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Preface

We are pleased to present to you the proceedings of the Seminar Innovative Internet Technologies and
Mobile Communications (IITM) during the Winter Semester 2022/2023. Each semester, the seminar takes
place in two different ways: once as a block seminar during the semester break and once in the course of
the semester. Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks, supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterward present the results to the other course participants.
To improve the quality of the papers, we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar, we award one with the Best Paper Award. For this semester,
the awards were given to Andreas Kramer with the paper Recent Advancements in Privacy Preserving
Network Layer Approaches and Désirée Rentz with the paper Mechanisms and Protocols for Reliable
Communication Networks .

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, June 2023

Georg Carle Stephan Günther Benedikt Jaeger Leander Seidlitz
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Elaboration of Information and Content Centric Networking

Izzet Fatih Cetinkaya, Markus Sosnowski∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: izzetfatih.cetinkaya@tum.de, sosnowski@net.in.tum.de

Abstract—Information-centric networking (ICN) and
Content-centric networking (CCN) are new architectures
that aim to replace or initially support current internet
protocols (IPs). Consumers no longer need to wait for a
response from hosts to access information with the usage
of internet protocols. ICN, speciall through CCN, resolves
this waiting time by allowing the data exchange within
the naming content.Based on the naming content CCN
additionally offers safer architecture for consumers by using
cryptography in searched content.In this paper we aim to
explain the backstory and the primary working structure
of ICN/CCN. Furthermore, we give a small example of an
existing tool based on CCN working principles which also
aims to explain how CCN can operate and compare CCN
and IP in three categories.

Index Terms—content-centric networking, information-
centric networking, forwarding,internet protocols.

1. Introduction

The current internet protocols (IPs) ,due to security
reasons and slowleness caused by host to host informa-
tion exchange, are no longer sufficient enough to meet
today’s demand to reach information faster. Therefore we
needed new protocols which could replace IPs or change
the way they are operating. In classical IPs, information
location and how it is distributed to consumers are the
key elements of data distribution. Hence, we need to
rely on pipelines and local hosts more than the content
we are looking for. However, at the beginning of 2009,
researchers in Pao Alto, United States, created another
networking architecture that can answer the need for fast
and secure information more efficiently [1]. The new ar-
chitecture is called information-centric networking (ICN).
The difference between IPs and ICNs is heavily based
on the concept of their working mechanism. While IPs
are relying on the host information and how they are
shared with consumers, in contrast, ICNs are based on the
name of the content and what is delivered to consumers
[1]. Thus, ICN allows reaching information much faster
and more secure than IPs thanks to avoidance of host
data, which can contain malicisous threads, and caching
information to reuse later [2] [1]. This new information-
based architecture consists of different sub-structures and
sub-architectures. The most used among the new ICN is
content-centric networking (CCN). The reason CCN is
a more common approach than others is that CCN has
an effective way of data exchange. In other words, CCN
enables the information exchange between users only on

the content that they are looking for. Hence, information
flow does not depend heavily on the layer protocols. In
this paper, we are going to explain the back story of ICN
and CCN in Section 1 briefly, and then we are going to
elaborate on the current working structures of CCN with
detailed information in section 2. Furthermore, we are
going to give an example of a tool that aims to explain
how CCN works and in the last section, we are going to
compare IPs and CCN in three different categories, where
CCN is offering consumers better usage.

2. Background of ICN and CCN

ICN was created to accelerate current internet pro-
tocols more efficiently and securely. Hence ICN offers
a shift from “Host Centric Network” to “Information-
Centric Network.” [3]. What does this shift mean? The
classical approach of internet protocols (IPs) is based on
the host data, which is essential to know where the data
storage, that was restricted into four layers; Application
Layer (HTTP), Transport Layer (TCP), Network Layer
(ISO 7498/4) and Link Layer (Ethernet). However, in ICN,
Host-data plays an insignificant role in determining re-
quested information. In contrast, the ICN approach is more
in which data has been requested from the consumers.
Therefore we can eliminate the long wait time, which
IPs are based on, with the help of information-centric
networking.ICN has several approaches like Named Data
Networking (NDN) [4] or Data-Oriented Networking Ar-
chitecture (DONA) [5]. NDN is Content-Centric Network
(CCN) based architecture. What we mean by based ar-
chitecture? When NDN is first used, the working prici-
ples and structure were build upon the CCN’s working
structure [4]. For example, NDN also uses interest and
data packets for information exchange,for a more detailed
explanation of interest packets (section 3). DONA is, on
the other hand, created to accelarete existing application
and try to improve security. DONA’s working principles
aim to change domain name system (DNS) names with flat
names, self-certified names (section 3), and DNS name
resolution with name-based anycast primitive that lays
above IP layer [5]. DONA also improves data retrieval
by providing more coherent support for persistence, au-
thentication, and availability [5]. But, CCN is still one of
the most common approaches of ICN architecture. While
the conception of data request switched to content based
rather than the host location, CCN has significant advan-
tages in compare to DONA, to answering the need for ICN
by replacing IP Layers.The reason is CCN is the key and
common approach of ICN that CCN is more adaptable to
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new environments and being able to provide better caching
and naming in multicast traffic in compare to DONA and
NDN [2]. Thus, CCN has the upper hand in comparison to
other approaches like Named Data Networking (NDN) [4]
or Data-Oriented Networking Architecture (DONA) [5].
Additionally, in some cases, CCN has been considered that
is not precisely replacing layer 3 (ISO 7498/4) but plays
an additional role in speeding up the resulting process [1].

3. Basic Concept of CCN

As we briefly explained in section 2, ICN based archi-
tecture CCN can be more efficient approach to exchange
information between providers and consumers. In this
section, we elaborate on this efficient approach, which
can create switch from IP to CCN with a clear concept
of CCN. In order to point out the working mechanism
and structure of CCN, the main part of our illustration
of structure is based on the new working principles of
CCN, which is information exchange within packets or,
in other words, faces. CCN data exchange consists of
two main bodies, and these are interest packets and data
packets. The interest packet consists of three main layers,
which are content name selector, and nonce [1]. The data
packet, however, consists of four layers, those are content
name, signature, signed info and data [1] [2]. As we can
clearly identify, the key indicator for both packets is the
content’s name. Even though both packages contain the
same content name as the vital unifier for packets, their
core roles are not overlapping but rather complete each
other. In other words, the interest packet’s name contains
the requested information by consumers or CCN nodes,
and data packets have the corresponding information from
servers or hosts [2].

Figure 1: CCN Package Layers [1]

In figure 1 and figure 2 are visualising the interest
and data packets.After visualisation of the packets, we
can touch the content of the each layer. The content name
layer contains a sequence of name components [4].The
signature is defined in two different parts; firt one is
signature-info, which indicates digitial signature algorithm
and relavent information in local certificate.Second one is
signature-value that hold the bits of the signature [4]. Last
but not least Nonce is used to carry randomly generated
long byte-stting [4]. Additionally, figure 2 shows IP layer

Figure 2: CCN and IP Package Layers Comparison [2]

distribution compared to CCN, which helps us see how
content-centric networking differs from current internet
protocols.

After we explained the two central bodies of the
CCNs, we also want to point out how this mechanism
works and how those main strategies support Content
Centric Networking.

The main working mechanism that CCN is built upon
is the following strategies:

3.1. Forwarding

The forwarding strategy is one of the key elements of
CCN to transfer data from sender to receiver or receiver
to sender. Forwarding has three essential sub-structures:

• Pending Interest Table (PIT)
• Forwarding Information Base (FIB)
• Content Store (CS)

Figure 3: Forwarding structure [1]

In figure 3 it can be seen that each of the three sub-
structures works alone or with other structures. In the

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

2 doi: 10.2313/NET-2023-06-1_01



first step of cooperation work, requests are created by
the receivers as following interest packets sent to corre-
sponding faces (PIT). In the second step, FIB transfers the
information to potential matching data, which will collect
the related data and send it back to the receiver, and in
the mean time, CS stores founding data in its storage in
order to create a faster response in the future. In [1] the
whole process and detailed explanation of each step can
be seen better.

3.2. Naming

The main concept of Content-Centric architecture is
naming the content directly. “Then, publishers place it
in the network where it is replicated in caches” [2].
Thanks to the naming strategy, it allows publishers and
receivers to have a more secure, more flexible, and more
scaleable CCN. In [6] Ghodsi et al. explained how the
CCN Naming works. In our structural explanation, we
want to also point out two main approaches to Naming.
These are hierarchical naming and flat naming. Although
they are both responding to the naming process of CCN,
they have slight differences. While Hierarchical naming
ensures that the content name can be human readable,
Flat naming provides self-certified naming. In figure 4
the main differences can be identified better, in order
to understand which of the naming approaches are used
where. Additionally, figure 5 shows how the structural
concept of the two naming approaches works.

Figure 4: Naming Comparison [2]

3.3. Caching

Caching is also one of the conspicuous structures of
CCN. Caching structure is heavily correlated with For-
warding due to the nature of Caching. Caching’s working
principle is transferring data from buffer memory, which is
holding information temporarily, to cache space memory,
where it can be stored for a longer time. This is also to
process of Content Store (CS) (see Section A). Thanks
to caching, in event of a data request from a consumer,
FIB does not require to go to different servers to find

Figure 5: Naming data structure [1]

Figure 6: Caching Strategy Layers [2]

information. Instead, it can use the stored data in caching
to respond to requests.

In figure 6 various different caching strategies can
be seen, which are segmented into four main layers and
sublayers.In Nodes cooperation caching, information that
currently cached will be shared with neighbour cache
[2]. Following cache strategy (CS) suggest that proactive
mechanism can be used as an additional modul [2]. In the
third CS data packet processing is focused [2]. And in the
last one higher cache hit is the key indicator [2].

3.4. Security Mechanism

Security structure is based on four main components;
those are confidentiality, provenance, integrability, and
availability [2]. Thanks to these components, CCN elim-
inates malicious threads, one of the IP’s main security
threats. "In CCN, all content is authenticated with digital
signatures, and private content is protected with encryp-
tion. This is a critical enabler for CCN’s dynamic content-
caching capabilities. If you are to retrieve content from
the closest available copy, you must be able to validate
the content you get" [1].Hence, CCN enables secure and
trustable internet to consumers.

In [1] content-based security more details are ex-
plained with experiment. Which helps to elaborate, how
CCN can be safer than IPs.

3.5. Monitoring

While CCN allows consumers to request data simulta-
neously, Monitoring needs arise with these simultaneous
actions. The main task of Monitoring is enhancing the
data that has been transferred to protect CCN from attacks
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[2]. The enhancing mechanism works as following; Mon-
itoring captures and analyses the information concerning
content distribution flows [2]. In papers [7], [8] different
tools have been provided to us for Monitoring.

4. An Existing Tool for CCN

In this section, we want to give a small example of
CCN based tool [3], which helps us to understand how
CCN works. CONET: A Content-Centric Inter Network-
ing Architecture aims to provide consumers with named
data rather than host data [3]. By doing so, CONET
either replaces existing IPs with additional noted IPs that
make them content aware, or creates new CCN-based
networking that can conduct data requests with content-
name-based architecture.

In figures 7 and 8, CONET’s architecture and primary
working packet system can be seen.

Figure 7: CONET Architecture [3]

Figure 8: CONET Information Unit [3]

5. Comparison and Discussion

In our last section, we aim to point out three categories
where CCN has the upper hand compared to IPs.These are
Availability, which we also mentioned (see section D),
Security, and Location dependence. We want to start with
the one we think, where CCN resolves so many issues
compare to IP and this is Security.

• CCN’s core structure relies on the data transfer
on the content name. Therefore transferred data is
no longer a property of pipelines that move data
from one another without caring about the content
itself but focusing on the data holders. “ In CCN,
all content is authenticated with digital signatures,
and private content is protected with encryption”
[1]. Thus, CCN provides a more robust security
system for malicious attacks on data transactions.
Another defining characteristic of CCN’s security
is “Key Handling” (Trusting Key). In [1] it is
explained under three sub-categories, which are
keys directly addressed to the problem, second
publishing only one key, and third CCN is not
empowering one key for all sizes but it creates
trust between publishers (senders) and consumers
(receivers).

• The second category that we want to compare
CCN with IP is Location dependence. While ICN
and CCN are not relying on the host locations
and connections between hosts. This indepen-
dence allows CCN to operate easily without be-
ing restricted by internet protocols. Thus, CCN-
requested data engages with the consumers faster,
and the information is more reliable.

• Last but not least, Availability. CCN’s availability
is greatly based on the CCN’s flexibility. More like
location dependency, requested data is not bonded
to any host location. Hence, in the case of data
requests, contented data can be transferred flexibly
to one another. Availability allows CCN to provide
more reliable data to consumers.

6. Related work

Content-centric networking is still growing in architec-
ture that is not fully established yet. Therefore there are
many ongoing surveys, experiments, and collaborations
with other tools. For example, Ahlgren et al. [9] tackle the
design choices of ICN and, respectively CCN. In another
example, Nakamura et al. [10] focus on how ICN will
cooperate in the event of network failure. Even though
ICN is offering more sustainable data exchange, it does
not entirely eliminate the risk factor of failure, but it
decreased significantly. The findings of the [10] indicate
thanks to ICN topology, in case of network failure, ICN
still operates more efficiently than old internet protocols
due to selective node removal. Ghali et al. [11] handle the
possible problems with the high usage of CCN. While
security is among the key aspects of CCN, this paper
should be mentioned in our writing to underline CCN
security.
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7. Conclusion

In conclusion, we tried to elaborate why ICN and CCN
are replacing or accelerating current Internet Protocols.
Additionally, we elaborate on the current state of CCN and
how CCN is structured. By doing so, we briefly mentioned
five critical structures of the CCN. So we could understand
the CCN process better. Furthermore, we give an example
of a tool that operates under CCN protocols and underline
three aspects where CCN works better than IP. As a
result, we can say that CCN has significant advantages in
security, flexibility, and mobility, which can make CCN
more reliable and more demanded in the near future.
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A Survey about the Work of the Coding for Efficient Network Communications
Research Group (NWCRG)

Dorit Hübner, Henning Stubbe∗, Kilian Holzinger∗
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Technical University of Munich, Germany
Email: dorit.huebner@tum.de, stubbe@net.in.tum.de, holzinger@net.in.tum.de

Abstract—There has been a lot of research on improving
transmission quality in networks. One approach is coding on
nodes within the network (NC). This can make transmission
more secure, reliable, and quick. A group of scientists, in
this field, formed in 2013 to gather knowledge and identify
open research questions about NC. This paper surveys the
content of their finished work and puts it in context with
other literature. We concluded that NWCRG fulfilled their
goals by examining multiple different topics in NC, showing
research challenges, and furthermore solving one challenge
themselves.

Index Terms—nwcrg, network coding, satellite communica-
tion, congestion control, forward erasure correction, content-
centric networking, named data networking

1. Introduction

Encoding and decoding packets not only at the ends
of a transmission but also at intermediate nodes of a
network, is the central idea of Network Coding (NC)
[1]. Network coding can enhance performance in terms
of quality (Sections 2.2, 2.3), quantity (Section 2.2), and
security [2]. Fragouli and Soljanin decscribe one typical
instance of NC [3]: An intermediate node, receiving two
bit flows, can halve the payload by bitwise applying the
XOR-operator to these two flows. Then the combination
is forwarded as one flow instead of two flows to the
next node of the network. The receiver gets sufficient
knowledge from other components in the network, to
calculate the original data of the two flows. This can be
done in multiple ways. One is elaborated in the Subsection
Two-Way Relay Channel Mode of Section 2.2.

This paper gives an insight into NC by surveying
documents of the Coding for efficient NetWork Communi-
cations Research Group (NWCRG) and putting them in
context with related literature. NWCRG published four
RFC documents to fulfill their goals of standardizing NC
communication, gathering knowledge about NC applica-
tions in practice [2], and encouraging researchers to tackle
unsolved challenges. These RFCs cover different topics,
give an insight into NC, and are summarized in this paper.
A detailed survey like this has not yet been conducted and
published, while the results of NWCRG have been cited
multiple times ( [4], [5], [6]) and an overview of NWCRG
as a group has been given [7].

The structure of the paper is as follows: In Section 2
the RFCs and related work RFC are examined. Subsec-
tion 2.1 gives an overview of definitions and taxonomies

gathered by NWCRG. This is followed, in Subsection
2.2, by detailed suggestions to implement NC in satel-
lite communication systems. Different possible uses of
congestion control along with forward erasure correction
code, a specific NC code, are described in Subsection
2.3. The last RFC, in Subsection 2.4, deals with NC for
information centric networking. Section 3 concludes the
paper.

2. Work by NWCRG

NWCRG finished and published four RFCs [8]. These
are summarized in the following sections. The focus of
the summary lies on analyzing the main concepts for
RFC 8975, RFC 9265 and RFC 9273. For RFC 8406, an
overview of the structure of the document is given because
it mostly contains brief definitions which are summaries
themselves.

2.1. Terminologies and Taxonomies in NC (RFC
8406)

Overview. The document RFC 8406 [9] by Adamson et
al. gives an overview of terminologies and taxonomies in
NC, focusing “on packet transmissions and losses” [9] in
non-physical layers. RFC 6726 [10], RFC 6363 [11], RFC
5052 [12], RFC 5740 [13], and RFC 5775 [14] were the
main sources for the definitions.

First, “General Definitions and Concepts” [9] are in-
troduced, serving as a detailed glossary for the document.
Seventeen key terms and their synonyms (or in some cases
words to differentiate from) are introduced by describing
them. They can roughly be summarized as terms about
erasure, coding, symbols, payloads, packets, nodes, and
flows.

Second, a “Taxonomy of Code Uses” [9] is described
by differentiating between Source and Channel Coding,
Intra- and Inter-Flow Coding, as well as Single- and Multi-
Path Coding.

Third, a sketch of different, partially matchable coding
types is conducted: Linear Coding along with its variations
Random Linear Coding and Adaptive Linear Coding com-
bine input data and coefficients. Block Coding and (Fixed/
Elastic) Sliding Window Coding are mutual alternatives
for handling data flows. In Systematic Coding, source data
is part of the encoded data. Rateless Coding can produce
an unlimited number of different codes of the same source
data.
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Fourth, basic coding terms are enumerated and de-
fined. Among others, names of different sets of data
and their sizes are explained (e.g. Decoding Window,
Payload Set). In addition, relevant terms in the context
of Linear Codes are mentioned (e.g. Coding Coefficient,
Finite Field).

To code in practice, requirements are defined by
schemes, needed for a correct coded data transfer. For
example, the Forward Erasure Correction (FEC) Scheme
specifies a distinct FEC code and protocol. FEC describes
a type of code, only used in channels that will drop a
data packet if it has flaws. In this scheme, it is sent with a
protocol, which carries decoding information. One part of
the protocol [15], the FEC Payload ID, is described further
in the document. It serves as an identifier for segments of
a packet which are used in the coding process.

Related Work. Terms and important concepts are gener-
ally explained in works about NC ( [16], [17]) , but there
has not been a document with this focus before RFC 8406,
that is widely available. Its content has been reused in the
field of NC, mainly by NWCRG members ( [16], [18],
[19]) but also by others. For instance, Zverev et al. defined
some terms based on the RFC 8406, for their work about
robust QUIC, a low latency transport protocol [4].

2.2. NC for Satellite Systems (RFC 8975)

The objective of RFC 8975 [19] is, to show op-
portunities to integrate NC techniques in SATellite-
COMmunication (SATCOM) networks.

One use case of a SATCOM network is the commu-
nication of two devices on the ground over a satellite in
space. As the devices can communicate with a satellite,
they are called (satellite) terminals. If a direct transfer of
data from one terminal to the other is not possible, the
sender first transmits the data to the satellite, which for-
wards it further to the receiver. The transmission usually
requires arranging the data in multiple packets, which are
sent individually.

In a SATCOM process, NC can be used to reduce
the amount of sent packets, decrease the occurrence of
mistakes in the transmission and support a quicker recog-
nition along with re-submission of lost packets, while not
diminishing the amount of transferred data content.

Two-Way Relay Channel Mode. Using NC, it is possible
to reduce the number of packets sent, in a Two-Way
Relay Channel Mode. For the continuous communication
of two terminals with each other, each terminal transmits
a data flow to a satellite. Instead of forwarding the original
messages to the receiving terminals, the satellite combines
the two data flows. This one flow is then sent. It is received
by both terminals as illustrated in Figure 1. By knowing
what they sent before, they can decode the data and read
the message of the other terminal. This is how, by not
sending two data flows but one which carries data for both
terminals (multicasting), the amount of data is reduced.

Reliable Multicast. Multicast provides an opportunity to
recover lost data, using NC: Packets in a multicast flow
are sent from one satellite to multiple terminals. If a
packet gets lost at a terminal, the terminal sends a negative

Figure 1: Two terminals communicating in a Two-Way
Relay Channel Mode

acknowledgment back. A repair packet is then encoded
in the multicast flow, in a way that that the addition
of the repair data does not require sending additional
packets. Using this packet, the terminal restores the data.
This kind of Reliable Multicast can be used in multicasts
or broadcasts described in "Secure Hybrid In Network
caching Environment" by the European Space Agency
[20], in NACK-oriented reliable multicasts and in file
delivery over unidirectional transport [21].

Hybrid Access. NC application can be used to deal
with packet losses in multiple-path communications like
Hybrid Access. Using it can also lead to higher flexibility
towards the order of packets. NC is applied at the transport
layer, more precisely at the at any end user equipment
and/ or the concentrator. The concentrator serves as the
interface which aggregates multiple channels to the server.
This approach has been implemented and published in an
ETSI Technical Report [22].

End-to-End Encryption. Packet losses are usually pre-
vented by a Performance Enhancing Proxy (PEP) server
in a LAN to satellite transmission but User Datagram Pro-
tocol based end-to-end encryption makes PEP unusable.
Therefore, losses would occur in an end-to-end encrypted
wireless LAN SATCOM system. Network Coding may be
applied at multiple points during the transmission process
– at the end user, satellite gateway, access gateway, or
network function. The usage may result in a reduction in
packet loss.

Other Packet losses. Sub-second varying physical chan-
nel conditions will not necessarily be corrected on the
physical layer in time. Consequently, packets get lost.
However, they may be recovered through NC mechanisms
in other layers.

Another cause of packet losses may be gateway han-
dovers. Reasons for that loss, for instance, flaws in syn-
chronization or trigger-algorithms, can be reduced by us-
ing NC.

Research Challenges. In the process of writing the doc-
ument, the following open research topics were identified
(read [19] for more details): Combining NC and Conges-
tion Control, which is used in most SATCOM Systems.
Balancing the trade off between benefits of redundant
information to recover mistakes and adding too much
redundancy in the context of quickly varying channel
conditions. Several topics about the implementation of
NC in Virtual Network functions. The deployment of
Delay/Disruption-Tolerant Networking.
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Related Work. Even though there has been little com-
mercial application, a lot of research about NC in SAT-
COM systems has been done. Cloud et al. encountered
challenges when implementing NC in a SATCOM system
[23]. Ghanem et al. described two “Channel Virtualization
Schemes for Satellite Multicast Communications” [17].
Some of the research cited the RFC 8975 or its draft:
Chiti et al. focus on NC applied in SATCOM for reliable
multicasts [24]. Thomas et al. reference the RFC 8975
for a description of a generic SATCOM architecture in an
article about Google QUIC [5].

2.3. Forward Erasure Correction Coding and
Congestion Control in Transport (RFC 9265)

RFC 9265 [25] elaborates different possible relations
of Forward Erasure Correction (FEC) and transport layer
Congestion Control (CC). FEC is implemented through
NC, processing and changing packets on intermediate
nodes of a network. The goal of the FEC code, introduced
in Section 2.1, is restoring lost packages at the end of a
transmission. The encoding process results in so-called
symbols. Specifically, source symbols which contain the
source data and repair symbols which contain repair in-
formation for one or more source packets. The number
of repair symbols is usually decided by a certain rate
in comparison to the number of source symbol or by a
fixed number. These symbols get reassembled in network
packets, which are transmitted. When decoding, the in-
formation of the repair symbols is used to restore source
symbols that got lost in transmission. A repair symbol
can contain the data for exactly one source symbol or
a combination of source data. E.g., storing in one repair
symbol the XOR combination of multiple source symbols,
the repair symbol can restore one source symbol, if exactly
one source symbol got lost.

If reliability is not needed, FEC is usually imple-
mented as an alternative to mechanisms for reliable trans-
fer like the retransmissions of lost packages. Because it
is possible that a source symbol and its repair symbol
get lost, it is used for partially reliable or unreliable data
transfers. An example for a fitting protocol is QUIC with
the unreliable datagram extension [26]. In special cases
a reliable transfer with FEC is also possible (details in
[25]).

FEC can be applied right before, within, or after the
control entities of the transport layer, as illustrated in
Figure 2. This position of FEC determines the possibilities
to communicate with CC of the transport. Congestion
Control is a mechanism of the sender and the receiver,
which calculates if the path is congested and adjusts a
congestion window accordingly. By the size of the con-
gestion window, the sender then knows how many packets
it can send without losing data by congestion.

FEC above the transport layer. With FEC applied above
the transport, the data is FEC encoded before CC and FEC
decoded after CC as shown in Figure 2 in green.

CC gets network packets, on which it calculates the
congestion. It does not matter if these network packets
contain repair or source symbols. Hence, CC can work as
it would without FEC and has the same control over the
congestion as it would have without.

Figure 2: Overview FEC and CC

The core advantage of using FEC at this position lies
in the fact that CC can be implemented without special
considerations. This might not be the case for FEC within
or below the transport, as will be explained.

FEC within the transport layer. The application of FEC
within the transport, allows a joint control of CC and FEC.
The source packets get encoded by the same controller
that decides at what time packets are sent to the receiver.
At the receiver a joint controller operates FEC and CC. It
can indicate congestion and the use of repair packets to
recover source symbols to the sender.

Therefore, it is a flexible solution. The sender con-
troller knows about congestion as well as the number of
lost packets and consequently can adjust the number of
repair packets to the system’s needs.

Should the focus of the system be latency perfor-
mance, repair packets only get send if no congestion is
induced by the additional data.

If there is a lot of data traffic in relation to the
transmission capacity and some packets get lost, blocking
a fixed percentage of the transmission capacity for repair
packets might be useful. A separate CC mechanism can
then be implemented for repair symbols, which can be
send independent of the source symbol congestion.

The system may dynamically adjust to its current
needs by balancing higher congestion and the number
of repair packets used in relation to the ones sent. If
in relation many repair packets get used, it is likely that
the channel is unreliable and transmits a smaller share of
packets correctly. To lose as little data as possible more
repair packets might be sent, accepting a lower transmis-
sion rate. And the other way around if high congestion
occurs, the number of repair packets might be reduced,
accepting more lost source packets.

A drawback of FEC within transport is that the fitting
solutions for the system might require a complex imple-
mentation.

FEC below the transport layer. Figure 2illustrates the
position of FEC below the transport in blue. Encoding
happens after the transport layer forwards data but before
the link layer processes it. Communication between FEC
and CC is not planned.

This position of FEC is generally beneficial if numer-
ous packets get lost in a transmission. The repair symbols
then are employed and lead to a better transmission per-
formance.

