs to make a decision. Each neighbor
sends back an estimate of the total time to reach the
destination. If shortcuts appear or the policy is inefficient,
this information quickly propagates through the network
and the strategy is adjusted accordingly. This revised Q-
routing is referred to as "full-echo" Q-learning [17].

Figure 3: Delivery time for Q-routing, "full echo" Q-
routing and shortest path routing [17]

As seen in Figure 3 Q-learning exhibits initial ineffi-
ciency when traffic load is low compared to the shortest-
path routing strategy, because it first learns the network
topology. Once the learning phase is overcome, it performs
equivalently to the shortest path. Q-routing with "full
echo" is indistinguishable from the shortest path strategy.
As the network load increases, the shortest path routing
strategy is outperformed by Q-routing with "full echo". Q-
routing performs best because it learns an efficient routing
strategy and continues to route that way. Q-routing with
"full echo", on the other hand, constantly changes its
strategy under high load. Not until a further significant
increase in traffic load does the Q-routing algorithm also
succumbs to overload [17].

4.1.2. Multi-agent Q-learning-based back-pressure
routing (QL-BP) algorithm. Gao et al. [2] propose the
multi-agent Q-learning-based back-pressure routing (QL-
BP) algorithm. They take a general delay reduction frame-
work based on information of the queuing network (bias)
and build their QL-BP algorithm on it. The framework
goes through three stages:

• Information collection: in this stage useful, local
or global, information is collected including queue
length, shortest path and packet delay

• Bias extraction: in this stage useful features (such
as route congestion estimation) are extracted either
in a heuristic manner or with the aid of machine
learning based methods like Q-learning

• Back-pressure routing: the extracted bias are pro-
grammed into the back-pressure routing algorithm
after which the algorithm is capable of adaptively
changing packet routes

Each node maintains multiple Q-learning agents that are
responsible for generating route congestion estimates from
the collected information in the bias extraction phase.
Each agent updates the route congestion estimate using
the queue length information and the route congestion esti-
mates of the neighboring nodes. Since route congestion is
estimated using only local information from neighboring
nodes a distributed implementation is possible. Based on
the estimated route congestion, each node routes packets
to their destinations along the least congested routes [2].

The QL-BP algorithm can be further improved by
considering information about the shortest path (QLSP-
BP). In this case, the QL-BP algorithm remains the same,
except that the shortest path between a source and a
destination node is considered in the bias extraction [2].

The QL-BP algorithm is able to maintain a distributed
implementation, low computational complexity, and an
optimal throughput rate. It reduces the average packet
delay by 71% compared to the original BP algorithm at
low traffic load. At moderate traffic load, it is 82% higher.
The QL-BP algorithm effectively learns the congestion of
the routes and adaptively reroutes the packets to better
routes. For this, a slight amount of packet delay is ac-
cepted in favor of distributed algorithm implementation
and low computational complexity. As mentioned earlier,
the QL-BP algorithm can be significantly improved by
considering shortest path information. The QLSP-BP al-
gorithm outperforms all variants of back-pressure routing
algorithms. It reduces the average packet delay by 95%
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under light traffic load and 41% under medium traffic
load and is the best variant of the improved back-pressure
routing algorithms [2]. Figure 4 shows all this graphically.

Figure 4: Packet delay for different back-pressure algo-
rithms [2]

4.1.3. Adaptive traffic control algorithm. Maipra-
dit et al. [18] also use the Q-learning-based back-pressure
algorithm. They use it as an adaptive traffic control algo-
rithm. They manage to significantly decrease the average
vehicle travel time from 16% to 36% compared to other
algorithms. Although this algorithm is applied for traffic
control, it should be easily transferable to routing net-
works. Each intersection has a control agent. This agent
collects vehicle speed and vehicle position information
in each time window. Congestion information is also
exchanged between neighboring agents. Based on the
exchanged congestion information, the agent updates its
own congestion estimate based on Q-learning. Eventually,
all agents receive global congestion information. These
are helpful in tasks two and three of the three tasks that
each agent performs in every time slot: Learning global
congestion information, selecting the optimal traffic phase
based on the back-pressure algorithm and vehicle steering,
where after a vehicle passes the intersection and enters the
next road under the traffic phase selected in task two, the
agent determines which lane of this road the vehicle shall
use [18].

