
A Short Introduction To MASCOT:
Faster Malicious Arithmetic Secure Computation with Oblivious Transfer

Florian Raabe, Christopher Harth-Kitzerow∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: florian.raabe@tum.de, christopher.harth-kitzerow@tum.de

Abstract—The MASCOT protocol allows a secure multiparty
computation of arithmetic circuits over a finite field. Using
oblivious transfer in an arithmetic context, it creates mul-
tiplication triples which are used to compute products of
additively secret-shared values. The expensive computation
to securely generate these triples is done in a preprocess-
ing phase. After a one-time setup, the protocol is based
entirely on fast, symmetric cryptography. By making use
of efficient oblivious transfer extensions, the total cost for
multiplications is reduced. With careful consistency checks
and other techniques for privacy amplification MASCOT
achieves active security. It considers a dishonest majority
where any number of parties can act actively maliciously.

Index Terms—multiparty computation; oblivious transfer

1. Introduction

Secure Multiparty Computation (MPC) is a
cryptographic method to jointly evaluate a function
on private inputs without revealing those to the other
parties. To realize this functionality, one approach is
to secret-share input values between all parties. Most
protocols use a linear secret-sharing scheme which allows
the local addition and subtraction of shares. The parties
obtain a share of the corresponding operation on the
secrets. A simple example is the additive secret-sharing
scheme. To secret-share a value s between n parties, a
tuple (s1, ..., sn) is sampled uniformly random so that
s1 + ... + sn = s. In order to compute every function in
a field on these secret shares, multiplication is needed.

The Malicious Arithmetic Secure Computation
with Oblivious Transfer protocol by Marcel Keller,
Emmanuela Orsini and Peter Scholl [1] also makes use
of additive sharing. It allows for efficient and secure
computation of general arithmetic circuits using almost
exclusively fast, symmetric cryptography. The advantage
of arithmetic circuits over Boolean circuits is that secure
addition can be done locally, thus not requiring any
communication.

MASCOT is the first protocol to use oblivious
transfer with a dishonest majority setting to generate
multiplication triples in any sufficiently large field. It
works with n parties and considers a corruption of up
to n − 1 active malicious adversaries. The adversary is
considered to be static, meaning that corruption can only
take place before a protocol starts.

The MASCOT protocol achieves this through simple
consistency checks and privacy amplification techniques
which will be introduced in the following section.

2. Preliminaries

The main task in preparing the MPC protocol is the
creation of multiplication triples. These are additive secret
sharings of tuples (a, b, a · b, a ·∆, b ·∆, a · b ·∆) where
a, b are random values used for the multiplication and ∆
is a secret-shared random global MAC key. To generate a
triple, the shares for a, b and ∆ can be chosen randomly
by each party. How secret sharings of the products are
created will be shown in Section 3.

2.1. Information-theoretic MACs

Message authentication codes (MACs) are short tags
used to confirm the authenticity of a message or its sender.
For this, strong universal functions can be used. In this
context, information-theoretic refers to the security aspect
of the MAC. Perfect security can never be achieved since
the adversary can always guess a random tag. This is why
the probability to find a valid tag should be 1

2|n| for n-bit
fields [2]. In this protocol, a secret value x is represented
by

JxK = (x(1), ..., x(n),m(1), ...,m(n),∆(1), ...,∆(n)).

Each party Pi holds a random share x(i), a random MAC
share m(i) and a share of the fixed MAC key ∆(i), such
that the MAC relation m = x · ∆ holds. J.K denotes
the linear authenticated secret sharing scheme. To open
a value, all parties broadcast their shares to one party
which adds them together and publishes the result x. All
parties then check the MAC by committing and opening
m(i)−x·∆(i). These shares then need to sum up to zero in
order for the check to pass. To increase efficiency, random
linear combinations of the MACs can also be checked.

2.2. Oblivious Transfer

1-out-of-2 Oblivious Transfer (OT) is a protocol be-
tween two parties. The sender transmits two messages
from which only one will be received. This is decided
by the receiver with a choice bit. However, it remains
oblivious to the sender which message was received.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 31 doi: 10.2313/NET-2022-11-1_06

Most existing protocols require public-key cryptography
to implement this functionality. The MASCOT protocol
uses the concept of OT extensions from Beaver intro-
duced in 1996 [3]. A single oblivious transfer is used in
combination with a seed as an initialization. From this
point on many OTs can be generated with cheap, sym-
metric primitives. New correlated values can be created
by using a generator function and adjusting the output of
the receiver. In MASCOT, this is realized with the COPE
protocol which will be explained later in Section 3.1. A
consistency check in form of a sacrifice is used to make
it maliciously secure.

