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Abstract—Ethernet is one of the most widely used LAN
technologies. This vast application of Ethernet in different
fields is due to its features like low cost, flexibility, reliability
and easy maintenance. Some application fields like industrial
automation require deterministic networks but standard
Ethernet is not designed to meet real-time requirements.
Time Sensitive Networking (TSN) is a set of standards
designed to provide determinism and enable real-time capa-
bilities in Ethernet-based networks. IEEE 802.1Qbv is one
of these standards that uses Time-Aware Shaper (TAS) to
create Time Division Multiple Access (TDMA) schemes for
scheduling and transmitting data in a deterministic manner.
This paper provides an overview of IEEE 802.1Qbv and TAS,
as well as explains the purpose of schedule generation and
compares three different approaches to generate schedules.

Index Terms—time-sensitive networking, time-aware shaper

1. Introduction

Ethernet is a popular network technology known for
its low maintenance requirements and high data transfer
rates. However, it does not provide the low latency needed
for certain fields such as automotive and network automa-
tion that require real-time and deterministic communica-
tion [1].

To solve this problem, Time Sensitive Networking
(TSN) standards were introduced in 2012 to provide stan-
dardized real-time mechanisms across Ethernet networks.
Some of these standards are IEEE 802.1AS (provides
clock synchronization), IEEE 802.1Qbu (frame preemp-
tion), IEEE 802.1Qbv (enhancements for scheduled traf-
fic), and IEEE 802.1Qca (Path Control and Reservation).
In IEEE 802.1Qbv, incoming frames are assigned to differ-
ent queues on basis of their traffic class. A gate mechanism
called Time Aware Shaper (TAS) defines a timed gate
for each queue that opens or closes in accordance with
the schedule implemented in form of Gate Control List
(GCL). The GCL contains the configuration of all timed
gates (open or closed) and determines which gate should
be opened for transmission in a given time slot.

Because IEEE 802.1Qbv does not define any algorithm
for schedule synthesis, several algorithms are proposed by
researchers that focus on different network configurations
and traffic classes. This synthesis problem can be reduced
to NP-hard problems like bin-packing [2] and thus, itself
is also an NP-hard problem.

The goal of this work is to explain the working of
IEEE 802.1Qbv (TAS) and explain the working of three

approaches for synthesizing schedules. The remainder of
this paper is structured as follows. In Section 2, we
introduce relevant research on schedule generation. Sec-
tion 3 provides information about the working of IEEE
802.1Qbv and categorizes different types of methods for
creating schedules. Afterward, we describe three schedule
approaches in Section 4. Then we evaluate and compare
these approaches in Section 5. Lastly, we conclude in
Section 6.

2. Related work

As we delve into the workings of 802.1Qbv TAS, it is
important to consider the contributions of prior research
on schedule synthesis. In the following section, we review
relevant literature in this field.

Steiner [3] introduced an Satisfiability Modulo Theory
(SMT) based approach to schedule Time-Triggered (TT)
traffic in a network. He formulated the scheduling problem
as a set of logical constraints that could be solved by
SMT solvers. Hellmanns et al. [4] proposed a hierarchical
approach that uses a Tabu Search algorithm to schedule
large factory networks. Dürr et al. [5] developed a no-wait
scheduling algorithm based on Integer Linear Program-
ming (ILP) and Tabu Search. Berisa et al. [6] presented
a heuristic method for improving the schedulability of
Audio Video Bridging (AVB) streams

In this work, we first survey the SMT based approach
proposed by Craciunas et al. [7] to schedule Scheduled
Traffic (ST) frames. Next, we explore the method in-
troduced by Houtan et al. [8] for generating schedules
that enhances the Quality of Service (QoS) of best-effort
traffic in TSN networks. Lastly, we review the window-
based heuristic approach proposed by Reusch et al. [9] to
schedule large networks.

3. Background

In this Section, we explain the gate mechanism in-
troduced in 802.1Qbv and the concept of the GCL. After-
ward, we introduce two types of approaches for generating
schedules.