Their adaptive traffic control algorithm based on back-
pressure and Q-learning (ARD-BP-Q) is decentralized
and the agent at each intersection executes the algorithm
independently. An additional feature is that vehicles with
longer travel times pass through an intersection first [18].

4.2. Predictive Scheduling Aided Back-Pressure
Routing

Huang et al. [4], discuss predictive scheduling. Using
a look-ahead window model for pre-allocating rates the
delay performance of the original back-pressure algorithm
is improved. They draw inspiration from pre-fetching tech-
niques used in memory management, branch prediction
in computer architecture, and current advances in data

mining for learning user behavior patterns. The model is
implemented using prediction queues created by the server
based on the previous packets.

The authors propose the predictive back-pressure
(PBP) algorithm, which performs the BP algorithm based
on the prediction queues. PBP achieves a cost performance
that is arbitrarily close to optimality. At the same time,
it guarantees that the average system delay vanishes as
the size of the prediction window increases. Moreover,
PBP retains all the desired properties of the original
back-pressure algorithm. It remains greedy and does not
require statistical information about the system dynamics.
In addition, the look-ahead window helps the server use
connections more efficiently. The queuing policy chosen
for the look-ahead queue leads to different improvements.
With first-in-first-out (FIFO) queuing, PBP achieves an
average reduction in packet delay that is linear with the
size of the prediction window as seen in Figure 5. With
last-in-first-out (LIFO) queuing, the average packet delay
decreases exponentially with the window size as seen in
Figure 5. Thus, the average delay under PBP is strictly
better than under the original back-pressure algorithm
and totally vanishes as the prediction window size in-
creases [4]. The authors of [4] prove that the algorithm
achieves a cost performance arbitrarily close to optimality
and that the prediction is more accurate with a larger
window size.

Average queue seize of dif-
ferent prediction windows us-
ing PBP with first-in-first-
out queuing policy (V be-
ing a control parameter used
to tradeoff utility performance
and system delay) [4]

Packet delay distribution us-
ing PBP with last-in-first-out
queuing policy [4]

Figure 5: PBP performance results

5. Summary and Conclusion

In this paper, the original back-pressure routing algo-
rithms, ones using machine learning and one making use
of other improvement methods were presented.

The goal of this work was to find several back-pressure
routing policies supported by machine learning, about
which Table 2 gives an overview.

The multi-agent Q-learning aided back-pressure rout-
ing algorithm [2] is able to significantly improve de-
lay performance and maintain the following attractive
features: distributed implementation, low computational
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Variant Improvement

Multi-agent Q-learning aided back-
pressure routing algorithm

- Improved delay performance
- Distributed implementation
- Low computational complexity
- Throughput optimality

Adaptive Traffic Control Algo-
rithm

- Reduce average travel time
- Decentralized
- Longest travel times passes first

Predictive Back-Pressure algorithm - Better cost performance
- System delay vanishes with in-
creasing prediction window size
- No statistical information about
system dynamics required
- Greedy

TABLE 2: Comparison of machine learning aided back-
pressure routing algorithms

complexity, and throughput optimality. A similar system
is also used for the adaptive traffic control [18] algorithm,
where the traffic delay is also significantly reduced.

The PBP (predictive back-pressure) [4] algorithm,
based on a lookahead prediction window model, achieves
cost performance arbitrarily close to the optimum. At the
same time, it guarantees that the average system delay
vanishes as the size of the prediction window increases.

We found that at this stage, only two back-pressure
algorithms supported by machine learning could be found.
Q-routing and predictive scheduling. Since both work in
their specific theoretical models introduced in the respec-
tive paper it is however difficult to compare them in ef-
fectiveness and suitability to other network models. They
are nevertheless both able to significantly reduce delay
power and efficiently forward packets with near-optimal
throughput, but face other challenges. More computation
time is required, and nodes must constantly record data
and update the parameters stored there. Since both dis-
cussed algorithms based on machine learning have advan-
tages over other state-of-the-art back-pressure algorithms,
especially in throughput optimality and cost performance,
we believe that both Q-learning and predictive scheduling
are attractive optimizations of the original algorithm.

The multi-agent Q-learning based back-pressure rout-
ing algorithm has already been improved using the short-
est path algorithm [2]. Even though the presented machine
learning based back-pressure routing algorithms are al-
ready a major improvement over the original, this proves
there is still room for further optimization to be found in
the future.
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