
P416: Out of the Loop

Felix Sandmair, Henning Stubbe, Eric Hauser∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: felix.sandmair@tum.de, stubbe@net.in.tum.de, hauser@net.in.tum.de

Abstract—P416 is a programming language used for packet
processing that was formulated without providing loops, such
as for or while loops. This Paper is going to give a quick
summary of P416 in order to show how it is still possible
to implement loops in P416 and afterward compare the
solutions in regard to performance.

1. Introduction

P416 is a programming language that differs from
many programming languages because it was designed
without a concept for loops. The reasoning behind that
is that if we eliminate iterations, the time needed for
computing a P4 program is linearly dependent on the
packet size. Having no loops can be limiting at times, e. g.
for processing the payload of the packet, you might need
some form of looping [1]. Another example would be TCP
SYN proxies. TCP SYN proxies are a measure to protect a
server against SYN flooding attacks [2]. To implement this
functionality on software-defined networks looping would
be very helpful. Furthurmore, this investigation shows the
limits of the programming language P416. The following
sections will discuss how it is possible to write loops in
P416 even without concepts like while and goto. After
explaining the approaches, it will focus on analyzing the
performance and comparing our solutions.

2. P416 Introduction

P416 is a language that is used to program the
data plane of software-defined networks. The programs
written in this language are deployed on programmable
networking hardware like routers, switches, network
interface cards, or network appliances. Those devices are
called targets. The manufacturer of those targets needs
to provide the hardware or software implementation
framework, an architecture definition, and a P4 compiler.
P416 can only specify the data plane functionality of
a device. After compilation, it generates an API for
the control plane to interact with the data plane. The
architecture definitions describe how the architecture
is put together. Each P416 program can be divided
into multiple Blocks, usually always consisting of a
Parser, a Deparser, and a variable amount of Control
Blocks. In this paper, the V1 Architecture will be the
architecture that is used in the P416 programs, which
is an architecture by the P4 Language Consortium. This
architecture was designed in a way that is comparable
to the old P414 architecture. Figure 1 shows how the

architecture of the V1 Model is structured.
The Parser is always the first block a packet passes
through. The Parser resembles a finite state machine
that parses the packet headers and extracts the header
data into a header struct. This data could be an ethernet
header, but also personalized headers not following any
popular protocol. Since it is possible to specify any
header structure, it is technically possible to parse more
than just the headers, e. g. a packet’s payload [1].

Figure 1: V1 Model Architecture [3]

After the parser, there are different programmable
control blocks. In the case of the V1 Architecture, there
are the MyVerifyChecksum, MyIngress, MyEgress, and
MyComputeChecksum control blocks. Every target may
also have extra functionality it can provide the user of
the target. This functionality can be provided to the pro-
grammer with a so called extern function. These extern
fuctions are methods that are unique to different targets.
The Architecture can also limit the programmer to use
certain extern functions only in certain control blocks [3].
In the end, the packet gets reassembled by the deparser.
The deparser takes all the header data that was manipu-
lated within the control blocks and maybe added new ones
and puts them back together into a network packet.

3. Loop Concepts

In this section, the different approaches to implement
loops in P416 will be discussed.

3.1. Parser Loops

Parser Loops are probably the most straightforward
possibility to program loops in P416. At the beginning
of the parser, there will be the opportunity to declare
variables and constants. Also, the objects needed inside
of the loop, can be instanciated here. After that, starts
the definition of the finite state machine. The finite state
machine always consists of a initial state, called start,
where the parsing of every packet will begin and two

