
A Case Study of Security Vulnerabilities in Smart Contracts

Marvin James Rautenberg, Filip Rezabek∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: marvin.rautenberg@tum.de, rezabek@net.in.tum.de

Abstract—Ethereum is the first blockchain network that in-
troduced smart contracts which is code that can be executed
on a distributed and publicly visible ledger. This makes a
trustless and secure system of transaction possible that can
not be altered after execution. As a result handling transac-
tions and contracts is significantly improved no matter if the
data being processed is tangible or intangible. To ensure this
system is appropriate for use in a large scale it is important
to analyze the security of it, what possible vulnerabilities
the programming language has and how to minimize them
which we conclude in a case study that refers to related work
and combines all the conclusions. Subsequently we come to
the deduction that Turing Completeness is rarely needed
in terms of functionality in smart contract programming
languages and rather harms the security of it.

Index Terms—ethereum, blockchain, smart contracts, solid-
ity, turing complete

1. Introduction

Blockchain Technology is steadily growing in popular-
ity and importance posing as one of the most interesting
new asset classes on the finance market as even banks
now invest into blockchain technology like Bitcoin and
Ethereum. Whereas Bitcoin is very limited, Ethereum
expanded greatly in the number of use cases it has by
introducing the first version of smart contracts that make
it possible to run code on a distributed network. This
system can eliminate the need for trust in sensitive ar-
eas like financial transactions which make transactions
much more automated, secure and stable. Having no need
for a middle-man to conduct the transaction makes the
blockchain a tool to verify and track every transaction
that is made on the network.

Even though smart contracts bring multiple advantages
compared to traditional contracts, there is the question
of how secure this new system is and how it relates
to Turing completeness. Additionally the security of the
programming language and how to improve the security of
the language specifically is important. The paper explains
the key concepts needed to understand the analysis in
Section 2, then analyze the design of smart contracts
and find the connection to security in Section 3. After
that we conduct a case study on where the sources of
vulnerabilities in the smart contract language Solidity are
and how to reduce them in Section 4 and talk about related
work in Section 5. Following we come to the conclusion
why Turing completeness is rather counterproductive in
respect to security in Section 6.

Node Node

Node Node

Node Node

[3]
Figure 1: Blockchain Network

2. Background

2.1. Blockchain

A blockchain is a distributed electronic ledger which
records transactions and tracks assets [1]. It is crucial for
applications where traditionally you need a trusted middle-
man to complete sensitive transactions. These transactions
can range from a simple currency transaction to law
documents and more since a blockchain can track tangible
assets like houses or cars, but also intangible assets like
intellectual property [1].

Distributed means it is a decentralized network of
nodes like shown in Figure 1. These nodes can be com-
puters running the software of a specific blockchain where
every node is connected to each other instead of having a
centralized hub of operations like a single server [2].

This means that all the data of the blockchain is
publicly visible but the blocks containing the data are not
modifiable. Blocks contain the hash of the previous block
and multiple transactions in addition to other data like
shown in Figure 2.

As this paper will largely focus on Ethereum’s imple-
mentation of smart contracts we will look further into the
attributes of the Ethereum blockchain as other blockchains
with the option to create smart contracts are very similar
to the Ethereum system.

Transactions on the Ethereum blockchain can only
occur between an externally owned address (EOA) and
another EOA, between an EOA and a smart contract, or
between two smart contracts. An externally owned address
usually represents a human made address also called
wallet that has a private and public key. A public key is
needed to be able to address a specific wallet for a simple

Seminar IITM SS 22,
Network Architectures and Services, November 2022 53 doi: 10.2313/NET-2022-11-1_10



Block n

Hash of previous block

Timestamp

Transactions

Block Summary

[3]
Figure 2: Block Artchitecture

transaction and the private key is to sign transactions. The
private key is used like a PIN on a credit card to confirm a
transaction before it is executed. Whereas an EOA stores
the balance and nonce which counts the number of all
confirmed transactions, a contract-address additionally has
code and a storage to track the states it has. This means
that a contract address has at least the same amount of
actions it can execute as a human created address.