The RFC covers only the scenario of the transport
controllers not knowing about FEC. FEC sends its repair
symbols on top of the original data and restores original
packets before they reach the transport receiver, which
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does congestion control. The receiver misunderstands re-
stored packets which were lost, as sent correctly. There-
fore, normal loss-based congestion detection does not
work correctly. For instance, a CC controller miscalculates
a congested path as good because of FEC repairs the data
in time. Using existing signals to indicate a restoration,
might be a possibility to still use loss-based congestion.
In contrast, delay-based congestion detection works fine.
The delay of source packets, which is induced by con-
gestion by source symbols and repair symbols, shows
the controller, that a reduction of packets is necessary.
This stops congestion from building up. Problems may
still occur if, due to external circumstances, congestion
generally cannot be prevented. In this case, sending a fixed
amount of repair symbols at a fixed rate and applying
a separate congestion control entity for repair symbols,
might enhance a transmission.

Related Work. Most research in this area investigates
which joint dynamic control of CC and FEC is best for
a specific system. The following works are examples for
this: Tsugawa et al. proposed a general Adaptive FEC
Code Control for TCP video streaming in 2007 [27]. In
2017 TCP-TFEC, a method to improve the throughput
in wireless LAN, in comparison to Tsugawa’s work, was
suggested by Teshima et al. [28]. Sharma et al. published
work about a multi-path loss-tolerant transport protocol,
using CC and FEC [29].

Furthermore, there has been research in NC that has
buildt on the RFC 9265, for instance Wu et al. cited
RFC 9265 as a reference for complex implementations
of FEC and CC in the Transport layer, in their article on
A Survey on Multipath Transport Protocols Towards 5G
Access Traffic Steering, Switching and Splitting [6].

2.4. NC for Information-Centric Networking
(RFC 9273)

RFC 9273 [18] shows the current state of research
in NC for Information-Centric Networking (ICN), par-
ticularly Content-Centric Networking and Named data
Networking, by explaining main concepts, technical con-
siderations, and potential challenges.

Process. An ICN can simplified be described as mul-
tiple consumers (e.g. end user) connected by multiple
forwarders to multiple producers (e.g. server). To receive
data, a consumer must create an interest packet, which
describes what data it is interested in. Then it sends the
interest packet to a so-called forwarder, a node in the
network. The forwarder first checks if his cache, also
called content storage, contains the requested data. If
successful, it sends the data back. Otherwise, searches
for a fitting entry in the Pending Interest Table (PIT),
if it already contains an entry, the two requests can be
aggregated. Otherwise, it inserts a new entry, containing
the name of the request along with the requesting interface
identification. Then it forwards the request to another
fitting interface. If the interface is a forwarder, the same
process repeats. In contrast, if the interface is a producer, it
prepares the wanted source packets by grouping them into
blocks. Each block consists of a fixed number (k) source
packets, which are encoded with a coding vector, chosen

by the producer. The encoded block which contains k
source packets and additional repair packets, is sent to
the requester. Following the trail of PIT entries, the data
is transported back to the consumer. Forwarders passing
the data, can store the data in their content storage and can
recode repair packets, if they have sufficient knowledge.
The consumer is usually able to decode the data after
receiving at least k source or repair packets of a block.
It also takes security measures, for instance checking for
origin authentication.

Technical considerations. Two important technical con-
siderations, mentioned in the RFC, are backwards compat-
ibility and content naming. ICN network parts with NC
should be composable with ICN network parts without
NC.

Names of packets and blocks are important, because
they could be used for the comparison in the PIT, Content
Storage and in interest packets. The system can either
follow a naming scheme of unique or non-unique names.
Unique naming requires every packet to have a different
name but the name includes metadata like the coding
vector. Non-unique naming in contrast, allows packets to
be called the same, which might make renaming on inner
nodes of the network necessary, if a packet name is already
used on that node. The metadata is stored in the payload
of the packet. Furthermore, different possibilities to decide
on the name can be considered. Either the consumer is
familiar with the naming conventions and already uses
the right name in the interest packet, the producer decides
on coding vectors and names when getting a request, or
the naming scheme can be looked up by the consumer in
a manifest.

Related Work. A lot of research has been conducted
about NC in ICN ( [30], [31], [32]). Only a few papers
cite the RFC or its draft, the reason for this could be that
the RFC is very recent, having only published in August
2022. In particular, the paper was named as related work
by Borgia at al. in “Reliable Data Deliver in ICN-IoT
Environments” [33] and by Malik et al. in “MICN: a
network coding protocol for ICN with multiple distinct
interest per generation” [34].

3. Conclusion

The implementation of NC in networks leads to ben-
efits in transmission processes. A smaller payload can
be received by an analytic aggregation of packets. Lost
packets can be recovered by sending additional repair
packets. NWCRG shows this among other research results
in their papers. Besides, they identified open research
challenges. One challenge, described in RFC 8975, was
the “Joint Use of Network coding and Congestion Control
in SATCOM System”, taken on more generally in RFC
9265. Their research ties into lots of other related work
as shown for each RFC. Their documents have been cited
multiple times, which indicates a relevance of the research
done by NWCRG.
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Abstract—The Mininet network emulator enables the com-
parison of speed, delay, jitter and packet loss across dif-
ferent topologies. It provides a Python API to instantiate
almost arbitrary layouts of networks and connections with
attributes like predetermined packet loss. We inspect linear
and grid-like topologies and discover that both share similar
performance characteristics.

Setting up more paths from one host to another does not
improve latency noticeably.

Emulating more consecutive switches in a network de-
creases it’s throughput which would not be expected in a
hardware implementation.

Index Terms—software-defined networks, measurement,
hight-speed networks

1. Introduction

Many fields require dependable behaviour in their
network infrastructure. To analyze how different setups
influence important properties, a network emulator like
Mininet [1] can be used. Mininet is a program to test
and deploy network configurations and therefore provides
Software-defined Networking. While it is not possible
to learn how real world hardware devices react in all
situations this way, the most significant attributes can be
mirrored in an emulated network through placement of
nodes or link properties. We want to describe important
properties of network routes and measure the impact
different network configurations have on them.

Using Mininet A running Mininet instance can be con-
trolled using a command line interface. It can be config-
ured by command line arguments, but for our investigation
we are using the Python API. Shell commands can be
executed from the viewpoint of each node in the network.
In this research we are using iperf3 and ping to garner
information on interesting properties of specific topolo-
gies. Mininet can also be instructed to drop some packets
to test the resilience of TCP/IP in overloaded network
connections.

2. Related Work

In [2], Torres-Jr and Ribeiro researched how packet
reordering influences TCP throughput and they established
Mean Displacement and Entropy metrics as simple, uni-
versally applicable basis on which to compare network
behaviour.

3. Properties of Routes commonly considered
by the community

Certain internet connectivity properties are considered
advantageous and in some cases critical for a variety of
fields.

Mininet’s Limitations The properties of hardware
components and physical cables are difficult to predict
before they are used, which makes them hard to account
for in a simulation. On the other hand, we can - with little
effort - introduce certain factors like latency, bandwidth,
results of having multiple paths to choose from and
consequences of overloading like packet loss in Mininet.

Delay Delay is also known as lag, ping rate and latency
according to the IR Team [3], who also wrote [4] about
jitter and [5] about packet loss. It is important to keep
delay to a minimum for playing real time online video
games as movement is often precisely timed. And video
conferencing with low latency enables a more natural
and spontaneous conversation of all participants.

Bandwidth Network bandwidth, commonly referred to
as speed, is measured in bit s−1. Operating a file server
benefits from high bandwidth in order to provide service
to many users in a given time. It also enables users to
stream higher quality video from streaming platforms.

Speed Ramp-up and Consistency Speed ramp-up is
likely less important in many areas than bandwidth
and latency consistency, but becomes crucial in serving
small web pages quickly. Websites smaller than 5MB
could not benefit from a high bandwidth connection
that reaches its peak after transmitting 10MB and being
significantly slower before that. Live-streaming services
additionally need consistency in bandwidth to serve
their users a certain quality of video without needing to
change quality often. This behaviour depends mostly on
the sender’s TCP implementation, namely the pace at
which it enlarges its congestion window at slow start as
explained in [6] by Carle et al.̇

Packet Loss Packet loss occurs when network hardware
receives more packets than it can handle, which it will
then discard requiring the sender to resend them [5].
In online speech communication it is important to keep
the need for re-sending packets to a minimum in order
to avoid delays. Time sensitive fields are especially
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dependant on low packet loss rate.

Packet Reordering To speed up traffic flow through
parallelization related internet packets are sometimes
split up and later arrive in the wrong order at the client.
Reordering of packets can have similar consequences for
video and audio calls over the internet as packet loss:
voice recordings not arriving in time makes for a choppy
listening experience. Additionally it strains the receiving
hardware to some extent. Ghasemirahni et al. saw an
increase in web server performance by manually putting
packets back in order in [7].

Jitter Jitter is the variance in ping time. If that variance
is too high, voice over IP communications might sound
stuttered or drop out [4].

4. Deploying Topologies in Mininet

In this section we provide a basic introduction on
how to deploy networks with Mininet. Command line
arguments make the deployment of basic topologies easier
when compared to Python scripts. A small linear topology
can be created like this sudo mn --topo=linear,4. It
contains four hosts, each being connected to one switch
which are in turn connected linearly.

For the measurements conducted in this research how-
ever just using the command line is too limiting. Using
the Python API directly gives control over what program
is run on the nodes, how exactly they are connected and
which properties they have. This gives the additional ad-
vantage of being able to parameterize the topologies more
easily and automate testing. The topologies are deployed
entirely within one Python script available at [8]. Three
different topologies were implemented and two of them
tested, all containing two hosts:

• A linear one that places a certain number of
switches between the hosts which differs from the
preset variant that has hosts at every switch on the
line

• One with switches connected in a grid-like fashion
• A circle of switches, two of which connect to the

hosts

It is possible to set the length of the linear and circular
topology and the width and height of the grid-like one.

If hosts are to be used as routers in Mininet, they have
to be manually configured. That is, they have to be in-
structed to pass on IP traffic and use specific IP addresses.
However, hosts do not act as routers so connections cannot
be established across them, even if they are set to forward
IP traffic (see ’hostline’ and ’hostangle’ topologies in [8]).

5. Emulating Environments for Testing Prop-
erties

To evaluate how different network configurations af-
fect the requirements listed in 3, we now introduce custom
topologies in Mininet. The topology and test code can be
found in [8]. By launching a Wireshark instance from one

of the switches or hosts it is possible to inspect pack-
ages going through the respective node. To find out the
achievable bandwidth and speed ramp-up we use iperf3.
The goal of this is to test how the availability of many
different paths affect the speed and continuity of packet
flows. As such, the circular topology mentioned in 4 is
too similar to the other ones and evaluating it would not
yield meaningful results.

5.1. Linear Topology

To identify the impact of having to simulate a large
amount of switches, we construct a topology consisting
of a variable amount of switches connected in a line
(Figure 1). At both ends of this line we attach a host
expecting them to be able to communicate with each other.
We scale this network up by adding more switches into
the line, parameterizing the network by the length of this
connection. When measuring and comparing to the other
topology, we refer to the amount of links from the first to
the second host as the path length.

Figure 1: Linear Topology

5.2. Square Topology

Switches are placed in a two-dimensional grid and
each is connected with the ones left, above, right and
below itself (Figure 2). This is helpful for finding out
whether alternative paths through switches can have an
impact on relevant properties and how having to emulate
many network devices strains the emulating system. In
order for this to work at all, the Spanning Tree Protocol
has to be enabled on all switches. The top left and the
bottom right switch are each additionally connected to
one of the two hosts. Here we define the minimum path
length as the lowest number of links data, e. g. an Ethernet
frame has to pass through to reach its destination which
is the other host.

Figure 2: Square shaped Topology

5.3. Tools Used

For measuring delay, jitter and packet loss the ping [9]
tool is used. The first ping request is sent separately from
another ten as to not disturb the average times recorded
from those. Bandwidth and speed ramp-up measurements
are done with iperf3 [10].
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6. Impact of Parameters on Route Properties

The following tests were conducted on an Intel®
Core™ i5-2520M 2.50GHz processor using the Linux
Kernel version 5.19.8. The test computer has 8 GB of
DDR3 RAM clocked at 1333 MHz and was running a
graphical desktop environment and the VSCode IDE at
the time of measurement. Although existent, the additional
system load was not influential to the results as it consists
mostly of background services and amounting to only
about four percent CPU utilization.

6.1. Delay

To mimic high distances between communicating par-
ties which results in higher latency we can insert a variable
amount of nodes in between the two. It was found that
the the additional switches did not help or hinder the ping
times.

The ping command is suitable here: it displays the time
it takes to send packets back and forth between clients. In
general, the larger the network the more time it needs to
pass on the ICMP ECHO_REQUEST datagram sent by
the ping command. To compensate for this behaviour a
long pause is interjected in between a first ping command,
the output of which is discarded, and the consecutive
real ones. As well as multiple routes or paths to send
packets between clients, round trip times and achievable
bandwidth were measured.
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Figure 3: Average ping time in a linear topology

It appears that round trip times scale linearly with
the amount of switches between the ping participants in
Figure 3.
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Figure 4: Average ping time in a square topology

When using a square topology with same height and
width we can analyze the round trip times as well. Note
that the minimal amount of links the packet has to traverse
is double the amount of switches per dimension in this
case. It can be observed that the additional switches in

the network have not contributed to longer ping times. In
fact the square shaped network turned out to be slightly
faster than the linear one by on average 0.011 63ms. In
rough terms the formulas

dl(x) = 0.13 + 0.006 · xms (1)
ds(x) = 0.12 + 0.006 · xms (2)

present themselves as an estimate of the round trip time of
linear and square topologies on the researcher’s computer,
where x is the amount of links between two hosts.

6.2. Speed Ramp-up and Consistency
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Figure 5: Speed of first 0.1 s interval relative to second
interval

This test was performed in square shaped grid-of-
switches-topology. Apart from two exceptions at mini-
mum path lengths of 22 and 32, the bandwidth achieved
in the first 0.1 s was always in the realm of 60% to 100%
of the bandwidth of the second such interval (Figure 5).
As a result, no significant delay would be noticeable by
the user.

6.3. Packet Loss

Mininet has a setting for links to drop zero through
100 percent of packets going through. In the test scenario
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Figure 6: Packet loss in a square topology

all links were set to drop 0% of packets, but packet loss
still occurred (Figure 6). When having to emulate a mini-
mal path length of 16 or more links, on average 5119 pack-
ets were lost. This is possibly due to the emulating system
not being able to handle more than a certain amount of
switches. The irregularity of the specific amounts of lost
packets also points toward that explanation, as system load
by other applications is not uniform over time. With a
correctly installed network, this should not happen in real
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hardware networks. The linear topology never exceeded
the critical number of nodes, in this test between 52 and
66, and thus only seldomly lost a few hundred packets in
two test rounds. Again other processes are to blame here.

6.4. Packet Reordering

Introducing multiple route options (e. g. hosts con-
nected as a grid) could have led to reordered packets, but
hosts were unable to connect to ones only reachable via
other hosts in these tests.

6.5. Jitter

The first ping response takes longer to arrive, poten-
tially due to having to initialize an IP connection between
the hosts. Therefore, we begin our analysis of jitter at
the second request, letting ping calculate the standard
deviation of ten requests.
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Figure 7: Standard deviation of ping in a linear topology
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Figure 8: Standard deviation of ping in a square topology

Figures 7 and 8 indicate a linear increase in jitter with
a growing number of switches with the linear topology
presenting slightly more consistent round trip times.

6.6. Bandwidth

Similarly to the delay measurements, exchanging
switches for hosts could have revealed changes in speed
that result from having to route IP traffic in contrast
to just passing on Ethernet frames. As the latter could
happen without any intervention and therefore even delay
in the simplest real-world case. The results of the iperf
benchmarking hints toward an inversely proportional re-
lation between path length and achievable bandwidth. The
speed losses at higher node counts is best attributed to the
overhead of simulation and should not have real world
equivalences as switches operate independently.
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Figure 9: Average bandwidth in a linear topology

It seems that, looking at Figures 9 and 10, the avail-
ability of different paths consisting of switches from one
host to another again has no great impact on speed. That is
to expected, considering the simulated switches are likely
incapable of rerouting traffic to avoid congestion - they
are not routers after all.
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Figure 10: Average bandwidth in a square topology

The slightly better performance of the linear topology
in contrast to the square one is best explained by the lower
CPU load of fewer switches to simulate.

bl(x) = 500 · (x+ 16)−1 − 1Gbit s−1 (3)
bs(x) = 530 · (x+ 15)−1 − 5Gbit s−1 (4)

Formulas (3) and (4) estimate the expectable speed in
Gbit s−1 for linear and square, topologies. However, these
are not the only possibilities to predict the bandwidth, as
e. g. bs2(x) = 42− (10 · ln(x+ 3))Gbit s−1 also matches
the datapoints in Figure 10 closely.

7. Conclusion and Future Work

In summary, Mininet is a tool powerful in configu-
ration options and yet simple to spin up for quick tests.
Some difficulties arose from a sparsely annotated doc-
umentation of its Python API. On the other hand, by
"running real kernel, switch and application code" [1], it
offers the same tools as the host machine on all virtual
nodes, which proved immensely helpful.

In this research we
• summarized important network properties
• presented a methodology to scale up networks for

testing some of those properties
• benchmarked linear and square-shaped topologies

with increasing size.
It turns out that the the ping and jitter properties of

Mininet networks are reflective of hardware based net-
works, but that simulations sometimes lead to unrealistic
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behavior. Throughput slowdown and sudden increase in
packet loss are two examples for this which we found out
in our research.
To find out more about certain behaviour of a network-
ing infrastructure, Mininet supports the use of (external)
controllers for topologies deployed inside it. In fixed-
size topologies it would be feasible to make hosts act as
routers by setting a default gateway for them manually.
That allows for complex behaviour analysis of packet
reordering and bandwidth and ping-time implications.
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Abstract—Due to the rapid growth of internet communica-
tions, privacy becomes ever more important in our digital
age. But since cryptography is not enough to preserve
the users’ privacy, solutions on the network layer become
crucial. Tor and I2P offer their users privacy protection
with considerable performance but have some robustness
drawbacks. Therefore, we introduce the recently released
anonymity infrastructure Nym that protects privacy on the
network layer and addresses certain technical shortcomings
of the currently most well-known anonymity networks. In
this survey, we find out that for Tor and I2P a wide range
of vulnerabilities of privacy against global adversaries are
known, while Nym offers a high level of privacy even against
this kind of attacker. However, privacy is not always the only
goal that such solutions must achieve because the quality of
service and an acceptable level of latency must also be main-
tained. A future challenge for Nym is to identify whether
incentivizing its operators leads to a larger user base, which
would result in the required and desired performance as well
as increase the strength of the anonymity properties.

Index Terms—privacy, quality of service, mix nets, onion
routing, i2p, nym

1. Introduction

In the 1990s the U.S. government tried to constrain
the use of strong cryptography to ensure that national
security and law enforcement agencies could break all
ongoing encrypted communications via backdoors. This
led to a heated debate known as the "Cryptowars" [1]. In
1993, Eric Hughes wrote the Cyphernomicon, a pamphlet
arguing for cryptography with the fundamental goal of
achieving and supporting personal privacy in the digital
world:

"Privacy is necessary for an open society in the
electronic age. Privacy is not secrecy. A private
matter is something one does not want the whole
world to know, but a secret matter is something
one does not want anybody to know. Privacy
is the power to selectively reveal oneself to the
world." [2]

But protecting only the content of the user messages
does not automatically preserve its privacy. Due to the
structure of the Internet protocol (IP), the OSI layer three
plays a crucial role when privacy should be preserved.
In addition to the payload, an IP datagram consists of
a header that contains metadata such as the source and
destination address [3]. The application of cryptography

helps to protect the confidentiality and integrity [4] of
messages, but even if all possible fields are encrypted
and none of this header information is revealed, attackers
can still detect communication patterns. Therefore, the
difficulty of eavesdropping packets in the network and
traffic analysis, including matching the amount of data or
examining connection establishment or termination [5],
should be increased to defend the users’ privacy. But
privacy comes with the cost of latency. Thus, often a trade-
off between privacy and Quality Of Service (QoS) exists.
Bounded Privacy is describing this problem where for a
given threshold on the QoS a feasible level of privacy
is guaranteed [6]. This survey focuses on solutions that
aim to protect the privacy of its users and hence also its
meta data. In Sections 2 and 3, a definition of privacy
and the privacy-enhancing technologies mix network and
onion routing are given and used to argue about concrete
implementations of these technologies like I2P [7] and
Tor [8], which offer a good level of privacy but still have
weaknesses, especially against powerful adversaries that
can watch the entire network and traffic. Additionally, in
Section 4 the newly released privacy infrastructure Nym
[9] is described, which is based on a mix net system and
economic incentives for operating components of it and
aims to solve these problems.
In Section 5, the presented solutions are then compared
regarding their weaknesses against a global adversary, a
conclusion is drawn, as well as future work is named.

2. Background

In this section we introduce a definition of privacy and
the attacker models as which later described solutions can
be attacked.

2.1. Attacker Models

To precisely describe the attacks, we define and dis-
tinguish different attacker models by their capabilities.
An attacker may control various subsets of nodes in a
network. Depending on the distribution of the nodes, an
attacker may gain more or less information.
Depending on the network position there are external and
internal attackers. An external adversary can compromise
the communication links and an internal one participates
in the anonymous system and therefore can compromise
connections or peers. These are of special interest as they
provide routing or enhanced security functions [10].
Depending on the geographic location we distinguish
between global and local attackers. An adversary with
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access to all communication links is called global while
a local one can just act on specific connections or peers.
Attackers that can just eavesdrop on the communication
medium are defined as passive. Active ones can delay,
modify, and omit messages and may be able to compro-
mise peers.
The standard threat model for symbolic protocol analysis
is the Dolev-Yao model (DY) [11]. This adversary can
read, modify, destroy all message traffic, and perform
any operation possible for a normal protocol user without
breaking the cryptographic primitives [12]. In literature,
a protocol that is secure under DY is also seen as secure
under a less powerful attacker [13], [14].

2.2. Privacy

According to A. Pfitzmann and M. Köhntopp [15]
privacy is defined by the terms anonymity, pseudonymity,
unlinkability, and unobservability. These provide protec-
tion against the discovery and misuse of identity by other
users [16]. In order to show the properties of privacy-
enhancing technologies we now introduce the mentioned
terms.
Anonymity is defined as not being identifiable from other
subjects in the same set which is called anonymity set.
We unite all subjects that might cause an action in that
anonymity set. Depending on that set, there exist two
different types of anonymity. The sender anonymity set
is the subset of all subjects that might send traffic in the
same network. The recipient anonymity set is the subset of
all subjects that might receive traffic in the same network.
These sets may be disjoint but also overlap. In general,
one can state that anonymity becomes stronger with the
size of the set [15].
Pseudonyms, like identifiers, are used to not reveal data
about subjects during specific actions. Nevertheless, user
actions can still be linked with pseudonyms by the system
itself. Pseudonymity ensures that users may use resources
or services without revealing their identity so that they are
still accountable for their use [16].
Unlinkability is described as the inability to connect or
combine subjects with initially separate information. This
means that the probability of finding a relation between
those items stays the same before (a-priori knowledge) and
after an action within a system (a-posteriori knowledge of
the attacker) [15].
Unobservability requires that subjects cannot determine
whether a specific action was performed. This means that
the Items Of Interest (IOI) are indistinguishable from other
IOIs. [15].

3. Existing Privacy-Enhancing Solutions
In this section, we take a closer look at solutions that

offer network privacy. The anonymity concepts mix net-
work and onion routing are described as a basis to argue
about concrete implementations, their characteristics, and
their weaknesses.

3.1. Anonymity Concepts

A mix network (mix net) is an overlay network
of mix nodes that routes messages through the network
anonymously [17].
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Figure 1: Mix network infrastructure

Secure mix nets can be classified as Decryption-Mix
Network (DMN) which was initially proposed by Chaum
[18] already in 1981, and Re-Encryption Mix Network
(RMN), a concept by Park et al. [19]. A mix net protocol
run includes a set of senders S1, ... , Sn, the mix servers
M1, ... , Mn and a public bulletin board B. RMNs addi-
tionally have trustees T1, ... , Tn. The senders transmit
their ciphertexts to the mix servers which add delay and
then publish them in random order. Channels are used to
ensure that eligible senders Si securely submit messages to
the bulletin board B. The protocol run is split into three
phases. In the setup phase, all required parameters are
generated. The submission phase is then used to generate
and submit the senders’ messages. Lastly, in the mixing
phase, the mix servers collaboratively mix the input.
The purpose of a mix net is to provide unlinkability, so
to hide the links between the communication partners and
their messages [18]. This can be assured by delaying the
messages and then shuffling (also called mixing) before
forwarding them. Figure 1 displays both the network posi-
tion of such mix nets and illustrates the message shuffling.
The sent messages are fixed-sized due to message padding,
where random data is attached to messages of deviating
size [4]. Additionally, whenever the user does not have
any actual payload to send to the mix network, the client
sends instead loop cover packets, which are messages with
dummy payload that have the same receiver as sender.
This leads to the indistinguishability of real messages
from cover messages and therefore to unobservability
[20]. Mix nets are hence designed to provide meta data
protection against global adversaries. As long as not all
mix servers of the message path are corrupted, the mix
net can guarantee sender anonymity.
With Decryption-Mix Networks the sender is required to
iteratively encrypt the input messages mi with the public
keys pk1, ... , pkn of the mix servers M1, ... , Mn. This
can be achieved with public key cryptographic systems
like RSA. The message is encrypted in reverse order and
the resulting layered ciphertext ci is then submitted to
the first mix server M1. The mix server Mi then uses his
private key ski to decrypt the outermost encryption layer
of all input ciphertexts, shuffles the decrypted messages
and forwards them to the next mix server Mi+1. The last
mix server could then output the plain messages initially
chosen by the senders in random order. To offer a higher
level of privacy messages are stored until an adequate
threshold is reached and they are then forwarded to the
next hop [20].
For re-encryption mixnets we need to use a public-key
encryption scheme that allows for re-encrypting a given
ciphertext without knowing the secret key or the encrypted
message like ElGamal, an asymmetric key encryption
algorithm for public-key cryptography [21].
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As mentioned before RMNs additionally use trustees t1,
..., tn with whom each sender si shares the secret key
of its public key pk. With this information, the sender si
encrypts its message. The mix server Mi then re-encrypts
all ciphertexts with coins chosen independently and uni-
formly at random, shuffles the re-encrypted ciphertexts,
and forwards them to the next mix server Mi+1. This proce-
dure is repeated until the last mix server is reached. It then
outputs a list of ciphertexts that encrypt the input messages
initially chosen by the senders but under different random
coins and in a random order [20].
Onion Routing is a general-purpose infrastructure for
privacy in public networks that allows lower latency than
mix nets as messages are not mixed or delayed [22].

OR1 OR3

OR4OR2

OR5

OR6

ISP
Sender

ISP
Receiver

Onion router network

Sender Receiver

13 2

1
3

2

1

3

2
1

3

2
1

3
2

13 2

Figure 2: Onion routing network infrastructure

Similar to mix nets, messages are sent over multiple
Onion Routers (ORs) inside the network. As shown in Fig-
ure 2, the messages are relayed through the OR network
without delaying them and thus without shuffling. This
allows in comparison to mix nets a lower latency. ORs
work as intermediate proxies, their physical location in the
network is unknown [23]. The onion data structure sent to
the ORs consists of several encryption layers around the
payload. ORs accept fixed-length messages through mes-
sage padding. Additionally, they perform cryptographic
operations like removing one layer of encryption using
its own private key on the messages like a DMN before
forwarding it to the next mix server. The path through the
network is defined by the client, which builds a circuit.
Every OR knows only its predecessor and the successor
but has no further information about other routers in its
circuits like the origin, destination, or the payload. As de-
scribed before, in DMNs the mix servers introduce a delay
before forwarding their messages. Onion routing works
without these delays, which may lower the anonymity [8],
[22] but also lower the latency.