3.1. Time-Aware Shaper

To enable scheduling of Ethernet frames using IEEE
802.1Qbv standards in time-sensitive networks, network
components such as switches that are compatible with Qbv
are used. Traffic in a network is classified mainly into
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Figure 1: Switch with IEEE 802.1Qbv [6]

three classes: ST, AVB, and Best Effort (BE). ST streams
have the highest priority and demand high determinism,
whereas BE streams have the lowest priority.

Figure 1 presents a TSN-compatible switch with 2
ingress ports A and B and one egress port C. The function
of the switching fabric is to perform mapping of these
ingress ports to egress ports for a given stream. There are
8 queues assigned to 3 traffic classes. ST traffic is assigned
to higher-priority queues and lower-priority queues are
dedicated to BE traffic. The priority filter decides in which
queue a frame of the given stream will be enqueued. TAS
introduces a timed gate in each queue. Each timed gate has
two states: open (1) or closed (0). Frames are dequeued
from a queue in a FIFO manner. If gates of multiple
queues are opened simultaneously, the frames from the
highest-priority queue are transmitted. The state of each
timed gate and the time of opening/change in the state of
these gates is encoded in a GCL [6]. Each entry in the
GCL consists of 2 elements, where the first element is the
time relative to the start of the GCL and the second is the
state of the gates represented as a bitmask. For example,
the entry "T1: 10000000" means that only the gate of the
first queue is opened at the relative time T1. GCL is a
cyclic schedule, i. e., the entries in GCL repeat themselves
after a predefined time period Tcycle. Furthermore, the
IEEE 802.1AS standard is used to synchronize the clocks
of all TSN switches in the network [5].

TAS defines the whole gate mechanism that allows or
denies the transmission of frames by opening or closing
the corresponding queues on the basis of the GCL, but it
does not define how the entries in the GCL are created,
i. e., it does not define an algorithm that decides the state
of the gates at a given time. Therefore, several researchers
proposed algorithms that allow optimal communication
for different parameters, e. g. some algorithms aim to
achieve minimum latency for ST streams without taking
the latency of lower-priority streams into consideration [7]
while some tend to minimize the maximum end-to-end
delay of BE streams [8].

3.2. Schedule Creation

The approaches for creating schedules can be grouped
into two categories: exact approaches and heuristic ap-
proaches. Exact approaches use methods like SMT, Op-
timization Modulo Theorem (OMT), and ILP. In such
approaches, a constrained satisfaction problem is con-
structed from the scheduling problem and then solved by
methods like ILP or SMT. One of the main advantages
of these approaches is that the results generated from

these approaches are provably optimal. But the scheduling
problems are NP-hard, thus calculating exact solutions for
large networks demands high computation time.

Heuristic approaches solve this problem and speed up
the calculations by finding sub-optimal solutions. But the
results generated by these approaches are not provably
optimal. Many of these approaches employ heuristic tech-
niques such as Tabu Search and Simulated Annealing.

4. Approaches for schedule creation

In this Section, we explore three approaches for sched-
ule creation. First, we explore the SMT-based approach to
schedule ST traffic by Craciunas et al. [7]. Afterward, we
analyze another SMT-based approach to improve the QoS
of BE traffic proposed by Houtan et al. [8]. Finally, we
inspect the window-based approach devised by Reusch et
al. [9] to schedule traffic in large networks.

4.1. SMT Based ST Scheduling

Craciunas et al. [7] formulated the scheduling problem
as a set of constraints. These constraints are then passed
to the SMT solvers to find the optimal values for variables
like frame offset such that all constraints are satisfied.

Many factors like sharing of the same queue by frames
of different streams affect the deterministic behavior of
a network. To avoid this, the following constraints were
defined in [7].

Frame Constraint. This constraint assures that offset
of each frame is greater than or equal to 0 and less than
or equal to the frame period and thus, guarantees that the
frame transmission will be completed before the start of
the next period. [10].

Link Constraint. Only one frame can be transmitted at
a time on a given physical link. This constraint enforces
that no two frames directed to the same physical link
overlap each other [10].

