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Abstract—HTTP has evolved over the last 32 years as new
requirements had to be tackled due to the changing use of
the web. In this paper, we compare HTTP/1.1, HTTP/2, and
HTTP/3 regarding their features and show the limitations
they have. Additionally, we compare the versions in terms of
latency, packet loss, and usage. We see that higher latency
affects HTTP/1.1 worse than HTTP/2. When packet loss
increases, the advantages of HTTP/2 decrease and HTTP/1.1
can also be faster. HTTP/3 performs better under high
packet loss than HTTP/2. The picture is more mixed for
the impacts of latency. HTTP/2 currently appears to be the
most widely used version, while the use and adoption of
HTTP/3 is increasing.

Index Terms—HTTP/1.1, HTTP/2, HTTP/3, QUIC, latency,
packet loss

1. Introduction

The modern Internet is powered by many technologies:
IP addresses for connecting across multiple hops, TCP for
reliable data transfer, and TLS for secure data transfer.
In this paper, we look at the application protocol HTTP.
HTTP is a stateless protocol which was first conceived
for sending hypertext (HTML documents). Over the years
HTTP evolved and gained new features, including the
ability to send data other than HTML. Nowadays, HTTP is
not only used for retrieving websites but also to exchange
data using REST APIs.

To give a better understanding of HTTP, we briefly
look at its history and explore key features introduced
with new versions. In Section 2, we also look at the
limitations of the three major HTTP versions (HTTP/1.1,
HTTP/2, and HTTP/3). For readability, we use h1, h2, and
h3 to mean HTTP/1.1, HTTP/2, and HTTP/3 respectively.
We then compare the effects of latency and packet loss,
and usage for the three major versions in Section 3.
In Section 4 we examine related work on comparing
HTTP versions. Section 5 concludes this paper.

2. Background

HTTP/0.9, formerly known simply as HTTP, was the
first version of the protocol, developed by Tim Berners-
Lee at CERN and released in 1990 [1]. HTTP/0.9 only
supported GET requests to retrieve resources specified by
their path [1]. Due to no HTTP headers being included
in this version, only HTML documents could be transmit-
ted [1].

HTTP/1.0 was defined in RFC 1945 in 1996 [2].
This RFC describes the common practices and usages
for HTTP at the time as the protocol was extended by
different parties and interoperability problems often oc-
curred [1]. One issue with HTTP/1.0 was that a connection
could not be reused for multiple requests [1].

HTTP/1.1 (h1) was the first standardized version of
HTTP and released in 1997 in RFC 2068 [3]. h1 added
new headers, the ability to reuse a connection, pipelining
to send multiple request before receiving a response, and
other additional functionality.

HTTP/0.9, HTTP/1.0, and HTTP/1.1 could only trans-
fer textual data [2], [3]. HTTP/2 (h2) standardized in 2015
in RFC 7540 is a binary protocol [4]. h2 stems from the
Google SPDY1 project [5]. Additional features include
multiplexing of requests (using streams) over a single
connection, stream prioritization, and more [4].

HTTP/3 (h3) was standardized in June 2022 [6]. h3
operates on top of QUIC [7], which is a UDP-based trans-
port protocol, instead of TCP. QUIC was first developed at
Google [8]. Additional features of h3 and QUIC are the
ability for 0-RTT2 handshakes [7], header compression
using QPACK [9], and more.

In the following subsections, we take a closer look at
h1 (Section 2.1), h2 (Section 2.2), and h3 (Section 2.3).

2.1. HTTP/1.1

In this section, we look at RFC 2616 from 1999 [10]
which was an update of the first h1 version in 1997 [3].
If not otherwise mentioned, we are referring to RFC
2616 [10] in this entire section. One additional feature
of HTTP/1.1 is caching, which allows minimizing the
number of requests a client has to make to a server as
the client can cache previous responses for a certain time.
Caching can also be performed by proxy servers, which
is another feature of HTTP not discussed further here.