3.2. Anonymity Networks

Tor is a distributed overlay network that offers
anonymity on TCP-based communications in networks
and is based on the onion routing protocol described in
Section 3.1 [8]. It additionally includes several improve-
ments like perfect forward secrecy [24], hidden services,
which provide receiver anonymity, and rendezvous points
to connect to them [8]. Tor is not fully distributed as it uses
directory services to store statistics and information about
Tor nodes. It cannot defend against end-to-end correlation
attacks from global adversaries because it does not employ
delays for cells. Also, deanonymizing of hidden services
is possible [8], [25], [26]. But even local attackers can
determine the visited webpages with fingerprinting attacks
[27]. As mentioned before, the anonymity of a system
depends also on the size of the anonymity set. This means

for Tor more hops (ORs) and more users may lead to
higher anonymity. As the Tor network does not incentivize
the operation of components like routers, the network size
remained roughly the same in the last years [28].
The Invisible Internet Project (I2P) is a fully encrypted
private network layer on the basis of a peer-to-peer net-
work. I2P, like Tor, uses a variant of onion routing named
garlic routing to create anonymous connections [7].

Get LeaseSet

ISP
Sender

ISP
Receiver

Sender Receiver

LeaseSet to Receiver

NetDB

intermediary
node

intermediary
node

intermediary
node

13 2 13 2 13 2 13 2 13 2 13 2

Figure 3: Architecture of a I2P network

The participants work both as clients and as proxy
routers that forward the messages sent through the net-
work. To achieve a fully distributed architecture, I2P uses
a Network Database (NetDB), which is implemented as a
Distributed Hash Table (DHT) using the Kademlia algo-
rithm [29]. In NetDB information about peers and services
is saved. To communicate with other peers the sender has
to get leaseSets from the database, which contain data
such as public keys for communication [30]. Figure 3
depicts the message flow through the I2P network and the
preliminary request to NetDB. Nevertheless, I2P has some
weaknesses. Its anonymity set is small because of the
modest size of the current network [31]. A consequence
is the current bad performance of its services, because of
the overhead for encryption and routing which limits the
bandwidth. Also, effective defenses against Sybil attacks
remain an open question [31].

3.3. Summary and Challenges of Solutions

As described in Section 3.2 the currently two most
well-known anonymity networks Tor and I2P still suffer
from some weaknesses, especially against global, passive,
or stronger adversaries. Another problem of both remains
the lack of growth that comes with latency and leads to a
smaller anonymity set. With an increased number of par-
ticipants, some of the weaknesses would be reduced [31],
[32]. Tor got a lot of attention from researchers which led
to constant improvement and good documentation. I2P
on the other hand got less attention due to the missing
clear design documentation [17]. Nevertheless, in both
networks, the key components are run on a volunteer basis
which led to a consistent number of operators. Nym now
explores the impact of node incentives. This mechanism
should not only lead to more node operators in the network
but also prevent freeloading [33] and limit the possibilities
of malicious users in the network [17].

4. Nym

This section describes the newly released anonymity
infrastructure Nym. Its design goal is to support privacy-
enhanced access to applications and services. Node oper-
ators are incentivized by their own tokens, named Nym
tokens, to support the operational costs with proof of
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mixing. Proof of mixing is defined as incentivizing node
operators to correctly and reliably process, route, and
deliver messages. This shall lead to dynamic scaling for
privacy and high quality of service.

User

Gateway

Service 
providers

Validators
Nym Blockchain

Gateway

Mix net

Bandwidth
credentials Encrypted data + 

Bandwidth
credentials

Figure 4: Nym architecture [34]

Figure 4 depicts Nym's architecture and its three types
of nodes: Validators, Gateways, and Mix Nodes.

Mix Nodes. Mix nodes provide communication pri-
vacy and are part of the mix network. Nym uses a Loopix
[35] design for its mix net, modified to provide bet-
ter QoS guarantees. Loopix is a low-latency anonymous
communication system that provides sender and receiver
anonymity as well as unobservability. As described in
Section 3.1 mix nodes receive data packets that they
transform cryptographically and reorder. Sphinx [36] is
used as a packet format, which is cryptographic and relays
anonymized messages within the mix network. It supports
indistinguishable replies, hides the path length and relay
position as well as provides unlinkability. Loopix also uses
a continuous-time mixing strategy, where each message is
delayed individually and independently of the others [37].
The concrete mixing delay is chosen by the original sender
and encoded in the Sphinx header. Additionally, Loopix
applies dummy traffic and message padding. This ensures
a minimum level of anonymity at all times, obfuscates the
timing and volume of user communication, and therefore
achieves unobservability [9], [17].
Gateways. Gateways mediate the access to the network
and its services. They act as proxies between the mix net
and the participants. Users may always choose the same
gateway for all their traffic or multiple ones. Gateways
cache received messages for offline or unreachable par-
ticipants. Users need to show valid unspent bandwidth
credentials, provided by the validators, to send messages
through the mixnet [9], [17].
Validators. Validators maintain the Nym blockchain and
handle transactions for two types of credentials. Band-
width credentials prove the right to send traffic through the
mixnet. Service credentials can encode arbitrary attributes
for the proof of access rights for a service [17]. These
credentials are provided with a modified version of co-
conut, a cryptographic signature scheme, which supports
decentralized credential issuance and thus is resistant to
local adversaries [9], [38]. The Nym blockchain works
as a broadcast channel for network-wide information and
includes data like the list of nodes and their public keys,
network configuration parameters, or participants’ stake.
Service providers. Nym as an infrastructure supports
privacy for third-party applications and services that are
accessible through the network. These can send and re-

ceive messages to privately communicate and use the Nym
credentials to grant access to their services [17].

5. Comparison of Solutions

In this section, we compare the offered privacy for the
presented anonymity networks against global adversaries.
Table 1 depicts the known vulnerabilities ordered by in
Section 2.2 defined privacy terms. The concrete value
describes whether vulnerabilities for the solution on given
requirement exist or not. The table is only valid for this
type of attacker and the current amount of users.

Tor I2P Nym

Anonymity Yes Yes No
Unlinkability Yes Yes No
Unobservability Yes Yes No

TABLE 1: Known vulnerabilities of privacy requirements
against global adversaries

Tor in general does not provide protection against
global attackers [39], [40]. As described in Section 3.2,
onion routing encrypts the messages between each OR so
that only the last hop can see the decrypted message. But
still, Tor suffers weaknesses against global adversaries,
because though the packets are encrypted, Tor does not
add timing obfuscation to conceal the traffic patterns.
Additionally, Tor’s design uses a centralized directory
authority to build tunnels through the network which
may be another attack vector. As shown by the different
deanonymization attacks, Tor suffers known vulnerabili-
ties in anonymity against this kind of attacker [41], [42].
Also, unlinkability cannot be preserved, as shown by
attacks [43]. As no cover traffic is included in either the
onion routing protocol or in Tor unobservability cannot be
guaranteed either [44].
Though I2P is based on a peer-to-peer architecture, like
Tor the network cannot defend against global attackers.
I2P replaces Tor’s directory authority with a DHT for rout-
ing. As described in Section 3.2 the usage of a distributed
hash table may be an attack vector. It is open to several
attacks that isolate, misdirect, or deanonymize users like
brute-force, timing, or intersection attacks [7], [30], [31].
Therefore, I2P is not able to guarantee anonymity or
unlinkability against global adversaries. I2P also does not
use cover traffic. Due to that reason, the network cannot
grant unobservability [31], [44].
Nym aims to protect also against global adversaries by
the usage of the in Section 4 described Loopix mix net.
Mentioned Loopix mix net aims to protect the users’
unlinkability [9], [17]. Neither Loopix nor Nym have so
far known vulnerabilities of anonymity, unlinkability, or
unobservability. Therefore, all values in Table 1 are no.
Since Nym modified Loopix to provide a better QoS
it cannot be ruled out that there are yet undocumented
vulnerabilities. Comparable to the vulnerabilities of Tor’s
directory services, the gateways, for example, could pro-
vide an attack vector. Unlike I2P or Tor, Nym adds
cover traffic and timing obfuscation, which should prevent
unobservability [17], [45]. Nevertheless, it is important to
mention that not much research could be conducted yet
to identify possible weaknesses.
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6. Conclusion and Future Work

In this paper, we provided an overview of recent
anonymity concepts and networks as well as a comparison
of them with the newly released Nym. Section 5 has
shown that, with current knowledge, Nym provides a
high level of privacy for its users, even against global
attackers, considering that the solution is relatively new
and not much research has been done on it. However, the
privacy provided by mix networks comes with latency,
where always a trade-off between privacy and QoS exists.
The question in the future will be whether the market
will adopt the concept chosen by Nym tech of rewarding
their operators, so that with a larger user base, also more
operators will run mix servers, validators, or gateways,
so that the required and desired performance is given in
addition to privacy. Future challenges and opportunities
lie in the question of how the latency currently compares
to the other solutions described in this survey and how it
scales with the addition of more mix servers. Low latency
and thus good performance could be next to privacy a
major argument to use Nym. And a large amount of users
would increase the strength of anonymity properties.

Acronyms

DHT Distributed Hash Table. 3, 4
DMN Decryption-Mix Network. 2, 3
DY Dolev-Yao model. 2

I2P Invisible Internet Project. 3, 4
IOI Items Of Interest. 2
IP Internet protocol. 1

NetDB Network Database. 3

OR Onion Router. 3, 4
OSI Open Systems Interconnection. 1

QoS Quality Of Service. 1, 4

RMN Re-Encryption Mix Network. 2
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Abstract—P416 is a programming language used for packet
processing that was formulated without providing loops, such
as for or while loops. This Paper is going to give a quick
summary of P416 in order to show how it is still possible
to implement loops in P416 and afterward compare the
solutions in regard to performance.

1. Introduction

P416 is a programming language that differs from
many programming languages because it was designed
without a concept for loops. The reasoning behind that
is that if we eliminate iterations, the time needed for
computing a P4 program is linearly dependent on the
packet size. Having no loops can be limiting at times, e. g.
for processing the payload of the packet, you might need
some form of looping [1]. Another example would be TCP
SYN proxies. TCP SYN proxies are a measure to protect a
server against SYN flooding attacks [2]. To implement this
functionality on software-defined networks looping would
be very helpful. Furthurmore, this investigation shows the
limits of the programming language P416. The following
sections will discuss how it is possible to write loops in
P416 even without concepts like while and goto. After
explaining the approaches, it will focus on analyzing the
performance and comparing our solutions.

2. P416 Introduction

P416 is a language that is used to program the
data plane of software-defined networks. The programs
written in this language are deployed on programmable
networking hardware like routers, switches, network
interface cards, or network appliances. Those devices are
called targets. The manufacturer of those targets needs
to provide the hardware or software implementation
framework, an architecture definition, and a P4 compiler.
P416 can only specify the data plane functionality of
a device. After compilation, it generates an API for
the control plane to interact with the data plane. The
architecture definitions describe how the architecture
is put together. Each P416 program can be divided
into multiple Blocks, usually always consisting of a
Parser, a Deparser, and a variable amount of Control
Blocks. In this paper, the V1 Architecture will be the
architecture that is used in the P416 programs, which
is an architecture by the P4 Language Consortium. This
architecture was designed in a way that is comparable
to the old P414 architecture. Figure 1 shows how the

architecture of the V1 Model is structured.
The Parser is always the first block a packet passes
through. The Parser resembles a finite state machine
that parses the packet headers and extracts the header
data into a header struct. This data could be an ethernet
header, but also personalized headers not following any
popular protocol. Since it is possible to specify any
header structure, it is technically possible to parse more
than just the headers, e. g. a packet’s payload [1].

Figure 1: V1 Model Architecture [3]

After the parser, there are different programmable
control blocks. In the case of the V1 Architecture, there
are the MyVerifyChecksum, MyIngress, MyEgress, and
MyComputeChecksum control blocks. Every target may
also have extra functionality it can provide the user of
the target. This functionality can be provided to the pro-
grammer with a so called extern function. These extern
fuctions are methods that are unique to different targets.
The Architecture can also limit the programmer to use
certain extern functions only in certain control blocks [3].
In the end, the packet gets reassembled by the deparser.
The deparser takes all the header data that was manipu-
lated within the control blocks and maybe added new ones
and puts them back together into a network packet.

3. Loop Concepts

In this section, the different approaches to implement
loops in P416 will be discussed.

3.1. Parser Loops

Parser Loops are probably the most straightforward
possibility to program loops in P416. At the beginning
of the parser, there will be the opportunity to declare
variables and constants. Also, the objects needed inside
of the loop, can be instanciated here. After that, starts
the definition of the finite state machine. The finite state
machine always consists of a initial state, called start,
where the parsing of every packet will begin and two
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different final states, accept and reject. Usually, each
state will be used to extract the headers of the received
packets. The headers extracted will be saved in a C struct
like header struct. After the extraction of the header
the transition will be invoked based on the information
extracted from the header. E.g. if the header extracted
would be an ethernet header and the EtherType of the
header would indicate that the packet is an IPv4 packet it
goes to the state for extracting IPv4 header. This decision
will be done by using a select statement that matches
an expression list to specific values. After the select
statement matches the expression list, it will transition
to the given state. Before the transition statement, an
arbitrary amount of parser statements can be written.
The syntax of Parser statements allows basic arithmetic
operations on variables and constants and methods
calls on objects instantiated before. Depending on the
target, the parser statements might allow more or less
functionality inside the parser statements. E.g. Not all
targets will allow the use of if statements inside the
parser. In case if statements are needed inside the loop
it is possible to use the select statement to achieve the
same functionality a if statement would provide. This
will come at the cost of one state per if statement used
inside the loop. A significant benefit of this approach to
building loops in P416 is that it can be done on nearly
every target, but there are exceptions. Some targets will
not compile parsers that contain loops. The compiler will
check if the parser can be unrolled into a graph without
circles at compile time. If the parser can not be unrolled,
it will further check if the loop advances the cursor of
the packet in every iteration. If this is the case, the parser
can be compiled since the packet size is finite and if the
cicle always advances the cursor the loop can not loop
infinitely [4].

1 bit <32> i = 0;
2

3 state start {
4 transition l1;
5 }
6

7 state l1 {
8 //loop -body
9 i = i + 1; //condition -update

10 transition select(i<= CYCLES /⁎while -
condition ⁎/) {

11 true:l1;
12 default:parse_ethernet;
13 }
14 }

Source Code 1: do-while-loop in parser

15 bit <32> i = 0;
16

17 state start {
18 transition l1;
19 }
20

21 state l1 {
22 transition select(i<= CYCLES /⁎while -

condition ⁎/) {
23 true:l2;
24 default:parse_ethernet;
25 }
26 }
27

28 state l2 {

29 //loop -body
30 i = i + 1; //condition -update
31 transition l1;
32 }

Source Code 2: while-loop in parser

In Source Code 1 and Source Code 2 , two different
implementations of parser loops can be seen. The code
fragments show an implementation of a do-while-loop and
the regular while-loop. For both solutions, the declaration
of all variables needed and instanciation of all objects
takes place. In this case, the variable i, which is used
to cycle through the loop a constant amount of times, is
the only variable needed. After that, the implementations
differ. For the do-while-loop in Source Code 1, the body
of the loop can be executed immediately before checking
any condition. Afterwards, the breaking condition for our
loop is written inside the select statement. If the condi-
tion holds, the select statement will evaluate to true and
transition back to the same state. In order to get the more
commonly used while-loop the usage of an additionale
state is obligatory. This time instead of executing the loop-
body inside the first state, the condition is beeing checks
first. If the condition is met, the select statement transition
to the second state of the loop l2, to execute the loop-body.
After the loop execution is finished, l2 transitions back to
state l1. The loop body of this example only consists of
one line where the variable i gets incremented to iterate a
fixed amount of times through the loop. Back in state l1
the condition check happens again. When the point that
the condition evaluates to false is reached, it is possible
to into another loop or in this case start with parsing of
the headers of the packet.
Two different solutions were beeing implemented in hope
of performance benefits if only one state is beeing used
instead of two different states because of less transitioning
between states. Another reason is to show that there are
more then just one possibility to introduce loops into the
parser.

3.2. Recirculate Loops

Another possibility to realize loops is by using
extern functionality. In this case, the extern method
recirculate_preserving_field_list() provided by the V1
architecture was beeing used. This extern simply takes
the packet that is currently processed deparses it and
introduces it back into the packet processing beginning
with the parser. This method can only be used in the
MyEgress control block of a P4 Program. When using
this method, it receives a number as a parameter. This
number represents a list of variables from the metadata
that should be saved for the next pass through the packet
processing. This means every variable that is needed for
the loop, like a loop index, is stored inside the metadata
and annotated using the @field_list annotation. The
number used to annotate the varibales is given to the
recirculate_preserving_field_list() extern as a parameter.

33 struct metadata {
34 @field_list(RECIRC_FL)
35 bit <32> i;
36 }

Source Code 3: metadata definition
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In this example, the variable i is stored inside the
metadata as shown in Source Code 3. The the variable is
annotated with the constant RECIRC_FL (constant with
the value 0).

37 apply {
38 if(standard_metadata.instance_type != 4)

{
39 meta.index = 0;
40 }
41 if (!( meta.index < CICLES) && hdr.ipv4

.isValid ()) { // condition check
42 //if break condition is met the

tables for routing need to be applied
43 ipv4_lpm.apply();
44 }
45 }

Source Code 4: Ingress control

In the Ingress control, the first thing that is beeing done
is to check if the packed arrives here for the first time or if
it is a packet that was already recirculated. This is done by
checking the field instance_type of the standard_metadata.
If the field does not contain the value four [5], it is not
a recirculated packet, and the metadata fields need to be
initialized. In this example, the variable i gets set to 0 in
order to keep track of the number of iterations the packet
has already done. If the packet that arrived in the Ingress
control is recirculated, the condition will be checked to
make sure if the packet needs continue looping or if the
loop should be stopped and the packet should be routed.

46 apply {
47 if(meta.index < CICLES) { // condition

check
48 //loop -body
49 meta.index = meta.index + 1; //

condition -update
50 recirculate_preserving_field_list(

RECIRC_FL);
51 }
52 }

Source Code 5: Egress control

When entering the egress control, the break con-
dition of the loop will be checked. If the con-
dition holds, the execution of the loop body will
start. At the end of the execution, the recircu-
late_preserving_field_list() method is used. The reason
why the recirculate_preserving_field_list() method is used
inside the if statement is because otherwise, the routing
done by the ipv4_lpm.apply() in Source Code 4 would be
overwritten, and the packet would continue looping. Like
mentioned before, the recirculate extern takes an integer
value in order to save the annotated variables inside the
metadata. Here the constant RECIRC_FL is given to the
method to save the value of the variable i. After the Egress
control, the packet will be reassembled by the deparser
and sent back to the parser.
One problem with this approach of building a loop in P416
is that it will create a large overhead for each iteration
since it has to pass through the whole package processing
every iteration. Also, this solution is unique to the V1
architecture, or other targets that implement a recirculate
extern function. [6]

3.3. Custom Loop Header

This solution is similar to the loops introduced in
Section 3.2. Instead of relying on an extern method for
recirculating, a physical connection between one of the
output ports to one of our input ports of the device is
beeing established, in order to recirculate the packets.
Also a personalized header struct is introduced where all
variables used inside the loop will be stored. This means
variables needed for the calculations and the variables
needed for the break condition check will be saved inside
this header. Once a packet arrives, all headers of the packet
will be parsed, including the custom loop header. After the
parsing is done the program would need to check in the
Ingress control if the packet headers include the custom
loop header or not. If the packet does not arrive with the
custom header that header will be generated and added to
the packet headers. If the packet headers already include
the custom header it means the packet is looping and the
break condition needs to be checked. If the condition is
met and the loop needs to be continued the loop body is
executed. After the execution of the loop body the variable
defining the output port needs to be updated to the port
connected to with one of the input ports. If the loop needs
to be stopped the custom header needs to be removed
again and the packet will be routed. This approach comes
with the same problem of the recirculate loops. Since the
packet needs to go through the whole packet processing
for each iteration, the loop overhead is quite extensive.
An advantage of about this approach is that it can be run
on every P4 programmable device since the device has no
idea it is sending a packet back to itself.

4. Loop Performance Analysis

The test setup that was beeing used for the
performance analysis is based on a mininet simulation for
P416. The Mininet setup is running on a Virtual machine
using Virtual Box. It was set up with the repository [7]
and vagrant. In the Virtual Box settings, the VM had four
cores and 4096 MB of RAM assigned. The Computer the
tests were run on is a laptop with an Intel Core i7-9750H
(2.6Ghz) and 8GB of 2667MHz RAM. The mininet
topology used has two hosts, h1 and h2, connected with
a switch s1 in between. The P4 Program is run on the
switch s1. The solution shown in Section 3.3 will not be
coverd in the performance analysis. The simulation of
the physical connection from one of the outgoing port to
one of the ingoing ports was attempted but not succesful.
Further studies could try to either verify the solution
presented in the section 3.3 outside of a simulation on a
real device or find another solution inside the simulation.
Because of this, the solution from section 3.3 is only a
concept but is not verified if it would acually work.

Figure 2: Mininet topology [8]
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To get the measurements shown in Figure 3 below,
50 identical packets were sent from host h1 to host h2
and computed an arithmetic mean of the measured times.
The time it took to execute the loop inside switch s1 was
calculated by capturing the pcaps of the input and output
interface. Pcaps are files that are generated by sniffing on
an interface of a network device and they store information
like the time a packet left the interface or the IP adress of
the packet. Since this Paper focuses on the performance of
the different loop types no calculations were done inside
the loops to compare just the performance of the loop
concepts. As seen in Figure 3, six measurments were
beeing done for each approach, starting from 5000 loop
iterations to 50000 loop iterations. It was observed that the
first packets that were sent had very long times. Because
of that the decision was made to send ten packets before
measuring the time of the 50 packets used to calculate the
average. Another observation that was observed is that the
times of most packets were pretty close, but a few of the
packets had high variances. This could be a scheduling
problem since the p4 program is run inside a mininet
simulation inside a VM.
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Figure 3: execution time graphs

As expected, the performance of the loops imple-
mented in the parser is better than the one using the re-
circulate_preserving_field_list() method. This is expected
because the recirculate loop has to do the whole package
processing for each loop. The performance of the do-
while-loop is close to the performance of the while-loop
but the do-while-loop is still the faster of the two. This
should be because the do-while-loop only uses one state
instead of two. The difference between the do-while-loop
and while-loop is pretty small and will get even smaller

once more states are introduced to the loop for realizing
if statements with the select statement. Another thing that
can be seen very clearly in the plot is that the time grows
linearly the more iterations are added to the loop. This is
good to see because otherwise, it would not be suitable
for algorithms that need a high iteration count.

5. Conclusion

We saw it is possible to write loops in P416, with
some solutions being more costly than others. It can be
said that loops used in the parser are a better solution
than the recirculate loop. Unfortunately, it was impossible
to compare our solutions to the approach mentioned in
Section 3.3. One question that remains unanswered is
whether it is a good idea to use loops in P416 in general.
To answer this question, it would be necessary to do more
studies that use the concepts introduced in this paper
to implement algorithms for real-world use cases and
compare them to solutions from other languages.
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Abstract—Ethernet is one of the most widely used LAN
technologies. This vast application of Ethernet in different
fields is due to its features like low cost, flexibility, reliability
and easy maintenance. Some application fields like industrial
automation require deterministic networks but standard
Ethernet is not designed to meet real-time requirements.
Time Sensitive Networking (TSN) is a set of standards
designed to provide determinism and enable real-time capa-
bilities in Ethernet-based networks. IEEE 802.1Qbv is one
of these standards that uses Time-Aware Shaper (TAS) to
create Time Division Multiple Access (TDMA) schemes for
scheduling and transmitting data in a deterministic manner.
This paper provides an overview of IEEE 802.1Qbv and TAS,
as well as explains the purpose of schedule generation and
compares three different approaches to generate schedules.

Index Terms—time-sensitive networking, time-aware shaper

1. Introduction

Ethernet is a popular network technology known for
its low maintenance requirements and high data transfer
rates. However, it does not provide the low latency needed
for certain fields such as automotive and network automa-
tion that require real-time and deterministic communica-
tion [1].

To solve this problem, Time Sensitive Networking
(TSN) standards were introduced in 2012 to provide stan-
dardized real-time mechanisms across Ethernet networks.
Some of these standards are IEEE 802.1AS (provides
clock synchronization), IEEE 802.1Qbu (frame preemp-
tion), IEEE 802.1Qbv (enhancements for scheduled traf-
fic), and IEEE 802.1Qca (Path Control and Reservation).
In IEEE 802.1Qbv, incoming frames are assigned to differ-
ent queues on basis of their traffic class. A gate mechanism
called Time Aware Shaper (TAS) defines a timed gate
for each queue that opens or closes in accordance with
the schedule implemented in form of Gate Control List
(GCL). The GCL contains the configuration of all timed
gates (open or closed) and determines which gate should
be opened for transmission in a given time slot.

Because IEEE 802.1Qbv does not define any algorithm
for schedule synthesis, several algorithms are proposed by
researchers that focus on different network configurations
and traffic classes. This synthesis problem can be reduced
to NP-hard problems like bin-packing [2] and thus, itself
is also an NP-hard problem.

The goal of this work is to explain the working of
IEEE 802.1Qbv (TAS) and explain the working of three

approaches for synthesizing schedules. The remainder of
this paper is structured as follows. In Section 2, we
introduce relevant research on schedule generation. Sec-
tion 3 provides information about the working of IEEE
802.1Qbv and categorizes different types of methods for
creating schedules. Afterward, we describe three schedule
approaches in Section 4. Then we evaluate and compare
these approaches in Section 5. Lastly, we conclude in
Section 6.

2. Related work

As we delve into the workings of 802.1Qbv TAS, it is
important to consider the contributions of prior research
on schedule synthesis. In the following section, we review
relevant literature in this field.

Steiner [3] introduced an Satisfiability Modulo Theory
(SMT) based approach to schedule Time-Triggered (TT)
traffic in a network. He formulated the scheduling problem
as a set of logical constraints that could be solved by
SMT solvers. Hellmanns et al. [4] proposed a hierarchical
approach that uses a Tabu Search algorithm to schedule
large factory networks. Dürr et al. [5] developed a no-wait
scheduling algorithm based on Integer Linear Program-
ming (ILP) and Tabu Search. Berisa et al. [6] presented
a heuristic method for improving the schedulability of
Audio Video Bridging (AVB) streams

In this work, we first survey the SMT based approach
proposed by Craciunas et al. [7] to schedule Scheduled
Traffic (ST) frames. Next, we explore the method in-
troduced by Houtan et al. [8] for generating schedules
that enhances the Quality of Service (QoS) of best-effort
traffic in TSN networks. Lastly, we review the window-
based heuristic approach proposed by Reusch et al. [9] to
schedule large networks.

