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Abstract—Code size can play an important role when imple-
menting emulators for an instruction set architecture (ISA),
as performance can in part depend on whether cache misses
occur frequently. Additionally, implementation complexity
is heavily correlated with the complexity of the ISA to
emulate. In this paper we take a look at different ISAs and
compare their complexity as well as the object code size of
an example function. A git repository is provided, allowing
reproduction and adaptation for analysis of other functions.
While disassembling executables, we also found a possible
size optimization in a RISC-V compiler.

Index Terms—instruction set architectures, code size

1. Introduction

When creating emulation software, the complexity of
the implementation is tightly coupled with that of the
emulated ISA. High complexity can increase effort needed
for testing and verification. Furthermore, reducing the size
of the input machine code can improve performance due
to fewer cache misses during interpretation as well as
reducing memory, storage and transmission overhead.

Both properties show a tradeoff when designing ISAs:
one can either use simple and usually small instructions of
which more will be needed to express complex programs,
or add more instructions that express the program at a
more direct level. Nowadays, there are many ISAs that
have taken different design decisions. Some have become
symbols for high complexity due to thousands of sup-
ported instructions, others aim to provide only a minimal
set. Variants for microcontrollers have been introduced to
minimize code size, improving usage of limited storage.

This paper aims to describe and compare different
ISAs to evaluate their fitness for the implementation of
an emulator, with focus being on code size reduction and
decreased implementation complexity. Section 2 explains
concepts of ISAs and introduces selected ones. Section 3
discusses related work on ISA complexity and usage,
Section 4 compares ISAs with regard to their complexity
and size.

2. Background

The first part of this section will present common
properties used to differentiate ISAs. The second part
presents selected ISAs that are compared in Section 4.

2.1. Instruction Set Architecture

The ISA of a processor defines operations for loading,
storing and manipulation of data, as well as how these
instructions are encoded and executed [1, 5.3 Instruction
Set Architecture]. ISAs can be compared by means of
their properties, of which selected ones will be presented.

Internal Storage Type The differentiation between
stack, accumulator or register machines is fundamental
when analyzing ISAs.

In a stack machine, an instruction operates by taking
zero or more arguments from the stack and pushing its
result to the top of the stack. For most instructions,
operands are implicit and need not be specified.

In an accumulator architecture an instruction operates
on the accumulator and zero or more explicit arguments,
with results being stored in the accumulator.

Instructions of register machines explicitly specify
both source and destination operands. In a register-
register machine, all operands must be registers, except
for operands of load and store instructions. These archi-
tectures are called load-store architectures. In a register-
memory architecture, most instructions can access memory
operands [2, A.2 Classifying Instruction Set Architec-
tures].

Instruction Encoding The instruction encoding of
an architecture defines the executable format. The exact
binary values of instructions differ widely between ar-
chitectures. We can however differentiate between fixed-
length and variable-length encodings [2, A.7 Encoding an
Instruction Set].

Complexity ISAs can be classified by the complexity
of their operations. The most common categories are
Reduced Instruction Set Computer (RISC) and Complex
Instruction Set Computer (CISC).

CISC processors are typically able to perform hun-
dreds of instructions of differing complexity with memory
operands and many addressing modes available for most.
These instructions can take many clock cycles to execute.

In comparison, RISC processors include mostly basic
instructions, more complex operations must be expressed
using them. Many RISC architectures aim to execute one
instruction per clock cycle [1, p. 91]. Often memory
access is only possible via load and store instructions [3,
Chapter 3].

Endianness The endianness of a processor defines the
byte order when accessing data from memory. With little
endian, the most significant byte is stored at the highest
address. With big endian byte order, the most significant
byte is stored at the lowest address [4, Section 2.4].
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Addressing Modes ISAs typically include different
ways of accessing operands, either as immediate values,
in registers or in memory. Memory addressing modes can
express the address as displacement relative to a known
location like the stack, as register indirect with an address
already being stored in a register or indexed addressing
where an offset is added to a base address (for accessing
data in arrays), as well as many more addressing modes
not mentioned here [2, Section A.3].

2.2. Selected ISAs

The following section briefly describes the ISAs that
will be compared in Section 4. These architectures were
selected for comparison because they either claim reduced
object code size, have a small number of instructions or
feature a design that is vastly different from the others.