2.3. Sacrificing technique

To ensure the correctness of a secret-shared value, a
correlated shared value can be used. The share of a that
should be checked is masked with the other secret-shared
value â by computing p = s · a− â where s is a random.
The resulting share p is then opened and can be checked
by all parties using their part of the global MAC key.
To check a triple, another share is computed shown in 1
which has to open to zero. Note that c = a · b and ĉ is
the correlated value. By this, some bits of the correlated
value might be leaked if the adversary input inconsistent
values to one of the OTs.

s · c(i) − ĉ(i) − b(i) · p (1)

3. Preparation Phase

To obtain an actively secure product-sharing protocol,
MASCOT improves the passively secure protocol of
Gilboa [4]. The basic concept of this is to run OT
instances between every pair of parties so that every
party has a share of the products in the triple. A k-bit
field element is split into bits, hence k oblivious transfers
are used. Still, malicious parties can provide inconsistent
inputs which will lead to potentially incorrect results
when the generated triples are used. In order to prevent
this, two strategies are used.

First of all, the correctness of the products in the MAC
generation has to be ensured. Therefore, random linear
combinations of the MACs are checked immediately
after the creation as well as later when opening values.
Secondly, to verify the correctness of the multiplication
triples a standard sacrifice technique is used where a
pair of triples is checked in order to use one securely.
Furthermore, the privacy of a triple can be assured by
producing several triples and taking random combinations
to get a uniformly random triple. These strategies are
realized by differnet subprotocols shown in Figure 1.

Figure 1: Dependency among subprotocols

3.1. Correlated Oblivious Product Evaluation

To obtain an additive sharing, the MASCOT protocol
uses an arithmetic generalization of the passively secure
OT extension of Ishai et al. [5]. The correlated oblivious
product evaluation (COPE) transforms the multiplication
x · ∆ where ∆ is fixed at the start of the protocol and
future iterations can create sharings for different values
of x. The foundation of the COPE protocol is Gilboa’s
method for oblivious product evaluation.

Oblivious Product Evaluation. The concept of oblivious
product evaluation (OPE) uses k sets of oblivious
transfers on k-bit strings to obtain an additive sharing of
the product. Let us assume PA is the sender and PB is
the receiver. Now, PA samples a random value ti in each
iteration and inputs the correlated value ti + a where a
is the sender’s input. In every OT the receiver PB inputs
one bit of their secret value. From this follows the output
PB receives in every ith iteration: qi = ti+bi ∗a. Finally,
both parties compute the inner product of their values
(qi)i and (−ti)i to obtain q and t for which it holds that
q + t = x ·∆.

COPE. The MASCOT protocol now optimizes this
functionality of OPE to perform the OTs only once.
Therefore, the COPE protocol is initialized at the
beginning by calling the Initialize command. Because
one party’s input is still fixed, the receiver simply inputs
their bits of ∆. On the other hand, the sender now does
not input their secret but k pairs of random λ-bit seeds.
In this case, λ is the computational security parameter
and k = logb|F|c the number of bits in the field.

Secondly, the protocol provides the Extend command
which expands the original seed using a pseudo random
function (PRF). This creates k bits of new, random OTs
while still remaining the same receiver choice bits. To
realize this, PA uses both seeds in combination with a
counter as input for the PRF to create new random seeds.
Now a correlation between these outputs is created using
the secret input of the sender. This masked correlation is
sent to PB who uses it to adjust their PRF output. Finally,
both parties have k correlated OTs on field elements.
These are then mapped into a single field element to
obtain an additive sharing again.

If both parties follow the protocol, they gain an
additive sharing of the multiplication. However, because
the MASCOT protocol assures security against an active
adversary, it has to be considered what happens if
parties do not follow the protocol. Since the input of the
receiving party is fixed at the start of the protocol and PB
sends no messages afterwards, there is no possibility to
deviate from the protocol. Nevertheless, the sending party
might use different input values in the extend phase. This
is not considered a security issue because the seeds are
uniformly random and the input will later be checked.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 32 doi: 10.2313/NET-2022-11-1_06

3.2. Authentication with COPE

As shown in Figure 1, the functionality of the COPE
protocol is used to create authenticated shares. Further-
more, it is used to securely open linear combinations with
a MAC checking procedure. The main goal is to prevent
the adversary from inputting errors in COPE and opening
an authenticated share to the incorrect value. The protocol
maintains a dictionary of the authenticated values and
includes five commands shown in Figure 2.

Input: takes a list of values x1, ..., xl from one
party and stores them with identifiers.
LinComb: computes linear functions on values
that have been input.
Open: reassembles a secret-shared value and
outputs it to all parties.
Check: verifies the correctness of a value that
was output by an adversary.
Abort: terminates the protocol and informs
all parties, that it failed.