Transactions can not be altered after execution which
eliminates the need for trust in a transactions. Usually you
have a system in place that needs to be trusted to make
sure transactions take place as intended like a bank making
sure they deliver your payment and in turn make sure that
the seller in a transaction receives his payment from the
buyer. Both the seller and the buyer expect the bank to
handle everything related to processing the payment and
thus have to trust it. The system depends on this trust
which is a disadvantage as the trust can be exploited by
malicious bankers and the way of making transactions
would fall apart if banks became untrustworthy. Smart
contracts on the other hand eliminate what would be
the bank in a transaction and introduce an electronic
contract that is executed on all nodes of the blockchain so
everybody can verify that the contract is being executed
correctly.

Only one node, the one which completes the contract
the fastest actually alters the blockchain by adding the
data to the next block of transactions that is chained to
the rest of the blocks which in turn permanently alters
the whole blockchain for all participants by adding a new
block. This process is also called mining. For using the
node’s computational resources the blockchain rewards
the node with the currency the blockchain uses which
is Ether in the case of Ethereum. Being able to see all
transactions and not being able to change transactions
makes the blockchain "highly trustworthy, transparent, and
incorruptible" [2]. For all the nodes to agree on certain
data values to determine what is a correct output of a
transaction there are consensus mechanisms like Proof of
Work, Proof of Stake, Proof of Authority and more.

2.2. Smart Contracts

A smart contract is code that is executed in the virtual
machine of a blockchain which in our case is the Ethereum
Virtual Machine (EVM). The programming language of
Ethereum is Solidity which is a Turing Complete pro-
gramming language. Turing Completeness in the case of
Solidity means it can run all programs a Turing Machine

can run which mostly differentiates itself from Turing
incomplete languages by being able to have complex
programs including loops and recursion. The EVM works
as a state machine that has an existing state, takes a
transaction as an input and combines the two to create
a new state. So the blockchain mostly consists of states
that are changed over time. A Turing Machine and thus
also a turing complete language have the important ability
of disregarding the limitations of finite memory which will
be an important fact in the analysis in section 3.

3. Smart Contracts Design and Analysis

3.1. Execution of Smart Contracts

You can use an Ethereum Node API to read data
from the blockchain. Writing data to the blockchain is
much more complicated than reading. You need to send a
transaction to the Ethereum Network that specifies which
smart contract to alter, which function to execute, any
arguments you want to include, and if you are sending
any Ether. After signing this transaction it needs a node to
accept this transaction which does not have to also execute
it. It is possible that the transaction will be forwarded
to another node for execution. The transaction will be
added to a transaction pool which will be only executed
when there are enough transactions to fill a new block.
To validate the transaction the transaction is passed as
an input to the smart contract which is executed in the
EVM. This transaction pool is handled by the miners that
all simultaneously execute the transactions in the pool by
solving a mathematical problem until one miner finishes
all the transactions in the pool and solves the mathematical
problem. So only one miner modifies the blockchain and
adds a new block and all the other miners are used for
verification of the result of the transactions but ultimately
discard their calculations. Most of the other blockchains
have a similar way of executing smart contracts.

Executing a smart contract is synonymous to buying
something from a vending machine [4]. You enter at least
the amount of money you need to buy a specific product,
you press a button, you get your product and possibly
some change back.

Since Solidity, the language Ethereum smart contracts
are based on, is Turing complete you can not predict
whether a program will finish or not which is why the
developers of Ethereum have introduced gas fees to imple-
ment some of the benefits of having a Turing incomplete
language. Gas fees are payed with every transaction. The
person or contract trying to send the transaction has to
specify how much they are willing to pay in gas for
the transaction to arrive. It is possible to set the limit
too low for the transaction to be declined in which case
you will still lose the gas fees and the transaction will
not be executed. If the gas limit is set appropriately to
where the fees do not exceed the limit the transaction
will be executed and possible remaining gas that is left
over will be reimbursed to the sender of the transaction.
Gas fees depend on how busy the Ethereum network
is and change over time. Gas fees fix the disadvantage
of Turing completeness disregarding the limits of finite
memory which could lead to endless looping programs