Messages. To transfer data between endpoints (e.g. server
and client) HTTP uses HTTP messages. There are two
different types of messages. Requests can be used to
retrieve data or send data. Responses are the answer to
a request. HTTP messages consist of a Request-Line or
Status-Line, a list of headers to convey additional in-
formation, and the message body with the actual data.
Requests have a Request-Line consisting of an HTTP

1. SPDY, QUIC, HPACK, and QPACK are not acronyms but names
of projects or standards.

2. RTT = Round-Trip Time
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GET /en-US/docs/Glossary/Simple_header HTTP/1.1
Host: developer.mozilla.org
Accept: text/html, application/xhtml+xl, application/xml;q=0.9,⁎/⁎;q=0.8
Accept-Language: en-US, en; q=0.5
Accept-Encoding: gzip, deflate, br
...

200 OK
Connection: Keep-Alive
Content-Encoding: gzip
Content-Type: text/html; charset=utf-8
Keep-Alive: timeout=5, max=1000
Transfer-Encoding: chunked
...

(content)

Figure 1: h1 message exchange. Adapted from [1].

method (e.g. GET, POST, PUT, etc.), a Request-URI to
indicate the server and resource to be retrieved or sent,
and the HTTP version. A Status-Line is composed of the
HTTP version, a Status-Code (e.g. 1xx informational, 2xx
success, 3xx redirection, 4xx client error, and 5xx server
error) to indicate the success of a request, and a Reason-
Phrase, which is a textual description of the Status-Code.
Status-Lines are used within responses. Fig. 1 shows an
example message exchange with h1.

Headers. Headers in HTTP are used to send additional
information with a message. There are headers which are
required to be sent in requests or responses. Examples
of headers are Content-Length to specify the length of
the message body, Content-Type to specify the type of
resource transported via the message body, Cache-Control
to instruct caching mechanisms how to cache resources,
and the Cookie headers to add state management to
HTTP [11].

Persistent connections. In contrast to HTTP/1.0, h1 al-
lows persistent connections. This means that multiple
requests and responses can be sent over a single TCP
connection. By not having to open multiple TCP connec-
tions for multiple requests overhead is reduced. h1 also
introduces pipelining. Pipelining enables sending multiple
requests without having to wait for the responses of earlier
requests. Responses to pipelined requests must be sent
back in the same order in which they were received. Non-
idempotent requests (e.g. using the POST method) cannot
be pipelined.

Limitations of HTTP/1.1. h1 has several limitations
which led to the development of h2 [4]. Pipelining has the
problem of head-of-line blocking (HoLB) [12]. HoLB can
occur when the first request is for a large file. Sending this
large file will cause subsequent responses to be blocked.
Pipelining is not widely used by clients and servers as
it is difficult to implement [13]. As a solution, multiple
TCP connections are opened to be able to send multiple
requests at the same time [12]. This causes additional
overhead, especially if HTTPS [14] is used. As a conse-
quence, browsers limited the amount of TCP connections
per host [12]. A workaround for this is domain sharding,
which places resources on different hosts to be able to
evade this limitation [12]. Browsers then limited the total
number of TCP connections [12]. Other workarounds for
h1 include CSS spriting [12].

Figure 2: h2 connection. Adapted from [15].

2.2. HTTP/2

h2 builds on top of the core semantics of h1 but
introduces multiplexing of requests and responses, which
completely changes how data is transferred [4]. In contrast
to h1, h2 is a binary protocol, which means that message
bodies can be sent in binary format. For most of the new
features presented in this section we are referring to RFC
7540 [4]. If this is not the case, we mention this explicitly.

Multiplexing. h2 communication between a client and
a server takes place over a single TCP connection
(see Fig. 2). A connection is split into multiple streams,
where every exchange of request and response is assigned
its own stream (see Fig. 2). A request/response exchange
fully consumes a stream. Both clients and servers can open
new streams. Each stream has an ID, which is assigned by
the endpoint initiating the stream and cannot be reused.
As can be seen in Fig. 2, Streams are divided into multiple
frames. There are different types of frames. For example,
the DATA frame carries data, and the HEADER frame
is used to open a stream. In every connection there is
the stream with ID zero, used for exchanging control
messages. In contrast to h1, where most of the information
regarding the connection is transferred using headers, h2
conveys a lot of this information using the control stream.

Prioritization. In h2, streams can be dependent on other
streams. A dependent always has a lower priority than its
parent. When a stream is reprioritized, their dependents
move with them. A stream that does not depend on another
stream has the stream with ID zero as its parent. If two
streams depend on the same stream (can be the zero
stream), they can be assigned weights from 1 to 256
and resources should be allocated proportionally to their
weight. Assigning priorities is only a suggestion and does
not have to be followed by other endpoints.