Figure 2: List of commands

In this functionality, the value which was opened
might be incorrect. The Check command will confirm
this. To check a MAC, the party Pi inputs an opened
value y, a MAC share m(i) and a MAC key share ∆(i).
Next, they compute σ = m(i) − y · ∆(i), commit and
open it. If σ(1) + ... + σ(n) = 0 they continue and the
opened value is correct. Otherwise, they abort.

Using the correlated oblivious product evaluation
protocol to create authenticated sharings is not enough to
ensure active security. To simplify, let us consider a model
with only two parties P1 and P2. In this scenario, P1 is
honest and wants to authenticate its input x. Therefore,
they initialize the COPE protocol and P1 inputs x in the
extend phase. P2 inputs its MAC key share ∆2. They
receive t and q so that t + q = x · ∆2. Following both
parties define MAC shares m1 = x ·∆1 + t and m2 = q
so that clearly m1 +m2 = x ·∆. To create shares of x, P1

simply generates random additive shares and sends one
to P2. Because the shares and the MACs are linear, both
parties can compute linear combinations on authenticated
values locally.

Although this is passively secure, if P1 is actively
malicious, it can choose what value to open at the time of
opening a value. The party is not committed to opening a
particular value and therefore it is not a secure realization
of the functionality. To solve this problem, it suffices to
authenticate another random value and check a random
linear combination of all MACs during the input phase.
This requires two changes in the Input stage. P1 samples
a random dummy input x0 and authenticates it with the
other inputs. In addition to this, after computing the
MACs using the COPE protocol, P1 opens a random
linear combination of the inputs x0, ..., xl and the MAC
is checked by all parties. x0 masks the actual inputs.
Hence, P1 cannot later open to a different value and is
committed to their inputs during the Input stage.

Even though the secret values are masked, only
random combinations of inputs can be checked. This
could be used as an advantage because the check just
relates to the randomly weighted sum of the vectors.
With a probability of 1

|F| there is one bit in the input
vector that does not affect the MAC check. This results in
two different vectors and the adversary could decide later
which value to open. This can be neglected depending
on the security parameter in which the subtrahend comes
from the number of possible pairs where the bits are
different. The protocol still securely implements the
functionality with a statistical security parameter of
log |F| − 2 log log |F|. Note that a repeated check can
ensure statistical security of log |F|.

Finally, the protocol can easily be extended to the use
with n parties. When a party Pj inputs a value, they run
COPE with every other party Pi 6= Pj . Naturally, they
provide their MAC key share ∆(i) as input. This allows
Pj to obtain an authenticated share under the global MAC
key ∆ = ∆1 + ...+ ∆n. Through this, more possibilities
emerge where a corrupted party might cheat and devi-
ate from the protocol. They could for example provide
inconsistent x’s or use an incorrect share of ∆ when
authenticating other parties input. This is not problematic
because except with a probability of 1

|F| the MAC check
will fail in the Input stage if this happens.

3.3. Generation of Multiplication Triples

The functionality described before is now being used
to generate multiplication triples. In more detail, a triple
(a, b, c) with b ∈ F and a, c ∈ Fτ will be created. For
k-bit statistical security in a k-bit field, it is sufficient to
use τ = 4. Note that τ = 3 suffices for k

2 -bit statistical
security. This is due to the probability of passing the
sacrifice check and the probability of distinguishing the
output distribution from random. By multiplying these
the number of triples that have to be combined can be
determined to implement the protocol with the according
statistical security parameter.

To guarantee the randomness of b, it can be checked
with a sacrifice. However, this may leak some bits of a
if a malicious party used inconsistent inputs in some of
the OTs before. This is the reason why inner products
are used. All parties sample a random value r ∈ Fτ and
obtain the triple (a, b, c) with a = 〈a, r〉 and c = 〈c, r〉.
This ensures that any leaking bits of a are combined with
not leaking bits so a appears uniformly random. The
same applies to c. Since b is checked with a sacrifice, a
second triple needs to be generated. Instead of repeating
this step, another random r can be sampled and used to
create a correlated triple with the same b.

The triple generation protocol realizes this optimized
idea. It starts with the Multiply step which uses random
oblivious transfer (ROT) to compute a secret sharing of
the product a · b. This is done by each pair of parties
running τ copies of the basic two-party product sharing
protocol. To clarify, for each finally created triple there
are τ triples generated which will be combined to one.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 33 doi: 10.2313/NET-2022-11-1_06

In this step a corrupt party might guess some bits of a,
that is why τ components of a are used instead of only
one. Since b is already uniformly random, no privacy
amplification is needed here. Afterwards, each party
sums up their shares to obtain an additively shared triple
which can be incorrect if a malicious party was dishonest.