Flow Transmission Constraint. This constraint en-
forces that frames of a stream follow the routed path of
the stream in a specific order. In other words, it assures
that a frame can only be sent on the next link in the path
after it has been fully received on the previous link [7].

End-to-End Constraint. The time between a stream
being transmitted by the sender and received at the desti-
nation must be less than or equal to the specified duration
to avoid any deadline misses for ST streams [7].

If frames of two different streams arrive at the same
time, the order in which the frames are placed in queues
is not clear. As shown in Figure 2(a), the frames from
both flows may get enqueued in any order and therefore,
they may be interleaved in any combination on the egress
port. Conditions must be defined to avoid this interleaving
by either placing such frames in different queues (Figure
2(b)) or maintaining the intended order and transmission
time for all frames if the streams are placed in the same
queue (Figure 2(c)) [7].

Stream Isolation Constraint. Two frames F1 and F2 of
different flows are planned to arrive and be assigned to a
queue in a particular order, e. g., F1 before F2. If frame
F1 is lost and is not attached to the queue, frame F2 will
get transmitted in the time slot reserved for F1, which
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Figure 2: Flow interleaving and isolation within an egress port [7]

results in non-determinism [7]. To avoid this problem,
this constraint enforces that if a frame of a given flow
is queued, no frame of other flows is allowed to enter
the queue until all frames from the given flow are fully
transmitted to the output port [7].

Frame Isolation Constraint. The constraint specified
above decreases the search space for the schedules. This
new constraint loosens it and enforces that the frames from
the second flow are now only required to wait for the
frames present in the queue and not for all frames of the
first flow to be dispatched to the output port [7].

The concept of using Satisfiability Modulo Theories
(SMT) solvers to create schedules was first introduced
by Steiner [3]. SMT solvers provide a model for the
given context when a set of variables and constraints in
the context is satisfiable. This model represents one of
the potentially many solutions to the given constraints.
The goal of this 802.1Qbv scheduling algorithm is to
find the optimal values for the frame offsets and queue
assignments for each egress port of routed flows in the
network such that all constraints explained above are
satisfied. This approach involves scheduling each flow one
at a time by adding the flow’s variables and constraints to
the SMT context and attempting to solve the problem [7].

If a solution is found, the variables for the flow are
replaced by the constant value provided by the SMT
model. This repeats until all flows are scheduled (a so-
lution found) or the solver determines that it is not pos-
sible to satisfy newly added constraints in the context.
If an unfeasible step is encountered, the SMT context is
backtracked, and the last added flow is removed. The next
optimal values of variables for the removed flow are then
determined before returning to the unfeasible step. This
backtracking algorithm repeats until a complete solution
for all flows is found or it is found that solution does
not exist after checking every possible combinations of
values using backtracking. In the latter case, a suboptimal
solution is returned that is able to schedule the maximum
number of flows [7].

4.2. QoS Improvement

The approach explained above addresses the schedul-
ing of ST streams but does not focus on BE traffic
class. The approach in [8] is an enhancement that uses
all constraints defined in [7] and proposes a new set of
constraints and objective functions to create schedules for
ST traffic while improving QoS for BE traffic.

The concept of slack is introduced to accommodate BE
frames between consecutive ST frames. Slack is a period
of time after the transmission of an ST frame during which
no other ST frames can use the bandwidth of the link [8].

Porous Link Constraint. This is a modified form of
the link constraint explained above. The link constraint

avoids the timely overlap of frames on the same link. This
constraint has been modified to take slack into account and
avoids overlapping of frames along with their slacks [8].

Slack Size Constraint. This constraint verifies the size
of slack used for each frame scheduled on the link. The
used slack size must be greater than or equal to zero, but
it must also be less than or equal to the difference between
the frame period and its transmission time [8].

Hop Slacks Constraint. This constraint bounds the
total amount of slacks allowed on the link [8].

Equal Link Constraint. This is an optional constraint
that enforces equal slack sizes for all frames on a link [8].