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

25 doi: 10.2313/NET-2023-06-1_05

different final states, accept and reject. Usually, each
state will be used to extract the headers of the received
packets. The headers extracted will be saved in a C struct
like header struct. After the extraction of the header
the transition will be invoked based on the information
extracted from the header. E.g. if the header extracted
would be an ethernet header and the EtherType of the
header would indicate that the packet is an IPv4 packet it
goes to the state for extracting IPv4 header. This decision
will be done by using a select statement that matches
an expression list to specific values. After the select
statement matches the expression list, it will transition
to the given state. Before the transition statement, an
arbitrary amount of parser statements can be written.
The syntax of Parser statements allows basic arithmetic
operations on variables and constants and methods
calls on objects instantiated before. Depending on the
target, the parser statements might allow more or less
functionality inside the parser statements. E.g. Not all
targets will allow the use of if statements inside the
parser. In case if statements are needed inside the loop
it is possible to use the select statement to achieve the
same functionality a if statement would provide. This
will come at the cost of one state per if statement used
inside the loop. A significant benefit of this approach to
building loops in P416 is that it can be done on nearly
every target, but there are exceptions. Some targets will
not compile parsers that contain loops. The compiler will
check if the parser can be unrolled into a graph without
circles at compile time. If the parser can not be unrolled,
it will further check if the loop advances the cursor of
the packet in every iteration. If this is the case, the parser
can be compiled since the packet size is finite and if the
cicle always advances the cursor the loop can not loop
infinitely [4].

1 bit <32> i = 0;
2

3 state start {
4 transition l1;
5 }
6

7 state l1 {
8 //loop -body
9 i = i + 1; //condition -update

10 transition select(i<= CYCLES /⁎while -
condition ⁎/) {

11 true:l1;
12 default:parse_ethernet;
13 }
14 }

Source Code 1: do-while-loop in parser

15 bit <32> i = 0;
16

17 state start {
18 transition l1;
19 }
20

21 state l1 {
22 transition select(i<= CYCLES /⁎while -

condition ⁎/) {
23 true:l2;
24 default:parse_ethernet;
25 }
26 }
27

28 state l2 {

29 //loop -body
30 i = i + 1; //condition -update
31 transition l1;
32 }

Source Code 2: while-loop in parser

In Source Code 1 and Source Code 2 , two different
implementations of parser loops can be seen. The code
fragments show an implementation of a do-while-loop and
the regular while-loop. For both solutions, the declaration
of all variables needed and instanciation of all objects
takes place. In this case, the variable i, which is used
to cycle through the loop a constant amount of times, is
the only variable needed. After that, the implementations
differ. For the do-while-loop in Source Code 1, the body
of the loop can be executed immediately before checking
any condition. Afterwards, the breaking condition for our
loop is written inside the select statement. If the condi-
tion holds, the select statement will evaluate to true and
transition back to the same state. In order to get the more
commonly used while-loop the usage of an additionale
state is obligatory. This time instead of executing the loop-
body inside the first state, the condition is beeing checks
first. If the condition is met, the select statement transition
to the second state of the loop l2, to execute the loop-body.
After the loop execution is finished, l2 transitions back to
state l1. The loop body of this example only consists of
one line where the variable i gets incremented to iterate a
fixed amount of times through the loop. Back in state l1
the condition check happens again. When the point that
the condition evaluates to false is reached, it is possible
to into another loop or in this case start with parsing of
the headers of the packet.
Two different solutions were beeing implemented in hope
of performance benefits if only one state is beeing used
instead of two different states because of less transitioning
between states. Another reason is to show that there are
more then just one possibility to introduce loops into the
parser.

3.2. Recirculate Loops

Another possibility to realize loops is by using
extern functionality. In this case, the extern method
recirculate_preserving_field_list() provided by the V1
architecture was beeing used. This extern simply takes
the packet that is currently processed deparses it and
introduces it back into the packet processing beginning
with the parser. This method can only be used in the
MyEgress control block of a P4 Program. When using
this method, it receives a number as a parameter. This
number represents a list of variables from the metadata
that should be saved for the next pass through the packet
processing. This means every variable that is needed for
the loop, like a loop index, is stored inside the metadata
and annotated using the @field_list annotation. The
number used to annotate the varibales is given to the
recirculate_preserving_field_list() extern as a parameter.

33 struct metadata {
34 @field_list(RECIRC_FL)
35 bit <32> i;
36 }

Source Code 3: metadata definition

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

26 doi: 10.2313/NET-2023-06-1_05

In this example, the variable i is stored inside the
metadata as shown in Source Code 3. The the variable is
annotated with the constant RECIRC_FL (constant with
the value 0).

