
Reproducible Network Experiments using NixOS

Michael Hackl, Kilian Holzinger∗, Henning Stubbe∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: michael.hackl@tum.de, holzinger@net.in.tum.de, stubbe@net.in.tum.de

Abstract—This is a technical report about making NixOS
available on the Chair of Network Architectures and Ser-
vices’ testbeds. Our goal is to make it easy for conductors
of network experiments to make their experiments repro-
ducible. NixOS was chosen for its reproducible and declar-
ative system and package management. In the end, we will
have integrated NixOS into the chair’s testbed infrastructure
and conductors can choose to use a ready-made image of
NixOS for their experiments.

Index Terms—reproducibility, experiments, testbed, pos,
NixOS

1. Introduction

An important part of science is the verifiability of
results. To promote verifiability, we want to help conduc-
tors make their experiments on the chair’s testbeds more
reproducible, i. e., the experiments can be replicated and
will still have the same outcome.

While the reproducibility of an experiment has many
facets, in this paper, we focus on the operating system: dif-
ferent researchers should be able to set up their machines
to the same operating system state that the conductor had
when he or she performed the experiment. There are two
parts to this operating system state: the installed programs
and the configuration. Both parts are dealt with in this
paper.

For this reason, we will continue Zhou Lu’s previous
Bachelor’s thesis “Reproducible Research Infrastructure
with NixOS” [1], [2] by

• first giving an overview of the environment where
the experiments take place, i. e., the testbeds of
chair I8, and outlining NixOS from a reproducibil-
ity perspective,

• then showing how to make NixOS available on
testbeds using pos,

• and finally thoroughly describing the implementa-
tion details of this process.

2. Background Information

All of the following information about the Chair of
Network Architectures and Services’ (I8) testbeds is from
its wiki page [3].

2.1. Testbed Machines

Each testbed of the I8 testbeds consists of a man-
agement node and test nodes. Every authorized user can

connect to the management node via SSH and, as the
name suggests, manage the test nodes from there. The test
nodes are bare-metal servers on which the experiments can
be executed. Some are connected among each other with
specified network links, over which experiments can be
run. They do not have an operating system installed on
them.

Figure 1: A simplified representation of the structure of
the testbeds.

2.2. pos

The management and test nodes work together with
the help of pos [4]. pos, which stands for “Plain Orches-
trating Service”, is the main tool for conducting experi-
ments on the testbeds. It is used for

• managing the access to the test nodes between the
users through allocations and reservations with a
calendar,

• managing test nodes in terms of powering the test
nodes on or off and providing them an operating
system to boot,

• configuring test nodes with the parameters of an
experiment,

• conducting an experiment on test nodes by exe-
cuting a script or individual commands on them,

• and gathering the results and artifacts of an exper-
iment.

pos consists of three main components:

• The pos daemon (posd) is running on the man-
agement node and manages the experiments. It
provides a REST (representational state transfer)
API for the other components.

• posd can be controlled with poslib and pos-cli
from the management node. poslib is a python
library and pos-cli is a command line interface.
pos-cli uses poslib internally.

• postools is available on the test nodes and does
the communication with posd, e. g. synchronizing

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

35 doi: 10.2313/NET-2023-06-1_07



the test nodes with checkpoints and taking care
of other common useful tasks for experiments.
postools can be used as a python library or as a
command line interface.

2.3. Operating System Images

The management node can control the test nodes per
IPMI (Intelligent Platform Management Interface). This
interface allows posd to do low-level (independent of an
operating system) tasks such as powering the machines
on. The test nodes then boot by means of network booting
(Preboot eXecution Environment, PXE), i. e., they use files
from the network instead of from a built-in storage. These
files are provided by pos. pos allows us to choose the
operating system which it supplies the test nodes with,
e. g. Debian Bullseye. The operating systems, however,
are so-called live boot operating systems, i. e., they do
not need to be installed before they can be used.

New operating systems, such as NixOS in our case,
can be added to pos in the form of images. An image is
a directory that contains the following files:

• vmlinuz: the Linux kernel,
• initrd.img: the initial root file system image,
• and (optionally) bootparameters.yml: the kernel

boot parameters that pos should add1.

Such an image needs to be stored in
/srv/testbed/images/staging on the management
node, which is the place where every user is allowed to
add new images.