Server Push. h2 allows a server to push data to a client
without a specific request from a client. This can be useful
when a client requests a website from the server. Instead of
just sending the HTML and waiting for requests of other
resources of the website, a server could also push these
resources (e.g. CSS and images) directly. Before pushing
data to the client, a server needs to send a PUSH_PROMISE
frame to inform the client about the push.

Flow Control. h2 provides flow control for data frames
on the level of individual streams and on the level of
the whole connection. Flow control is always specific to
connection and cannot be disabled. A receiver can regulate
how much data they are able to receive by sending a
WINDOW_UPDATE frame to the other endpoint.
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Header Compression. Header fields (i.e. the name-value
pairs in a header) are repetitive and verbose, which
causes overhead. Therefore, h2 introduces HPACK [16]
for header compression. HPACK uses static and dynamic
tables, which are dictionaries that are indexed by indices
and contain header fields, to reduce the amount of data
to send. The static table is ordered and read-only and
provides a list of 61 commonly used headers (e.g. ’accept-
encoding: gzip, deflate’ has index 16 in the static ta-
ble) [16, Appendix A]. Dynamic tables are specific to
a connection. They are constrained in size and store the
header fields encountered during a connection. Addition-
ally, any string can be Huffman encoded using a static
Huffman code created for HTTP [16, Appendix B].

Limitations of HTTP/2. h2 has the problem of TCP
HoLB, as only one connection is used in h2 [12]. TCP
HoLB occurs when one stream has a packet loss, since
then all streams have to wait. This is caused by TCP’s in-
order delivery of packets. h1 does not have this problem,
since most of the time multiple TCP connections are used.

Another problem with h2 is the cost of TCP and TLS,
since handshakes for TCP and TLS need to be completed
to establish a connection [8]. This was also a problem with
h1 over TLS, as we have seen previously in Section 2.1.
TLS is an optional feature of h2, but most browsers only
allow h2 over TLS [12].

2.3. HTTP/3

h3 is the newest version of HTTP [6]. Instead of
operating on top of TCP and TLS, h3 operates on top of
QUIC [7], which is UDP-based and includes TLS. Using
QUIC alleviates the problem of TCP HoLB. h3 includes
many of the features introduced with h2. Some of them
are implemented directly in h3, while others were moved
to QUIC. The semantics of h3 are similar to h1, and
h2 [17]. Similar to h2, h3 supports protocol extension.
h3 also supports server push [6].

Multiplexing. For this entire subsection, we are referring
to [6]. h3 uses QUIC streams for communication, as it
has no separate multiplexing mechanism. Similar to h2,
a request-response pair consume a stream. To communi-
cate over streams, h3 uses frames similar to h2. There
are multiple frame types, including DATA, SETTINGS
and HEADERS frames. To exchange control information,
h3 uses two separate unidirectional QUIC streams. Two
unidirectional streams allow the endpoints to send data
as soon as their able to do so after a 0-RTT or 1-RTT
connection.

Header compression. In this section, we are citing [9]
unless mentioned otherwise. h3 uses QPACK [9] instead
of HPACK [16] for header compression. This is because
HPACK relies on all frames across all streams being
delivered in order. Using HPACK with h3 would therefore
cause HoLB, since QUIC does not guarantee in-order
delivery across streams but only within a stream. QPACK
has similar design goals and concepts as HPACK (e.g.
a dynamic table, a static table, and a static Huffman
encoding) but uses different mechanisms to achieve this.

QUIC. In this section, we are citing [7] unless mentioned
otherwise. To multiplex data QUIC uses streams. Streams
are a visible abstraction for application protocols (e.g. h3)
operating on to of QUIC. To prioritize streams, QUIC
relies on information from the application protocol, as
there is no built-in mechanism for exchanging priorities.
Streams are split into multiple frames (e.g. STREAM
frames to send data or ACK frames to acknowledge
packets). For transferring data QUIC uses QUIC packets
which consist of multiple frames (from different streams).
Packets are sent using UDP datagrams (multiple packets
can be in one datagram).

QUIC enables 0-RTT and 1-RTT handshakes by com-
bining the cryptographic (uses TLS 1.3 [18], [19]) and
transport handshake. 0-RTT handshakes are possible if
there was a prior connection between endpoints. In con-
trast, h2 over TCP and TLS has a 3-RTT handshake [20].