ARM T32 The ARM T32 instruction set, previously
called Thumb-2, is a superset and successor of the ARM
Thumb instruction set [5] featuring 301 instructions [6,
p. 5-13]. Encoded instructions have variable length of
either 16 or 32 bits [7]. It is in the family of RISC
architectures. Since memory access is only possible using
load and store instructions, T32 can be classified as a
load-store architecture [8, p. 36]. Registers are 32 bits in
size [8, p. 38]. Processors with this architecture can switch
between big-endian and little-endian mode for memory
access using the SETEND instruction [8, p. 7569, F5.1.182].

RISC-V Compressed RISC-V is a free and open
family of RISC ISAs. While any RISC-V ISA includes
the base integer ISA, it is possible to add optional exten-
sions [9, Section 1.3]. The size of encoded instructions is
fixed to 32 bits for the base ISA, extensions can however
use a multiple of 16 bits to encode further instructions [9,
Section 1.5]. One extension providing 16-bit encodings for
common instructions is the standard “C” (“Compressed”)
extension [9, Chapter 16]. The RV32I Base Integer In-
struction Set defines 40 instructions [9, p. 31] and is little
endian [9, p. 8]. RV32I is load-store as memory access
is only possible using load/store instructions. All other
instructions use registers as operands, so these ISAs can
be classified as register machines [9, p. 42].

WebAssembly WebAssembly is an open standard for
a “virtual instruction set architecture” based on a stack
machine [10, p. 5-7]. Instruction opcodes are one or two
bytes long, but since immediate arguments can follow
these opcodes, the instruction set is variable-length [10,
Section 5.4]. Memory access is possible via load-store
instructions, the byte order is little endian [10, p. 22].
There are 437 valid opcodes, with an additional 69 being
currently reserved [11].

x86-64 The x86-64 instruction set is a backwards-
compatible successor of the Intel 8086’s architecture [12,
p. 37]. Instruction size is variable and ranges from 1 to
15 bytes [12, p. 3058], the byte order is little endian [12, p.
32]. The basic ISA provides 16 general purpose registers,
each having a width of 64 bits [12, p. 76]. The internal
storage type for x86 is a register-memory machine [2,
Figure A.3], with some instructions like MUL and DIV using
implicit accumulator registers as operands and destina-
tions [12]. Heule et al. count at least 981 mnemonics and
3,684 instruction variants [13], allowing classification as
CISC.

Z80 The Zilog Z80 is a microprocessor introduced
in 1976, with later versions still being used today [14].
It features 158 instructions of which 78 are adapted from
the Intel 8080 CPU, making the instruction set backwards-
compatible [15, p. 46]. Instruction size is variable ranging
from 1 to 4 bytes [15, p. 57]. They can operate on register
or memory operands, with some storing results in accu-
mulator registers [15, p. 40-47]. Featuring instructions like
LDIR that can occupy the CPU for many clock cycles [15,
p. 41], this instruction set can be classified as CISC.

3. Related Work

In [16], Davidson and Vaughan analyze the relation
between instruction set complexity and program size. A
technique called “instruction set subsetting” is used to
eliminate biases that could arise when comparing different
architectures. Three subsets of the rather complex VAX
instruction set are created with decreasing complexity:
while MAXVAX supports 16 addressing modes both in
source and destination operands for almost all instruc-
tions, MIDVAX supports only eight addressing modes and
restricts destination operands to registers only. Some more
complex instructions are not available at all. The MINVAX
instruction set further reduces available instructions and
addressing modes, memory access is only possible via
load-store instructions. Their comparison of the object
code size of ten different programs shows an increase in
average code size with reduced architectural complexity:
compared to the baseline MAXVAX instruction set, pro-
grams compiled for MIDVAX are on average 1.54 times
the size, while the average size of programs compiled
for MINVAX grows to 2.48 times. They also note that
average instruction sizes are 4.10 bytes for MAXVAX,
3.71 bytes for MIDVAX and 3.61 bytes for MINVAX,
showing that the compiler is able to use more complex
and large instructions when they are available.

To reduce implementation complexity, only a subset
of an instruction set could be implemented. In [17],
Akshintala et al. analyze the distribution of instruction
opcodes in Linux packages for the x86-64 architecture.
A table [17, Table 5] shows the number of instructions
needed to support a given percentage of available pack-
ages. They find that an emulator aiming to run 80%
of available packages would have to implement 189 in-
struction mnemonics, while for 90% of packages 230
mnemonics are required. 611 additional instructions are
needed for full compatibility. They also recommend a
sequence of instructions that can be used for such an
implementation based on the popularity of packages using
these instructions.