The standard way of creating images for the I8
testbeds is using mandelstamm [6], a collection of scripts,
on the so-called builder image. It supports different op-
erating systems via a module system. The main script
build.sh executes the desired module (which is just
another script) and then packs the result into an image.

2.4. Bootstrapping

After a test node boots, it needs to be set up. pos does
this by executing the python program host.py [7] on the
test node through SSH. It sets the configured environment
variables, installs postools, and updates the SSH keys.

This program is not compatible with NixOS as is and
needs to be adapted to work correctly.

2.5. Motivation for the Choice of NixOS

There are already several versions of Debian and
Ubuntu available for use as an operating system on the
test nodes. Also, by using network booting, the test nodes
do not store state between the experiments and therefore
already incentivize making experiments reproducible. In
this section we explore why it is worth it nonetheless to
make NixOS available on the testbeds and what it can
improve on the current situation.

NixOS [8] is a Linux distribution based on the Nix
package manager. Both the system configuration (e. g. the
/etc directory) and the package management, are handled

1. This is currently not disclosed in the wiki [3], but can be read about
in an issue of the pos daemon project [5].

in a purely functional language called Nix expressions.
These Nix expressions describe derivations, which are
tasks that define everything that is needed in order to build
a package. The Nix Packages collection (nixpkgs) [9]
contains Nix expressions for many commonly used pack-
ages. By specifying the git revision of the Nix Packages
collection repository, the versions of all packages are
clearly defined.

To install a package, the corresponding derivation has
to be realized. The output is then stored in a central
place: the Nix store. When some packages are not needed
anymore, e. g. old versions after an update, the Nix store
can be cleaned of old and unused packages by calling the
garbage collection.

NixOS uses source-based package management with a
binary cache. That means that in contrast to, for example
Debian, whose packages are distributed as binaries, its
packages are distributed in source form. However, to
save build time, NixOS can download pre-built binaries
from a binary cache when the inputs of the derivation
match the inputs of the cached version. This model is
great for reproducibility because in case a package is not
available anymore for download in the future, Nix can
automatically build it again as long as its source code can
be found. Since the Nix expressions are (supposed to be)
deterministic, the resulting binary is identical.

The system configuration of NixOS is declaratively
defined in the file /etc/nixos/configuration.nix. A
changed configuration can be applied with the program
nix-rebuild. This means that one has to share just
this one file (and the files that are referenced from it)
and others can reproduce the whole system configuration
(kernel, system services, applications, configuration files,
etc.) except for mutable state (e. g. the /var directory).
This is more efficient and less error-prone than using shell
scripts and manual commands to configure the system.

3. Using NixOS in pos Testbeds
The general command to specify which operating sys-

tem image to use is
pos nodes image <node> debian-bullseye
when using one of the provided images, e. g. Debian
Bullseye. To apply this choice, we subsequently need to
restart the test node:
pos nodes reset <node>
If we want to use a self-made image, we need to add the
staging argument to our above command:
pos nodes image --staging <node> <image>

But we may not need to build the NixOS images
ourselves: mandelstamm-ci [10] is a program that builds
images for the testbeds using mandelstamm at predefined
intervals. In case we want to build the image ourselves
anyway, e. g. because we want to change the configuration
for the image beforehand or mandelstamm-ci does not
build the images for our testbed, we can do it as follows
in the “builder-bullseye” image:
MANDELSTAMM_TARGET=copy mandelstamm/build.sh

mandelstamm/modules/nixos-22.11.sh <image
name>

↪→

↪→

The NixOS image is already preconfigured like the
other images on the testbeds, e. g. useful programs are
installed, and the timezone is set correctly.

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

36 doi: 10.2313/NET-2023-06-1_07



4. Implementation Details and Contributions

Our goal is to make NixOS available on the test nodes
for experiments.

We base our work on Lu’s Bachelor’s thesis [1], which
explains how to make a NixOS image and provide it to
pos and describes some changes to pos and the NixOS
image in order to make pos and NixOS compatible with
each other so that pos can carry out its tasks, which we
cover in Section 4.1 and Section 4.2 respectively.