QUIC connections have ConnectIDs which allow the
connection to persist across changes to the underlying IP
or port.

Additional features of QUIC include flow control for
individual streams and the entire connection, loss detec-
tion and recovery mechanisms, and others.

Limitations of HTTP/3. Googles’ QUIC implementation
consumes twice as much CPU as TCP/TLS [8]. The
reasons for the higher CPU usage are the cryptography,
the exchange of UDP packets, and maintaining QUIC
state. TLS 1.3 enables 0-RTT and 1-RTT cryptographic
handshakes [19]. Using TLS 1.3 with h2 reduces the
advantages of QUIC over TCP/TLS.

3. Evaluation

In this section, we compare the different HTTP ver-
sions regarding their usage and how they react to latency
and packet loss.

Effects of latency. Two aspects that have an impact on
the latency of the different versions are the handshake
they perform (i.e. cryptographic handshake and transport
handshake) and their general structure.

h3 performs at most 1-RTT handshakes as the cryp-
tographic and transport handshakes are combined. h1 and
h2 over TLS need to perform the TLS handshake and the
TCP handshake separately. As mentioned previously, for
TLS 1.2 and earlier versions this takes 3-RTT. Therefore,
an increase in latency should affect the h3 handshake less
than h1 and h2. Latency should affect h2 less than h1
because when h1 is used, often multiple connections are
opened and for each connection the handshake has to be
repeated. Langley et al. [8] show that the handshake la-
tency increases linearly for h2 over TCP/TLS and remains
almost constant for Google QUIC.

Since h2 and h3 support multiplexing of requests
and responses, they should handle latency better than h1.
References [12], [21] show that h2 reacts better to latency
than h1. Trevisan et al. [22] show the order h3, h2, and
h1 from best to worst. In contrast, Saif et al. [23] show
h3 performing worse than h2 regarding QoE (Quality
of Experience) measurements using Lighthouse. This is
because in their tests LCP (i.e. Largest Contentful Paint:
time for the largest payload to be rendered completely)
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performed consistently much worse for h3 than h2. In
addition, no 0-RTT handshakes were used for h3.

Effects of packet loss. h2 has the problem of TCP head
of line blocking, where a packet loss affects all streams
which are multiplexed over a single TCP connection.
Therefore, packet loss might affect h2 worse than h1. h3
solves the TCP HoLB by using QUIC over UDP instead of
TCP. It should therefore react better to packet loss than
h2. De Saxcé et al. [12] show decreasing performance
improvements for h2 compared to h1 with higher rates of
packet loss. h1 can also perform better for higher packet
loss. In contrast to this, Corbel et al. [21] show that h2
performs better than h1 under high packet loss rates. This
might be because they used h1 pipelining over a single
TCP connection which would also be affected by TCP
HoLB. h3 shows better performance than h2 at higher
packet loss rates [22], [23].

Usage. In this section, we mostly focus on data provided
by Cloudflare, w3tech and the HTTP archive, as data men-
tioned in papers quickly becomes outdated. For example,
Trevisan et al. [22] measured the adoption of h3 at 4.8% in
October 2020, but as we show in the following subsection,
the adoption of h3 has significantly increased over the last
1.5 years.

For the 30 days prior to June 11, 2022, Cloudflare
radar showed that the traffic passing through their in-
frastructure was 8% h1, 68% h2, and 24% h3 [24].
Additionally, over the 12 months prior to June 2022, h2
made up the majority of requests for Cloudflare customer
content and the number was increasing [25]. h1 requests
were stable, while h3 requests increased and surpassed h1.
W3tech measures the adoption of h3 and h2 by websites
by examining the top 10 million websites from Alexa3and
1 million from Tranco3 [26]. When a technology is found
on a website, that website adopts the technology. h2 is
adopted by 45.8% of websites, which has stayed relatively
stable over the 12 months prior to June 2022 [27]. h3
is adopted by 25.2% of websites, which has increased
over the 12 months prior to June 2022 [28]. The HTTP
archive crawls millions of URLs from the Chrome User
Experience Report on a monthly basis [29]. For June 1,
2022, h3 support was at 15% for desktop and 15.3% for
mobile and has been steadily increasing since May/June
2020. The number of h2 requests on June 1, 2022, was at
67.7% for desktop and 67.8% for mobile and also steadily
increasing.