3. Background

In this Section, we explain the gate mechanism in-
troduced in 802.1Qbv and the concept of the GCL. After-
ward, we introduce two types of approaches for generating
schedules.

3.1. Time-Aware Shaper

To enable scheduling of Ethernet frames using IEEE
802.1Qbv standards in time-sensitive networks, network
components such as switches that are compatible with Qbv
are used. Traffic in a network is classified mainly into
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Figure 1: Switch with IEEE 802.1Qbv [6]

three classes: ST, AVB, and Best Effort (BE). ST streams
have the highest priority and demand high determinism,
whereas BE streams have the lowest priority.

Figure 1 presents a TSN-compatible switch with 2
ingress ports A and B and one egress port C. The function
of the switching fabric is to perform mapping of these
ingress ports to egress ports for a given stream. There are
8 queues assigned to 3 traffic classes. ST traffic is assigned
to higher-priority queues and lower-priority queues are
dedicated to BE traffic. The priority filter decides in which
queue a frame of the given stream will be enqueued. TAS
introduces a timed gate in each queue. Each timed gate has
two states: open (1) or closed (0). Frames are dequeued
from a queue in a FIFO manner. If gates of multiple
queues are opened simultaneously, the frames from the
highest-priority queue are transmitted. The state of each
timed gate and the time of opening/change in the state of
these gates is encoded in a GCL [6]. Each entry in the
GCL consists of 2 elements, where the first element is the
time relative to the start of the GCL and the second is the
state of the gates represented as a bitmask. For example,
the entry "T1: 10000000" means that only the gate of the
first queue is opened at the relative time T1. GCL is a
cyclic schedule, i. e., the entries in GCL repeat themselves
after a predefined time period Tcycle. Furthermore, the
IEEE 802.1AS standard is used to synchronize the clocks
of all TSN switches in the network [5].

TAS defines the whole gate mechanism that allows or
denies the transmission of frames by opening or closing
the corresponding queues on the basis of the GCL, but it
does not define how the entries in the GCL are created,
i. e., it does not define an algorithm that decides the state
of the gates at a given time. Therefore, several researchers
proposed algorithms that allow optimal communication
for different parameters, e. g. some algorithms aim to
achieve minimum latency for ST streams without taking
the latency of lower-priority streams into consideration [7]
while some tend to minimize the maximum end-to-end
delay of BE streams [8].

3.2. Schedule Creation

The approaches for creating schedules can be grouped
into two categories: exact approaches and heuristic ap-
proaches. Exact approaches use methods like SMT, Op-
timization Modulo Theorem (OMT), and ILP. In such
approaches, a constrained satisfaction problem is con-
structed from the scheduling problem and then solved by
methods like ILP or SMT. One of the main advantages
of these approaches is that the results generated from

these approaches are provably optimal. But the scheduling
problems are NP-hard, thus calculating exact solutions for
large networks demands high computation time.

Heuristic approaches solve this problem and speed up
the calculations by finding sub-optimal solutions. But the
results generated by these approaches are not provably
optimal. Many of these approaches employ heuristic tech-
niques such as Tabu Search and Simulated Annealing.

4. Approaches for schedule creation

In this Section, we explore three approaches for sched-
ule creation. First, we explore the SMT-based approach to
schedule ST traffic by Craciunas et al. [7]. Afterward, we
analyze another SMT-based approach to improve the QoS
of BE traffic proposed by Houtan et al. [8]. Finally, we
inspect the window-based approach devised by Reusch et
al. [9] to schedule traffic in large networks.

4.1. SMT Based ST Scheduling

Craciunas et al. [7] formulated the scheduling problem
as a set of constraints. These constraints are then passed
to the SMT solvers to find the optimal values for variables
like frame offset such that all constraints are satisfied.

Many factors like sharing of the same queue by frames
of different streams affect the deterministic behavior of
a network. To avoid this, the following constraints were
defined in [7].

Frame Constraint. This constraint assures that offset
of each frame is greater than or equal to 0 and less than
or equal to the frame period and thus, guarantees that the
frame transmission will be completed before the start of
the next period. [10].

Link Constraint. Only one frame can be transmitted at
a time on a given physical link. This constraint enforces
that no two frames directed to the same physical link
overlap each other [10].

Flow Transmission Constraint. This constraint en-
forces that frames of a stream follow the routed path of
the stream in a specific order. In other words, it assures
that a frame can only be sent on the next link in the path
after it has been fully received on the previous link [7].

End-to-End Constraint. The time between a stream
being transmitted by the sender and received at the desti-
nation must be less than or equal to the specified duration
to avoid any deadline misses for ST streams [7].

If frames of two different streams arrive at the same
time, the order in which the frames are placed in queues
is not clear. As shown in Figure 2(a), the frames from
both flows may get enqueued in any order and therefore,
they may be interleaved in any combination on the egress
port. Conditions must be defined to avoid this interleaving
by either placing such frames in different queues (Figure
2(b)) or maintaining the intended order and transmission
time for all frames if the streams are placed in the same
queue (Figure 2(c)) [7].

Stream Isolation Constraint. Two frames F1 and F2 of
different flows are planned to arrive and be assigned to a
queue in a particular order, e. g., F1 before F2. If frame
F1 is lost and is not attached to the queue, frame F2 will
get transmitted in the time slot reserved for F1, which
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Figure 2: Flow interleaving and isolation within an egress port [7]

results in non-determinism [7]. To avoid this problem,
this constraint enforces that if a frame of a given flow
is queued, no frame of other flows is allowed to enter
the queue until all frames from the given flow are fully
transmitted to the output port [7].

Frame Isolation Constraint. The constraint specified
above decreases the search space for the schedules. This
new constraint loosens it and enforces that the frames from
the second flow are now only required to wait for the
frames present in the queue and not for all frames of the
first flow to be dispatched to the output port [7].

The concept of using Satisfiability Modulo Theories
(SMT) solvers to create schedules was first introduced
by Steiner [3]. SMT solvers provide a model for the
given context when a set of variables and constraints in
the context is satisfiable. This model represents one of
the potentially many solutions to the given constraints.
The goal of this 802.1Qbv scheduling algorithm is to
find the optimal values for the frame offsets and queue
assignments for each egress port of routed flows in the
network such that all constraints explained above are
satisfied. This approach involves scheduling each flow one
at a time by adding the flow’s variables and constraints to
the SMT context and attempting to solve the problem [7].

If a solution is found, the variables for the flow are
replaced by the constant value provided by the SMT
model. This repeats until all flows are scheduled (a so-
lution found) or the solver determines that it is not pos-
sible to satisfy newly added constraints in the context.
If an unfeasible step is encountered, the SMT context is
backtracked, and the last added flow is removed. The next
optimal values of variables for the removed flow are then
determined before returning to the unfeasible step. This
backtracking algorithm repeats until a complete solution
for all flows is found or it is found that solution does
not exist after checking every possible combinations of
values using backtracking. In the latter case, a suboptimal
solution is returned that is able to schedule the maximum
number of flows [7].

4.2. QoS Improvement

The approach explained above addresses the schedul-
ing of ST streams but does not focus on BE traffic
class. The approach in [8] is an enhancement that uses
all constraints defined in [7] and proposes a new set of
constraints and objective functions to create schedules for
ST traffic while improving QoS for BE traffic.

The concept of slack is introduced to accommodate BE
frames between consecutive ST frames. Slack is a period
of time after the transmission of an ST frame during which
no other ST frames can use the bandwidth of the link [8].

Porous Link Constraint. This is a modified form of
the link constraint explained above. The link constraint

avoids the timely overlap of frames on the same link. This
constraint has been modified to take slack into account and
avoids overlapping of frames along with their slacks [8].

Slack Size Constraint. This constraint verifies the size
of slack used for each frame scheduled on the link. The
used slack size must be greater than or equal to zero, but
it must also be less than or equal to the difference between
the frame period and its transmission time [8].

Hop Slacks Constraint. This constraint bounds the
total amount of slacks allowed on the link [8].

Equal Link Constraint. This is an optional constraint
that enforces equal slack sizes for all frames on a link [8].

Three objective functions were introduced in addition
to these constraints.

Maximization. This optimization objective function at-
tempts to schedule the transmission of ST frames close to
their deadlines, while still packing them together. This
maximizes the allocation of available bandwidth for the
transmission of BE frames at the start of the schedule and
avoids deadline misses for these frames [8].

Sparse Schedule. This function seeks to maximize
the overall slack between subsequent ST frames that are
scheduled to be transmitted on the same link. In other
words, it helps to create gaps between subsequent ST
frames to fit BE frames to minimize the delay [8].

Evenly Sparse Schedule. This function modifies the
sparse schedule objective function by asserting the equal
porous constraint specified above to create equally-sized
slacks on the links [8].

An SMT solver checks the satisfiability of these con-
straints and returns one solution if they are satisfiable.

4.3. Window-Based Heuristic Approach

Real-time communication is critical in large indus-
trial networks. SMT-based approaches are not ideal for
scheduling these large networks, because the large con-
strained problems formulated have exponential runtime
w. r. t. the number of flows. Thus, heuristic approaches
are widely used for scheduling large networks, as they
provide solutions in a shorter period of time that may or
may not be optimal.

Reusch et al. proposed a heuristic approach in [9] to
create schedules. The main goal of this work is to find the
optimal window length and period so that no deadline for
an ST flow is missed and the total available bandwidth
of all ports in the network is maximized. The purpose
of maximizing available bandwidth is to allow room for
lower-priority traffic.

A window of a queue refers to the time interval for
which the timed gate of the queue is opened and allowed
to transmit frames. A cost function is defined for each
port that determines the number of windows active in
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a given period. These cost functions are added together
to get the overall cost function. A heuristic algorithm is
developed to find an initial solution that minimizes this
overall cost function. A solution is considered valid if all
flows have a finite worst-case delay. If the initial solution
provided by the heuristic method is valid, it might be
cost-optimal but it does not imply that all deadlines are
met. Thus, a window optimization algorithm checks if the
initial solution satisfies the deadlines of all flows. If these
deadlines are met, then the initial solution is returned as
the final solution.

Otherwise, the infeasible flows are sorted in descend-
ing order based on the percentage by which they exceed
their deadlines. The flow with the largest percentage is
optimized first. Optimizing a flow involves adjusting the
period of all ports on its route through an iterative process.
This is done by increasing or decreasing the period of
every window in each port by the same amount in each
iteration. If the flow is not feasible after adjusting the
periods, they are decreased for all ports. If the flow
is feasible, the periods are increased until the solution
becomes infeasible or the periods no longer change. The
motive here is to find the maximum period for each port
that allows all flows to meet their deadline [9].

Ultimately, we either get a feasible solution or there
could be a solution that exists but cannot be discovered
through this method.

5. Comparison

In this section, we discuss the results achieved by
the three approaches. We present and compare the results
obtained using these approaches.

5.1. ST Scheduling

Z3 SMT/OMT solver and Yices v2.4.2 (64bit) were
used for evaluation. The experiments were conducted on
a 64bit 4-core 3.40GHz Intel Core-i7 PC with 4GB mem-
ory and a 5-hour time-out value. Synthetic configurations
were used to analyze the scalability and schedulability
of the networks, based on three predetermined network
topologies. These topologies ranged from 3 end-systems
connected to one switch to 7 end-systems connected
through 5 switches. To achieve higher utilization on the
links, the size of the topologies was kept relatively small
compared to the number of flows. The results indicated
that the runtime increased exponentially with an increase
in the number of flows and frames scheduled, while the
period set has a significant impact on scalability. The flow
isolation approach consistently outperformed the frame
isolation approach, with an average 13% faster runtime
at the expense of schedulability. Further experiments con-
firmed this trend, with the flow isolation approach being
faster on average than the frame isolation approach [7].

5.2. QoS Improvement

For the purpose of evaluation, a multi-hop network
with six end stations was used. Different scenarios were
selected that featured different ratios of ST and BE
streams. In addition to the three objective functions ex-
plained in the Section 4.2, the minimization objective

function is used to schedule ST streams. The minimiza-
tion objective function minimizes the total offset of ST
streams. The end-to-end delay of BE streams, deadline
misses, and runtime were measured for each objective
function. Moreover, Z3 SMT/OMT solver was used to
solve the constrained problem and find a feasible solution.

The minimization objective function resulted in the
longest end-to-end delay for BE streams in all scenarios,
while the maximization objective function gave the best
results. The reason is that the maximization function
schedules ST frames as close to their deadlines as pos-
sible, which creates room for BE frames to be scheduled.
The sparse and evenly sparse objective functions also
produced lower end-to-end delays due to the slack, that is
built in to accommodate BE frames.

The minimization and maximization functions had
a large number of missed deadlines, while the sparse
schedule function and evenly sparse schedule functions
had no missed deadlines in any of the scenarios. Both
the sparse schedule function and evenly sparse schedule
function also had the best runtime. In scenarios with fewer
ST streams, the maximization function was faster than
the minimization function. However, as the number of
ST streams increased, the maximization function became
slower and was eventually outperformed by the minimiza-
tion function [8].

5.3. Window-Based Heuristic Approach

Seven test cases were designed based on industrial
application requirements to evaluate the effectiveness of
the approach. Moreover, the greedy randomized adaptive
search procedure (GRASP) metaheuristic from [11] and
Strict Priority (SP) policy were used for comparison. Four
aspects were considered in the comparison: worst-case
delay, mean cost, calculation time, and the number of
infeasible flows.

The results showed that although the proposed al-
gorithm had a better execution time than GRASP, it
was outperformed by GRASP in the other three aspects.
The SP algorithm had the best runtime, but it caused a
significant delay for other traffic classes. GRASP was
able to schedule all flows in all test cases, but required
exponential time to get solutions in some cases. Moreover,
GRASP was less robust and more difficult to adapt to
changing conditions in real-time applications, compared
to the proposed algorithm [9].

5.4. Comparison

As shown in the Table 1, ST Scheduling [7] solely
focuses on scheduling ST frames, while the other two
approaches take both ST and BE frames into consider-
ation. Additionally, ST Scheduling [7] has the highest
runtime among the three approaches. For small networks,
QoS Improvement [12] exhibits the most efficient runtime,
whereas Window-based Heuristic [9] has the best runtime
for larger networks but as a tradeoff, it returns suboptimal
solution, unlike the other two approaches that always
return optimal solution.

Therefore, we can conclude that out of the three ap-
proaches, the third approach is optimal for large networks,
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Name Solution Approach ST BE Nodes Streams Runtime (s) Solution Optimal?

ST Scheduling [7] SMT X × 12 1000 <18000 X
QoS Improvement [12] SMT X X 8 10 0.37-1153.52 X
Window-based Heuristic [9] Heuristic X X 402 316 ∼10.52 ×

TABLE 1: Overview of the approaches discussed in this paper [13]

whereas for small networks, the second approach is the
most suitable approach.

6. Conclusion and Future Work
In this paper, we described the working of the gate

mechanism in IEEE 802.1Qbv and explored and analyzed
three different approaches for creating schedules. The first
approach scheduled ST frames without taking other traffic
classes in consideration. The second approach aimed to
optimize the scheduling of BE frames while meeting the
deadlines of ST frames for small networks using SMT
solvers. The last approach used a heuristic algorithm to
schedule ST frames and maximize the available band-
width for BE frames in large networks. All approaches
succeeded in their objectives. We also compared these
approaches and concluded that the third approach had the
best runtime at the expense of the optimality of the solu-
tion returned, whereas the second approach outperformed
the first approach for small networks.

Future work on the first and second approaches could
focus on reducing the complexity of the scheduling prob-
lem by trying to remove or loosen some constraints while
still meeting the deadlines of all flows. One possible
extension to the window-based approach could be further
optimization using new heuristic techniques to minimize
the overall delay.
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Abstract—This is a technical report about making NixOS
available on the Chair of Network Architectures and Ser-
vices’ testbeds. Our goal is to make it easy for conductors
of network experiments to make their experiments repro-
ducible. NixOS was chosen for its reproducible and declar-
ative system and package management. In the end, we will
have integrated NixOS into the chair’s testbed infrastructure
and conductors can choose to use a ready-made image of
NixOS for their experiments.

Index Terms—reproducibility, experiments, testbed, pos,
NixOS

1. Introduction

An important part of science is the verifiability of
results. To promote verifiability, we want to help conduc-
tors make their experiments on the chair’s testbeds more
reproducible, i. e., the experiments can be replicated and
will still have the same outcome.

While the reproducibility of an experiment has many
facets, in this paper, we focus on the operating system: dif-
ferent researchers should be able to set up their machines
to the same operating system state that the conductor had
when he or she performed the experiment. There are two
parts to this operating system state: the installed programs
and the configuration. Both parts are dealt with in this
paper.

For this reason, we will continue Zhou Lu’s previous
Bachelor’s thesis “Reproducible Research Infrastructure
with NixOS” [1], [2] by

• first giving an overview of the environment where
the experiments take place, i. e., the testbeds of
chair I8, and outlining NixOS from a reproducibil-
ity perspective,

• then showing how to make NixOS available on
testbeds using pos,

• and finally thoroughly describing the implementa-
tion details of this process.

2. Background Information

All of the following information about the Chair of
Network Architectures and Services’ (I8) testbeds is from
its wiki page [3].

2.1. Testbed Machines

Each testbed of the I8 testbeds consists of a man-
agement node and test nodes. Every authorized user can

connect to the management node via SSH and, as the
name suggests, manage the test nodes from there. The test
nodes are bare-metal servers on which the experiments can
be executed. Some are connected among each other with
specified network links, over which experiments can be
run. They do not have an operating system installed on
them.

Figure 1: A simplified representation of the structure of
the testbeds.

2.2. pos

The management and test nodes work together with
the help of pos [4]. pos, which stands for “Plain Orches-
trating Service”, is the main tool for conducting experi-
ments on the testbeds. It is used for

• managing the access to the test nodes between the
users through allocations and reservations with a
calendar,

• managing test nodes in terms of powering the test
nodes on or off and providing them an operating
system to boot,

• configuring test nodes with the parameters of an
experiment,

• conducting an experiment on test nodes by exe-
cuting a script or individual commands on them,

• and gathering the results and artifacts of an exper-
iment.

pos consists of three main components:

• The pos daemon (posd) is running on the man-
agement node and manages the experiments. It
provides a REST (representational state transfer)
API for the other components.

• posd can be controlled with poslib and pos-cli
from the management node. poslib is a python
library and pos-cli is a command line interface.
pos-cli uses poslib internally.

• postools is available on the test nodes and does
the communication with posd, e. g. synchronizing
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the test nodes with checkpoints and taking care
of other common useful tasks for experiments.
postools can be used as a python library or as a
command line interface.

2.3. Operating System Images

The management node can control the test nodes per
IPMI (Intelligent Platform Management Interface). This
interface allows posd to do low-level (independent of an
operating system) tasks such as powering the machines
on. The test nodes then boot by means of network booting
(Preboot eXecution Environment, PXE), i. e., they use files
from the network instead of from a built-in storage. These
files are provided by pos. pos allows us to choose the
operating system which it supplies the test nodes with,
e. g. Debian Bullseye. The operating systems, however,
are so-called live boot operating systems, i. e., they do
not need to be installed before they can be used.

New operating systems, such as NixOS in our case,
can be added to pos in the form of images. An image is
a directory that contains the following files:

• vmlinuz: the Linux kernel,
• initrd.img: the initial root file system image,
• and (optionally) bootparameters.yml: the kernel

boot parameters that pos should add1.

Such an image needs to be stored in
/srv/testbed/images/staging on the management
node, which is the place where every user is allowed to
add new images.

The standard way of creating images for the I8
testbeds is using mandelstamm [6], a collection of scripts,
on the so-called builder image. It supports different op-
erating systems via a module system. The main script
build.sh executes the desired module (which is just
another script) and then packs the result into an image.

2.4. Bootstrapping

After a test node boots, it needs to be set up. pos does
this by executing the python program host.py [7] on the
test node through SSH. It sets the configured environment
variables, installs postools, and updates the SSH keys.

This program is not compatible with NixOS as is and
needs to be adapted to work correctly.

2.5. Motivation for the Choice of NixOS

There are already several versions of Debian and
Ubuntu available for use as an operating system on the
test nodes. Also, by using network booting, the test nodes
do not store state between the experiments and therefore
already incentivize making experiments reproducible. In
this section we explore why it is worth it nonetheless to
make NixOS available on the testbeds and what it can
improve on the current situation.

NixOS [8] is a Linux distribution based on the Nix
package manager. Both the system configuration (e. g. the
/etc directory) and the package management, are handled

1. This is currently not disclosed in the wiki [3], but can be read about
in an issue of the pos daemon project [5].

in a purely functional language called Nix expressions.
These Nix expressions describe derivations, which are
tasks that define everything that is needed in order to build
a package. The Nix Packages collection (nixpkgs) [9]
contains Nix expressions for many commonly used pack-
ages. By specifying the git revision of the Nix Packages
collection repository, the versions of all packages are
clearly defined.

To install a package, the corresponding derivation has
to be realized. The output is then stored in a central
place: the Nix store. When some packages are not needed
anymore, e. g. old versions after an update, the Nix store
can be cleaned of old and unused packages by calling the
garbage collection.

NixOS uses source-based package management with a
binary cache. That means that in contrast to, for example
Debian, whose packages are distributed as binaries, its
packages are distributed in source form. However, to
save build time, NixOS can download pre-built binaries
from a binary cache when the inputs of the derivation
match the inputs of the cached version. This model is
great for reproducibility because in case a package is not
available anymore for download in the future, Nix can
automatically build it again as long as its source code can
be found. Since the Nix expressions are (supposed to be)
deterministic, the resulting binary is identical.

The system configuration of NixOS is declaratively
defined in the file /etc/nixos/configuration.nix. A
changed configuration can be applied with the program
nix-rebuild. This means that one has to share just
this one file (and the files that are referenced from it)
and others can reproduce the whole system configuration
(kernel, system services, applications, configuration files,
etc.) except for mutable state (e. g. the /var directory).
This is more efficient and less error-prone than using shell
scripts and manual commands to configure the system.

3. Using NixOS in pos Testbeds
The general command to specify which operating sys-

tem image to use is
pos nodes image <node> debian-bullseye
when using one of the provided images, e. g. Debian
Bullseye. To apply this choice, we subsequently need to
restart the test node:
pos nodes reset <node>
If we want to use a self-made image, we need to add the
staging argument to our above command:
pos nodes image --staging <node> <image>

But we may not need to build the NixOS images
ourselves: mandelstamm-ci [10] is a program that builds
images for the testbeds using mandelstamm at predefined
intervals. In case we want to build the image ourselves
anyway, e. g. because we want to change the configuration
for the image beforehand or mandelstamm-ci does not
build the images for our testbed, we can do it as follows
in the “builder-bullseye” image:
MANDELSTAMM_TARGET=copy mandelstamm/build.sh

mandelstamm/modules/nixos-22.11.sh <image
name>

↪→

↪→

The NixOS image is already preconfigured like the
other images on the testbeds, e. g. useful programs are
installed, and the timezone is set correctly.
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4. Implementation Details and Contributions

Our goal is to make NixOS available on the test nodes
for experiments.

We base our work on Lu’s Bachelor’s thesis [1], which
explains how to make a NixOS image and provide it to
pos and describes some changes to pos and the NixOS
image in order to make pos and NixOS compatible with
each other so that pos can carry out its tasks, which we
cover in Section 4.1 and Section 4.2 respectively.

The following are our contributions: We extend the
changes to pos and the NixOS image in Section 4.2. Then
we automate the build process of the NixOS image with
mandelstamm in Section 4.3 and add it to mandelstamm-
ci in Section 4.4. Eventually, we add some guidance on
the usage of NixOS in the testbeds’ wiki in Section 4.5.

4.1. Building a Basic NixOS Image

Nixpkgs already provides a way to build PXE images
of NixOS [8], [9]. In the name of easier reproducibility, we
use this official way of creating our NixOS image instead
of building it with mandelstamm (though later we will add
a feature to mandelstamm that allows external programs—
in this case nix-build—to build images). This means that
our first step is to install the Nix package manager:
apt install nix-setup-systemd
We use the existing package manager to install Nix instead
of piping the contents of the official installer URL to bash
in order to save the manual creation of a non-root user
account, have better compatibility with Debian, etc. After
that, we clone the nixpkgs repository [9], which contains
the build instructions:
git clone --depth 1

https://github.com/NixOS/nixpkgs.git
--branch nixos-22.11

↪→

↪→

To finally build a NixOS image, we then run:
nix-build -A netboot.x86_64-linux

nixpkgs/nixos/release.nix↪→

This yields us three files, two of which—bzImage
and initrd—we just need to rename to vmlinuz and
initrd.img respectively to fit as a pos image. The
third file—netboot.ipxe—needs to be adapted to work
with pos. It contains the kernel boot parameters (par-
ticularly “init”) that are required for booting NixOS.
To extract them from this file and write them to the
bootparameters.yml file, we use the command from
Figure A.4 in Lu’s thesis [1]:
grep --regexp='.⁎init=.⁎ initrd=initrd.⁎'

<'netboot.ipxe' | sed 's/.⁎init=\(.⁎\)
initrd=initrd.⁎/init: \1/'
>'bootparameters.yml'

↪→

↪→

↪→

4.2. Changes to pos and the NixOS Image

Now the image in itself is done. But pos still needs to
be expanded to be able to deal with NixOS and NixOS
configured to work together with pos. Some of these
changes have already been made (see Figures A.2 and
A.3 in thesis [1] and merge request [11]), others we make
ourselves (see merge requests [12], [13]).

4.2.1. NixOS Configuration. The NixOS image is as-
similated to the existing OS images by including the
same configuration that the module common.sh applies
to all other mandelstamm images in the NixOS config-
uration. This involves installing likely useful programs,
setting the hostname to be received via DHCP (Dynamic
Host Configuration Protocol), setting the timezone to “Eu-
rope/Berlin”, and adding SSH keys.

Furthermore, symbolic links are created in the image
to the programs that posd and host.py (introduced in
Sections 2.2 and 2.4 respectively) expected at certain loca-
tions. Python, for example, is linked to /usr/bin/python.

We modify the pos daemon to not expect python at a
fixed location with /usr/bin/python but instead use the
environment with /usr/bin/env python. The equivalent
has already been done for postools [14]. This means that
we can remove the creation of the symbolic links from
the NixOS configuration.

4.2.2. NixOS Configuration File Location. The corre-
sponding options for the aforementioned configuration
are directly included in the base file for the image
netboot-minimal.nix in the local nixpkgs repository.

This method of changing the configuration of the
image has a problem: While the changes in the local repos-
itory do carry over to the image (which means that a re-
build retains this configuration), an update (nix-channel
--update) overwrites them. This means that a subsequent
nixos-rebuild resets everything.

To solve this, we move the whole configuration to a
separate file called testbed.nix. We import this file for
the build of the image and set that the file is included in
the image and referenced from the NixOS configuration
file /etc/nixos/configuration.nix in the image using
the “configuration” argument of release.nix:
nix-build nixpkgs/nixos/release.nix -A

netboot.x86_64-linux --arg configuration
'{ pkgs, ... }: { imports = [
../files/testbed.nix ];
installer.cloneConfigIncludes = [
(pkgs.writeText "testbed.nix"
(builtins.readFile ../files/testbed.nix))
]; }'

↪→

↪→

↪→

↪→

↪→

↪→

↪→

4.2.3. postools Installation. To accommodate the spe-
cial way to install software of NixOS, the file
default.nix [15] containing a Nix expression for
building a Nix package of postools is added at
/srv/testbed/files/luz/default.nix on the manage-
ment nodes of two testbeds2. When bootstrapping a test
node, the file is downloaded to the test node and used by
host.py to install postools to the default profile (available
in all user environments).