The following are our contributions: We extend the
changes to pos and the NixOS image in Section 4.2. Then
we automate the build process of the NixOS image with
mandelstamm in Section 4.3 and add it to mandelstamm-
ci in Section 4.4. Eventually, we add some guidance on
the usage of NixOS in the testbeds’ wiki in Section 4.5.

4.1. Building a Basic NixOS Image

Nixpkgs already provides a way to build PXE images
of NixOS [8], [9]. In the name of easier reproducibility, we
use this official way of creating our NixOS image instead
of building it with mandelstamm (though later we will add
a feature to mandelstamm that allows external programs—
in this case nix-build—to build images). This means that
our first step is to install the Nix package manager:
apt install nix-setup-systemd
We use the existing package manager to install Nix instead
of piping the contents of the official installer URL to bash
in order to save the manual creation of a non-root user
account, have better compatibility with Debian, etc. After
that, we clone the nixpkgs repository [9], which contains
the build instructions:
git clone --depth 1

https://github.com/NixOS/nixpkgs.git
--branch nixos-22.11

↪→

↪→

To finally build a NixOS image, we then run:
nix-build -A netboot.x86_64-linux

nixpkgs/nixos/release.nix↪→

This yields us three files, two of which—bzImage
and initrd—we just need to rename to vmlinuz and
initrd.img respectively to fit as a pos image. The
third file—netboot.ipxe—needs to be adapted to work
with pos. It contains the kernel boot parameters (par-
ticularly “init”) that are required for booting NixOS.
To extract them from this file and write them to the
bootparameters.yml file, we use the command from
Figure A.4 in Lu’s thesis [1]:
grep --regexp='.⁎init=.⁎ initrd=initrd.⁎'

<'netboot.ipxe' | sed 's/.⁎init=\(.⁎\)
initrd=initrd.⁎/init: \1/'
>'bootparameters.yml'

↪→

↪→

↪→

4.2. Changes to pos and the NixOS Image

Now the image in itself is done. But pos still needs to
be expanded to be able to deal with NixOS and NixOS
configured to work together with pos. Some of these
changes have already been made (see Figures A.2 and
A.3 in thesis [1] and merge request [11]), others we make
ourselves (see merge requests [12], [13]).

4.2.1. NixOS Configuration. The NixOS image is as-
similated to the existing OS images by including the
same configuration that the module common.sh applies
to all other mandelstamm images in the NixOS config-
uration. This involves installing likely useful programs,
setting the hostname to be received via DHCP (Dynamic
Host Configuration Protocol), setting the timezone to “Eu-
rope/Berlin”, and adding SSH keys.

Furthermore, symbolic links are created in the image
to the programs that posd and host.py (introduced in
Sections 2.2 and 2.4 respectively) expected at certain loca-
tions. Python, for example, is linked to /usr/bin/python.

We modify the pos daemon to not expect python at a
fixed location with /usr/bin/python but instead use the
environment with /usr/bin/env python. The equivalent
has already been done for postools [14]. This means that
we can remove the creation of the symbolic links from
the NixOS configuration.

4.2.2. NixOS Configuration File Location. The corre-
sponding options for the aforementioned configuration
are directly included in the base file for the image
netboot-minimal.nix in the local nixpkgs repository.

This method of changing the configuration of the
image has a problem: While the changes in the local repos-
itory do carry over to the image (which means that a re-
build retains this configuration), an update (nix-channel
--update) overwrites them. This means that a subsequent
nixos-rebuild resets everything.

To solve this, we move the whole configuration to a
separate file called testbed.nix. We import this file for
the build of the image and set that the file is included in
the image and referenced from the NixOS configuration
file /etc/nixos/configuration.nix in the image using
the “configuration” argument of release.nix:
nix-build nixpkgs/nixos/release.nix -A

netboot.x86_64-linux --arg configuration
'{ pkgs, ... }: { imports = [
../files/testbed.nix ];
installer.cloneConfigIncludes = [
(pkgs.writeText "testbed.nix"
(builtins.readFile ../files/testbed.nix))
]; }'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

4.2.3. postools Installation. To accommodate the spe-
cial way to install software of NixOS, the file
default.nix [15] containing a Nix expression for
building a Nix package of postools is added at
/srv/testbed/files/luz/default.nix on the manage-
ment nodes of two testbeds2. When bootstrapping a test
node, the file is downloaded to the test node and used by
host.py to install postools to the default profile (available
in all user environments).

