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Abstract—Federated Learning is a technique that implements
distributed privacy preserving machine learning principles.
The idea is useful for scenarios where data owners do not
want to reveal private data, but a model that takes into
account multiple databases is desired. However, a trade
off between accuracy and privacy is implied for such ap-
proaches. We review well known algorithms of federated
learning including Federated averaging, FedSGD, FedProx,
FedNOVA, SCAFFOLD and SecureBoost, and compare their
accuracy with each other and with a minibatch baseline.
Ranging scenarios for applications of Federated Learning
algorithms are discussed and existing theoretical advantages
and limitations are mentioned.

Index Terms—federated learning, benchmarks, accuracy

1. Introduction

We live in a data driven world where every day
enormous amounts of data are collected directly from
our mobile devices and personal computers. Analyzing
this data is a rapidly developing area both in research
and application fields widely known as machine learning
(ML). The most common techniques in ML today rely
on centralized approaches, which impose problems with
privacy in case of data leakage and can require powerful
computation units [1]. Federated Learning (FL) is an
approach that attempts to solve both of these problems
by using distributed computations and encrypted infor-
mation exchange between these units. In recent years, a
lot of research was dedicated to developing algorithms
for privacy-preserving machine learning, and FL has been
proved to be a reliable and efficient way to deal with such
challenges [2].

In this paper we will review the existing approaches
for Federated Learning, key ideas behind them, and sce-
narios in which they are the most effective, as well as
compare their performance with models trained on cen-
tralized data. We will start by introducing to the readers
the ideas behind FL approaches and categorization of such
algorithms.

2. Overview of Federated Learning

2.1. Definition of FL and notation

In a typical application scenario [1], the goal of
Federated Learning algorithm is to train a model by
collecting training information from distributed devices

without revealing actual training datasets to the organizer.
Let K be the set of data owners (clients), indexed
as k, with corresponding datasets D1, ...Dk; none
of data owners has direct access to other clients’ data.
The algorithm consists of the following basic steps [1] [2]:

1) Clients for next training iteration are selected by
the server;

2) Current machine learning model W is communi-
cated to selected clients;

3) Each client k keeps their local databases Dk

private and uses them to update weights of in-
dividual models Wk;

4) Server collects local models W1, ...Wk and ag-
gregates them to update the global model W ′.

The algorithm is visualized in a typical application
scenario by Google in Figure 1. Scenarios may differ from
the one mentioned here, e.g. direct communication and
aggregation of updated weights is possible [3]. However,
such approaches lie beyond the scope of this paper.

Figure 1: Each client’s phone personalizes the model
locally, based on their usage (A). Many users’ updates
are aggregated (B) to form a consensus change (C) to the
shared model, after which the procedure is repeated. [4]

2.2. Categorizations of FL Algorithms

Federated learning algorithms can be classified by type
of data partitioning, used machine learning model, privacy
mechanism, and communications architecture. [2]. Since
this paper is focused on accuracy trade off only first two
classifications are discussed here.
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2.2.1. Data partitioning. Another study proposed
categorization of tasks for FL algorithms which is based
on data split pattern [3].
Horizontal federated learning (a), also known as
sample-based federated learning, is applicable in
scenarios where all individual datasets Dk have about
the same feature space but are different in samples. FL
systems aimed for such scenarios usually have specific
architecture in which all clients compute local gradient
and communicate it to the server for aggregation into
global model. One of the major complications here is that
real world datasets are rarely independent and identically
distributed (IID), which causes problems for aggregation
of local models [1].
Vertical federated learning (b) is applied when feature
spaces of datasets Dk overlap only a little, but the sets
of IDs overlap significantly. In this scenario various ML
algorithms proved to be effective, including statistical
analysis, gradient descent and safe linear regression [2].
Federated transfer learning (c) is applied to scenarios
when neither feature spaces nor IDs spaces of datasets
are close to each other [1]. Such algorithms require
complicated architectures and are not reviewed in this
paper.

Figure 2: Categorization of Federated Learning by data
partitioning. [5]

2.2.2. Applicable Machine Learning model. Three fam-
ilies of ML algorithms to be combined with federated
learning approaches can be considered: linear models, tree
models, neural networks (NNs) [2]. Each type of ML
model can be useful under constrains on performance
of clients’ devices, data types and distribution of data
between clients. However, NNs and some tree boosting
algorithms are more popular today [3].

