Shortest Path Awareness in Delay-Based Routing

Mia Heinz, Christoph Schwarzenberg*, Florian Wiedner*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: mia.heinz@tum.de, schwarzenberg @net.in.tum.de, wiedner @net.in.tum.de

Abstract—The back-pressure routing (BP) algorithm is
proveably throughput optimal which makes it a very promis-
ing algorithm, but it struggles with high end-to-end delay.
In this paper, we will compare existing approaches on delay-
based routing, shortest-path-aided back-pressure routing
and possible combinations of both to determine how they
decrease the end-to-end delay while maintaining throughput
optimality.

Index Terms—back-pressure, shortest path, delay metric,
end-to-end delay

1. Introduction

Efficient and fast routing is becoming increasingly im-
portant especially in real-life applications, like streaming
where a large end-to-end delay is very noticeable.

The BP algorithm promises throughput optimality
which means that it guarantees system stability in a net-
work. The network is stable meaning that queue occu-
pancy does not increase endlessly.

Under a high traffic load the algorithm works compara-
bly well as it exhausts all possible paths and therefore
distributes the traffic over the whole network instead of
concentrating it on one or few paths.

If the traffic is lighter, however, this becomes a problem.
With a low traffic load the algorithm chooses randomly
between all possible paths, therefore sending data over
unnecessary long paths or even loops causing high end-
to-end delay2.

First, the paper describes the BP algorithm in Section
2. Section 3 gives an overview of existing optimization
methods and in Section 4, we focus on shortest-path-
awareness and delay-based algorithms.

2. Background

The BP routing algorithm was first proposed by Tas-
siulas and Ephremides in [1]. It was originally developed
for wireless multihop radio networks but can easily be
transferred to wired multihop networks.

The algorithm works with congestion gradients in
queueing networks. Each node has a queue for each
destination in the network. A flow is a sequence of packets
belonging to one activity. A link weight is calculated
by the difference of queue length for a flow and the
neighbor’s queue length for the same flow. The biggest
weight signifies the least congested path. Then in each
time slot, the scheduling decision is made to maximize
the sum of the weights for activated links.

Seminar IITM SS 22,
Network Architectures and Services, November 2022

link (1,2)

node 2

node 1

(a) Multi-hop network

(b) A close-up

Figure 1: General principle of the BP algorithm [2]

Figure 1 shows an example illustrating a multihop
queueing network. For the shown link (1,2) in this ex-
ample the BP algorithm would choose the green flow, as
the difference in queue length is the highest.

Another way to understand the principle is imagining
the links of a network as pipes and the data as water.
The water is put into the pipe network in one place and
can only escape at its destination. If it is only a little
bit of water it will randomly distribute over the pipes.
If more water is introduced to the network, the water
pressure pushes the water out at the destination. With the
BP algorithm pressure builds up leading the data to its
destination the same way water pressure builds up and
pushes the water out of the pipes at the destination.

The BP algorithm is provably throughput optimal and
stable. But challenges are the high end-to-end delays, es-
pecially in low data load traffic because it always exploits
all possible paths.

According to Hai et al. in [3], the high end-to-end delay
is caused by three main factors:

1) The initial delay describes the initial startup time
it takes to build up pressure for the BP algorithm
to work.

The random walk delay is the delay that is cre-
ated when two links have the same weight, so a
random choice is made which can lead to looping
or unnecessary long paths.

The last packet delay describes a delay of the
last packet of a flow. If no packets to the same
destination are following the last packet of a flow,
the queue remains lightly filled and the packet
may starve for an undefined amount of time.

2)

3)

The following section analyses approaches to reduce
the end-to-end delay.

doi: 10.2313/NET-2022-11-1 07

3. Related Work

Since the first introduction of the BP algorithm there
have been many attempts to improve it.

The first group of optimization methods is based on
queue structure and management.

One approach is the clustering of nodes, which was ex-
plored by Ying et al. in [4]. The idea is that nodes are
combined in clusters and if the source and destination are
already in the same cluster, the standard BP algorithm is
applied. If they are in different clusters, the BP algorithm
is used to reach one gateway of the cluster containing the
destination. This not only reduces the end-to-end delay
but also the memory complexity, as fewer queues have to
be maintained. The main problem of this algorithm is the
question of how to cluster the nodes.

In [5] Alresaini et al. introduce a BP algorithm with
adaptive redundancy (BWAR). If a node has a queue
backlog below a certain threshold, it duplicates the packets
it is sending in another buffer. Then when the queue is
empty those copies are sent. By creating several copies
of one packet, more pressure is built up and the chance
that one arrives at the destination is higher. When one of
them arrives at the destination, all other copies have to
be deleted. Deleting all copies is a problem which can be
solved with timeouts.