37 apply {
38 if(standard_metadata.instance_type != 4)

{
39 meta.index = 0;
40 }
41 if (!(meta.index < CICLES) && hdr.ipv4

.isValid ()) { // condition check
42 //if break condition is met the

tables for routing need to be applied
43 ipv4_lpm.apply();
44 }
45 }

Source Code 4: Ingress control

In the Ingress control, the first thing that is beeing done
is to check if the packed arrives here for the first time or if
it is a packet that was already recirculated. This is done by
checking the field instance_type of the standard_metadata.
If the field does not contain the value four [5], it is not
a recirculated packet, and the metadata fields need to be
initialized. In this example, the variable i gets set to 0 in
order to keep track of the number of iterations the packet
has already done. If the packet that arrived in the Ingress
control is recirculated, the condition will be checked to
make sure if the packet needs continue looping or if the
loop should be stopped and the packet should be routed.

46 apply {
47 if(meta.index < CICLES) { // condition

check
48 //loop -body
49 meta.index = meta.index + 1; //

condition -update
50 recirculate_preserving_field_list(

RECIRC_FL);
51 }
52 }

Source Code 5: Egress control

When entering the egress control, the break con-
dition of the loop will be checked. If the con-
dition holds, the execution of the loop body will
start. At the end of the execution, the recircu-
late_preserving_field_list() method is used. The reason
why the recirculate_preserving_field_list() method is used
inside the if statement is because otherwise, the routing
done by the ipv4_lpm.apply() in Source Code 4 would be
overwritten, and the packet would continue looping. Like
mentioned before, the recirculate extern takes an integer
value in order to save the annotated variables inside the
metadata. Here the constant RECIRC_FL is given to the
method to save the value of the variable i. After the Egress
control, the packet will be reassembled by the deparser
and sent back to the parser.
One problem with this approach of building a loop in P416
is that it will create a large overhead for each iteration
since it has to pass through the whole package processing
every iteration. Also, this solution is unique to the V1
architecture, or other targets that implement a recirculate
extern function. [6]

3.3. Custom Loop Header

This solution is similar to the loops introduced in
Section 3.2. Instead of relying on an extern method for
recirculating, a physical connection between one of the
output ports to one of our input ports of the device is
beeing established, in order to recirculate the packets.
Also a personalized header struct is introduced where all
variables used inside the loop will be stored. This means
variables needed for the calculations and the variables
needed for the break condition check will be saved inside
this header. Once a packet arrives, all headers of the packet
will be parsed, including the custom loop header. After the
parsing is done the program would need to check in the
Ingress control if the packet headers include the custom
loop header or not. If the packet does not arrive with the
custom header that header will be generated and added to
the packet headers. If the packet headers already include
the custom header it means the packet is looping and the
break condition needs to be checked. If the condition is
met and the loop needs to be continued the loop body is
executed. After the execution of the loop body the variable
defining the output port needs to be updated to the port
connected to with one of the input ports. If the loop needs
to be stopped the custom header needs to be removed
again and the packet will be routed. This approach comes
with the same problem of the recirculate loops. Since the
packet needs to go through the whole packet processing
for each iteration, the loop overhead is quite extensive.
An advantage of about this approach is that it can be run
on every P4 programmable device since the device has no
idea it is sending a packet back to itself.

4. Loop Performance Analysis

The test setup that was beeing used for the
performance analysis is based on a mininet simulation for
P416. The Mininet setup is running on a Virtual machine
using Virtual Box. It was set up with the repository [7]
and vagrant. In the Virtual Box settings, the VM had four
cores and 4096 MB of RAM assigned. The Computer the
tests were run on is a laptop with an Intel Core i7-9750H
(2.6Ghz) and 8GB of 2667MHz RAM. The mininet
topology used has two hosts, h1 and h2, connected with
a switch s1 in between. The P4 Program is run on the
switch s1. The solution shown in Section 3.3 will not be
coverd in the performance analysis. The simulation of
the physical connection from one of the outgoing port to
one of the ingoing ports was attempted but not succesful.
Further studies could try to either verify the solution
presented in the section 3.3 outside of a simulation on a
real device or find another solution inside the simulation.
Because of this, the solution from section 3.3 is only a
concept but is not verified if it would acually work.