Another approach for reducing complexity or effort
when implementing an emulator is using a very small ISA,
like LC-3 described by Yale N. Patt and Sanjay J. Patel in
[18, pp. 520-545]. With a total of 16 opcodes, one of them
reserved for the future, the instruction set is very small.
It features eight 16-bit general purpose registers and is a
load-store architecture [18, p. 553]. All instructions are
16 bits wide, with the upper 4 bits defining the opcode.
Originally it was planned to include this architecture in
the comparison in Section 4. However, due to a lack of
functioning compilers from C to LC-3, it did not end up
being included.
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4. Comparison

This section compares the different ISAs introduced
in Section 2.2 with regard to their complexity and code
size.

4.1. Complexity

In order to assess the complexity required for an
emulator implementation, we can look at the complexity
of the target ISA. The distinction between CISC and RISC
is on a high level, but can be helpful for estimating the
complexity of operations before implementing them.

A typical difference is the concept of a load-store
architecture (usually used in RISC ISAs) versus mem-
ory operands. In CISC architectures, it is often possible
to directly operate on memory operands, requiring only
one instruction for manipulation. Load-store architectures
however must explicitly load and store data for manip-
ulation in a register. Even if the encoding for the CISC
instruction were larger in size than a typical RISC in-
struction, encoding only a single instruction instead of
three can still result in smaller code. In fact, as shown
in Figure 1, incrementing a value at a given memory
address stored in a register (r0 for ARM T32, rdi for
x86-64) needs triple the amount of bytes to encode for
the RISC architecture in this case.

03 68 ldr r3, [r0, #0]
01 33 adds r3, #1
03 60 str r3, [r0, #0]

ff 07 incl (%rdi)

Figure 1: Comparing ARM T32 (left) and x86-64 (right)1

Another method for comparing the complexity of dif-
ferent ISAs is comparing the number of operations that are
possible, including addressing modes. However, getting
an accurate and up to date count of available opcodes
for different architecture variants is challenging: as Heule
et al. note in [13], as well as Mahoney and McDonald
in [19], getting accurate data on x86-64 opcodes is hard.
Similar problems with other architectures, especially the
inaccessibility of PDF files for programmatically counting
opcodes, have prevented further analysis in this paper.

4.2. Code Size

To compare code size we compiled a simple C
function for different architectures. The code is shown
in Figure 2. A git repository containing all code, includ-
ing Makefiles for generating the results for all architec-
tures, is available online at https://github.com/xarantolus/
iitm-surveying-isas.

Tools This section will outline the tools used for
compiling and measuring program size for each architec-
ture. The installation steps are also available in the git
repository linked above.

All compilations were done on an Ubuntu 20.04.4
LTS x86_64 system. Where available, the -Oz option is
passed to compilers to “optimize aggressively for size
rather than speed”, else the -Os flag is used to “optimize
for size” [20]. The following lists the tools used for

1. Adapted from [2, Figure A.2]

int fib(int n) {
if (n <= 1) { return n; }
int prev = 0; int current = 1; int tmp;
for (int i = 2; i <= n; i++) {

tmp = current;
current += prev;
prev = tmp;

}
return current;

}

Figure 2: Fibonacci function written in C

compiling the C program for each architecture. More
detailed installation instructions can be found within the
git repository.

ARM T32 The compiler used is arm-linux-gnueabihf-
gcc 9.4.0 from the gcc-arm-linux-gnueabihf package.

RISC-V Compressed The riscv64-unknown-linux-
gnu-gcc (g5964b5cd727) 11.1.0 compiler from the RISC-
V toolchain available at [21] was used to compile the pro-
gram. An install script is available in the riscv directory
of the git repository.

WebAssembly Instructions for installing the emcc
3.1.8 compiler are available at [22].

x86-64 For compilation gcc 9.4.0 from the gcc pack-
age is used.

Z80 The clang 12.0.0 compiler is built from the
project at [23]. Installation steps were adapted from [24].

Results Table 1 shows the object code size of the
compiled fib function from Figure 2.

The ARM T32 object code includes 14 instructions
with a size of 2 bytes each, making it the smallest result.
No 4-byte instructions were needed, showing that the com-
piler was able to take advantage of the 16-bit instruction
variants.