In the next step, the Combine step, the parties take
random linear combinations of the τ components and
two randomly sampled values r, r̂ ∈ Fτ . Thereby, they
obtain the two triples where one will be sacrificed later.
Following the Authenticate step adds MACs to both
triples. Because the b is included in both triples, only five
values need to be authenticated. Lastly, the correctness of
one triple is checked in the Sacrifice step. Therefore, all
parties first sample a random value s. They then locally
compute and open JpK = s · JaK − JâK. In this context,
J.K is used to describe a share. With this, they are able to
compute the left side of 2 because it is linear. By inserting
p and transforming it comes clear that it needs to open up
to zero in order for the triples to be correct.

s · JcK− JĉK− JbK · p = Js · (c− a · b) + (â · b− ĉ)K (2)

With this protocol, the adversary has no chance to
cheat. Starting with the Multiply stage, any nonzero
errors will be detected by the share of the random
honest party. This results in an incorrect triple with a
high probability. Another approach for the adversary
is to guess some bits of a. If all guesses succeed, the
triple can be correct and will pass the sacrifice. Thus
the adversary learns the bits that were guessed which is
called a selective failure attack. However, this is made
more difficult by the Combine step. To guess a single bit
of the final computed share of a, they must guess many
bits of the initially generated a which is very unlikely
to happen. Finally, the Sacrifice stage checks the triple
with a random value which is unknown when the triples
are authenticated. Therefore, it can only pass with a
probability of 1

|F| if the triple is incorrect.

Complete preprocessing. By securely generating triples,
the main goal of the preprocessing stage was achieved
with this protocol. In addition to this, it should also pro-
duce random shared values to allow the parties to provide
inputs in the online phase. The party simply creates an
authenticated additive share of a random value. When
later inputting a value, the party broadcasts the difference
between the input and the random shared value so that the
other parties can adjust their share.

4. Online Phase

The online phase of the MASCOT protocol is
quite forward. To share an input x, the party takes a
preprocessed random value JrK and computes x− r. The
random value works as a one-time pad and perfectly
masks the secret input since it is unknown. After
broadcasting the result, all parties compute JrK + (x− r)
to obtain a share of x.

The multiplication is based on Beaver’s circuit ran-
domization technique. Using the multiplication triple
(a, b, c) it is straightforward to multiply two secret-shared
values JxK and JyK. For this the values ε = x − a and
ρ = y − b are computed and opened, where the triple
masks the input perfectly as it is uniformly random. Now
the sharing of x · y can be computed locally with:

JzK = JcK + ε · JbK + ρ · JaK + ε · ρ
To output a share, all previously opened input values

are checked. Then the share is opened and verified through
the check. If any check fails, the protocol aborts and
informs all parties that no value could be computed.
Since most computation was moved to the preparation
phase, the amount of communication in the online phase
is quite small. The only values sent in this phase of
the protocol are masked openings for multiplications and
outputs. Compared to other implementations, the time for
a single multiplication is 200 times faster [1].

5. Conclusion

MASCOT makes faster secure computation of
general arithmetic circuits possible. By computing the
multiplication triples in the preprocessing phase it allows
for a fast online phase without heavy computation.
Moreover, through the arithmetic view of oblivious
transfer, the COPE protocol succeeds to create sharings
of products for the triples. Their generation is based on
oblivious transfer extensions where OTs can be realized
with fast, symmetric cryptography after a one-time
setup. In combination with information-theoretic MACs,
it authenticates the triples immediately after creation
and when later opening values. By sacrificing another
triple the correctness of the multiplication triple is
verified. Through the consistency checks and with the
sacrifice technique it achieves active security against up
to n−1 corrupted parties considering a dishonest majority.

In conclusion, the MASCOT protocol improves the
SPDZ protocol in the preprocessing phase. Through the
reduced computation and communication, it is applicable
in the real world by still ensuring active security. It is the
first protocol that is making use of oblivious transfer to
generate the multiplication triples.

References

[1] M. Keller, E. Orsini, and P. Scholl, “Mascot: Faster malicious
arithmetic secure computation with oblivious transfer,” https://eprint.
iacr.org/2016/505.pdf, 2016, [Online; accessed 07-April-2022].

[2] P. K. Madhusudan L, “Information-theoretic macs,” https://www.csa.
iisc.ac.in/~arpita/Cryptography15/CT4.pdf, 2015, [Online; accessed
07-April-2022].

[3] D. Beaver, “Correlated pseudorandomness and the complexity of
private computations,” Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, pp. 479–488, 1996.

[4] N. Gilboa, “Two party rsa key generation,” Advances in Cryptology
- CRYPTO, pp. 116–129, 1999.

[5] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” Advances in Cryptology - CRYPTO, pp. 145–
161, 2003.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 34 doi: 10.2313/NET-2022-11-1_06