Three objective functions were introduced in addition
to these constraints.

Maximization. This optimization objective function at-
tempts to schedule the transmission of ST frames close to
their deadlines, while still packing them together. This
maximizes the allocation of available bandwidth for the
transmission of BE frames at the start of the schedule and
avoids deadline misses for these frames [8].

Sparse Schedule. This function seeks to maximize
the overall slack between subsequent ST frames that are
scheduled to be transmitted on the same link. In other
words, it helps to create gaps between subsequent ST
frames to fit BE frames to minimize the delay [8].

Evenly Sparse Schedule. This function modifies the
sparse schedule objective function by asserting the equal
porous constraint specified above to create equally-sized
slacks on the links [8].

An SMT solver checks the satisfiability of these con-
straints and returns one solution if they are satisfiable.

4.3. Window-Based Heuristic Approach

Real-time communication is critical in large indus-
trial networks. SMT-based approaches are not ideal for
scheduling these large networks, because the large con-
strained problems formulated have exponential runtime
w. r. t. the number of flows. Thus, heuristic approaches
are widely used for scheduling large networks, as they
provide solutions in a shorter period of time that may or
may not be optimal.

Reusch et al. proposed a heuristic approach in [9] to
create schedules. The main goal of this work is to find the
optimal window length and period so that no deadline for
an ST flow is missed and the total available bandwidth
of all ports in the network is maximized. The purpose
of maximizing available bandwidth is to allow room for
lower-priority traffic.

A window of a queue refers to the time interval for
which the timed gate of the queue is opened and allowed
to transmit frames. A cost function is defined for each
port that determines the number of windows active in
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a given period. These cost functions are added together
to get the overall cost function. A heuristic algorithm is
developed to find an initial solution that minimizes this
overall cost function. A solution is considered valid if all
flows have a finite worst-case delay. If the initial solution
provided by the heuristic method is valid, it might be
cost-optimal but it does not imply that all deadlines are
met. Thus, a window optimization algorithm checks if the
initial solution satisfies the deadlines of all flows. If these
deadlines are met, then the initial solution is returned as
the final solution.

Otherwise, the infeasible flows are sorted in descend-
ing order based on the percentage by which they exceed
their deadlines. The flow with the largest percentage is
optimized first. Optimizing a flow involves adjusting the
period of all ports on its route through an iterative process.
This is done by increasing or decreasing the period of
every window in each port by the same amount in each
iteration. If the flow is not feasible after adjusting the
periods, they are decreased for all ports. If the flow
is feasible, the periods are increased until the solution
becomes infeasible or the periods no longer change. The
motive here is to find the maximum period for each port
that allows all flows to meet their deadline [9].

Ultimately, we either get a feasible solution or there
could be a solution that exists but cannot be discovered
through this method.

5. Comparison

In this section, we discuss the results achieved by
the three approaches. We present and compare the results
obtained using these approaches.

5.1. ST Scheduling

Z3 SMT/OMT solver and Yices v2.4.2 (64bit) were
used for evaluation. The experiments were conducted on
a 64bit 4-core 3.40GHz Intel Core-i7 PC with 4GB mem-
ory and a 5-hour time-out value. Synthetic configurations
were used to analyze the scalability and schedulability
of the networks, based on three predetermined network
topologies. These topologies ranged from 3 end-systems
connected to one switch to 7 end-systems connected
through 5 switches. To achieve higher utilization on the
links, the size of the topologies was kept relatively small
compared to the number of flows. The results indicated
that the runtime increased exponentially with an increase
in the number of flows and frames scheduled, while the
period set has a significant impact on scalability. The flow
isolation approach consistently outperformed the frame
isolation approach, with an average 13% faster runtime
at the expense of schedulability. Further experiments con-
firmed this trend, with the flow isolation approach being
faster on average than the frame isolation approach [7].