4.2.4. Hostname Correction. host.py needs the short
hostname for the communication with pos, but in NixOS
the hostname is set to the fully qualified domain name ob-
tained over DHCP, e. g. “klaipeda.baltikum.net.in.tum.de”.
Therefore host.py only uses the part before the first dot
of the hostname when bootstrapping NixOS.

2. This file was added to the management nodes “coinbase” and
“kaunas” [11]. In the final section of this paper we suggest making
this file no longer necessary as future work.
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4.2.5. NixOS Identification. The identification of NixOS
in host.py for the decision on how to deal with the
hostname and how to install postools fails, i. e., it does
not execute the NixOS-specific statements, which causes
the bootstrapping process to abort. We fix this by making
the comparison that tests for NixOS case insensitive.

4.2.6. Direct Build of bootparameters.yml. We
can produce the bootparameters.yml file directly
with Nix instead of adapting netboot.ipxe with
sed. To do so, we overwrite the Nix derivation
system.build.netbootIpxeScript (in the file
netboot.nix [9]) using “mkForce” (explained in [8,
Section 67.3.2. Setting Priorities]) to generate our
bootparameters.yml file instead of the standard
netboot.ipxe file:

system.build.netbootIpxeScript = lib.mkForce
(pkgs.writeTextDir "bootparameters.yml" ''↪→

init: "${config.system.build.toplevel}/init"
'');

4.3. Automated Building With mandelstamm

While mandelstamm is not compatible with the way
we want to build a NixOS image (with nix-build, see
Section 4.1) as is, we will extend it accordingly.

mandelstamm has a feature that allows us to specify
with the environment variable MANDELSTAMM_TARGET the
format in which it should pack the image. The two options
are “traditional” and “squashfs”. They were originally
introduced to compress images that are too large. We
add a third packing format “copy” to these options that
just copies the files that a module created to the output
directory, i. e., it does not pack them first as the other two
options do. This allows for building an (already packed)
NixOS image in a mandelstamm module.

As the building of images happens on the builder
image, we add “nix-setup-systemd” to the packages to be
installed there.

Next, we create the file testbed.nix (with the pre-
viously mentioned content, see Section 4.2.1) and a new
module for NixOS for versions 22.05 and 22.11 respec-
tively in the mandelstamm repository. These new modules
contain the commands for building NixOS that we already
discussed. The noteworthy points here are that we do
not add the result of the nix-build command as a root
of the garbage collector with the option --no-out-link
and that we call nix-store --gc at the end to collect
the garbage. We do this because, unlike when building
the other images, where everything happens in a tmpfs
(Temporary File System), there are files left over after
building NixOS, namely in the Nix store.

Furthermore, we automatically add the SSH key for
pos, which is found in a git submodule of the mandel-
stamm repository, to the NixOS configuration so that pos
is allowed to log in.

Eventually, we bundle all this in merge request [12].
Now NixOS images can be built using mandelstamm in
the “builder-bullseye” image using the command shown
in Section 3.

4.4. Adding NixOS to mandelstamm-ci

Because we implemented the creation of a NixOS
image in mandelstamm and mandelstamm-ci works to-
gether well with mandelstamm, we can easily auto-
mate the building process with mandelstamm-ci: With
merge request [16] we add an entry for our build
module to the configuration file of mandelstamm-ci
mandelbauer-config.yaml to make it build a NixOS
image regularly and we specify the packing format for
this build to be “copy”.

4.5. Adding Instructions to the Testbeds’ Wiki

At the very end, we add instructions for using NixOS
in the testbeds to the testbeds’ wiki [17].

5. Conclusion

NixOS is now available on the chair’s testbeds as
an automatically built image and can also be built on
other testbeds using pos by following the same procedure.
That means that conductors can now easily choose NixOS
for their experiments and make their experiments more
reproducible this way.

To allow others to reproduce the NixOS environment
for their experiments, conductors only have to provide the
nixpkgs git revision their system was built with and their
configuration.

Last, we suggest some judicious changes that we do
not implement but leave for future work:

• Provide a universal way of installing postools so
that bootstrapping is possible on all testbeds with-
out needing to manually deploy a file once on
each testbed beforehand. This could be done by
including the Nix expression for postools directly
in the NixOS configuration at the image generation
instead of installing postools during the bootstrap
process.

• The command nixos-rebuild test applies
changes to the system even when using the
unchanged configuration file from the image.
Find out why this happens and address it.

• The command nixos-version, which shows
among other things the git revision the system
was built from, reports the dummy values from
the release.nix file in [9]. Only after run-
ning nixos-rebuild test --upgrade it shows
the correct version. The correct values should be
provided from the beginning by giving them as
arguments to release.nix in the build command.
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Abstract—The increasing complexity of network setups in In-
formation Technology fields and companies directly increases
the need for constant testing and validation of the network.
It is often important for the main network, or the production
network, to be running constantly without interruptions, and
to be running at full capacity without the additional overhead
of testing software. In order to create a testbed that closely
resembles the complexity of a production network, network
emulation must be utilized. Another way of bridging the
problem of missing network accuracy is network simulation,
but the findings in this paper suggest that by using a
emulation network setup, including actual traffic as opposed
to simulated traffic, the production network can be emulated
more accurately. In order for a testbed to accurately emulate
the real latency behavior of network flow through a real Wide
Area Network (WAN), multiple technological approaches can
be put to use. This paper compares each of these different
approaches and evaluates them based on emulation ability,
costs and configuration efforts.

Index Terms—network emulation, software link emulators,
hardware wan emulators, fiber optic delay lines

1. Introduction

Testing, validating, and implementing new technolo-
gies in computer networks is a core aspect of achieving a
solid network infrastructure. The optimal way of doing
so is to carry out the testing in the actual production
environment, since this is the actual network setup through
which all of the live traffic flows, and thus is already setup
in the optimal way. But since testing in the production
environment can also result in major downsides, such
as unwanted crashes and down-times of nodes in the
network, this does not present the ideal way of testing
or expanding a network [1].

The solution to this problem is to set up a testbed,
which is an environment that mirrors or imitates the
production network, so that new technologies, expansions
in soft- and hardware and general testing of the network
devices can be tested. Since a testbed network setup is
usually hosted in a single location, this provides the setup
with overly ideal conditions. The cable lengths are short,
usually staying below 100 m, and there are no additional
network nodes, which would be introduced if the network
was geographically separated and had to utilize WAN
connections. Connections over a WAN can impose delays,
latency and other types of interferences simply due to
additional network nodes in the network, or propagation
delay induced by longer cable routes.

This poses the question of how a testbed can repro-
duce the characteristics of a live environment, especially
over longer distances, in order to make the testing even
more accurate. A common answer to this question is
network simulation. Network devices are modeled in a
virtual environment, which allows for simulation based
testing [2]. This is a valid first step in order to test the
functionalities and study the behaviors of the network.
However, network simulation quickly reaches its limits,
since it fails to reproduce the real conditions imposed on
the production network.

We propose to use network emulation, which in-
troduces additional factors in terms of actual network
devices, while still keeping the valuable aspects of a
simulation environment [2]. In order to test the hardware
and software, and various types of behaviors within the
network over a longer distance, and additional number of
devices in the network while still remaining in the local
testbed, emulation methods have to be introduced. Traffic
over a WAN, for example, introduces latency, packet loss,
delays etc. This can be achieved by a variety of methods
and techniques, for example a simple Linux device run-
ning NetEm, an extension of the already available network
manipulation functions of Linux, which can be used to add
fixed amounts of delays with additional random latency
variation to outgoing packets [3].

This paper focuses on emulation techniques in order
to accurately simulate a production environment and ana-
lyzes their benefits and limitations in terms of introducing
actual network behaviors such as the latency introduced
by the cable lengths in WANs. The structure of the paper
is as follows: Section 2 lists and compares free software
link emulators. Section 3 lists and compares all-in-one
hardware WAN emulators. In the following Section 4, a
comparison of the functionalities of free software emula-
tors and hardware emulators is made. Section 5 discusses
the use of fiber optic delay lines in fiber networks. Finally,
Section 6 summarizes and contrasts all of the previously
mentioned approaches.

2. Free Software Link Emulators

Software link emulators are software based tools,
which require underlying hardware to run on. A PC is
enough to install and run software emulators, most of them
being integrated into the operating system environment.
They are the most commonly used tools for network
emulation, as they are usually free and open source [2].
Software emulators can be versatile tools and are useful
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for network emulation based testing, however their func-
tionalities reach their limits quickly, as high line rates are
not realistic and the underlying hardware is not dedicated
to the emulation software. In the following sections, the
most popular and promising software link emulators are
discussed and compared.

2.1. NetEm

NetEm is a free extension to the already existing
Linux Traffic Control package. It is used for its emulation
functionalities for simulating the characteristics of a WAN,
making it an important tool for testing. Command line
parameters allow introducing latency to outgoing packets,
packet loss, corruption, re-ordering and control bandwidth
through rate control. This paper investigates the latency
functions of Net Em. Installation is kept simple, when
using a Linux kernel 2.6 or higher, it is already enabled.
In older kernel versions the implementation is also simple
and can be enabled in the Networking Options [3].

Listing 1: NetEm Delay with non purely random variation
# t c q d i s c change dev e t h 0 r o o t NetEm
d e l a y 100ms 10ms 25%

The command line snippet Listing 1 is taken out of the
official NetEm for Linux documentation [3]. The 100 ms
parameter adds a fixed delay of 100 ms. The 10 ms adds
or subtracts additional 10 ms in a purely random fashion,
meaning the outcome of the delay value is 90 ms or
110 ms. Because WAN connections do not usually behave
in a purely random fashion, the 25 % percent parameter
is necessary to approximate real variation, meaning that
the next random element of the delay is dependent on the
previous outcome by 25 % [3].

2.2. Nist Net

Nist Net is a free Linux-based package used for net-
work emulation. Much like its descendant NetEm, which
was mentioned previously, it runs as an extension of
the Linux kernel. It can be used to test and simulate
a wide array of WAN properties, such as packet loss,
bandwidth limitations, latency, and network congestions.
The word "emulation" is defined by the two creators Mark
Carson and Darrin Santay as the testing of a network in
a simulated environment in addition to a real hardware
network setup [4]. The real component in this sense is the
actual machine running Nist Net, and the simulated com-
ponent being the simulation factors such as introducing
delays or bandwidth limitations in a logical sense inside
of the Nist Net package. Therefore, Nist Net, much like
NetEm, benefits from the simulation environment, which
is easily changed and reproducible, but also benefits from
the factors of a real network device setup [4].

The implementation of Nist Net is simple, as it is
implemented and configured through a Linux operating
system command line, and, for example, only requires
a simple PC-router setup in order to use its emulation
functionalities. By changing parameters in the Nist Net
configuration, the user can define the desired network
manipulation rules in a table of emulator entries, in which
the user must also specify for which packets the rules

apply, and which emulation factors should be applied [4].
The delay parameter sets the delay of incoming packets
in milliseconds and has multiple parameters which can
be applied to the delay behavior. For example the added
delay can be static, following a random distribution, or
by default follow a right tailed delay distribution which
closely resembles the actual distribution of ping delays,
tested in a three hour connection of machines in a Net-
work, as observed by the authors of Nist Net [4] .

Listing 2: Configuration of Delay in Nist Net
# c n i s t n e t −a 0 . 0 . 0 . 0 0 . 0 . 0 . 0 −− d e l a y 60

The delay parameter in Listing 2 adds 60 ms of simple
delay to all traffic passing through a network node running
Nist Net [5].

2.3. Dummynet

Dummynet is a network emulation tool developed in
the late 1990s [2]. It was originally designed for running
configurable experiments in network setups and has been
developed for FreeBSD, a Unix-like operating system, for
which it later became a default package. Across the years
the support for other operating systems was expanded,
now supporting Linux, MacOS, and Windows [6]. Dum-
mynet works as a network emulator by utilizing pipes,
which are used as a communication link with configurable
bandwidth and other factors, such as delay [6]. These
pipes are combined with different queuing methods which
simulate those used by actual network devices, with FIFO
queues being the default setting of Dummynet [6] [2]. The
user can choose which traffic gets routed through which
pipe, or alternatively, set up a pipe, which accepts any
traffic. By defining the parameters of a pipe, for example
the delay parameter, any traffic set to pass through the pipe
has these parameters applied. The following command
snippet shows how to define a simple delay of 60 ms and
route all traffic through a pipe, the emulated link [6].

Listing 3: Adding simple delay and configuring traffic to
a pipe in Dummynet
# ipfw p i p e 1 c o n f i g bw 2 Mbit / s d e l a y 60ms
# ipfw add p i p e 1 i p from any t o any

The parameter "bw 2 Mbit/s" in Listing 3 defines the
bandwidth and the following "delay 60 ms" sets a delay
of 60 ms to pipe 1. The second line routes all the traffic
through pipe 1 [6].

Dummynet can be set up as a network router, which
accepts the incoming taffic, applies the emulation factors
and then forwards it to the network. It can also be estab-
lished in a distributed fashion, where every device in the
network must have Dummynet enabled [2].

2.4. Comparison of NetEm, Nist Net and Dum-
mynet

In some network setups it might be sufficient to
test the network behavior under the effects of simple
constant latency, but this is sometimes not enough for
more complex network setups and testing them under real
network conditions. With Dummynet it is only possible to
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add a constant amount of delay to a given pipe. It does
not offer more complex distributions for the latency that
are possible in Nist Net and NetEm. When performing
simple experiments in a emulated network, Dummynet
is definitely sufficient for adding constant latency, but it
cannot accurately simulate the latency behaviors of a real
network setup with WAN characteristics like it is possible
in Nist Net and NetEm [7].

In NetEm and Nist Net, the user can define the delay
distribution to be constant, or alternatively specify a more
complex distribution so that the latency follows a real
latency behavior more accurately. In this regard, Nist Net
and NetEm are similiar, allowing for the latency to follow
all kinds of distributions with optional correlation [2].

Emulation accuracy is also an important factor to
consider, especially for emulating latency behaviors in a
network setup. The more accuracy the emulation is able
to achieve, the better one can test and approximate the
network setup towards the real environment. In the context
of the previously mentioned free network emulation tools
NetEm, Nist Net and Dummynet, this accuracy is achieved
by the used time resolution of the kernel clock [7]. Dum-
mynet is able to utilize the system clock at the maximum
of 10 kHz, whereas Nist Net and NetEm under Linux
are only able to achieve up to 1 kHz [2]. In more recent
Linux kernel versions, NetEm can utilize High Resolution
Timers, providing more accurate emulation effects [7].

The point of emulation plays a role in deciding for
the optimal setup of a emulation network. Dummynet is
able to emulate inbound and outbound traffic, and can be
set up as a network router with emulation functionality,
or in a distributed way, in which every device in the
network will run a copy of Dummynet [2]. NistNet on the
other hand is only able to emulate inbound traffic, while
NetEm can only emulate outbound traffic [7]. NetEm is
effectively setup in a distributed fashion, in which every
device has to run NetEm for the emulation network to
function properly, whereas Nist Net must be setup as a
router between network nodes [2].

It is important to note that Nist Net is currently not in
active development. Drawing a comparison for the three
tools, Nist Net and NetEm have similar traffic impairment
functions, with the possibility of latency distributions.
Dummynet on the other hand only offers basic delay and
impairment functionalities. Keeping in mind the active
development of NetEm and Dummynet combined with
their usability, the decision of a free software emulator
definitely falls between either Dummynet or NetEm. In-
cluding the accurate emulation functionalities and other
features useful for network emulation which Dummynet
does not have, the choice should fall on NetEm followed
closely by Dummynet as the best software emulators.

3. All-in-one Hardware WAN Emulators

While a software emulator setup on a PC could tech-
nically also be specified as a hardware emulator, the all-
in-one hardware solutions discussed in this paper differ
from the commonly used software emulators in regard to
their underlying execution platform. While the software
emulators running on a PC setup are limited to the re-
sources and computing power provided by the underly-
ing PC, which varies depending on other current system

tasks, the all-in-one hardware solutions run on hardware
dedicated to the network emulation tasks. Additionally the
operating system of the all-in-one solutions are typically
optimized towards network emulation as well [8] [9] [2].
The execution of tasks in the all-in-one solutions may
also be offered in a Field Programmable Gate Array
(FPGA) based environment, which results in even higher
execution and emulation speeds of network effects, since
the execution of some tasks is directly carried out on
the FPGA hardware, instead of relying on higher level
software [2] [10].

The specific Hardware Emulators discussed in this
paper, however, will be those typically used in a network
setup in a corporate environment, which has additional
functionalities compared to the available free software
emulators. These Hardware Emulators are costly, and,
therefore, only a few of them will be used in such en-
vironments, in most companies only one of them will be
used in order to emulate the whole network [2]. The instal-
lation effort of commercial all-in-one hardware emulators
compared to the software emulators is much simpler, they
need to be physically installed in the testbed setup and can
be configured through user friendly GUIs. Additionally,
the companies offering these all-in-one solutions often
include additional services in case of faulty equipment, or
troubles while installing the devices. The software emula-
tors are targeted towards the "do it yourself" networking
specialists, and require a certain skill set in networking,
such as the Linux traffic control package, and routing
the network flow. Additional configuration also needs to
be expected when a software emulator is to be used.
Where the previously discussed free software emulators
and hardware emulators drastically differ, are the speeds
at which they support emulation. The software emulators
support the speeds of its underlying computers, which
will usually remain under 1 Gbit/s, while the Hardware
Emulators such as the Netropy 10G or Netropy 100G
are built for speeds of up to 10 Gbit/s and 100 Gbit/s
respectively, which makes them very suitable for a real
network emulation setup [2] [8].

3.1. Apposite Technology Netropy 100G

Netropy 100G made by Apposite Technology allows
speeds of up to 100 Gbit/s [8]. The Installation of the
Emulator is straight forward. It is installed directly into the
testbed, similarly to the installation of a switch or server.
Its 100 Gbit/s emulation engine supports 15 concurrently
running WAN connections, allowing for complex network
setups and concurrent testing [8]. It offers network degra-
dation features similar to the previously discussed free
software link emulators, including a variety of bandwidth,
latency, latency variation, and packet loss functionalities
[8]. The device is able to impose anywhere from 0 to
10 000 ms of delay to each of its simulated WAN links,
with the user being able to impose additional distribu-
tions similar to NetEm and NistNet, including normal,
constant, uniform and many other distributions [8]. The
Netropy device lineup also offers features such as a live
traffic monitor, recording of loss and delay behaviors and
most importantly configuration of the paths and emulation
characteristics of the device [8].
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3.2. Spirent Attero-100G

The Attero-100G is manufactured by the company
Spirent and provides line delay of up to 256 ms for speeds
of up to 100 Gbit/s. A delay rate of 256 ms on 100 Gbit/s
emulation speeds, translate roughly to 50 000 km of a
typical WAN, making it useful for emulating real WAN
conditions [9]. It offers similar traffic impairment func-
tions to the Netropy 100G, such as packet corruption,
duplication, reordering, bandwidth manipulation, latency
and jitter, and does so with a timing accuracy of 5 ns,
providing a very swift emulation onto the packets [9].
Through the restful API, the user can reach the web based
GUI, and manipulate impairment functions by configuring
profiles [9]. The product comes with two profiles as a
standard, providing emulation to one incoming and one
outgoing stream, but this can be extended to 16 profiles
with 8 incoming and 8 outgoing emulated packet flows
concurrently [9]. The Attero-100G emulator offers a range
of delay functions such as gaussian-, uniform- and not
limited to gamma distributions, which can be explained
as continuous probability distributions of the latency. The
independent traffic flows allow for a different delay set up
for each profile, allowing for a complex testing network
setup [9].

3.3. Comparison of Hardware Emulators

The Attero-100G and Netropy 100G are both very
powerful hardware WAN emulation solutions, and are the
golden standard for accurate network emulation. The ded-
icated hardware, including the emulation engines, allows
for emulation at high line rates of up to 100 Gbit/s. The
configuration of both devices is as simple as it gets, and
they offer an extensive GUI for configuration and monitor-
ing. Because the functionalities of these two devices are so
similar, the only decision to be made is how many concur-
rent connections the emulator should handle. The Netropy
100G is able to support 15 concurrent WAN connections,
while the Attero-100G can support 8 connections. The
available traffic impairment functions are almost identical,
and the user is able to specify custom delay functions
via the GUIs. The Attero-100G and Netropy 100G are
both powerful solutions and the use of either of these will
result in highly realistic emulation environment, perfect
for reproducible testing [8] [9].

4. Comparison of Hardware WAN Emulators
and Free Software Link Emulators

Having either an all-in-one Hardware WAN emulator
or a high-end computer, set up with one of the previously
mentioned free software emulators, up and running, the
results of latency emulation does not differ significantly
between the two. In terms of the ability to emulate a
real WAN environment latency behavior, both solutions
are able to attain similar results. Taking NetEm and the
Netropy 100G for example, the functionalities are very
similiar. The delay can be imposed in a simple fash-
ion, but also in a more complex variation distribution.
The speeds at which both, the hardware emulators, and
software emulators are able to emulate depend on the

hardware model, and the software emulators depend on
the underlying computer, on which they run on [2]. This
certainly also has to be noted, since software emulators
realistically cannot reach high emulation speeds of up to
100 Gbit s, and reaching even remotely high speeds of
around 10 Gbit s becomes costly, since the underlying PC
must be able to provide high computing power for the
emulation software. The Netropy 100G and the Attero-
100G are specific models that have ports, which support
up to 100 Gbit s right from the manufacturer with dedi-
cated hardware and execution platforms [8] [9].

Performance can differ greatly between a software and
all-in-one hardware emulator, depending on the hardware
used for software emulation. A PC running a software
emulator shares its CPU resources with all of the operating
system related processes in addition to the emulation
software. The CPU resources needed by other processes
can vary greatly and in return lead to a lower performance
of the software emulator in terms of emulation speeds.
This becomes even more apparent when more connections
and impairment functions are handled by the software,
increasing the CPU load by significant amounts [2]. The
hardware emulators on the other hand are specifically
built and optimized for handling multiple connections with
multiple impairment profiles at the exact speeds which are
specified by the different models available [8] [9].

The Commercial all-in-one Hardware WAN Emulators
are definitely more suitable for more complex network
structures, since the setup, physical installation and con-
figuration is straight forward. The software emulators are
more complex to install, since they must be configured
manually and the traffic flow through a PC running a
software link emulator must be specified as well. The
Attero-100G and Netropy 100G offer remotely accessible
GUIs with ways to configure network degradation func-
tions and real time performance statistics. This makes the
commercial emulators useful for immediately evaluating
the network behavior after imposing new delays, packet
behaviors, etc. While these factors in terms of user friend-
liness and network evaluation are a clear improvement
to the free software emulators, the high price of the
commercial emulators weighs in on a decision between
the two.

5. Fiber Optic Delay Lines

Fiber optic delay lines can be considered as another
type of Network Emulation Hardware with regard to
adding latency. They are another way of introducing fixed
delay for network traffic, specifically in a optical network
setup using glass fiber cables. A Fiber optic delay line
functions by receiving input traffic through a fiber cable
connection, then routing the traffic through the length of
the spooled fiber cable inside of the device, and routing it
back to an output channel [11]. The inherent characteristic
of a fiber cable in being relatively resistant to interference
factors, and having a low amount of propagation loss,
makes this option suitable for adding a low amount of
delay in a optical network [11]. Since the amount of delay
added is proportionate to the length of the cable inside of
the Fiber Optic Delay Line device, the introduced insertion
loss will increase, meaning that the strength of light in the
input is slowly lost through the length of the cables, but in
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most cases of hardware available, it is a negligible amount
[12] [11]. A downside of using a fiber optic delay line is
the increasing size and scale of the device, since the more
delay is required, the more wound up fiber cable needs to
be present inside of the device [12]. Another downside of
this type of hardware are the amount of devices and ports
needed to emulate a more complex network, since each
fiber optic delay line needs its own switch port [12].

5.1. Fiberplus D8 Series

The Fiberplus D8 is a fiber optic delay line, which
is installed in a server rack. The device can hold up
to 45 km of fiber, or additionally 90 km of fiber cable
spooled up inside of the device [13]. It offers network
degradation emulation factors, such as loss, time delay and
fiber emulation such as reflectance [13]. The amount of
delay added is only available as a constant value, since the
delay is not added artificially, but realistically, since the
amount of cable that the traffic passes through is actually
present. Since the propagation delay of fiber is about the
vacuum speed of light [11], the total amount of delay
added within the device will be in the example of the
Fiberplus D8 in total up to 440 µs with a minimum of
12 µs [13].

6. Conclusion

In conclusion, network emulation is a valuable tool
for accurately approximating a test network environment
in terms of real network behavior. Accurately simulating
the latency behavior of a real network setup composed of
multiple network nodes, including WAN structures, is an
important step to achieve these real conditions. Multiple
approaches were listed and analyzed in this paper. This
includes free software link emulators, such as NetEm,
Nist Net, and Dummynet, which need an underlying com-
puter to run its emulation software on, but also hardware
emulators, such as the all-in-one devices Netropy 100G
and the Attero-100G. The use of either hardware all-in-
one solutions or software emulators, when setup properly,
can achieve similar latency emulation results. Although
doing so with high emulation speeds of 10 Gbit s up to
100 Gbit s, all-in-one hardware solutions must be used, as
software emulators are limited to their underlying hard-
ware, and realistically cannot reach these high speeds.
The configuration efforts and acquisition costs vastly dif-
fer between the software and hardware approaches. On
the one hand the software emulators discussed in this

paper are free to use, they impose a more significant
configuration effort and require a certain knowledge of
its underlying operating system. On the other hand, the
hardware emulators offer an all-in-one package, keeping
the installation and configuration simple, and offering user
friendly GUIs, with a drawback of high acquisition costs.
For a large company, a all-in-one hardware package might
be preferable, as one device can be sufficient to emulate a
large scale network with high line rates, while the software
solutions offer a more budget friendly approach. For fiber
optic networks, fiber optic delay lines can provide realistic
network emulation, as these devices house the actual
length of cable inside, routing the traffic through the actual
cable length and not just emulating it within software.
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Abstract—After the introduction of IEEE 802.11ad in Decem-
ber 2012, a new multi-gigabit Wi-Fi connection was made
possible allowing new applications to be performed. How-
ever, using a 60GHz frequency introduced new problems
which were fixed by implementing a new design. This paper
describes the faced challenges along with the organization
and features of IEEE 802.11ad.

Index Terms—ieee 802.11ad standard, wigig, multi-gigabit
wi-fi

1. Introduction

The 802.11ad standard was introduced primarily to
provide a multi-gigabit wireless solution. It uses the
60GHz carrier frequency and can deliver a data rate of
7Gbit/s. This standard is mainly used for wireless data
transmission and wireless displays.

1.1. The Use of 60GHz Frequency

The main reason for using a high frequency in
802.11ad is that in higher frequencies a wider bandwidth
is achievable without creating interferences in contrast to
lower frequencies where interferences are more likely to
happen. In the case of 802.11ad, a frequency of 60GHz
allows us to define a single carrier with a bandwidth of
2.16GHz which is approximately 14 times wider than
a single carrier bandwidth in a 5GHz legacy Wi-Fi fre-
quency [1]. The data rate should increase if we increase
the bandwidth while maintaining similar network charac-
teristics, such as the number of users and the modulation
and channel encoding scheme. This property of channels
has been very useful for building the Multi-Gigabit Wi-Fi.