Another approach is combining the BP algorithm with
data science and machine learning. In [6] Huang et al.
propose a predictive BP algorithm that predicts and pre-
serves the arriving packets based on a lookahead-window.

Furthermore, approaches that reduce the delay by
decreasing the path length or the number of hops, like
avoiding or reducing loops [7] or including shortest-path-
awareness [8], will be considered in detail in Section 4.1.

Delay-based algorithms, that use metrics other than the
queue length to make the routing decisions, can also be
used to reduce the delay, which will further be explained
in Section 4.2.

4. Approaches

In the following we will have a closer look at the
approaches using shortest-path-awareness and delay-based
routing.

4.1. Shortest-Path-Awareness

In [8], Ying et al. combine the traditional BP algo-
rithm with shortest-path-awareness based routing which
decreases end-to-end delay while maintaining throughput
optimality.

The end-to-end delay is dependent on the hop count
of packet i.e., the path length and the time it spends in the
queues. Using an algorithm like Dijkstra or Bellman-Ford
the shortest path to each destination can be calculated for
every node.

If the routing algorithm would now always use the shortest
path, the path becomes congested very fast and this leads
to a very high queue delay as the packets are buffering
and waiting in the queues.

Therefore, in the proposed algorithm not only the shortest
path is used but all paths with a specified maximum path

Seminar IITM SS 22,
Network Architectures and Services, November 2022

length. This hop constraint gets adjusted as the data rate
in the network rises.

First, Ying et al. propose an algorithm for a specified
hop constraint h, which uses the BP algorithm but only
exploits paths with a length < h. So every node knows
the minimum hops for every destination and every flow
has a hop constraint /. Then the path (a,b) is only a valid
option if node b is less than h — 1 hops away from the
destination. From all possible hops, the one with the least
congestion is picked via the BP algorithm.

In a network we usually do not have a set hop con-
straint but the maximum path length is dependent on
the data rate and h has to be chosen dynamically. They
introduce a variable K which is the price for taking a
longer path, so a larger K minimizes the average number
of hops but leads to a larger queue delay as not that many
paths can be used. A smaller K means that longer and
therefore more paths can be used, better distributing the
flows and leading to a smaller queue delay.

Using this K, the optimal % is calculated dynamically to
minimize the tradeoff between hops and queue delay.

The combination of the BP algorithm and the shortest-
path-aided BP algorithm significantly reduces the initial
delay as in the beginning no pressure is needed to guide
the data to its destination and just the shortest path is used.
The random walk delay is also decreased because if links
have the same weight, now the shorter path is chosen and
loops are prevented by limiting the hop constraint to the
number of nodes.

6000 T T
5400

L .
Back—pressure

N
@
(=]
o

4200 | - -
3600
3000
2400
1800
1200

600

Average end-to—end delay

Figure 2: Simulation results comparing end-to-end delay
in traditional BP algorithm and shortest-path-aided BP
algorithm with different values for K using OMNeT++
with A arrival rate of flows in packets/time slot [8]

As we can see in Figure 2 for a low data rate the
delay of the BP algorithm first decreases before increasing
again with higher data loads. This is due to the initial
packet delay. In the shortest-path-aided BP algorithm the
end-to-end delay is significantly reduced compared to the
traditional BP algorithm, as especially under a low data
rate excessively long paths are not explored. But also for
higher data rates, there is an improvement as the random
walk delay is reduced and loops are prevented. However,
the problem of the last packet delay is not solved as
starvation is still possible.

But it all depends on the value of K. If K chosen is
too large, the algorithm always chooses the shorter path
independent from the queue backlogs, because the penalty
of choosing a longer path is too high. Hence, the delay

doi: 10.2313/NET-2022-11-1 07

caused by buffering in the queues is not considered. If K
is too small, however, unnecessary long paths are taken
even if the shorter path would have been faster. The
optimal value for K is specific to the network and the
problem of how to choose it is still open.

In [7], Rai et al. developed a loop-free BP (LFBP)
algorithm. By giving the links in the network a direction a
directed acyclic graph (DAG) is created. Then in this DAG
the BP algorithm is applied. If it now overloads at some
point in the network, the directions of the links pointing
from the non-overloaded nodes to the overloaded nodes
are reversed which creates a new DAG. This procedure
prevents congestion in the network by routing packets
away from overflowing areas and towards less busy areas
of the network.

Another hop minimizing algorithm is presented in [9]
by Bui et al. The Enhanced Backpressure (EBP) algorithm
uses shortest path heuristics to first use short paths and
only add longer ones if the links are overloaded.

This algorithm also uses shadow queues and only main-
tains queues for the direct neighbors, which reduces the
memory complexity as well as the delay.