5.2. QoS Improvement

For the purpose of evaluation, a multi-hop network
with six end stations was used. Different scenarios were
selected that featured different ratios of ST and BE
streams. In addition to the three objective functions ex-
plained in the Section 4.2, the minimization objective

function is used to schedule ST streams. The minimiza-
tion objective function minimizes the total offset of ST
streams. The end-to-end delay of BE streams, deadline
misses, and runtime were measured for each objective
function. Moreover, Z3 SMT/OMT solver was used to
solve the constrained problem and find a feasible solution.

The minimization objective function resulted in the
longest end-to-end delay for BE streams in all scenarios,
while the maximization objective function gave the best
results. The reason is that the maximization function
schedules ST frames as close to their deadlines as pos-
sible, which creates room for BE frames to be scheduled.
The sparse and evenly sparse objective functions also
produced lower end-to-end delays due to the slack, that is
built in to accommodate BE frames.

The minimization and maximization functions had
a large number of missed deadlines, while the sparse
schedule function and evenly sparse schedule functions
had no missed deadlines in any of the scenarios. Both
the sparse schedule function and evenly sparse schedule
function also had the best runtime. In scenarios with fewer
ST streams, the maximization function was faster than
the minimization function. However, as the number of
ST streams increased, the maximization function became
slower and was eventually outperformed by the minimiza-
tion function [8].

5.3. Window-Based Heuristic Approach

Seven test cases were designed based on industrial
application requirements to evaluate the effectiveness of
the approach. Moreover, the greedy randomized adaptive
search procedure (GRASP) metaheuristic from [11] and
Strict Priority (SP) policy were used for comparison. Four
aspects were considered in the comparison: worst-case
delay, mean cost, calculation time, and the number of
infeasible flows.

The results showed that although the proposed al-
gorithm had a better execution time than GRASP, it
was outperformed by GRASP in the other three aspects.
The SP algorithm had the best runtime, but it caused a
significant delay for other traffic classes. GRASP was
able to schedule all flows in all test cases, but required
exponential time to get solutions in some cases. Moreover,
GRASP was less robust and more difficult to adapt to
changing conditions in real-time applications, compared
to the proposed algorithm [9].

5.4. Comparison

As shown in the Table 1, ST Scheduling [7] solely
focuses on scheduling ST frames, while the other two
approaches take both ST and BE frames into consider-
ation. Additionally, ST Scheduling [7] has the highest
runtime among the three approaches. For small networks,
QoS Improvement [12] exhibits the most efficient runtime,
whereas Window-based Heuristic [9] has the best runtime
for larger networks but as a tradeoff, it returns suboptimal
solution, unlike the other two approaches that always
return optimal solution.

Therefore, we can conclude that out of the three ap-
proaches, the third approach is optimal for large networks,
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Name Solution Approach ST BE Nodes Streams Runtime (s) Solution Optimal?

ST Scheduling [7] SMT X × 12 1000 <18000 X
QoS Improvement [12] SMT X X 8 10 0.37-1153.52 X
Window-based Heuristic [9] Heuristic X X 402 316 ∼10.52 ×

TABLE 1: Overview of the approaches discussed in this paper [13]

whereas for small networks, the second approach is the
most suitable approach.

6. Conclusion and Future Work
In this paper, we described the working of the gate

mechanism in IEEE 802.1Qbv and explored and analyzed
three different approaches for creating schedules. The first
approach scheduled ST frames without taking other traffic
classes in consideration. The second approach aimed to
optimize the scheduling of BE frames while meeting the
deadlines of ST frames for small networks using SMT
solvers. The last approach used a heuristic algorithm to
schedule ST frames and maximize the available band-
width for BE frames in large networks. All approaches
succeeded in their objectives. We also compared these
approaches and concluded that the third approach had the
best runtime at the expense of the optimality of the solu-
tion returned, whereas the second approach outperformed
the first approach for small networks.

Future work on the first and second approaches could
focus on reducing the complexity of the scheduling prob-
lem by trying to remove or loosen some constraints while
still meeting the deadlines of all flows. One possible
extension to the window-based approach could be further
optimization using new heuristic techniques to minimize
the overall delay.
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