1.2. Problems Occurring When Using 60GHz

Due to the small wavelength in higher frequencies, an
802.11ad signal cannot propagate through walls and con-
crete objects, which means strong signals are originating
either from a line-of-sight (LOS) path or from first order
reflections on highly reflective materials. Additionally,
since the Oxygen absorption of waves peaks at 60GHz,
signal attenuation is strong and signal range will be limited
to approximately 10m [1]. 802.11ad addresses this is-
sue by implementing directional communications through
beamforming antenna arrays. These antenna arrays can
be weighted to concentrate signal focus in the intended
direction and gain wider signal range [1]. This process will

be described later and is called beamforming. To facilitate
beamforming, the antenna space is partitioned into sectors
representing the multiple directions that can be selected.

2. Physical Layer

In a physical layer, data should be encoded by channel
encoding to assert a level of transmission failure detection
and correction. Additionally, the 802.11ad physical packet
is constructed. A few changes have been applied to the
structure of the physical packet to adapt to the concept
of directional communication. In a later phase, the signal
should be modulated on a 60GHz carrier signal. The IEEE
802.11ad standard supports diverse types of physical layer
(PHY) which execute these phases differently.

2.1. Structure of The Physical Packet

Figure 1: IEEE 802.11ad packet-structure [1]
The IEEE 802.11ad packet begins with a preamble

containing a short training field (STF) and a channel
estimation field (CEF) which are used in the detection
of the implemented PHY and in the reconstruction of the
original signal in case of weak channel conditions [2]. The
CEF helps the receiver restore the original signal after
distortion. The preamble is followed by a PHY Header
containing essential information like the modulation and
channel encoding scheme (MCS) used to transmit the data.
Additionally, it contains the size of the transmitted data.
The third part is the data i.e. PHY-Payload generated by
the MAC-Layer [2]. An optional automatic gain control
field (AGC) follows the data. This field carries information
which helps in equalizing the signal amplitude. IEEE
802.11ad introduces a new optional training field (TRN).
This field is newly introduced in the 802.11ad standard
and is used by stations to train their antennas through
beamforming [2].

2.2. Several Types of Physical Layers

To adapt to different use cases, different PHY layers
were introduced. The control PHY was intended to work
with low signal-to-noise ratio (SNR) operations preceding
and during beamforming. Consequently, the control PHY
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Packet contains a longer STF field providing a better
resistance to unwanted channel effects, compared to the
remaining PHY types. Additionally, the control PHY uses
MCS0 which implements a BPSK Modulation for better
noise resistance and a robust channel encoding scheme
with encoding rate 1

2 to withstand data transmission fail-
ures. Since the control PHY is mainly applied to trans-
mit control information between two pairing stations, the
packets exchanged contain small data fields with a limit of
1023B [2]. Due to the use of a binary modulation scheme,
the limited data field size, and the low channel encoding
rate, the data rate is limited to 27.5Mbit/s when using
this PHY Layer.

To achieve higher transmission rates after beamform-
ing, 802.11ad presents the single carrier PHY (SC PHY)
and orthogonal frequency division multiplexing PHY
(OFDM). Packets in these PHY layers contain data fields
reaching 262 143B [2]. In these PHY layers the data rate
achieved depends strongly on the MCS used.

In the single carrier PHY (SC PHY) data is modulated
on a single carrier signal with a 1760MHz bandwidth
[2]. When first introduced, this PHY implemented 12
different MCS allowing different data rates scaling from
385Mbit/s up to 4620Mbit/s [2]. Recently this PHY
has been extended with new MCS variants to support
8085Mbit/s [2]. To reduce power consumption in mobile
devices, a low-power SC PHY was introduced allowing 5
MCS methods. A trade-off is that the data rate in this
PHY is limited to 2503Mbit/s [2].

The OFDM PHY applies a frequency multiplexing
method that modulates data on multiple subcarriers. The
low data transmission rates achieved in each subcarrier
are added together to result in a high data rate which can
reach 6756Mbit/s on the complete 1830.47MHz band
[2]. Using the OFDM PHY results in high energy costs
and is no longer the fastest alternative since the extension
of the SC PHY. Therefore, this PHY type is obsolete. The
802.11ad hardware is not required to implement all MCS
methods which creates differences regarding performance
between 802.11ad supporting devices.

3. Personal Basic Service Set

To make use of the directional communication, a new
architecture concept “Personal basic Service Set” (PBSS)
was introduced allowing peer-to-peer connections between
stations [1]. Thanks to directionality, multiple peer-to-
peer connections are allowed to coexist without result-
ing in interferences allowing spatial sharing. However,
medium access control (MAC) in a PBSS network must
be centralized in one node called "PBSS contol point"
(PCP) [1]. The centralization of MAC is necessary for
some of the MAC mechanisms described in the upcoming
sections. If two stations intend to start a P2P commu-
nication in the absence of a PCP, the PCP role must
be taken temporarily by one of them. Centralization of
PCP can cause the workload to not be distributed equally
through the network causing power management issues.
Allowing PCPs to hand over the PCP role to other stations
would be a good approach to handle this problem [1]. A
PCP breakdown causing the whole network to become
dysfunctional can potentially represent a vulnerability.
This issue can be fixed by implementing an implicit PCP

handover procedure which chooses the best alternative
PCP when the former PCP is unreachable [1]. PBSS meets
the requirements of many applications where ad-hoc-like
communications are intended like wireless displays or
wireless data storage devices [1].

4. Beacon Interval

Figure 2: 802.11ad Beacon Interval [1]

The medium access control in a 802.11ad network
architecture is managed through periodically recurring
beacon intervals (BI) consisting of a beacon header in-
terval (BHI) followed by a data transmission interval
(DTI) [1]. The BHI replaces the beacon frame used in
legacy Wi-Fi architectures. It includes a beacon transmis-
sion interval (BTI). During BTI the PCP/AP performs
a sector-level sweeping to transmit beacon frames in
all directions. The transmitted beacon frames are used
for network announcements as well as for training the
PCP/AP transmitter antennas [1]. An explanation of the
sector-level sweeping and the beamforming training pro-
cess is included in the last section of this paper. BTI
is followed by an association beamforming training (A-
BFT) which is used by stations to train their transmitter
antennas and by the PCP/AP to complete its beamforming
training. After associating an A-BFT trained station with
the PCP/AP, directional communication can be initiated.
Since BTI and A-BFT implement the control PHY for
a robust association, data rates in these subintervals are
too low and result in overheads due to the recurring
nature of beacon intervals which constitutes a pertinent
problem for some real-time applications such as wireless
displays. Solving this problem included the outsourcing of
information transmissions from BTI to a new subinterval
[1]. As a result, beacon frames transmitted during BTI
were restricted to the necessary information to minimize
transmission overhead. To reallocate the outsourced trans-
missions, a new subinterval “announcement transmission
interval” (ATI) was defined. During ATI, management
information is exchanged with associated stations [1]. This
information is necessary for MAC mechanisms used in
the DTI. Since associated stations have trained antennas,
the control PHY is no longer used in ATI and high
data rate transmissions can be performed. The further
data transmissions are performed during DTI. The DTI is
partitioned into contention-based access periods (CBAP)
and scheduled service periods (SP). During a CBAP, sta-
tions contend for medium access. The SP is a contention-
free period reserved for P2P communication between two
assigned stations [1].

5. Medium Access Control

IEEE 802.11ad uses a contention-based mechanism for
medium access control. However, the exclusive use of con-
tention for medium access in directional communications
can cause problems. To better understand the issues that
arise, we first review the contention concept in 802.11ad.
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We will then identify the problems. This is followed by an
introduction to the adaptation techniques that are in use
to address the issues.

5.1. Contention-based Medium Access

Performed in a CBAP, the contention based access in
IEEE 802.11ad implements a carrier sense multiple access
with collision avoidance (CSMA/CA) expanded with a
request-to-send (RTS)/clear-to-send (CTS) exchange. In
this medium access method, a node stores for each peer
station a network allocation vectors (NAV) timer [1]. A
NAV timer is used to know the time left for a peer station
in its current communication. NAV timers are usually
updated with greater duration field values from RTS/CTS
frames received by overhearing communications between
other peer stations. When contending for the carrier, a
node performs a virtual carrier sensing which is done by
evaluating the NAV entry of the destination node. If the
NAV entry is non-zero, the next connection attempt will
be scheduled after the timer expiration [3]. Otherwise, a
physical carrier sensing is executed. The physical carrier
sense defines the channel as idle if it does not become
busy during a distributed coordination function interframe
Space (DIFS) interval. If the channel is sensed idle, an
RTS frame is sent to the intended receiver [3]. In case
of receiving a CTS frame response, a p2p transmission
is initiated. Time elapsing without receiving a CTS or
physically sensing an occupied channel is identified as a
collision and will cause the next attempt to be scheduled
after a binary exponential backoff interval. A description
of the binary exponential backoff can be found in [4].

5.2. Problems Occurring in Contention-Based
Access

Figure 3: Example of deafness situation [5]

Using contention-based medium access exclusively
can be problematic. While waiting for RTS frames, pairing
stations do not know the direction of the next trans-
mission. Therefore, nodes are forced to apply a quasi-
omnidirectional antenna pattern to deal with such situa-
tions, which reduces the receive signal strength. An addi-
tional problem is deafness. Fig. 3 shows a situation where
a deafness situation arises. We assume the existence of 3
misaligned stations S, D and X. To start a communication
with X, S must beamform in the direction of X and
contend for the channel. Let us further assume that X
already succeeded in initiating a directional connection
with D. Since while contending, the RTS/CTS frames are
transmitted directionally, such transmissions may not be
overheard by S. Consequently, S may not be able to update
the NAV timer corresponding to X. As a result, the virtual
carrier sensing fails to identify the channel as occupied. If
the connection between X and D is long lasting, the station
S will experience multiple collisions inducing series of
backoff intervals. Due to the nature of binary exponential

backoff, there is a high probability for S to be counting
down a large backoff interval when X becomes available.
Throughout this backoff interval, X might start a new
communication with other stations, which could cause
more delay for the communication between X and S to
take place. This behavior can lead to a severe starvation
for some network nodes and create unfairness. While
NAV timers cannot always be helpful against deafness,
implementing NAV timers remains fundamental to address
the deafness problem for contending nodes.

5.3. Hybrid Medium Access Control

To deal with the inefficiencies of the contention-based
access, 802.11ad implements a hybrid medium access
control combining this scheme with two new mechanisms.
The methods in question are Dynamic Channel Time
Allocation and Time Division Multiple Access (TDMA).

Figure 4: Dynamic Channel Time Allocation [6]
5.3.1. Dynamic Channel Time Allocation. Dynamic
Channel Time Allocation is based on a polling phase
followed by allocation periods. In the polling phase the
PCP/AP sends polling frames to the associated stations.
A polling frame schedules the receiving node to submit
a service period request (SPR) frame to the PCP/AP to
ask for channel time [1]. Afterwards, the PCP/AP allo-
cates channel time according to the SPR frames received.
Every allocation period is preceded by an associated
grant period. During grant periods grant frames are sent
to the individual communication peers of the following
allocation period, allowing them channel access. If the
PCP/AP takes part in the communication, only one grant
frame is transmitted to the non-PCP/AP station [1]. In
this medium access approach stations know the directions
of the incoming frames since all the instructions come
from the PCP/AP. Thus, no quasi-omnidirectional antenna
patterns are needed, which improves the signal strength
[1]. A Dynamic Channel Time Allocation can be executed
in both SP and CBAP periods. When implemented in
CBAP, there is a risk that the dynamic channel time allo-
cation becomes disturbed by contending stations that try to
acquire the channel. To minimize this risk, the PCP/AP
applies a physical carrier sensing method using a point
coordination function interframe space (PIFS) interval,
which is shorter than the DIFS interval used in contention-
based access [1]. This change allows the PCP/AP a more
frequent and thus prioritized access to the channel in
contrast to other stations. Additionally, extended direction
fields are included in the polling and SPR frames to try
protecting the polling phase by updating NAV timers of
contending stations. The allocation periods are protected
by direction fields in the preceding grant frames [1]. If
used in CBAP, the PCP/AP can allow contention after
performing the requested allocations, otherwise a new
polling phase is started [1].
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5.3.2. Time Division Multiple Access. Stations using
TDMA send resource requests during ATI to request
channel time in the upcoming BI.In the next step, the
PCP/AP schedules the requested allocations and associates
them separately to SPs. The schedule of SPs will then be
transmitted by the PCP/AP to all the associated stations in
the next ATI [1]. As a result, stations not communicating
during an SP enter sleep mode to save energy. This
method is oriented to satisfy quality of service (QoS)
requirements. Therefore, a resource request should include
parameters like the allocation duration and isochronous
or asynchronous traffic properties [1]. For duration of
communication to be determined, the link in question
should completely beam-trained and the transmission rate
between the communicating parts should be known [1].
If the traffic stream is isochronous, channel allocations
are adapted for meeting certain latency requirements in
a constant-rate recurring payload. This type of payload is
heavily implemented in wireless displays. In case of asyn-
chronous traffic streams, channel allocations are optimized
for non-recurring payload requirements used mostly in file
downloads [1]. TDMA makes use of the directional nature
of the occurring communications to achieve spatial shar-
ing. Spatial sharing allows noninterfering communications
to be initiated concurrently [7].

Figure 5: 802.11ad Spatial Sharing Assessment [7]

Fig. 5 describes how the spatial sharing is performed.
We assume the existence of two pairs of communicating
peers STA A and STA B, STA C and STA D with
corresponding SPs, SP1 and SP2. At first the SPs are
allocated by the PCP/AP in different time slots. To test
the interference between the two communications, the
PCP/AP requests STA C and STA D to beamform and
measure average noise plus interference power indicator
(ANIPI) during SP1. The same is requested from STA A
and STA B during SP2. After completion, the obtained
values are transmitted to the PCP/AP. The PCP/AP uses
these values to decide if SP1 and SP2 should be allocated
concurrently. To prevent interferences in case of sudden
changes in the network, the PCP/AP periodically checks
the existing spatial sharing configuration by requesting
similar measurements to see if the SPs should remain
concurrent.

6. Beamforming

To preform beamforming training, two phases are
defined: sector-level sweep (SLS) and beam refinement
protocol (BRP).

Figure 6: Transmit and Receive Sector Sweep [1]

6.1. Sector-Level Sweep Phase

When performing SLS on a pair of stations, both
nodes receive training. The first station to be trained is the
initiator, the second is the responder. To train transmitter
antennas, a transmit sector sweep (TXSS) is performed.
As shown in the left part of Fig. 6, in TXSS the training
station sends sector sweep (SSW) frames using differ-
ent sectors. Meanwhile, the pairing node uses a quasi-
omnidirectional receive pattern to measure the SNR values
of the received frames. Afterwards, the pairing station
reports the optimum SNR and the sector identifier from
the corresponding frame in an SSW Feedback [1]. For the
receiver antenna training, a receive sector sweep (RXSS)
is performed as shown in the right side of Fig. 6. In
RXSS, SSW frames are transmitted omni-directionally to
the training node which tries to measure the SNR using
multiple receive sectors and pick the optimum sector. The
SSW feedback for RXSS includes the optimum SNR [1].
During BTI and A-BFT, a sector-level sweep is imple-
mented as follows. A TXSS for the PCP/AP is performed
during BTI. Instead of SSW frames, Beacon frames are
used to include network announcements.

Figure 7: Sector-Level Sweeping in A-BFT [1]

The A-BFT generally includes TXSS for responder
nodes. Since multiple responder nodes exist, the PCP/AP
prepares multiple A-BFT timeslots. In each A-BFT slot
a responder TXSS is performed. The feedback for the
PCP TXSS is included in all the SSW frames transmitted
during the responder TXSS. Afterwards, SSW feedback
for the responder TXSS is sent by the PCP/AP. Stations
must contend for accessing a timeslot. Since collisions can
be detected if the PCP/AP does not respond with SSW
feedback, carrier sensing is not used [1]. The PCP/AP
can announce an A-BFT slot for a PCP RXSS [1], which
is helpful if a responder node TXSS has already taken
place in earlier BIs. Receiver antenna training can also be
rescheduled to upcoming SLS or BRP phases in the DTI.

6.2. Beam Refinement Protocol Phase

The BRP procedure tries to refine the antenna direc-
tions adjusting the antenna array weights independently
from the predefined antenna sectors by trying multiple
antenna configurations [1]. This process is used to further
improve the signal quality. Since BRP is following an
SLS Phase, the pairing node could avoid using the quasi-
omnidirectional pattern if a better directional pattern is
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known [1]. Instead of using multiple frames to test antenna
patterns, multiple training fields are included together with
parameters like the number of tested patterns inside the
same frame. Consequently, using BRP reduces transmis-
sion overhead when compared to SLS [1]. This protocol
is mainly used in DTI.

6.3. Beam-Training in DTI

As mentioned previously Beamforming training can be
used in DTI. When using contention-based access training
can be requested directly between stations without the
help of a PCP/AP [1]. However, in dynamic channel time
allocation and TDMA, training is requested respectively
by SPRs and resource requests. The PCP/AP will then
transfer the training parameters using grant frames and
announcements [1].

7. Linux Support for IEEE 802.11ad

Support for WiGig has been included in the latest
Linux kernels through the Wil6210 driver. This driver
supports both AP mode, where the node operates as
an access point, and station mode. However, the driver
only supports Wilocity chips and does not support Intel
adapters. In addition, it can be difficult to find a suitable
adapter and beamforming antenna array.

8. Multi-Gigabit Throughput with Low Fre-
quency Standards

An example of a multi-gigabit wireless standard that
uses low frequency carriers is 802.11ax. This standard
uses 1024-QAM modulation on a 160MHz bandwidth and
a 5GHz or 2.4GHzHz carrier. It can implement 5

6 rate
coding and use frequency multiplexing. In addition, this
standard uses Multi-User Multiple-Input Multiple-Output
(MU-MIMO) as a spatial multiplexing technique to trans-
mit multiple streams simultaneously using the same carrier
frequency. The throughput in this standard can reach
9602Mbit/s. The use of low carrier frequencies has some
advantages, such as long-range signal propagation and
backward compatibility with older Wi-Fi standards. How-
ever, this approach uses complex modulation schemes that
can be sensitive to noise.

9. Conclusion

To adapt to 60GHz attenuated signal and LOS propa-
gation, IEEE 802.11ad supports directionality. This paper
describes the issues faced and the design adaptations intro-
duced by 802.11ad to integrate this new concept. Different
types of PHY are supported; Control, SC, and OFDM
PHY, to provide more flexibility towards use cases. The
PBSS was intoduced to benefit from antenna directionality
and focus on P2P communications allowing new appli-
cations e.g. high throughput video streaming. 802.11ad
implements a hybrid MAC combining Contention with
TDMA and polling methods to overcome the deafness
problem. A beamforming training mechanism was im-
plemented to maintain directionality between pairing sta-
tions.The 802.11ad standard is partially supported by
Linux via the Wil2160 driver. Finally, the IEEE 802.11ad
standard has some alternatives in the 5GHz and 2.4GHz
wireless standards, such as the 802.11ax standard.
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Abstract—The back-pressure routing algorithm guarantees
optimal throughput but has poor delay performance. A
variety of approaches have been proposed to solve the delay
and also memory consumption problems. One way is to use
machine learning. The goal of this paper is to find different
back-pressure routing policies that are supported by machine
learning. Two methods are presented, one using Q-learning
and the other using predictive scheduling.

Index Terms—back-pressure routing, machine leaning, Q-
learning, predictive scheduling

1. Introduction

Nowadays, applications in areas such as sensor net-
works, wired flow-based networks and traffic systems
require a reliable method to distribute heavy traffic loads
across the entire system or network. The back-pressure
routing (BP) algorithm offers great potential for such
a task. The algorithm examines all possible routes to
balance traffic loads across an entire queuing network,
thus guaranteeing network-wide throughput optimality [1].

When traffic loads are high, this algorithm works,
and available network resources can be used in a highly
dynamic manner. However, excessive route searching at
low and medium traffic loads can lead to unnecessarily
long routes or even routing loops. This leads to poor delay
performance [2] [3].

Improvement approaches on various fronts have been
made over the years one of them being machine learning
aided back-pressure routing. Using prediction its imple-
mentations see an overall improvement in delay perfor-
mance while still being able to efficiently forward packets
with near-optimal throughput, having low computational
complexity, a distributed implementation and not requiring
statistical information about the system dynamics [2] [4].

In the next section of this paper, an overview of differ-
ent BP algorithms is given. The third section briefly intro-
duces the original BP concept and then presents various
framework parameters under which it can be realized. The
fourth section deals specifically with BP routing policies
supported by machine learning.

2. Related Work

The back-pressure routing algorithm was first intro-
duced 1990 by Tassiulas and Ephremides [1] and initially
proposed for wireless multi-hop radio networks. One of
its main shortcomings is its poor delay performance.

Over the years there have been a variety of different
approaches trying to solve this problem. Each one builds
its improvements on a different aspect such as:

• Using shadow queues
• Separating intra-cluster routing from inter-cluster

routing
• Using the shortest path algorithm
• Using the last-in-first-out algorithm
• Considering local queue length information
• Eliminating loops in the network
• Introducing a delay parameter

Bui et al. [5] and Athanasopoulou et al. [6] improve
the original algorithm with the help of shadow queues.
Bui et al. [5] propose shadow queuing as a way of im-
proving delay performance of the original back-pressure
algorithm. Athanasopoulou et al. [6] combine the original
algorithm with probabilistic routing tables and shadow
queues. This way routing and scheduling is decoupled in
the network.

In [7] Ryu et al. separate intra-cluster routing from
inter-cluster routing. This is done using a two-phase
routing method by combining back-pressure routing with
source routing. This results in only a subset of nodes
having large queues, thus improving delay performance.

The improved algorithms introduced in [8], [9]
and [10] make use of the shortest path algorithm to
archive better delay performance. Neely et al. [8] in-
troduce BPbias. It combines the information of queue
and shortest path length to shorten packet routes. The
algorithm of Ying et al. [9], when making each scheduling
decision based on the current network load, has a choice
between shortest path routing and adaptive routing. The
route searching process for the algorithm introduced by
Yin et al. [10] dynamically switches between shortest path
mode and traditional back-pressure routing mode based on
a threshold.

The last-in-first-out algorithm (LIFO) is used in the
works of [11] and [12] to improve the original back-
pressure algorithm. Moeller et al. [11] combine it with
LIFO queuing. Huang et al. [12] prove that near-optimal
utility-delay trade-off is achievable with the help of LIFO.

Cui et al. [3] proposed a back-pressure routing algo-
rithm considering local queue length information of up to
two-hop nodes and another one considering global queue
length information of all nodes, called BPmin.

To eliminate loops in the network Rai et al. [13]
propose to use directed acyclic graphs, which in turn
improves the delay performance.
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The works in [14] and [15] introduce a delay parame-
ter for delay improvement. Ji et al. [15] introduce a back-
pressure routing algorithm using a new delay metric to
reduce packet delay for light traffic loads. Ji et al. [14] use
a new queue management policy with a delay parameter
that makes the algorithm select favorable routes by con-
sidering both delay requirements and network throughput.

Improvement method Improvement

Using shadow queues - Improved delay performance
- Decoupling routing and schedul-
ing in the network

Separating intra-cluster routing
from inter-cluster routing

- Only a subset of nodes have large
queues
- Improved delay performance

Using the shortest path algorithm - Shorter packet routes
- Improved delay performance
- Dynamically switching between
shortest path mode and traditional
back-pressure routing

Using the last-in-first-out algo-
rithm

- Combining BP routing and LIFO
queuing
- Near-optimal utility-delay trade-
off
- Improved delay performance

Considering local/global queue
length information

- Improved delay performance

Eliminating loops in the network - Improved delay performance
Introduction of a delay parameter - Reduce packet delay for light

traffic loads
- Electing favorable routes by con-
sidering delay requirements and
network throughput
- Improved delay performance

TABLE 1: Different back-pressure routing improvement
methods and their improvements

3. Back-Pressure Routing Framework Pa-
rameters

BP uses time slots to operate. To balance the traffic
load in the network, it tries to forward data in each
time slot in a way that optimizes the differential backlog
between neighboring nodes. This is done by considering
all potential routes. In each timeslot, nodes can transmit
data that they store in different queues for each destination
to a neighboring node. The algorithm forwards packets
based on congestion gradients, so it checks which of its
neighbours queues for that destination is the smallest and
routes the data that way. Data transmitted from one node
to another is removed from the first node’s queue of the
destination and added to the second node’s queue of the
destination [1]. An example can be seen in figure 1.

As described in section 2, several versions of this algo-
rithm exist. These can have various framework parameters
under which they can be realized as seen in Figure 2.

First, back-pressure protocols can be divided into
centralized protocols [9], [15] and distributed proto-
cols [4], [2]. It differentiates on where routing and
scheduling decisions are made. A coordinator or central
server is responsible for routing and scheduling decision
making in centralized protocols [9], [15]. High perfor-
mance can be achieved with routing and scheduling deci-
sions, but on occasion scalability issues due to the high
computational complexity can be observed. Distributed
protocols [4], [2] are generally more scalable. Network

Figure 1: Workings of Back-pressure routing

nodes can use the network state information they maintain
to make routing and scheduling decisions. Maintaining
the consistency and accuracy of the queue backlog in-
formation stored in different network nodes however can
be a difficulty. Network performance can be affected by
inefficient scheduling and routing decisions when outdated
queue backlog information are used [16].

Existing protocols can be classified as adaptive back-
pressure routing protocol [11] or fixed back-pressure rout-
ing protocol [15]. In adaptive back-pressure routing pro-
tocols, the back-pressure scheduling decision based on
the queue length primarily determines the next hop of
each packet. Fixed back-pressure routing protocols pre-
determine the route for each flow before the packets are
delivered. Back-pressure-based transmission scheduling is
used to decide on packet forwarding. However, it has
the disadvantage of leading to a minor loss of network
capacity [16].

Over the course of time, the original algorithm has
been modified again and again in various ways to improve
it. Different information of queuing networks such as
queue length, path length, clusters and packet delay can
be incorporated into the algorithm. Additionally, back-
pressure routing in combination with machine learning
also gained popularity over the last years [2].

Figure 2: Back-pressure framework parameters overview

4. Back-Pressure Routing in Combination
With Data Science

In this section, back-pressure routing algorithms in
combination with Data Science are examined in more de-
tail. Q-learning in combination with back-pressure routing
is discussed as well as the back-pressure algorithm using
predictive scheduling.
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4.1. Q-Learning Aided Back-Pressure Routing

Before Q-learning aided back-pressure routing is dis-
cussed the concept of Q-learning is conveyed using the Q-
routing algorithm. Then the multi-agent Q-learning-based
back-pressure routing (QL-BP) algorithm and the adaptive
traffic control algorithm are presented.