Seminar IITM SS 22,
Network Architectures and Services, November 2022 54 doi: 10.2313/NET-2022-11-1_10



that never finish as the gas fees will at some point in
the execution run out and stop the process. Blocks have
an upper gas limit which can not be exceeded by the
cumulative sum of the gas fees of the transactions that are
in the pool of transactions for the specific block [2]. This
ensures that not all transactions will be written into the
same block. The nodes of the network can act as miners
or EVM depending on the situation [2].

3.2. Other Smart Contract Languages

While Ethereum is the biggest blockchain with the
ability to write smart contracts there are several alter-
natives like Algorand with the programming language
TEAL, Cardano which is a blockchain platform using
Proof of Stake and EOS.IO which is also a platform built
for smart contracts. Algorand tries to solve the problem
of scalability, speed of transaction and security that is
common among blockchain technology networks [5]. The
Ethereum Network can only handle up to 15 Transactions
per second [5] whereas Algorand can process up to 1000
transactions per second [6].

The dramatic difference in efficiency is mostly due to
Algorand using a different type of consensus mechanism.
Reviewing scalablity between different platforms shows
a trend of higher transactions per second often being
accompanied by weaker security as higher security often
implies more resource intensive concepts [5]. Ethereum
uses Proof of Work as of the time writing this paper
and Algorand uses Proof of Stake which does not require
nearly as much resources and scales much better. A switch
to Proof of Stake for the Ethereum Network is planned for
the future. Algorand’s Proof of Stake Mechanism uses the
Verifiable Random function to randomly select a Holder
of the Algorand currency to validate the next block in the
chain instead of using miners like in the Proof of Work
approach of Ethereum. A minimum amount of ALGO,
the token of the Algorand network, needs to be pledged
by a node to be able to validate blocks to ensure that
the validator does not act maliciously as it would be
unprofitable.

The security advantages TEAL has over Solidity come
from it being a Turing incomplete language. Although
Solidity is not as limited in the variety of algorithms it
can compute like TEAL, being Turing incomplete is the
key to reducing the possible attack vectors of the programs
that are written with it. [7] concluded that at most 35.36%
of smart contracts written in Solidity require Turing com-
pleteness to be executable. Therefore the majority does
not require it and [7] states that it makes sense to rather
use a Turing incomplete language. Although it is also
mentioned that a mix of both language types could be
the best option to still retain some of the more complex
algorithm capabilities of Turing complete languages.

3.3. Security

Since Solidity is the first practical smart contract ca-
pable language [8] it does have the benefit of being most
popular choice among smart contract developers [5] which
makes identifying security vulnerabilities and adopting
generalized good practices for coding in Solidity much
easier than lesser known languages like TEAL. Major

hacks like the DAO hack on the Ethereum network were
only possible because of Solidity’s Turing completeness,
allowing reentrancy attacks causing major financial loss
[9]. The EVM was working as intended and the DAO
contract itself did not have any flaws but the language
itself has flaws due to it being Turing complete which the
designers of the language might have overlooked [9].

Most security vulnerabilities are flaws in the coding
of the smart contract itself. Some of the most common
vulnerabilities are reentrancy attacks and the use of ora-
cle manipulation. Oracles provide data from outside the
blockchain. An Oracle could be a sensor on a car tire to
monitor the health of the tire to monitor if it is about to
break. This kind of information is not on the blockchain as
it is real-world data capture by sensors and oracles provide
the connection needed to use this external data in smart
contracts. Now depending on how sensitive the contract is
the choice of oracle can be crucial for the smart contract
to work as intended. If an oracle only gets data from one
sensor in our example of the car tire, the sensor could be
faulty and send wrong data which might trigger a chain
of transaction that leads to an emergency call saying a
tire broke even though it did not. Using multiple sensors
would be needed to make the contract more robust. In
other scenarios it is advised to use decentralized points
of data sources in an oracle to make sure the data is
correct and confirmed by many other sources as this is
very important for the contract. Now this also presents
an attack vector if you manipulate the oracle you can
directly influence the execution of the transactions made
by the smart contracts relying on this oracle. This is less
a vulnerability of Solidity itself but rather a possible flaw
in developing smart contracts made by the developers.