3. Original Federated Learning Algorithms

3.1. Background

In 2017, McMahan et al. introduced the term Fed-
erated Learning and created two implementations that
formed the basis of the whole branch. Both of the ap-
proaches use stochastic gradient descent (SGD), as most
of successful applications of deep learning relied on this
technique at the time [6]. Minibatch SGD is used as
a reference (and baseline for benchmarks) for these al-
gorithms, since it is controlled by hyperparameters that
can be easily adopted for distributed ML techniques. The
paper proposed that a C-fraction of clients is selected on
each round t, and gradient of the loss function over the
Dk is computed. Selected clients performs E epochs of
local-update SGD with a mini-batch size B; loss function
l(w,Dk) is to be minimized. Pk denotes the index set

of samples in Dk, n being the total number of samples.
This approach is focused on non-convex neural networks
objectives, but the architecture can be applied to wider
family of ML models. These algorithms are widely used
in scenarios of horizontal federated learning [1].

3.2. The algorithms

3.2.1. FedSGD. The Federated Stochastic Gradient De-
scent (FedSGD) algorithm derives its settings from large-
batch synchronous SGD. This algorithm is referred to as
a naive approach for the FL algorithm. Proposed imple-
mentation with C = 1 (i. e. full-batch gradient descent)
and fixed learning rate η includes each client k computing
averaged gradient on Dk: gk = ∇Fk(wt), wt being the
current model, and then central server updates wt using
aggregated gradients: wt+1 ← wt − η

∑K
k=1

nk

n gk.

3.2.2. FedAvg. For Federated Averaging (FedAvg) al-
gorithm, more computation is added to each client by
iterating the local update multiple times before averag-
ing. Algorithm 1 is an exact reproduction of pseudocode
from [1]. Three parameters are controlling the amount
of computation and accuracy of the final model: selected
fraction of clients C, number of epochs E each data owner
goes through his batch to compute local gradient, and
local minibatch size B(B = ∞ indicates usage of the
whole local dataset as training dataset); the algorithm with
B = ∞ and C = 1 is the same as FedSGD described
earlier.

Algorithm 1 Federated Average, [6]

Server executes:
initialize w0

for each round t = 1, 2, ... do
m← max(C ·K, 1)
St ← (random set of m items)
for each client k ∈ St in parallel do
wkt+1 ← ClientUpdate (k,wk)

end for
wt+1 ←

∑K
k=1

nk

n w
k
t+1

end for

ClientUpdate(k,w):
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇l(w, b)

end for
return w to server

end for

4. Further Improvements

Since 2017, when FedAvg was introduced, many at-
tempts to improve this algorithm were made [1].Some
of the most established approaches are mentioned in this
chapter.
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4.1. FedProx

A detailed review of theFederated averaging technique
pointed out the importance and influence of number of
epochs E on the resulting performance of the algorithm
[7]. From obtaining these insights a modification of this
algorithm called FedProx was introduced. In this approach
each client minimizes approximated loss function instead
of exact one. In particular, local updated weights wkt+1 are
obtained by solving minw hk(w,wt) = l(w, b) + µ

2 ||w −
wt||2, i.e. minimizing loss function l with given batch b
so that ||w − wt||2 < ε. This is a simple way to ensure
that local updates are not too far from the global optima.
µ is another hyperparameter that has to be tuned; very
low values of µ impose almost no regularization effect,
and large values cause a drastic slowdown of convergence
rate.

4.2. SCAFFOLD

Another study introduced the algorithm SCAFFOLD
(Stochastic controlled averaging for federated learning)
which aimed to improve performance of Federated av-
eraging in case of non-IID partitioned dataset by using
variance reduction techniques [8]. Control variates are
introduced both for the server (c) and clients (ck), and
are used to determine corresponding update directions.
These variates are updated either by reuse of previously
calculated gradients or by computing values of gradients
of the local datasets on global model. First approach im-
plements idea similar to Gradient descent with momentum
and has lower computation costs, while the second tends to
be more stable. This algorithm can significantly improve
convergence rate, but communication costs are double the
costs of FedAvg because of additional control variates.

4.3. FedNOVA

The Federated normalized averaging (FedNOVA) al-
gorithm is also similar to FedAvg, but has improved
aggregation stage. In this algorithm the local updates wkt+1

are scaled in accordance with the actual volume of lo-
cally performed training, which may be different because
of time constraints combined with different computation
speeds of clients, or ranging sizes of local datasets. This
allows prioritizing better-trained local weights while keep-
ing communication costs at the same level as FedAvg and
only slightly enlarging local computation costs [9].

4.4. Worth noting

Besides algorithms reviewed here, a lot of different
federated learning approaches were introduced. Out of this
large number of algorithms we considered worth noting
the FedPAGE [10], which improves convergence rate in
both convex and non-convex settings by implementing
recent probabilistic gradient estimator instead of SGD
and FedFA [11], which aims at achieving better accuracy
and fairness in horizontal federated learning scenarios by
employing double momentum gradient and new weight
selection algorithm. We consider analyzing accuracy of
these and other algorithms as a possibility for future work.