4.1.1. Q-Routing as a Reinforcement Learning Ap-
proach for Packet Routing. Boyan et al. [17] present
Q-routing as an algorithm that learns a routing policy
which attempts to strike a balance between minimizing the
number of hops for packet delivery and the possibility of
congestion on popular routes. They refer to their algorithm
as a version of the Bellman-Ford shortest path algorithm.
For Q-routing to work, a reinforcement learning module
is embedded in each node of a network. To keep accurate
statistics on which routing decisions result in minimal
delivery times, only local communications are used. Fur-
thermore, the Q-routing algorithm is able to route effi-
ciently even when critical aspects of the simulation, such
as network utilization, are allowed to vary dynamically.

Based on experiments with different routing policies,
the algorithm selects the one to use. Reinforcement learn-
ing can be used to update the selected routing policy faster.
The performance of a policy is measured by the total time
it takes to deliver a packet. To calculate this, Q-learning
uses a "learning rate" parameter, as well as an old time
estimate and a revised time estimate for packet delivery,
to obtain a solution [17].

Q-learning has the disadvantage of being greedy and
therefore cannot fine-tune a shortcut discovery strategy.
One solution presented in the paper is for the algorithm
to select routing directions with a degree of randomness
in the initial learning phase. Since this would have an
extremely negative impact on congestion, a node uses
what is called a "full echo" modification instead of sending
actual packets in a random direction. Using this, a node
sends information requests to its immediate neighbors
each time it needs to make a decision. Each neighbor
sends back an estimate of the total time to reach the
destination. If shortcuts appear or the policy is inefficient,
this information quickly propagates through the network
and the strategy is adjusted accordingly. This revised Q-
routing is referred to as "full-echo" Q-learning [17].

Figure 3: Delivery time for Q-routing, "full echo" Q-
routing and shortest path routing [17]

As seen in Figure 3 Q-learning exhibits initial ineffi-
ciency when traffic load is low compared to the shortest-
path routing strategy, because it first learns the network
topology. Once the learning phase is overcome, it performs
equivalently to the shortest path. Q-routing with "full
echo" is indistinguishable from the shortest path strategy.
As the network load increases, the shortest path routing
strategy is outperformed by Q-routing with "full echo". Q-
routing performs best because it learns an efficient routing
strategy and continues to route that way. Q-routing with
"full echo", on the other hand, constantly changes its
strategy under high load. Not until a further significant
increase in traffic load does the Q-routing algorithm also
succumbs to overload [17].

4.1.2. Multi-agent Q-learning-based back-pressure
routing (QL-BP) algorithm. Gao et al. [2] propose the
multi-agent Q-learning-based back-pressure routing (QL-
BP) algorithm. They take a general delay reduction frame-
work based on information of the queuing network (bias)
and build their QL-BP algorithm on it. The framework
goes through three stages:

• Information collection: in this stage useful, local
or global, information is collected including queue
length, shortest path and packet delay

• Bias extraction: in this stage useful features (such
as route congestion estimation) are extracted either
in a heuristic manner or with the aid of machine
learning based methods like Q-learning

• Back-pressure routing: the extracted bias are pro-
grammed into the back-pressure routing algorithm
after which the algorithm is capable of adaptively
changing packet routes

Each node maintains multiple Q-learning agents that are
responsible for generating route congestion estimates from
the collected information in the bias extraction phase.
Each agent updates the route congestion estimate using
the queue length information and the route congestion esti-
mates of the neighboring nodes. Since route congestion is
estimated using only local information from neighboring
nodes a distributed implementation is possible. Based on
the estimated route congestion, each node routes packets
to their destinations along the least congested routes [2].

The QL-BP algorithm can be further improved by
considering information about the shortest path (QLSP-
BP). In this case, the QL-BP algorithm remains the same,
except that the shortest path between a source and a
destination node is considered in the bias extraction [2].

The QL-BP algorithm is able to maintain a distributed
implementation, low computational complexity, and an
optimal throughput rate. It reduces the average packet
delay by 71% compared to the original BP algorithm at
low traffic load. At moderate traffic load, it is 82% higher.
The QL-BP algorithm effectively learns the congestion of
the routes and adaptively reroutes the packets to better
routes. For this, a slight amount of packet delay is ac-
cepted in favor of distributed algorithm implementation
and low computational complexity. As mentioned earlier,
the QL-BP algorithm can be significantly improved by
considering shortest path information. The QLSP-BP al-
gorithm outperforms all variants of back-pressure routing
algorithms. It reduces the average packet delay by 95%

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

55 doi: 10.2313/NET-2023-06-1_10



under light traffic load and 41% under medium traffic
load and is the best variant of the improved back-pressure
routing algorithms [2]. Figure 4 shows all this graphically.

Figure 4: Packet delay for different back-pressure algo-
rithms [2]

4.1.3. Adaptive traffic control algorithm. Maipra-
dit et al. [18] also use the Q-learning-based back-pressure
algorithm. They use it as an adaptive traffic control algo-
rithm. They manage to significantly decrease the average
vehicle travel time from 16% to 36% compared to other
algorithms. Although this algorithm is applied for traffic
control, it should be easily transferable to routing net-
works. Each intersection has a control agent. This agent
collects vehicle speed and vehicle position information
in each time window. Congestion information is also
exchanged between neighboring agents. Based on the
exchanged congestion information, the agent updates its
own congestion estimate based on Q-learning. Eventually,
all agents receive global congestion information. These
are helpful in tasks two and three of the three tasks that
each agent performs in every time slot: Learning global
congestion information, selecting the optimal traffic phase
based on the back-pressure algorithm and vehicle steering,
where after a vehicle passes the intersection and enters the
next road under the traffic phase selected in task two, the
agent determines which lane of this road the vehicle shall
use [18].

Their adaptive traffic control algorithm based on back-
pressure and Q-learning (ARD-BP-Q) is decentralized
and the agent at each intersection executes the algorithm
independently. An additional feature is that vehicles with
longer travel times pass through an intersection first [18].

4.2. Predictive Scheduling Aided Back-Pressure
Routing

Huang et al. [4], discuss predictive scheduling. Using
a look-ahead window model for pre-allocating rates the
delay performance of the original back-pressure algorithm
is improved. They draw inspiration from pre-fetching tech-
niques used in memory management, branch prediction
in computer architecture, and current advances in data

mining for learning user behavior patterns. The model is
implemented using prediction queues created by the server
based on the previous packets.

The authors propose the predictive back-pressure
(PBP) algorithm, which performs the BP algorithm based
on the prediction queues. PBP achieves a cost performance
that is arbitrarily close to optimality. At the same time,
it guarantees that the average system delay vanishes as
the size of the prediction window increases. Moreover,
PBP retains all the desired properties of the original
back-pressure algorithm. It remains greedy and does not
require statistical information about the system dynamics.
In addition, the look-ahead window helps the server use
connections more efficiently. The queuing policy chosen
for the look-ahead queue leads to different improvements.
With first-in-first-out (FIFO) queuing, PBP achieves an
average reduction in packet delay that is linear with the
size of the prediction window as seen in Figure 5. With
last-in-first-out (LIFO) queuing, the average packet delay
decreases exponentially with the window size as seen in
Figure 5. Thus, the average delay under PBP is strictly
better than under the original back-pressure algorithm
and totally vanishes as the prediction window size in-
creases [4]. The authors of [4] prove that the algorithm
achieves a cost performance arbitrarily close to optimality
and that the prediction is more accurate with a larger
window size.

Average queue seize of dif-
ferent prediction windows us-
ing PBP with first-in-first-
out queuing policy (V be-
ing a control parameter used
to tradeoff utility performance
and system delay) [4]

Packet delay distribution us-
ing PBP with last-in-first-out
queuing policy [4]

Figure 5: PBP performance results

5. Summary and Conclusion

In this paper, the original back-pressure routing algo-
rithms, ones using machine learning and one making use
of other improvement methods were presented.

The goal of this work was to find several back-pressure
routing policies supported by machine learning, about
which Table 2 gives an overview.

The multi-agent Q-learning aided back-pressure rout-
ing algorithm [2] is able to significantly improve de-
lay performance and maintain the following attractive
features: distributed implementation, low computational
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Variant Improvement

Multi-agent Q-learning aided back-
pressure routing algorithm

- Improved delay performance
- Distributed implementation
- Low computational complexity
- Throughput optimality

Adaptive Traffic Control Algo-
rithm

- Reduce average travel time
- Decentralized
- Longest travel times passes first

Predictive Back-Pressure algorithm - Better cost performance
- System delay vanishes with in-
creasing prediction window size
- No statistical information about
system dynamics required
- Greedy

TABLE 2: Comparison of machine learning aided back-
pressure routing algorithms

complexity, and throughput optimality. A similar system
is also used for the adaptive traffic control [18] algorithm,
where the traffic delay is also significantly reduced.

The PBP (predictive back-pressure) [4] algorithm,
based on a lookahead prediction window model, achieves
cost performance arbitrarily close to the optimum. At the
same time, it guarantees that the average system delay
vanishes as the size of the prediction window increases.

We found that at this stage, only two back-pressure
algorithms supported by machine learning could be found.
Q-routing and predictive scheduling. Since both work in
their specific theoretical models introduced in the respec-
tive paper it is however difficult to compare them in ef-
fectiveness and suitability to other network models. They
are nevertheless both able to significantly reduce delay
power and efficiently forward packets with near-optimal
throughput, but face other challenges. More computation
time is required, and nodes must constantly record data
and update the parameters stored there. Since both dis-
cussed algorithms based on machine learning have advan-
tages over other state-of-the-art back-pressure algorithms,
especially in throughput optimality and cost performance,
we believe that both Q-learning and predictive scheduling
are attractive optimizations of the original algorithm.

The multi-agent Q-learning based back-pressure rout-
ing algorithm has already been improved using the short-
est path algorithm [2]. Even though the presented machine
learning based back-pressure routing algorithms are al-
ready a major improvement over the original, this proves
there is still room for further optimization to be found in
the future.
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Abstract—When creating communication networks, technical
problems occur that can disrupt or even break the com-
munication. To overcome the technical challenge of mak-
ing such communication reliable, various mechanisms have
been invented. After mentioning some common failures that
negatively affect the functionality of a network, this paper
summarizes a selection of mechanisms that have been created
to improve the reliability of communication networks, and
explains some metrics that can be used to characterize and
compare these mechanisms.

Index Terms—reliability, time sensitive networking, interfer-
ence, congestion

1. Introduction

There are many different examples for communication
networks, such as ACARS, which is used in aviation,
or DVB-S2, a standard for satellite television broadcast.
This paper discusses the reliability mechanisms used for
the Internet. However, their application is not restricted
to that; for example the error correcting code briefly
described in Section 3.1 is also used in DVB-S2. [1], [2]

1.1. Definition of Reliability

Since there is no generally applicable definition of
reliability, we will first examine some aspects contributing
to it.

From a more abstract perspective, Zhang et al. divide
the analysis of network reliability into three layers: con-
nectivity, performance and application reliability. The first
refers to network topology and physical connectivity, the
second is described as the “probability that performance
indicators remain their values within expected ranges un-
der a certain traffic flow” [3]. In their work on network
reliability testing, Li et al. describe network reliability as
the ability to ensure the functionality of the network. They
summarize this as “transmitting data timely, completely
and correctly”, which are measurable quantities [4]. In an-
other paper dealing with wireless network routing, Biswas
et al. describe reliability as “a mission-specific metric
evaluating the probability that a packet gets delivered with
a given deadline”. They consider it “to be a combination
of availability and dependability” [5]. Similarly, Shi et
al. consider the “reliability of a network defined as the
probability of successful communication” [6].

Based on these statements, we can conclude that in
order for a communication network to be considered reli-
able, it must offer high availability (i.e. data transmission

to the destination must be possible at any given point
in time), and correct, complete and timely transmission
must be ensured. The degree to which the latter three
requirements must be fulfilled depends on the application.

To avoid ambiguity, it should be noted that this does
not include performance increases beyond the absolute
minimum that is defined by the application. The remainder
of this paper also assumes that there are no intentional
attacks on the reliability of the network.

1.2. Types of Failures

The first step of improving the reliability is to analyze
the typical impediments during data transmission. Shi et
al. summarize that “the failures of computer networks
usually consist of two modes: connective failures and
congestion failures” [6].

Due to the limitations of the network participants,
too much traffic can lead to congestion failures. These
can manifest in the form of lost or delayed packets or
failing to establish new connections in connection-oriented
protocols.

Connectivity failures are failures in which the trans-
mission of data between two nodes is compromised. The
data arriving at the receiving end may contain bit errors
of which the receiver is unaware. This can range from
a single flipped bit to completely corrupted data. When
the quality of a link has degraded to the point where data
can no longer be transmitted, this is referred to as a link
failure.

2. Background

In preparation for the next section, this section will
first provide a general overview of the relevant protocols
and provide some background knowledge.

The inner working of the Internet is realized through
a variety of protocols. The protocols used in Internet
communication are usually categorized according to the
OSI model, in which each protocol of an upper layer
builds on the layers below it, with the lowest layer being
the physical communication. The layer above does not
necessarily need to know about the implementation of the
layer below.

Figure 1 contains the protocols that are used as ex-
amples in the following. The model provides a rough
overview, but protocols cannot always be clearly assigned
to a layer. Some protocol specifications may span multiple
layers, as it is the case with Ethernet. Other protocols
work within a layer, together with another protocol. For
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Figure 1: OSI model with exemplified protocols

example, MPTCP can optionally be stacked onto TCP, and
still operate within the transport layer.

Ethernet (IEEE 802.3). Ethernet is a protocol standard-
ized by the IEEE 802.3 working group. Its specification
covers both the physical and data link layer and is used
for Local Area Networks and Metropolean Area Networks
(LAN/MAN). The physical layer uses wired connections,
and offers multiple implementations for copper and fiber
wiring using both full-duplex and half-duplex configura-
tions. For example, 10GBASE-T Ethernet is based on a
full-duplex copper medium, and supports a data rate of
10 Gbit/s. [7, Clause 1 and 55]

WLAN (IEEE 802.11). The IEEE 802.11 working group
creates standards to implement WLANs (Wireless Local
Area Networks). The WLAN specification covers both the
physical and data link layer. As with Ethernet, several
options are defined for the physical layer, using different
frequency bands. Wireless communication is half-duplex
and generally more susceptible to bit errors compared to
wired media. [8, Clause 4 and 8]

Time Sensitive Networking (IEEE 802.1 TSN). One part
of the IEEE 802.1 working group is the Time Sensitive
Networking (TSN) task group. It develops a collection of
standards aimed at “providing deterministic connectivity
through IEEE 802 networks.” Two standards we will
look briefly at are IEEE 802.1CB (Frame Replication and
Elimination for Reliability, FRER) and IEEE 802.1Qbv
(Time Aware Shaper, TAS). [9]

Transmission Control Protocol (TCP). The Transmis-
sion Control Protocol (TCP) was developed together with
the Internet Protocol (IP). It enables stream-oriented data
transmission using connections. Since IP explicitly does
not implement reliability mechanisms, TCP makes very
few assumptions about the reliability of the underlying
layers. [10], [11]

3. Mechanisms to Improve Reliability

In the following, we will look at certain types of
failures and the corresponding mechanisms.

3.1. Dealing with Interference

Electronic interference can be caused by external
sources, but also by the electronic equipment itself. It
usually leads to bit errors. A special type of interference
is crosstalk, where two parallel data lines influence each
other due to electromagnetism.

Physical Wiring. A very common strategy to minimize
the crosstalk between two parallel pairs of wires within
a cable is to twist the wires inside around each other.
Additionally, the interference from external sources can
be reduced by shielding the cable, using a woven copper
shield, or wrapping the cable in foil. These cables are com-
monly referred to as Unshielded Twisted Pair (UTP) and
Shielded Twisted Pair (STP) cable depending on whether
shielding was used or not. In buildings, the physical
placement of cables and wireless stations should also be
considered, especially when sources of high interference
exist. [12]

Signal Processing. If the interference is known to the
transmitter, there are methods for the transmitter to pre-
code a signal before sending. One type of precoding is
known as Dirty Paper Coding (DPC). The fundamental
idea is to modify the sent signal in such way that if the
interference is added, the receiver will be unaware of the
interference. One such DPC is the Tomlinson-Harashima
precoder, which is used in 10GBASE-T Ethernet to cancel
out near-end crosstalk, a type of crosstalk detected on
the same side where the signal was sent. [12], [13], [7,
Clause 55]

Error Correcting Codes. By encoding the digital data
with an error correcting code before transmission, some
bit error patterns can be corrected by the receiver. One
example of an error correcting code is low density parity
control (LDPC), which used in 10GBASE-T Ethernet.
It calculates parity bits using a sparse matrix, where
each data bit is included in at least two parity bits. [7,
Clause 55], [14]

Error Detection Codes. In contrast to error correcting
codes, error detection codes aim to detect as many error
patterns as possible, but without being able to reconstruct
the original data. One such code is the Cyclic Redundancy
Check (CRC), which is based on polynomial division. At
the data link layer, a 32-bit wide CRC code is used in
the Frame Check Sequence field of the Ethernet and the
WLAN header. [7, Clause 3], [8, Clause 9]

Additional Checksums. Several network and transport
layer protocols implement an additional checksum value
to verify the correctness of the received data. TCP, for
example, calculates a checksum from a 16-bit wide sum
of the data using one’s complements. Other examples
of third and fourth layer protocols that use checksums
include UDP, IPv4 and ICMP. The usefulness of additional
checksums has been confirmed in literature. [10], [11],
[15]–[17]

3.2. Dealing with Collisions

If two nodes send data at the same time in half-duplex
configurations, the signals overlap and become unusable.
This is commonly referred to as collision.

CSMA/CD in Half-Duplex Ethernet. Ethernet imple-
ments a mechanism called CSMA/CD that aims to avoid
collisions in half-duplex setups. The algorithm can be
thought of as multiple people (Multiple Access) talking
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Figure 2: Redundant path usage with different protocols

at a table: Whenever a person has something to say, they
check whether anyone else is speaking, before they talk
(Carrier Sense). If two people start talking at the same
time, they stop, wait for a randomly chosen time interval,
and then try again (Collision Detection). [18]

However, today’s networking devices most commonly
use the full-duplex mode. Full-duplex does not require the
use of CSMA/CD, since collisions cannot occur.

CSMA/CA in WLAN. While collisions can be fully
avoided in Ethernet using full-duplex connections, a wire-
less network is always half-duplex. Unlike wired con-
nections, the medium cannot be listened during transmis-
sion. Therefore, CSMA/CD cannot be directly applied to
WLAN.

As with CSMA/CD, the medium is checked before
transmission is attempted. If the channel is free, a dis-
tributed coordination function determines a time interval
that the endpoint waits before attempting to send, to
give other members in the channel a chance (Collision
Avoidance). The waiting time consists of a randomized
time interval and a constant interframe space.

The proper detection of whether the channel is clear
may not be possible if a transmitting station is out of range
of the station initiating the transmission. Both endpoints
may be within range of the WLAN base station but not
within range of each other. This is commonly referred to
as the hidden station problem. To avoid collisions caused
by this, an additional method can be implemented in
which an endpoint in the network sends a request-to-send
(RTS) frame to which the base station will reply with a
clear-to-send (CTS) frame when permission is granted to
transmit data. [19]

3.3. Dealing with Link Failures

When a link in the network becomes unusable, it is
called a link failure. The consequence of this is a changed
topology, which in turn changes the routing decisions that
the nodes on the path must make. Usually, nodes com-
municate to each other about link failures using routing
protocols.

Rapid Spanning Tree Protocol. The Rapid Spanning
Tree Protocol (RSTP) is defined in IEEE 802.1w. Its
purpose is to create a spanning tree from a network, i.e.
to reduce the network topology to a tree so that any

two nodes are connected by a single path only. In the
event of a link failure, it adapts to the changed topology.
Compared to its predecessor, the Spanning Tree Protocol
(STP), RSTP is able to react much faster to topology
changes. [20]

Parallel Redundancy Protocol. The Parallel Redundancy
Protocol (PRP) is defined as part of an IEC norm. It is
intended to guarantee no latency in the event of a link
failure by sending each frame over multiple paths. PRP
builds on Ethernet and identifies related frames using an
additional header attached to the PDU.

PRP imposes requirements on the network topology,
as shown in Figure 2a. Each node in the network should be
connected to two separate LANs. These Doubly Attached
Nodes (DANs) require hardware support. If a node does
not support this, a Single Attached Node (SAN) can be
placed behind a redundancy box (Redbox) to achieve
the dual connectivity. The Doubly Attached Nodes and
Redboxes are capable of sending and receiving duplicate
frames, and eliminating them if necessary. In the event
of a single network link failure, the frame arrives at its
destination without any latency, as it would be the case
with RSTP, because of these hardware requirements. [21]

Frame Replication and Elimination. Frame Replication
and Elimination (FRER) is part of the IEEE 802.1 TSN
specifications. Similar to PRP, it is designed to send
frames over multiple paths (replication) and to provide
a mechanism to eliminate duplicates at the receiving end
(elimination). Again, the goal is to avoid any latency in
the event of a link failure. FRER does not impose any
topology requirements, but redundant hardware paths are
required for it to have any effect.

FRER calls a series of frames from a talker to one or
more listeners a component stream. A component stream
is split into multiple member streams, with each member
stream sent over a different path by duplicating the frames.
When a relay or listener node receives duplicate frames, it
will eliminate one of them, as shown in Figure 2b. FRER
identifies the member streams by a so-called redundancy
tag or by using a PRP header. In this regard, PRP and
FRER are partially compatible with each other. [22], [23]

Multipath TCP. Consider the use case of a person walk-
ing from one building to another with a cell phone. As
shown in Figure 2c, a cell phone has two interfaces
through which it can connect to the Internet, either through
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a WLAN access point or through a cell phone tower.
Depending on the location of the person holding the
device, one signal may be stronger than the other.

With connection-oriented protocols, it is not as easy to
switch to a different interface because TCP is not designed
to handle changing IP addresses. This is where Multipath
TCP (MPTCP), an extension of TCP, comes into play: It
enables the use of redundant paths by using two or more
interfaces of a device for a single connection, which may
have different IP addresses. MPTCP keeps track of IP
addresses using subflows. It introduces additional header
fields that are prepended to the transport layer PDU. [24]

3.4. Retransmissions

Despite the possibility to repair or reroute data, some-
times data is simply lost irretrievably. In this case, the data
should be retransmitted automatically. The methods for
doing this are usually called Automatic Repeat Requests
(ARQ) and use acknowledgement signals to confirm a
successful transmission. For efficiency reasons, several
data packets are usually sent at once. Sliding window
algorithms such as Go-Back-N or Selective Repeat are
used to keep track of unconfirmed data. They use a send
window and a receive window to regulate the amount of
data that is sent “at once”.

Retransmissions in WLAN. After a transmission with
CSMA/CA, the transmitter alone cannot determine
whether a collision has occurred or not. After sending the
data, the sender waits for an ACK control frame from the
access point. If the ACK control frame is not received, the
sender retransmits the frame. A sender tries a configurable
number of times before determining that communication
has failed. For example, the implementation described in
reference [25] does four or seven attempts, depending
on the size of the PDU. This mechanism aims to create
conditions similar to wired connections for the upper
layers, since bit error are much more likely in the wireless
medium. [8, Clause 4]

Retransmissions in TCP. With TCP, each byte sent
between two nodes is acknowledged by the receiver us-
ing sequence numbers. The initial sequence numbers are
exchanged during the three-way handshake. By observing
the absence of acknowledgement frames, the sender can
retransmit the data until the transmission was successful.
The completeness of the transmission can be ensured
by closing the connection, signaling the communication
partner that the transmission is done. [11]

3.5. Dealing with Congestion

Congestion occurs when nodes on the network reach
their limited capabilities, usually processing speed or
buffer size. For example, a server in a data center may
process data much faster than a mobile device, or a router
in the network may become overwhelmed if it has to
buffer too many packets at once, e.g. if data needs to be
forwarded from a faster link to a slower link.

TCP Flow Control. The TCP flow control mechanism
avoids congestion at the receiver. The receiver can an-
nounce the number of bytes it is willing to receive by
using the receive window field in the TCP header. The
sender then configures its sliding window procedure so
that it does not send more than this number of bytes at
once.

TCP Congestion Control. To avoid congestion in the
network, TCP slowly increases the send window until
it reaches the capacity that the network can currently
handle. To test the capacity of the path, the transmit
window is initially increased exponentially ("slow start").
After reaching the limit, which is usually determined by
receiving multiple ACK signals acknowledging the same
bytes, it halves the window and enters the "congestion
avoidance" phase, where it approaches the capacity lin-
early.

Time Aware Shaping. TCP congestion control can pre-
vent data loss due to congestion, but it cannot guarantee a
maximum transmission time. Time Aware Shaping (TAS)
addresses this problem by defining a different approach to
media access at the data link layer by dividing the time on
the channel into cycles, which in turn are divided into time
slices. It introduces priorities for the frames and reserves
one time slice for each priority within each cycle. In this
way, if each hop to a destination keeps the link free for
prioritized traffic, a maximum latency can be enforced as
long as the prioritized traffic does not reach the limit of
its own time slice. [26]

3.6. False Friends

It should be noted that some protocols implement
mechanisms that at first glance are related to failures, but
do not actively improve reliability. One such example is
ICMP, which is part of IP and transmits error messages
when an IP packet could not be delivered. IP itself is not
a reliable protocol. The documentation for ICMP states,
“The purpose of these control messages is to provide feed-
back about problems in the communications environment,
not to make IP reliable.” [15]

4. Analysis

Table 1 gives an overview of which mechanism ad-
dresses which failure, and on which layer the correspond-
ing protocol operates. From this we can now draw a few
conclusions.

4.1. Evaluation

First of all, reliability problems are mostly due to
hardware limitations. While some of these problems can
be addressed directly, e.g. by improving the signal or
increasing buffer sizes of the nodes, there is only so much
that can be done on the physical layer. The advantage of
the Internet’s multi-layered design is that even if these
hardware-related errors cannot be fixed, the layers above
them (primarily the data link and transport layer) can
mitigate them. For this purpose, the protocols at the higher
layers can implement one or more reliability mechanisms,
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Mechanism Failure Layer Technique Improved Reliability Aspect

Physical Wiring Interference 1 Prevention Correctness
Dirty Paper Coding Interference 1 Prevention Correctness
Error Correcting Codes Interference 1 Recovery Correctness
Error Detection Code (CRC-32) Interference 2 Detection Correctness
Additional Checksum (TCP) Interference 4 Detection Correctness
CSMA/CD Collision 2 Prevention, Detection Correctness, Availability
CSMA/CA Collision 2 Prevention Correctness, Availability
Rapid Spanning Tree Protocol Link Failure 2 Recovery Availability
Parallel Redundancy Protocol Link Failure 2.5 Recovery Availability, Timeliness
Frame Replication and Elimination Link Failure 2.5 Recovery Availability, Timeliness
Multipath TCP Link Failure 4.5 Recovery Availability
TCP Retransmissions Data Loss 4 Detection, Recovery Completeness
WLAN Retransmissions Data Loss 2 Detection, Recovery Completeness
TCP Congestion Control Congestion 4 Prevention, Detection Availability
TCP Flow Control Congestion 4 Prevention Availability
Time Aware Shaping Congestion 2 Prevention Availability, Timeliness

TABLE 1: Summary of mechanisms discussed in this paper

as the examples of Ethernet and TCP show. There is not
always a particular layer at which failures are addressed.

A mechanism usually targets a specific type of fail-
ure. There are several techniques how a failure can be
addressed:

1) Prevention. For example, CSMA/CA attempts to pre-
vent collisions.