4.2.4. Hostname Correction. host.py needs the short
hostname for the communication with pos, but in NixOS
the hostname is set to the fully qualified domain name ob-
tained over DHCP, e. g. “klaipeda.baltikum.net.in.tum.de”.
Therefore host.py only uses the part before the first dot
of the hostname when bootstrapping NixOS.

2. This file was added to the management nodes “coinbase” and
“kaunas” [11]. In the final section of this paper we suggest making
this file no longer necessary as future work.

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

37 doi: 10.2313/NET-2023-06-1_07



4.2.5. NixOS Identification. The identification of NixOS
in host.py for the decision on how to deal with the
hostname and how to install postools fails, i. e., it does
not execute the NixOS-specific statements, which causes
the bootstrapping process to abort. We fix this by making
the comparison that tests for NixOS case insensitive.

4.2.6. Direct Build of bootparameters.yml. We
can produce the bootparameters.yml file directly
with Nix instead of adapting netboot.ipxe with
sed. To do so, we overwrite the Nix derivation
system.build.netbootIpxeScript (in the file
netboot.nix [9]) using “mkForce” (explained in [8,
Section 67.3.2. Setting Priorities]) to generate our
bootparameters.yml file instead of the standard
netboot.ipxe file:

system.build.netbootIpxeScript = lib.mkForce
(pkgs.writeTextDir "bootparameters.yml" ''↪→

init: "${config.system.build.toplevel}/init"
'');

4.3. Automated Building With mandelstamm

While mandelstamm is not compatible with the way
we want to build a NixOS image (with nix-build, see
Section 4.1) as is, we will extend it accordingly.

mandelstamm has a feature that allows us to specify
with the environment variable MANDELSTAMM_TARGET the
format in which it should pack the image. The two options
are “traditional” and “squashfs”. They were originally
introduced to compress images that are too large. We
add a third packing format “copy” to these options that
just copies the files that a module created to the output
directory, i. e., it does not pack them first as the other two
options do. This allows for building an (already packed)
NixOS image in a mandelstamm module.

As the building of images happens on the builder
image, we add “nix-setup-systemd” to the packages to be
installed there.

Next, we create the file testbed.nix (with the pre-
viously mentioned content, see Section 4.2.1) and a new
module for NixOS for versions 22.05 and 22.11 respec-
tively in the mandelstamm repository. These new modules
contain the commands for building NixOS that we already
discussed. The noteworthy points here are that we do
not add the result of the nix-build command as a root
of the garbage collector with the option --no-out-link
and that we call nix-store --gc at the end to collect
the garbage. We do this because, unlike when building
the other images, where everything happens in a tmpfs
(Temporary File System), there are files left over after
building NixOS, namely in the Nix store.

Furthermore, we automatically add the SSH key for
pos, which is found in a git submodule of the mandel-
stamm repository, to the NixOS configuration so that pos
is allowed to log in.

Eventually, we bundle all this in merge request [12].
Now NixOS images can be built using mandelstamm in
the “builder-bullseye” image using the command shown
in Section 3.

4.4. Adding NixOS to mandelstamm-ci

Because we implemented the creation of a NixOS
image in mandelstamm and mandelstamm-ci works to-
gether well with mandelstamm, we can easily auto-
mate the building process with mandelstamm-ci: With
merge request [16] we add an entry for our build
module to the configuration file of mandelstamm-ci
mandelbauer-config.yaml to make it build a NixOS
image regularly and we specify the packing format for
this build to be “copy”.

4.5. Adding Instructions to the Testbeds’ Wiki

At the very end, we add instructions for using NixOS
in the testbeds to the testbeds’ wiki [17].

5. Conclusion

NixOS is now available on the chair’s testbeds as
an automatically built image and can also be built on
other testbeds using pos by following the same procedure.
That means that conductors can now easily choose NixOS
for their experiments and make their experiments more
reproducible this way.

To allow others to reproduce the NixOS environment
for their experiments, conductors only have to provide the
nixpkgs git revision their system was built with and their
configuration.