5. Accuracy Analysis of Horizontal Feder-
ated Learning Approaches

5.1. FedAvg and FedSGD

5.1.1. Synthetic IID data. Experiments showed that
FedSGD and FedAvg can both perform well with a
wide range of ML models including multi-layer percep-
tron, convolutional NNs, two-layer character Long short-
term memory (LSTM) networks and large-scale word-
level LSTM, and FedAvg tends to reach better test ac-
curacy than FedSGD with same number of communica-
tion rounds. To give a better insight of how these FL
approaches perform, let us review benchmarks performed
on CIFAR-10 [12] with balanced and IID data partitioning
[6]. It is shown that FedAvg reaches an accuracy of
85% already after 2000 communication rounds, while
centralized SGD needs around 197500 communications
to show a similar accuracy of 86%, since communication
after every batch is assumed. However, if compared by
number of minibatch computations, SGD on united data
has better convergence, as gradient updates after each
minibatch computation (see Figure 3).

Figure 3: Comparison of accuracy on IID data [6].

5.1.2. Further evaluation. In a later study [13] bench-
mark aimed specifically for testing performance from dif-
ferent perspectives was developed. It was shown that both
these FL approaches converged towards an accuracy level
similar to that of a centralized ML model, and significantly
higher than that of the same ML model trained only on
local data; these results were obtained on IID partitioned
MNIST, FEMNIST and ColabA datasets using MLP and
LeNet ML models. For robustness evaluation the same
datasets were used, but now with non-IID partitioning
between clients; it was shown that accuracy of FL ap-
proaches drops when clients have only instances of few
classes in their training datasets, e. g. in the scenario when
training dataset was split so that each client has only one
class of samples (see Figure 4).

Theoretical analysis showed [14] that for quadratic
objectives performance of FL approaches is strictly better
then that of minibatch algorithms, and accelerated variant
is minimax optimal. For general convex objectives it is
proven that first error upper bound of FL is not worse
than that of minibatch SGD, if typical noise scaling is
applied. However, lower bound of the error of local SGD
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Figure 4: Comparison of accuracy on non-IID data. [13]

approach in worst-case scenario is higher than the worst-
case error of minibatch SGD.

5.2. Other Algorithms

Performance of FedAvg, FedNOVA, SCAFFOLD and
FedProx was analyzed in the setting of non-IID par-
titioned dataset [15]. This study showed that none of
mentioned algorithms dominates others, and each of them
can show outstanding performance under specific con-
strains. In case of label distribution skew or quantity
skew FedProx usually performs better than mentioned
alternatives. The accuracy of SCAFFOLD is quite un-
stable, but in some cases it can significantly outperform
other approaches.FedNOVA does not show superiority inn
analyzed scenarios, but can sometimes be slightly more
effective than other approaches. To illustrate behavior of
different approaches, their learning curves on CIFAR-10
[12] with partition in accordance with Dirichlet distribu-
tion are shown in Figure 5. We chose this dataset as it
was stated to be a challenging task for federated learning
approaches under non-IID conditions.

Figure 5: Comparison of accuracy on non-IID data from
CIFAR-10 with 100 parties, C = 0.1, Dirichlet distribu-
tion is used to simulate Label distribution skew (left) and
Quantity skew (right) [15].

6. Approaches for Vertical Federated Learn-
ing

6.1. SecureBoost

A recent study introduced a new algorithm called
SecureBoost that is aimed at vertical federated learning
[16]. This system implements federated tree-boosting ML
model in accordance with principles of FL that is lossless,
i.e. is as accurate as other non-federated tree-boosting
algorithms trained on centralized data. SecureBoost is
based on the XGBoost algorithm, which was recently
shown to be one of the most effective ways to work with
panel data [17].

6.2. SecureBoost+

Slightly modified version of this algorithm with im-
provements in performance on large and high dimensional
datasets called SecurityBoost+ was recently published
[18]. The new approach converges towards similar accu-
racy, but can be trained much faster to reach the same
classification error. The following table illustrates their
performance.

Figure 6: Area under the receiver operating characteristic
(ROC) curve for SecureBoost, SecureBoost+ and XG-
Boost on centralized data for different datasets [18].

7. Conclusion

In this paper we surveyed the literature on various
implementations of federated learning approaches and
provided information on existing benchmarks of these
algorithms, analyzing their accuracy in different scenarios.
We showed that existing implementations can demonstrate
very similar accuracy in comparison with centralized ap-
proaches while having advantages in terms of privacy,
and are guaranteed to reach the same accuracy in some
scenarios. However, some settings can impose difficulties
for such approaches, e.g. non-IID partitioned datasets held
by clients, which is quite common in real-world problems.
Depending on the scenario different approaches reviewed
in this article can show better performance, and none of
them can be considered as universally best one.
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