It is difficult to compare data from different sources.
However, a general trend in increasing usage of h2 and
increasing adoption and usage of h3 can be seen. h1 is
also still widely used. For example, the Facebook bot,
Google bot, and LinkedIn bot, which are crawlers for the
respective social media sites and search engines, perform
a lot of their requests using h1 [25].

4. Related work

De Saxcé et al. compare h1 and h2 using page load
time as the performance indicator [12]. They clone 20
popular websites to a server and use a LAN connection to

3. Alexa [30] and Tranco [31] provide top sites rankings

that server to test the impact of latency and packet loss on
h1 and h2. They show that an increase in latency impacts
page load times for h1 more than h2. In contrast, h2 shows
less performance benefits the higher the packet loss is. h2
can also take longer than h1 for higher packet loss. Some
limitations include not using TLS and no domain sharding,
as all data is on a single server.

Saif et al. compare h2 (over TCP and TLS 1.3) and
h3 using the Lighthouse open-source tool, which measures
performance and QoE (Quality of Experience) aggregat-
ing different metrics to give a performance score [23].
Their test setup is a server in a virtual machine and
Google Chrome as the client on the same machine. They
use web content to resemble a realistic web page. To
compare effects of latency and packet loss, they increase
these parameters individually (latency to 1000ms and even
2000ms; packet loss to 1.4%). The baseline score without
any adjustments to latency or packet loss was 65 for h3
and 87 for h2. h3 showed consistently worse performance
for increases in latency. For packet loss, h3 performed
better than h2 for a packet loss starting at 1% and the score
stayed relatively flat in contrast to h2. h3 had consistently
worse scores for LCP (i.e. Largest Contentful Paint: time
for the largest payload to be rendered completely) which
makes up a large percentage of the Lighthouse score.
One limitation is that no 0-RTT connection establishments
were used for h3.

Trevisan et al. look at the adoption and performance
of h3 [22]. Using a data set of 5 million URLs, they found
that 4.8% of these websites supported h3 in October 2020.
Of the websites that support h3, 51% still retrieve one
or more objects using h1. For testing performance they
make requests to a subset of websites supporting h3. They
increase latency to 200ms, increase packet loss to 5% and
decrease bandwidth to 1 Mbit/s separately. To compare
the effects of varying these parameters, they used onLoad
(when all elements of a webpage have been loaded and
parsed) and speedIndex (when visible portions of the page
are displayed). They compared h1, h2, and h3 regarding
latency and found that the mean onLoad and speedIndex
times are best for h3, second for h2, and worst for h1.
The improvements increase with higher latencies. They
also compare h2 and h3 regarding bandwidth and packet
loss and found that h3 had better performance at low
bandwidth, but performance was similar for high packet
loss. They always use a fresh browser profile with empty
cache and no pre-existing connections. This means no 0-
RTT for h3.

A limitation of all papers presented here is that they
only compare two different HTTP versions (h1 and h2
or h2 and h3). Trevisan et al. have measurements across
all versions, but they mostly focus on comparing h2 and
h3 [22].

5. Conclusion

This paper gave an overview of the different HTTP
versions HTTP/1.1 (h1), HTTP/2 (h2), and HTTP/3 (h3)
and their most important features. In h1, messages are
exchanged via requests and responses and headers can be
used to convey additional information. h2 builds on these
features from h1 by including mechanisms to multiplex
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requests and compress headers. h3 builds on the multi-
plexing from h2 by using QUIC and UDP instead of TCP
and therefore alleviating the TCP HoLB problem of h2.

We then compared h1, h2, and h3 in terms of how they
perform under different amounts of latency and packet
loss. We also compared the usage of the different versions.
h2 performs better than h1 at high latency. For higher
packet loss, the benefits of h2 are reduced and h1 can
also perform better. By comparing h3 and h2, we see that
h3 performs better under higher packet loss. For higher
latency, h2 performs better for some tests and h3 for
others. h2 currently seems to be the most used version
(June 2022). The use and adoption for h3 is increasing.
h1 usage is relatively stable.

In the future, there is room for a comparison of all
three HTTP versions regarding latency, packet loss, band-
width, and maybe other parameters, since most papers
only compare two different HTTP versions (h1 and h2
or h2 and h3).
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