An example for a reentrancy attack could be two
people writing each other letters, person A receives a
letter from person B, starts writing an answer to the letter
from B but does not complete it and starts writing a new
letter concerning a different topic and sends it to person B.
Now person B answers the letter sent by person A and A
finishes writing his first response and sends it to B which
would confuse B as it refers to a different conversation
that was had before. This type of concept was used in the
DAO hack to request Ether multiple times from a smart
contract before the contract checked the balance which
resulted in the attacker receiving more Ether than intended
[10]. Attacks like these can be prevented by better coding
practices discussed in section 4.

4. Case Study

4.1. Sources of vulnerabilities

Table 1 shows multiple known vulnerabilities of the
Ethereum Network and on what level they appear on
according to [11]. We can see that most vulnerabilities can
be traced back to Solidity. Considering that the benefits
of Turing completeness are not used most of the time in
smart contracts made with Solidity it is reasonable to think
that the smart contracts would be much more secure if
the programming language used was not Turing complete
without having to sacrifice too much functionality as the
additional functionality of Turing completeness is rarely

Seminar IITM SS 22,
Network Architectures and Services, November 2022 55 doi: 10.2313/NET-2022-11-1_10



TABLE 1: Security Vulnerabilities

Solidity EVM Blockchain

Reentrancy 3
Type casts 3
Generating Randomness 3
Gasless send 3
Immutable Bugs 3
Keeping Screts 3
Stack size limit 3
Unpredictable state 3
Call to unknown 3

needed. Although it would be much more secure to use
a Turing incomplete language we can not neglect the
less than 35.36% that [7] concluded to be needing turing
completeness. The quantity of the contracts using this
complexity does not directly tell the importance of these
smart contracts in the network. This 35.36% could be
relied on by a lot of other smart contracts that do not
need Turing completeness themselves so the influence on
the network might be and is probably much higher than
the aforementioned 35.36%.

It is important to carefully weigh the benefits of
more security versus more functionality and decide which
approach is more important in the application of smart
contracts to be able to decide if the programming language
should be Turing complete. Finding a way to combine
both types of languages by having two separate languages
that are Turing complete and incomplete to find a middle
between the benefits and disadvantages as mentioned in
section 3.2 seems to be the best option at the moment.

4.2. Guidelines for writing secure smart contracts

Despite the clear vulnerabilities of a Turing complete
language like Solidity, it is possible to minimize the
potential security issues in a smart contract by following
coding principles. Auditing a smart contract depending on
how important it is a good way of reducing the risks of
security attacks. We can use static analysis like Slither
which is a python program that would directly identify
some of the biggest vulnerabilities and warn the developer
if his code is prone for issues like Reentrancy. To create
safe smart contracts we can not completely rely just on
static analysis and need to use manual analysis tools like
symbolic execution tools. Echidna is a symbolic execution
tool where you can simulate transaction execution without
running the code on the public blockchain. This allows
us to use Fuzz-Testing to manually assess if functions
work as intended. Vulnerabilities like generating random-
ness where the random values are not as random as the
developer wants it to be can just be tested by creating a
lot of values with the Fuzz-Testing tool and checking if
values are repeated.

5. Related Work

Even though there is literature on similar topics like
[12] and [11], they usually only focus on security aspects
of smart contracts without connecting the vulnerabilities to
the Turing completeness of the language and how this loss
or gain in security weighs compared to the functionality.

There is literature about the need of Turing completeness
in smart contract programming but these mostly are in
regard to functionality and do not make a connection
to security as well. There is a lot of work regarding
blockchain technology, smart contracts in general, how to
write smart contracts and most of them refer to Solidity as
it is one of the most commonly used languages for smart
contracts. There are generally a lot of unscientific guides
on how smart contracts work and what practices conclude
in a more secure smart contract and what to avoid when
programming with Solidity for example. Big attacks on
the security of smart contracts are well documented like
the DAO hack. This paper rather combines all of these
findings and forms a new conclusion.