Figure 2: Mininet topology [8]

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

27 doi: 10.2313/NET-2023-06-1_05

To get the measurements shown in Figure 3 below,
50 identical packets were sent from host h1 to host h2
and computed an arithmetic mean of the measured times.
The time it took to execute the loop inside switch s1 was
calculated by capturing the pcaps of the input and output
interface. Pcaps are files that are generated by sniffing on
an interface of a network device and they store information
like the time a packet left the interface or the IP adress of
the packet. Since this Paper focuses on the performance of
the different loop types no calculations were done inside
the loops to compare just the performance of the loop
concepts. As seen in Figure 3, six measurments were
beeing done for each approach, starting from 5000 loop
iterations to 50000 loop iterations. It was observed that the
first packets that were sent had very long times. Because
of that the decision was made to send ten packets before
measuring the time of the 50 packets used to calculate the
average. Another observation that was observed is that the
times of most packets were pretty close, but a few of the
packets had high variances. This could be a scheduling
problem since the p4 program is run inside a mininet
simulation inside a VM.

10000 20000 30000 40000 50000
loop iterations

500

1000

1500

2000

2500

3000

3500

4000

4500

tim
e

in
 m

s

Parser Loops
DoWhile
While

10000 20000 30000 40000 50000
loop iterations

0

10000

20000

30000

40000

tim
e

in
 m

s

Parser Loops and Recirc
DoWhile
While
Recirc

Figure 3: execution time graphs

As expected, the performance of the loops imple-
mented in the parser is better than the one using the re-
circulate_preserving_field_list() method. This is expected
because the recirculate loop has to do the whole package
processing for each loop. The performance of the do-
while-loop is close to the performance of the while-loop
but the do-while-loop is still the faster of the two. This
should be because the do-while-loop only uses one state
instead of two. The difference between the do-while-loop
and while-loop is pretty small and will get even smaller

once more states are introduced to the loop for realizing
if statements with the select statement. Another thing that
can be seen very clearly in the plot is that the time grows
linearly the more iterations are added to the loop. This is
good to see because otherwise, it would not be suitable
for algorithms that need a high iteration count.

5. Conclusion

We saw it is possible to write loops in P416, with
some solutions being more costly than others. It can be
said that loops used in the parser are a better solution
than the recirculate loop. Unfortunately, it was impossible
to compare our solutions to the approach mentioned in
Section 3.3. One question that remains unanswered is
whether it is a good idea to use loops in P416 in general.
To answer this question, it would be necessary to do more
studies that use the concepts introduced in this paper
to implement algorithms for real-world use cases and
compare them to solutions from other languages.

References

[1] M. Budiu and C. Dodd, “The p416 programming language,” ACM
SIGOPS Operating Systems Review, vol. 51, no. 1, pp. 5–14, 2017.

[2] D. Scholz, S. Gallenmüller, H. Stubbe, and G. Carle, “Syn flood
defense in programmable data planes,” in Proceedings of the 3rd
P4 Workshop in Europe, 2020, pp. 13–20.

[3] B. N. Vladimir Gurevich, “P416 Introduction,” https:
//opennetworking.org/wp-content/uploads/2020/12/p4_d2_2017_
p4_16_tutorial.pdf, 2017, [Online; accessed 25-September-2022].

[4] T. P. L. Consortium, “P416 Language Specification,” https://p4.
org/p4-spec/docs/P4-16-v1.2.3.pdf, 2022, [Online; accessed 25-
September-2022].

[5] p4language, “intrinsic,” https://github.com/p4lang/p4c/blob/main/
testdata/p4_14_samples/switch_20160512/includes/intrinsic.p4#
L60-L66, 2019, [Online; accessed 25-September-2022].

[6] A. Fingerhut, “v1model special ops,” https://github.com/jafingerhut/
p4-guide/tree/master/v1model-special-ops, 2021, [Online; accessed
25-September-2022].

[7] p4lang, “tutorials,” https://github.com/p4lang/tutorials/, 2022, [On-
line; accessed 25-September-2022].

[8] “Working with P4 in Mininet on BMV2,” https://opennetworking.
org/wp-content/uploads/2020/12/p4_d2_2017_p4_16_tutorial.pdf,
[Online; accessed 25-September-2022].

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

28 doi: 10.2313/NET-2023-06-1_05