50 [—m—gP
EBP
a0 | ~@=LFBP |

a_ o

Ll

Average Delay
b o
(=]

ol

0.1 0.5 07 0.9
Load

02 03 0.4 0.6 0.8

Figure 3: Simulation results comparing end-to-end delay
in traditional BP algorithm, EBP and LFBP [7]

As we can see in Figure 3, both the EBP and the
LFBP have a far smaller delay than the traditional BP
algorithm with the EBF showing slightly better results.
One can especially see that both algorithms do not suffer
from the initial packet delay.

4.2. Delay-Based Algorithms

In [3], Hai et al. introduce a delay-based optimization
method, which combines the queue length with the packet
delays to calculate link weight. They introduce a metric
called the sojourn time backlog (STB) and an STB-based
BP algorithm (STBP). Instead of the length of the queue
the sum of sojourn time, the time passed since a packet
arrived in the network, of all packets in the queue is used.

If every packet just has the weight 1, like in the
traditional BP algorithm, there cannot be a prioritization
of packets, which already have a high delay. Giving the
packets different weights by assigning the STB as the
link weight, leads to more pressure on packets with a
higher delay, preventing starvation and unnecessarily long
paths, therefore reducing the average end-to-end delay.

Seminar IITM SS 22,
Network Architectures and Services, November 2022

Hai et al. introduce an implementation of this algorithm
using First-In-First-Out (FIFO) queues and virtual queue
management.

As synchronization in networks is very hard to
achieve, another option Hai et al. propose is taking the
hop count as the delay instead of the actual time. Using
this hop approach the delay of the packets is not increasing
while buffering, therefore packets can be stuck in queues
for a very long time and starve without their priority
increasing. It still reduces the average number of hops
and the end-to-end delay because if a packet was already
transmitted over many hops, it is then prioritized and the
remaining number of hops is therefore on average smaller.

Both versions decrease the initial delay and the ran-

dom walk delay, but the last packet delay is only decreased
by the STBP using the actual time and not the hops
because the starvation problem is not fixed.
Considering flow dynamics the last packet delay is es-
pecially important as all packets of a flow have to be
transmitted. So in this context the STBP algorithm using
the actual time has a significant advantage over the hop
count based version.

In [10], McKeown et al. introduce another weight
metric. It uses the sojourn time only of the head-of-line
(HOL), the first packet in the queue. The so-called oldest
cell first (OCF) algorithm, which uses HOL delay as a
metric to calculate the link weights, achieves less delay
compared to the traditional BP algorithm.

In the BP algorithm queues with a short length can be
starved if the length remains small and other queues
receive new packets regularly, therefore being prioritized
over the shorter queues. This problem is solved with the
OCEF algorithm as the waiting time of the HOL increases
in each time slot. This way the HOL delay gets bigger
until it is eventually served.

The OCF algorithm also reduces the last packet delay as it
prevents starvation of shorter queues by only considering
the first packet.

Another HOL delay-based algorithm is introduced by Ji
et al. in [11].

3

—— STBP
—e— STBP-hop
—&— QBP

NBP
——DBP

N
o

[%]

1.5

Average end-to—end delay (s)

100 150 200
Rate of each load (kb/s)

250

Figure 4: Simulation results comparing end-to-end delay
in traditional queue-based BP (QBP), the STBP, the hop
based STPB (STPB-hop) and an HOL delay based algo-
rithm (DBP) using NS-2 network simulator [3]

In Figure 4 the network saturation point at about

doi: 10.2313/NET-2022-11-1 07

70kb/s is visible. After this point, the delay of all algo-
rithms increases sharply. According to Hai et al. after the
saturated point the network is no longer able to stabilize
the data rate and operates in an overload.

When looking at the range where the network is still
stable, we can clearly see the biggest improvement in end-
to-end delay is achieved with the STBP but the hop-based
STBP and the HOL delay-based algorithm are still better
than the traditional BP algorithm.

When comparing the STBP, the HOL delay-based
based algorithm and the traditional BP algorithm it be-
comes obvious that the STBP, which is a combination of
the other two has the best performance. The end-to-end
delay gets higher the longer packets are buffering in the
queues.

The HOL algorithm ignores very long queues if the first
packet only has a small delay, as the algorithm does not
consider queue length. As the delay increases constantly,
these longer queues are not starved. The longer a packet
is not served, the higher the delay gets and the more likely
it will be served in the next time slot. It can however lead
to a slightly bigger delay for the waiting packets.

The queue-length-based BP on the other hand ignores
short queues even if the packets in it already have been
waiting for a long time. The STBP prioritizes long queues
and highly delayed packets combining the advantages of
both algorithms.

Another approach is the LIFO-backpressure which
is explored by Huang et al. in [12]. They show that
by simply combining FIFO and Last-In-First-Out (LIFO)
queues a significant improvement in delay can be achieved
as the packets with the highest delay can be served first
regardless of if they are at the head or tail of the queue.