Last, we suggest some judicious changes that we do
not implement but leave for future work:

• Provide a universal way of installing postools so
that bootstrapping is possible on all testbeds with-
out needing to manually deploy a file once on
each testbed beforehand. This could be done by
including the Nix expression for postools directly
in the NixOS configuration at the image generation
instead of installing postools during the bootstrap
process.

• The command nixos-rebuild test applies
changes to the system even when using the
unchanged configuration file from the image.
Find out why this happens and address it.

• The command nixos-version, which shows
among other things the git revision the system
was built from, reports the dummy values from
the release.nix file in [9]. Only after run-
ning nixos-rebuild test --upgrade it shows
the correct version. The correct values should be
provided from the beginning by giving them as
arguments to release.nix in the build command.

References

[1] Z. Lu, “Reproducible Research Infrastructure with NixOS,” Bach-
elor’s thesis, Technical University of Munich, 2021.

[2] ——, “Accompanying GitLab Project to ‘Reproducible Research
Infrastructure with NixOS’: NixOS for pos,” https://gitlab.lrz.de/
netintum/teaching/tumi8-theses/ba-lu/nixpkgs, [Online; accessed
4-March-2023].

[3] “Orchestration of Testbeds at I8,” https://gitlab.lrz.de/I8-testbeds/
wiki/-/wikis/home, [Online; accessed 4-March-2023].

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

38 doi: 10.2313/NET-2023-06-1_07



[4] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
framework: A methodology and toolchain for reproducible network
experiments,” in Proceedings of the 17th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’21. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 259–266. [Online]. Available: https:
//doi.org/10.1145/3485983.3494841

[5] “Issue in the pos Daemon Project: Per image (additional) de-
fault boot parameter,” https://gitlab.lrz.de/I8-testbeds/pos/daemon/
-/issues/209, [Online; accessed 4-March-2023].

[6] “mandelstamm Project,” https://gitlab.lrz.de/I8-testbeds/
mandelstamm, [Online; accessed 4-March-2023].

[7] “host.py in the pos Daemon Repository,” https://gitlab.lrz.de/
I8-testbeds/pos/daemon/-/blob/master/posd/nodes/boot/host.py,
[Online; accessed 4-March-2023].

[8] “NixOS Manual,” https://nixos.org/manual/nixos/stable/index.html,
[Online; accessed 4-March-2023].

[9] “Nixpkgs Repository on GitHub,” https://github.com/NixOS/
nixpkgs, [Online; accessed 4-March-2023].

[10] “mandelstamm-ci Project,” https://gitlab.lrz.de/I8-testbeds/
mandelstamm-ci, [Online; accessed 4-March-2023].

[11] Z. Lu, “Merge Request to the pos Daemon Repository: Nixos
support,” https://gitlab.lrz.de/I8-testbeds/pos/daemon/-/merge_
requests/323, [Online; accessed 4-March-2023].

[12] “Merge Request to the mandelstamm Repository: Add NixOS,”
https://gitlab.lrz.de/I8-testbeds/mandelstamm/-/merge_requests/37,
[Online; accessed 4-March-2023].

[13] “Merge Request to the pos Daemon Repository: Increase
NixOS compatibility,” https://gitlab.lrz.de/I8-testbeds/pos/daemon/
-/merge_requests/399, [Online; accessed 4-March-2023].

[14] “Issue in the postools Project: please use /usr/bin/env in she-
bangs,” https://gitlab.lrz.de/I8-testbeds/pos/tools/-/issues/24, [On-
line; accessed 4-March-2023].

[15] Z. Lu, “default.nix in the Accompanying GitLab Project to
‘Reproducible Research Infrastructure with NixOS’: NixOS
for pos,” https://gitlab.lrz.de/netintum/teaching/tumi8-theses/ba-lu/
nixpkgs/-/blob/master/pos_python_patch/default.nix, [Online; ac-
cessed 4-March-2023].

[16] “Merge Request to the mandelstamm-ci Repository: Add NixOS
22.11 to the build schedule,” https://gitlab.lrz.de/I8-testbeds/
mandelstamm-ci/-/merge_requests/8, [Online; accessed 4-March-
2023].

[17] M. Hackl, “NixOS,” https://gitlab.lrz.de/I8-testbeds/wiki/-/wikis/
for-users/testbed-images/NixOS, [Online; accessed 5-March-
2023].

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

39 doi: 10.2313/NET-2023-06-1_07