Similarly, the compiled output for RISC-V Compressed
uses mostly 16 bit instructions, except for two 4-byte BGE
instructions used to implement branches. One interesting
detail is that the compiler generates two RET instructions
at the end of the function, adding an extra two bytes while
only one instruction would have sufficed. A maintainer of
the RISC-V toolchain responded to our inquiry, calling
this behavior “a missed optimization opportunity” [25].

The WebAssembly version uses mostly two-byte in-
structions. Despite the smaller average instruction size,
its comparatively high number of instructions results in
the largest output size.

The output compiled for x86-64 contains 14 instruc-
tions with a length of 1 to 5 bytes. Nine instructions have
a length of 2 bytes. Two MOV instructions are 5 bytes long
as they encode a 4-byte immediate value. Additionaly,
there is one single-byte, one three-byte and one four-byte
instruction present. The small instruction count compared
with WebAssembly and Z80 leads to the overall smaller
code size, despite the larger average instruction size.

While the instructions for the Z80 version have an
average size of only 1.88 bytes, it needs 34 instructions
to implement the function, resulting in the second largest
code size.
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TABLE 1: Object code size of the fibonacci function from Figure 2 compiled for different architectures

Architecture Compiler Size Instruction Count Avg. Instruction Size

ARM T32 arm-linux-gnueabihf-gcc 9.4.0 28B 14 2.00B
RISC-V Compressed riscv64-unknown-linux-gnu-gcc 11.1.0 30B 13 2.31B
WebAssembly emcc 3.1.8 71B 37 1.92B
x86-64 gcc 9.4.0 36B 14 2.57B
Z80 clang 12.0.0 64B 34 1.88B

ARM A32 arm-linux-gnueabihf-gcc 9.4.0 52B 13 4.00B
RISC-V riscv64-unknown-linux-gnu-gcc 11.1.0 52B 13 4.00B

In addition to the ISAs presented in Section 2.2,
Table 1 also shows the code size of ARM A32 and RISC-
V without the “C” extension. Both ISAs have 32-bit wide
fixed-length instructions [9, p. 25] [26].

ARMs’ claim of code size reduction of the variable-
length ARM T32 ISA compared to ARM A32 [7] holds
true in this case with a reduction by almost half.

The code size for RISC-V Compressed is approxi-
mately 40% smaller than the size for its fixed-length
RISC-V counterpart, exceeding the “25%-30% code-size
reduction” claim for the compressed extension in this
case [9, p. 115].

Limitations This comparison is rather limited as only
one small program is compared using only one com-
piler for each architecture. In addition, different compilers
might support different optimizations regarding the pro-
gram size.

Comparison with Previous Work As mentioned in
Section 3, Jack W. Davidson and Richard A. Vaughan
found in [16] that reduced architectural complexity leads
to larger overall code size.

If we classify WebAssembly as closer to RISC than
CISC due to it being a load-store architecture, it fits this
observation. However, the Z80 instruction set also pro-
duces an overall large code size despite it being classified
as CISC. Additionally, contrary to the expectations one
might have on the basis of the mentioned study, the RISC
architectures ARM T32 and RISC-V Compressed result in
the overall smallest code size.

One explanation for these findings is the limited ex-
ample function. Its small amount of required variables
makes it possible for all data to be stored in registers,
foregoing the need to access memory. As mentioned in
Section 4.1, requiring more instructions to read and write
memory in RISC ISAs could lead to larger code size. Since
no explicit memory accesses are necessary for the fib
function, the disadvantages of RISC ISAs do not come
into consideration in this case.

5. Conclusion and Future Work

In this paper we analyzed the object code size of a pro-
gram when compiled for different architectures, creating
a system of Makefiles that can be adapted for analyzing
other C functions as well. While doing so, we found
variations in the code size when compiling for different
architectures and a possible size optimization in a RISC-V
compiler.

Our example code reached the smallest sizes when
compiled for the ARM T32 and RISC-V Compressed archi-
tectures, indicating that they can be suitable for reducing
overhead and cache misses in an emulator implementation.

However, the selection of ISAs is not the only fac-
tor when reducing code size. Future work can explore
reducing complexity by limiting the set of opcodes and
addressing modes available to a compiler when translating
a program. The effect of register spilling on code size,
especially for load-store architectures that need more in-
structions to operate on memory operands, can also be
explored. Additionally, analyses similar to [17] by Akshin-
tala et al. can be done for other ISAs before implementing
an emulator.
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