6. Conclusion

It seems using a Turing complete language has a large
negative effect on security as most vulnerabilities can be
linked to attributes that only occur in Turing complete lan-
guages like a program not terminating by itself. Problems
like this can be reduced partly by introducing limitations
that are more similar to Turing incomplete languages seen
in the introduction of gas fees in the Ethereum network
to combat the problem of a program not terminating by
itself and thus wasting resources on the network. But
it is not always possible to neglect the functionality of
Turing complete languages which can provide crucial
algorithm support that Turing incomplete languages do
not. So either the combination of Turing completeness
and incompleteness or using a Turing complete language
and using strict security guidelines while creating smart
contracts can be viable compromises to ensure security.

Generally the Ethereum Network seems like a very
resource intensive network with the use of Proof of Work
as the consensus mechanism and the Turing completeness
of Solidity which allows for more wasteful and inefficient
algorithms compared to a Turing incomplete language like
TEAL which also works with a Proof of Stake consensus
mechanism that allows the whole Algorand Network to be
much more energy efficient than Ethereum. This not only
reduces transaction times but also improves scalability and
security which seems like an overall improvement.

References

[1] “What is blockchain technology? - ibm blockchain,” 2022. [On-
line]. Available: https://www.ibm.com/topics/what-is-blockchain

[2] R. Modi, Solidity Programming Essentials: A beginner’s guide to
build smart contracts for Ethereum and Blockchain. Packt, 2018.

[3] T. Salman, R. Jain, and L. Gupta, “Probabilistic blockchains:
A blockchain paradigm for collaborative decision-making,” 2018
9th IEEE Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), pp. 457–465, 2018.

[4] R. Wilkens and R. Falk, Smart Contracts: Grundlagen,
Anwendungsfelder und rechtliche Aspekte, ser. essentials.
Springer Fachmedien Wiesbaden, 2019. [Online]. Available:
https://books.google.de/books?id=k9UyyQEACAAJ

[5] G. A. Tsihrintzis and M. Virvou, “Advances in core computer
science-based technologies,” Jan 1970. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-41196-1_1

Seminar IITM SS 22,
Network Architectures and Services, November 2022 56 doi: 10.2313/NET-2022-11-1_10



[6] N. Borisov and C. Diaz, Financial Cryptography and Data
Security: 25th International Conference, FC 2021, Virtual
Event, March 1–5, 2021, Revised Selected Papers, Part II,
ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2021. [Online]. Available: https://books.google.de/
books?id=TuVJEAAAQBAJ

[7] M. Jansen, F. Hdhili, R. Gouiaa, and Z. Qasem, “Do smart contract
languages need to be turing complete?” Advances in Intelligent
Systems and Computing, p. 19–26, 2019.

[8] D. Gerard, C. Wagner, K. Boyd, and B. Gutzler, Attack
of the 50 Foot Blockchain: Bitcoin, Blockchain, Ethereum &
Smart Contracts. David Gerard, 2017. [Online]. Available:
https://books.google.de/books?id=R7hEDwAAQBAJ

[9] H. HackerNoon, “Should smart contracts be non-turing
complete?” Jul 2019. [Online]. Available: https://hackernoon.com/
should-smart-contracts-be-non-turing-complete-fe304203a49e

[10] M. Derka, “What is a re-entrancy attack?” Aug
2019. [Online]. Available: https://quantstamp.com/blog/
what-is-a-re-entrancy-attack

[11] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts,” https://eprint.iacr.org/, 2016. [Online].
Available: https://eprint.iacr.org/2016/1007.pdf

[12] N. F. Samreen and M. H. Alalfi, “A survey of security vulnera-
bilities in ethereum smart contracts,” ArXiv, vol. abs/2105.06974,
2021.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 57 doi: 10.2313/NET-2022-11-1_10