4.3. Comparison and Combination

The algorithm reducing the path length and delay-

based algorithms focus on different aspects.
Both algorithms still have unsolved problems for example
how to choose K in the shortest-path-aided BP algorithm
or how to achieve synchronization but both approaches
already accomplish a significant improvement compared
to the traditional BP algorithm.

By reducing the path lengths a packet is directed to its
destination faster but packets can still starve and especially
with a high data load almost as many paths are used as
in the traditional BP algorithm.

In delay-based algorithms we create a prioritization of
packets that already have a high delay but the path is still
chosen randomly and loops can still occur.

So naturally one could try combining both algorithms
to decrease the end-to-end delay even more and optimize
the BP algorithm further. One idea would be using the
joint algorithm from [8] but instead of the queue length the
STB is used as the metric to make the routing decisions.
By combining the algorithms it would be possible to
profit from the shortest-path-aided BP algorithm reducing
the initial packet delay and the STBP reducing the last
packet delay and both algorithms reducing the random
walk delay. This would decrease the overall delay even
more. However, when combining the two algorithms one
also has to consider the challenges of both algorithms.

Seminar IITM SS 22,
Network Architectures and Services, November 2022

Especially in flow-based routing we cannot only look
at per packet delay but have to consider the overall delay
until all packets of the flow have arrived. Therefore the
last packet delay plays an important role, as all packets
of a flow have to arrive.

5. Conclusion

We analyzed and compared the shortest path and
delay-based approach. Both reduce the end-to-end delay
and have their specific advantages and challenges. For
shortest path based approaches the biggest improvement
is the reduction of the hops in low data load and the
biggest challenge is the tradeoff between minimizing the
path lengths and the delay from buffering in the queues.
But if an optimal parameter K is chosen for this, the end-
to-end delay is also reduced for higher data loads, e.g. by
avoiding loops.

Delay-based algorithms reduce the end-to-end delay
by prioritizing already heavily delayed packets and bring-
ing those to their destination first. The challenge with
this is how to measure the delay as synchronization in
networks is very hard to achieve and also while they
are prioritized, it is still possible that the packets are
transmitted in loops or overly long paths.

All in all a combination might benefit from both algo-
rithms’ strengths and lead to an even better optimization
but we have to consider that we also have to deal with
both algorithms’ challenges.

References

[1] L. Tassiulas and A. Ephremides, “Stability properties of con-
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks,” in 29th IEEE Conference

on Decision and Control, 1990, pp. 2130-2132 vol.4.

J. Kampen, “Route guidance and signal control based on the back-
pressure algorithm,” 2015.

L. Hai, Q. Gao, J. Wang, H. Zhuang, and P. Wang, “Delay-optimal
back-pressure routing algorithm for multihop wireless networks,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp.
2617-2630, 2018.

L. Ying, R. Srikant, and D. Towsley, “Cluster-based back-pressure
routing algorithm,” in JEEE INFOCOM 2008 - The 27th Confer-
ence on Computer Communications, 2008, pp. 484-492.

M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, and M. J.
Neely, “Backpressure with adaptive redundancy (bwar),” in 2012
Proceedings IEEE INFOCOM, 2012, pp. 2300-2308.

L. Huang, S. Zhang, M. Chen, and X. Liu, “When backpressure
meets predictive scheduling,” IEEE/ACM Transactions on Network-
ing, vol. 24, no. 4, pp. 2237-2250, 2016.

A. Rai, C.-p. Li, G. Paschos, and E. Modiano, “Loop-free back-
pressure routing using link-reversal algorithms,” IEEE/ACM Trans-
actions on Networking, vol. 25, no. 5, pp. 2988-3002, 2017.

L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining
shortest-path and back-pressure routing over multihop wireless
networks,” IEEE/ACM Transactions on Networking, vol. 19, no. 3,
pp. 841-854, 2011.

L. Bui, R. Srikant, and A. Stolyar, “Novel architectures and
algorithms for delay reduction in back-pressure scheduling and
routing,” in IEEE INFOCOM 2009, 2009, pp. 2936-2940.

N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand,
“Achieving 100% throughput in an input-queued switch,” IEEE
Transactions on Communications, vol. 47, no. 8, pp. 1260-1267,
1999.

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

doi: 10.2313/NET-2022-11-1 07

[11] B. Ji, C. Joo, and N. B. Shroff, “Delay-based back-pressure
scheduling in multihop wireless networks,” IEEE/ACM Transac-
tions on Networking, vol. 21, no. 5, pp. 1539-1552, 2013.

[12] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “Lifo-

backpressure achieves near optimal utility-delay tradeoff,” in 2011
International Symposium of Modeling and Optimization of Mobile,
Ad Hoc, and Wireless Networks, 2011, pp. 70-77.

Seminar IITM SS 22, .
Network Architectures and Services, November 2022 39 dof: 10.2313/NET-2022-11-1_07