2) Detection. Error detecting codes, checksums and ac-
knowledgments can be used to detect if a failure
occurred.

3) Recovery. These mechanisms attempt to cope with
or correct a failure.

The underlying strategy to address a failure depends
on the failure itself. Bit errors or link failures are ad-
dressed by adding redundancy in one form or another,
half-duplex setups attempt to implement time division
multiplexing, and congestion is avoided by limiting the
amount of traffic in the network.

There is a relationship between the type of failure and
the aspect of reliability that is improved. Previously, we
defined reliability as complete, correct and timely data
transmission, combined with high availability. Interfer-
ence, link failures and congestion affect the availability of
the network and the correctness of the data, so the mech-
anisms addressing them improve exactly these aspects of
reliability. Retransmissions are special in that they target
the symptom (= data loss) rather than a specific failure.
Regardless of why the data was lost, these mechanisms
attempt to recover the data. They are also the only mech-
anisms capable of improving or ensuring the completeness
aspect of reliability.

It can be observed that the timeliness of data transmis-
sion requires dedicated mechanisms, since time guarantees
are not provided by the common Ethernet/IP/TCP proto-
col stack. For many applications, a best-effort delivery
is good enough, but if some applications have mission-
specific Quality of Service (QoS) requirements, additional
measures are needed.

4.2. Other Metrics

There are other metrics that can sometimes be used to
further describe and compare reliability mechanisms.

Popularity. A very commonly used protocol stack is
Ethernet/IP/TCP. This is reasonable, because every type

of failure is addressed by at least one protocol. However,
since they only provide best-effort data transmission, pro-
tocols like FRER and TAS that focus more on QoS have
been developed. Also, high popularity does not imply high
quality. A memo published by the IEC suggests, that there
are CRC-32 polynoms with better properties than the one
used in IEEE 802 networks. [27]

Overhead. For most protocols, only a few bytes of addi-
tional header fields or some acknowledgment signals are
required, but apart from the implementation effort, this
does not have too much impact. One influential overhead
is hardware cost. While MPTCP can use existing inter-
faces, PRP requires an investment into dedicated hard-
ware. A paper comparing FRER and PRP suggests that
FRER is less expensive to implement. Some mechanisms
may only be worth implementing for critical applications,
but this is a tradeoff that must be decided for each
application. [28]

Flexibility. Hardware setups are not only expensive but
also inflexible, e.g. if full physical redundancy is required
as with PRP, any host in the network must be connected
twice, and at least twice as many network nodes and links
have to be maintained. Higher-layer protocols may be
more flexible, since they put less requirements on lower
layers. They provide general purpose implementations.
This may be the reason why TCP has remained incredibly
popular since its introduction in 1981.

5. Conclusion

We have defined reliability in the context of com-
munication networks and summarized what types of fail-
ures exist. Sixteen different mechanisms that improve the
reliability have been described and categorized by the
failures that they address and the layer in which they
are implemented. Failures affect certain reliability aspects,
such as the availability or correctness. Consequently, the
mechanisms that address a specific failure improve exactly
those aspects of reliability. Reliability mechanisms can
prevent, detect, or recover from a failure. Three basic
concepts for improving reliability are adding redundancy,
providing a multiplexed setup, and not overloading the
network capacity.

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

63 doi: 10.2313/NET-2023-06-1_11



References

[1] S. Sun, “ACARS Data Identification and Application in Aircraft
Maintenance,” in 2009 First International Workshop on Database
Technology and Applications. IEEE, 2009, pp. 255–258.

[2] “Digital Video Broadcasting (DVB); Second generation framing
structure, channel coding and modulation systems for Broadcast-
ing, Interactive Services, News Gathering and other broadband
satellite applications (DVB-S2),” p. 22, 2009.

[3] H. Zhang, N. Huang, and H. Liu, “Network performance reliability
evaluation based on network reduction,” in 2014 Reliability and
Maintainability Symposium, 2014, pp. 1–6.

[4] R. Li, N. Huang, S. Li, R. Kang, and S. Chang, “Reliability
Testing Technology for Computer Network Applications,” in 2009
8th International Conference on Reliability, Maintainability and
Safety, 2009, pp. 1169–1172.

[5] T. Biswas, K. Lesser, R. Dutta, and M. Oishi, “Examining
Reliability of Wireless Multihop Network Routing with Linear
Systems,” ser. HotSoS ’14. New York, NY, USA: Association
for Computing Machinery, 2014. [Online]. Available: https:
//doi.org/10.1145/2600176.2600195

[6] J. Shi, S. Wang, and K. Wang, “Congestion-Based Reliability
Analysis for Computer Metworks,” in 2009 8th International Con-
ference on Reliability, Maintainability and Safety, 2009, pp. 1149–
1154.

[7] “IEEE Standard for Ethernet,” IEEE Std 802.3-2022 (Revision of
IEEE Std 802.3-2018), pp. 1–7025, 2022.

[8] “IEEE Standard for Information Technology–Telecommunications
and Information Exchange between Systems - Local and
Metropolitan Area Networks–Specific Requirements - Part 11:
Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications,” IEEE Std 802.11-2020 (Revision of IEEE
Std 802.11-2016), pp. 1–4379, 2021.

[9] “Welcome to the IEEE 802.1 Working Group,” https://1.ieee802.
org/, n.d., [Online; accessed 30-November-2022].

[10] “Internet Potocol,” Internet Requests for Comments, RFC Editor,
RFC 791, 1981. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc791.txt

[11] “Transmission Control Potocol,” Internet Requests for Comments,
RFC Editor, RFC 793, 1981. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc793.txt

[12] A. Oliviero and B. Woodward, Cabling: The Complete Guide to
Copper and Fiber-Optic Networking, 4th ed. John Wiley & Sons,
2009.

[13] U. Erez and S. ten Brink, “A Close-to-Capacity Dirty Paper Cod-
ing Scheme,” IEEE Transactions on Information Theory, vol. 51,
no. 10, pp. 3417–3432, 2005.

[14] T. Strutz, “Low-Density Parity-Check Codes - An Introduction,”
2016, [Online; accessed 7-December-2022].

[15] “Internet Control Message Protocol,” Internet Requests for
Comments, RFC Editor, RFC 792, 1981. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc792.txt

[16] “User Datagram Potocol,” Internet Requests for Comments,
RFC Editor, RFC 768, 1981. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc768.txt

[17] J. Stone and C. Partridge, “When the CRC and TCP Checksum
Disagree,” vol. 30, no. 4. New York, NY, USA: Association for
Computing Machinery, aug 2000, p. 309–319. [Online]. Available:
https://doi.org/10.1145/347057.347561

[18] L. Georgiadis, Carrier-Sense Multiple Access (CSMA) Protocols,
04 2003.

[19] “CSMA/CA: Definition and Explanation of the
Method,” 08 2019, [accessed 14-December-2022]. [Online].
Available: https://www.ionos.com/digitalguide/server/know-how/
csmaca-carrier-sense-multiple-access-with-collision-avoidance/

[20] W. Wojdak, “Rapid Spanning Tree Protocol: A new solution from
an old technology,” pp. 1–5, 2003.

[21] R. Hunt and B. C. Popescu, “Comparison of PRP and HSR
Networks for Protection and Control Applications,” 2015.

[22] “IEEE Standard for Local and metropolitan area networks–Frame
Replication and Elimination for Reliability,” IEEE Std 802.1CB-
2017, pp. 1–102, 2017.

[23] D. Ergenç and M. Fischer, “On the Reliability of IEEE 802.1CB
FRER,” in IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications, 2021, pp. 1–10.

[24] G. Noh, H. Park, H. Roh, and W. Lee, “Secure and Lightweight
Subflow Establishment of Multipath-TCP,” IEEE Access, vol. 7,
pp. 1–1, 12 2019.

[25] “802.11 Reference Design: Recovery Procedures and Retrans-
mit Limits,” https://warpproject.org/trac/wiki/802.11/MAC/Lower/
Retransmissions, 2014, [Online; accessed 18-December-2022].

[26] M. K. Al-Hares, P. Assimakopoulos, D. Muench, and N. J. Gomes,
“Modeling Time Aware Shaping in an Ethernet Fronthaul,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Confer-
ence, 2017, pp. 1–6.

[27] “Internet Protocol Small Computer System Interface (iSCSI)
Cyclic Redundancy Check (CRC)/Checksum Considerations,”
Internet Requests for Comments, RFC Editor, RFC 3385, 2002.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc3385.txt

[28] G. Ditzel, “The Comparison/Contrast of TSN Frame Replication
and Elimination for Reliability (FRER) and Parallel Redundancy
Protocol (PRP),” pp. 1–13, 2020.

Seminar IITM WS 22/23,
Network Architectures and Services, June 2023

64 doi: 10.2313/NET-2023-06-1_11



Survey on the Chinese Governments Censorship Mechanisms

Raphael Stadler, Lion Steger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: r.stadler@tum.de, stegerl@net.in.tum.de

Abstract—The Chinese government enforces a strict censor-
ship policy on digital content and has created an isolated
network for its residents. As it is not feasible to completely
disconnect China from the global internet, the government
has implemented a powerful and complex system called the
Great Firewall of China (GFW) to separate the national
network from the rest of the world. This paper focuses
on how the Chinese government implements its censorship
policies and outlines various techniques the GFW uses to
block specific traffic. Subsequently, we present numerous
ways on how it is possible to bypass these methods to
illustrate the ongoing conflict between the GFW and anti-
censorship communities.
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project, dns poison, sni filtering, shadowsocks, v2ray, tor,
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1. Introduction

The Great Firewall of China (GFW), also known as
The Golden Shield project [1], is a government controlled
firewall that acts not only inside the countries network, but
also at the interconnections between the national Chinese
network and the global networks, the internet. It resides
in-between every connection that is initiated to or from
China, similar to an attacker like "Man or Machine in
the Middle" (MitM). With this powerful position in the
network, the GFW can not only observe and evaluate
every connection passively, but it can also act actively
by modifying connections or operating maliciously in-
between two peers, which is necessary for fulfilling the
governments policies. Figure 1 demonstrates the position
of the GFW and shows that practically no connection can
be initiated without the GFW in the middle.

Figure 1: A schematic illustration of the Great Firewall of
China and its reach in the Chinese network.

2. Overview of various blocking methods

The GFW has used and is using various means to
censor, filter or prevent unwanted traffic. As there are
several benefits as well as disadvantages on each method
presented below, the practical implementation of the GFW
adjusts its sensors dynamically in complex and obscure
manners. The requirement for this is driven by the ongoing
evolution of technology and the potential for changes in
bypassing methods.

2.1. Subnet Blocking and Re-routing

One of the simplest methods the GFW is using is
blocking whole IP subnets [2]. This can be done by
modifying routing tables and re-routing specific IP sub-
nets. These altered routes either redirect traffic to GFW
controlled servers trying to mimic the actual target service,
and therefore may gain data for further analysis, or they
can be null routed, which means that effectively any
connection made to the destination is prevented. Alterna-
tively, the GFW can accomplish similar results by using
hijacking Border Gateway Protocol (BGP) sessions. BGP
hijacking works by maliciously announcing unowned and
improper BGP prefixes. While these altered BGP prefixes
are normally announced in the national networks only,
it does happen that announcements also get accepted by
international networks as well, if they are announced
incorrectly or with harmful intents. [3]

Both methods can lead to collateral damage, as IP
addresses might be shared by various services, which are
then blocked as well. IP blocks or BGP hijacking are
commonly used by the GFW, as they allow to block a
service quickly and effectively. These blocks are often
based on research, such as connection analysis or publicly
available information. The GFW blocks have cause great
collateral damage [4], [5], which is another reason why
the GFW implements a fairly dynamical concept and lifted
various blocks again.

2.2. DNS Poisoning

Another method of blocking or redirecting traffic is
DNS Poisoning. When using a DNS resolver inside of
the Chinese network, it must obey the law and enforce
the governments policies. A DNS request that contains a
blocked hostname resolves to a different IP address than
internationally announced. [6] The GFW uses a more so-
phisticated approach to censor internet access for resolvers
that are outside of the Chinese network. It lets the request
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resolve correctly and leaves it untouched in the outgoing
direction and sends a crafted response back to the client
that initiated the connection. The GFW spoofs the DNS
resolver’s IP and exchanges the payload. This is possible
as there is no authentication or encryption in the DNS
protocol. [7] While possible to filter the actual response,
the GFW allows, to some extent, the original response
to pass through, which leads to race conditions on which
DNS reply is faster. One example of DNS poisoning hap-
pened in 2013, when the website github.com was blocked
in China. [4] Later it was lifted again due to an unforeseen
amount of protest in the Chinese community. Another
example where DNS packets were inspected occurred in
2002 when web.mit.edu was filtered due to resolving to the
same IP address as another hostname www.falundafa.org,
which had been banned by the Chinese government. [5]

2.3. Encrypted DNS

DNS Poisoning can be bypassed by using encrypted
DNS requests with implementations such as DNS-over-
HTTPS (DoH), DNS-over-TLS (DoT), DNS-over-QUIC
(DoQ) or DNSCrypt. These protocols require that the
resolver remains outside of the censored network to work
as intended. [7] The encrypted nature of some network
requests makes it difficult for the GFW to analyse or
modify the packets. The GFW has shown that it can
block encrypted DNS requests, which makes these pro-
tocols only partially effective as bypassing strategies [8].
Encrypted DNS requests are not a reliable solution to
bypass DNS poisoning, if the resolver is controlled by the
GFW. In fact, using a DoH resolver operated by Alibaba
can yield similar incorrect responses as using unencrypted
Chinese resolvers. Even though the encryption has not
been broken, it suggests that the resolvers operated by
Alibaba are at least working in cooperation with the GFW.
[8]

2.4. Keyword Filtering

The GFW is able to detect keywords in network
requests by inspecting traffic and terminates connections
accordingly. [9] This process is similar to DNS poisoning,
where an unwanted term can be identified in a plain
and unencrypted request. While not limited to the TCP
protocol, a good indicator for this mechanism can be
observed in TCP-based traffic, as the GFW reacts by
sending a TCP-RST packet back on the same channel, ter-
minating any further communication between two peers.
[10] This method of identification and reaction from the
GFW is practically possible on every protocol transmitting
plaintext, such as SMTP, IMAP, POP or TELNET. Due
to the prevalence of HTTP-based traffic, the GFW has
developed specialized capabilities for detecting keywords
in HTTP-based traffic. [11] When a user attempts to
access a website, the GFW’s keyword filtering system
inspects the URL or the content of the page to see if
it contains any keywords that are on a pre-defined list
of prohibited words or phrases. If the website or page
contains prohibited keywords, it will block the request and
prevent the user from accessing the website. The GFW
is especially enforcing this technique in Chinese search
engines, such as google.cn or baidu.cn [12]

2.5. SNI-Filtering

With an increase of implementing TLS on web-servers
[2] and using encrypted connections, this approach is inef-
fective if the corresponding target server does not comply
to the Chinese governments policies by letting the GFW
inspect the unencrypted content. While companies inside
of China often cooperate with the government [13], this
is mostly the case for services operating outside of China.
As IP addresses are often shared, a technique called Server
Name Indication (SNI) is currently widely implemented to
serve encrypted content for multiple hostnames. SNI helps
in identifying which specific service is to be provided
by sending the requested hostname in plaintext, as it
is required and sent during the unencrypted connection
setup. This allows the GFW to filter connections based
on the hostname, while minimizing collateral damage and
allowing other hostnames to continue using the IP address.
The detection rate on such connections is limited to host-
name filtering. This vulnerability of SNI can be remedied
by using encrypted SNI. ESNI works by first retrieving
a trusted encryption key and sending the encrypted SNI
header to the web-server. It was further investigated, that
the GFW filters ESNI connections currently, purely by
dropping detected packets. [2] It blocks only a certain
ESNI version, while leaving other protocol implementa-
tions with other versions untouched. [14]

2.6. Other detection methods

Similarly to ESNI, the GFW has difficulties detecting
and verifying content when the QUIC protocol is used,
due to the implicit encryption. Currently, blocks are less
stringent and QUIC requests are mostly passing through.
It is expected that QUIC packets might be dropped more
aggressively or that the GFW maintainers implement in-
spection algorithms, if possible. [15]

Another method the GFW implements is bandwidth
throttling. While this is not a practical way of blocking
connections, it discomforts the use of bypassing methods
for end-users, which might achieve the effect that they
give up or reduce their use of bypassing methods. Espe-
cially for international connections, throttling is generally
in place. [16]

While not commonly linked to casual internet con-
nections, using torrents allows accessing and downloading
files as well. It was shown, that one of the biggest Chinese
ISPs, namely China Telecom, does prevent torrenting,
likely in compliance to the Chinese governments strategy.
[17]

2.7. Combining methods

The GFW is capable to implement multiple methods to
better enforce their blocking strategy. For example, while
bypassing DNS poisoning and receiving the correct IP
address when using some DNS bypassing technique, the
GFW can still block connections to the target, if HTTP
would be used. A scenario was shown, where even using
connections based on HTTPS with enabled SNI would be
blocked solely by the leaked hostname, despite bypassing
the DNS poisoning of the GFW. [8]
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3. General bypassing methods

One great drawback of previously discussed bypassing
methods is the demand of specific implementations on the
content delivering server. As an end-user normally has no
control over such single services, it is beneficial for them
to rely on some form of general circumvention technique
for explicitly selected or all connections. The systems
presented below work by sending encapsulated traffic to
a middle server, which then unwraps the original request
and executes it in position for the end-user.

3.1. Bypassing via proxies

In general a technical server proxy is a piece of
software, that acts as a gateway between two machines.
Proxies can act on different layers in the OSI/ISO mo-
tel, the current common services however mostly act on
the highest layers, for instance using HTTP and HTTPS
(Layer 7) or the SOCKS protocol (Layer 5). Some com-
mon software that is used for proxies are shadowsocks,
obfs (by TOR), Trojan or V2Ray. [18]–[20] A proxy, by
design, needs to be configured for the specific software
that should use it. Meaning, that it normally is only used
by an explicit application which then encapsulates it’s
requests into the proxy specific protocol.

3.2. Bypassing via VPNs

Another common method is to use virtual private net-
works (VPNs). Despite that the general idea of a VPN is
not meant for utilizing it to bypass restrictive censorship,
it is a practical utility for doing so. [21] VPNs, while
very similar to proxies, normally act on lower layers, by
using implementations such as OpenVPN, WireGuard or
IPSec. They therefore have more overhead in comparison
to proxies but can route traffic of all applications through
the tunnel. This is specifically useful for application that
do not support proxies. [22]

3.3. Other bypassing methods

Another viable option for end-users to use is a Web
Proxy. [23], [24] While quite similar to a regular proxy
in terms of functionality, a web proxy is an application
hosted on a web-server, that is only designed to allow
users to browse websites via this specific server. [25]

Using international SIM cards is another possible so-
lution to bypass censorship, as this specific traffic is routed
to the mobile network service provider and therefore
normally not filtered at all. To reduce latency, SIM cards
from ISPs in Hong Kong are currently the most favoured
by the Chinese communities.

4. Detection and verification of circumven-
tion services

Significant efforts have been made to bypass the GFW,
but many systems encounter challenges in the identifica-
tion of connections based solely on recognizable prop-
erties. Passive detection of connections relies on specific

identifiers, such as port and protocol. When using stan-
dard software configurations, fixed ports are often used,
enabling the easy identification of connections. By default,
OpenVPN is listening on UDP port 1194 and IPSec uses
UDP and TCP on specific ports and the rather ESP pro-
tocol. As a result, it is straightforward to detect and block
such connections for the GFW. [26], [27] Additionally, it
is possible to further detect specific VPN software imple-
mentations based on a technique called Fingerprinting.

4.1. OpenVPN

Especially as OpenVPN is currently widely used in
commercial VPN software, it is a high priority target for
the GFW maintainers. [28] While some identifiers are
based on publicly available data, such as WHOIS infor-
mation, AS numbers of VPN providers or PTR records
of their IP addresses, it was shown that it is possible
to detect OpenVPN traffic based on properties such as
the unencrypted operational byte patterns in encapsulated
packets. Although this detection technique already has
a high accuracy of above 99% while only needing ten
connection packets, it is also possible to recognize TCP
based OpenVPN traffic on other properties, such as spe-
cific TCP options. [29] Although there are some proposed
protocol changes that would obfuscate OpenVPN-based
traffic, some are disregarded by the OpenVPN developers,
such as an XOR scrambler. Others often rely on different
obfuscation protocols such as shadowsocks, obfs or even
proprietary protocols, all with their own disadvantages.
[28] OpenVPN is currently not useful in bypassing very
strictly censored networks, such as the national networks
in China.

4.2. TOR and obfs

Another detection method uses fingerprinting tech-
niques for TOR-based traffic. Initially, the GFW blocked
TOR by using publicly available information on TOR en-
try servers. The TOR community responded by introduc-
ing unpublished TOR bridges, but the GFW was still able
to detect these bridges by identifying the used ciphers.
Trying to mitigate this by using obfuscators, it was still
possible for the GFW to detect bridges by using Active
Probing. Active probing involves scanning for keywords
on third-party service providers such as websites, forums,
or similar platforms, and analysing VPN or proxy services
for the purpose of blocking them. In the case of TOR-
based traffic, if the GFW detected a connection with a
likely chance of being used in TOR related traffic, it then
would send specifically crafted packets to the suspected
TOR bridge and confirm and block the IP address, if it was
responding as expected. It was shown that the GFW could
block an unpublished TOR bridge practically instantly
after the first connection was initiated from an end-user
in China. [30]

4.3. Shadowsocks

Shadowsocks-based proxies with early implementa-
tions were found to be susceptible to detection due to
a lack of authentication. [19] By sending specific packet
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headers to a proposed server, an attacker could exploit,
that a proxy would respond. [22] With this response,
the GFW could then verify that it was a proxy service
and therefore block connections to the IP address. This
attack could partially be mitigated by implementing an
OTA (One-Time Auth) mechanism on the payload. A
later improved protocol specification using AEAD ciphers
addressed this vulnerability in shadowsocks. [31]

5. Mimicking and Fronting

To bypass the GFW, VPN or proxy service operators
often try to mimic commonly used services and therefore
reduce the risk of detection. HTTPS is an excellent pro-
tocol for such concealment, as very much of the traffic
on the internet is HTTP/HTTPS based. [11] Additionally,
HTTPS traffic is already encrypted, which allows to eas-
ily reuse the protocols properties for building encrypted
tunnels. This is also one reason, why many tunnels specif-
ically designed for bypassing strict censorship do mimic
HTTPS connections, currently with a notable success rate.

To further prevent blocks, bypassers often use Fronting
to increase collateral damage if blocks are actually en-
forced. When implementing it, another provider is put
in front of the actually bypassing service. For instance,
when setting up a private VPN service, it helps to host
such service on popular cloud service providers, such as
Amazon Web Services. With those in place, the GFW
could not ban the whole network, as legitimate services
are operating on the same platforms as well. Single IPs
can however still be blocked.

5.1. Importance of Content Delivery Networks

Therefore, it is a better method to use Content Delivery
Networks (CDNs) as a fronting mechanism. As much of
the HTTPS traffic is cached and accelerated using com-
mercial CDNs, they can also be used in fronting for tunnel
services as well, if the tunnel uses HTTPS. For instance, at
the time of this research, one of the most recent tunnelling
setups would not only include the combination of a CDN
and a HTTPS (forward) proxy, namely V2Ray, but also
a HTTPS reverse proxy (nginx) to allow custom web-
server content to be hosted on the same machine as well.
[32] [33] This reverse proxy helps in mitigating blocks,
as there might be actual content displayed if visiting the
website normally and therefore could look like a normal
webpage. To the GFW, it is therefore much harder to block
the connection, as it appears to be regular HTTPS traffic,
and because the IP address of the actual proxy is hidden
behind the CDN’s IP address. [34] [35]

These benefits apply to web proxies as well, as they
have the great advantage of being used in combination
with highly advanced fronting methods easily. Despite the
limitations, it might remain one of the most undetected
proxying methods, as the application does not look differ-
ent to normal content hosted on web-servers and further,
as there are a lot different implementations from different
creators as well.

The GFW’s current attempts to prevent these setups is
done by throttling international CDNs and forcing com-
panies to setup their infrastructure in China as well. [16]
These servers in China must obey the law, which allows

the government to access data or enforce their own poli-
cies on these companies relatively easily. Companies, such
as Apple Inc., censor content even without the Chinese
government interfering officially. [13]

6. Verification of GFW’s blocking techniques
In the course of this project, some experiments to

test the GFW’s capabilities from outside of the Chinese
censored network have been setup. This works, because
the GFW often acts in a symmetric way.

We could prove the existence of DNS poisoning by
sending DNS queries to Chinese based IP addresses.
Trying to resolve AAAA records returned invalid IPv6
addresses, A record requests were responded with random
but routable IPv4 addresses. It should be noted that the
GFW intercepts packets before they reach their intended
destination, eliminating the need for the targeted IP ad-
dresses to provide DNS resolution services, which is an
additional indicator for DNS poisoning if requests are not
intercepted by the GFW. To compare, we further queried
multiple Chinese based resolvers and other international
resolvers and analysed the response data.

TABLE 1: HTTP-filtering results

Hostname Target IP Filtering Reason

alibaba.cn 140.205.174.2
baidu.cn 220.181.38.148

facebook.com 140.205.174.2 x TCP-RST
wikipedia.org 140.205.174.2 x TCP-RST

baidu.cn 140.205.174.2 HTTP Errors

Another blocking technique we tried to verify was
keyword filtering. For this experiment, demonstrated in
Table 1, we made use of the command-line tool curl to
actively resolve a hostname to a Chinese IP for crafted
HTTP requests. When connecting to the valid Chinese
IP, such as the IP 140.205.174.2 that belongs to al-
ibaba.cn, connection resets (TCP-RST) packets could al-
ways be observed when we tried to connect to it by
using various known blocked hosts, such as facebook.com
or wikipedia.org. When using allowed hosts in the host-
name, such as baidu.cn or google.cn the connection was
established and HTTP content was transmitted correctly,
leading to expected HTTP error codes.

TABLE 2: SNI-Filtering results

Hostname Target IP Filtering Reason

alibaba.cn 140.205.174.2
baidu.cn 220.181.38.148

wikipedia.org 140.205.174.2 x TCP-RST
facebook.com 140.205.174.2 x TCP-RST

baidu.cn 140.205.174.2 TLS Mismatch

Furthermore, similar results could be achieved for
HTTPS requests as illustrated in Table 2. For face-
book.com, wikipedia.org and others, the TLS handshake
was interrupted due to TCP-RSTs. When using invalid
hostnames, such as baidu.cn or tencent.cn, a TLS certifi-
cate mismatch could be conducted. This expected result
suggests that the connection was not interrupted and the
TLS handshake completed as expected. When connecting
with the actual hostname alibaba.cn content was transmit-
ted as expected.
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7. Conclusion and future work

The Great Firewall of China is a very powerful tool in
enforcing the strict censorship policies the Chinese gov-
ernment sets up. It is a strong counterpart to the freedom
of speech communities by demonstrating the possibilities
and techniques it can implement and execute in the Chi-
nese national network. However, the GFW is not perfect
and there is much work done to bypass it, not only from
the inside of China but also internationally. Especially
when combining multiple bypassing methods and with the
development of new designs and protocols, the Chinese
government needs to perfectly balance between isolating
its citizens from global information and separate itself too
much from the rest of the world.
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