
Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

NET 2022-11-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2022

March 11, 2022 – August 21, 2022

Munich, Germany

Georg Carle, Stephan Günther, Benedikt JaegerEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
School of Computation, Information, and Technology
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2022

Munich, March 11, 2022 – August 21, 2022

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger

Network Architectures
and Services
NET 2022-11-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Summer Semester 2022

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
Boltzmannstraße 3, 85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Cataloging-in-Publication Data

Seminar IITM SS 22
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, March 11, 2022 – August 21, 2022
ISBN: 978-3-937201-76-4

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2022-11-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2022-11-1
Series Editor: Georg Carle, Technical University of Munich, Germany
© 2022, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/

Preface

We are pleased to present to you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Summer Semester 2022. Each semester, the seminar takes place in two
different ways: once as a block seminar during the semester break and once in the course of the semester.
Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks, supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterward present the results to the other course participants.
To improve the quality of the papers, we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar, we award one with the Best Paper Award. For this semester, the
awards were given to Leon Kist with the paper Survey on Scheduling Approaches in TSN and Daniel Petri
Rocha with the paper Secure Data Marketplaces .

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, November 2022

Georg Carle Stephan Günther Benedikt Jaeger

III

https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany

Advisors

Philippe Buschmann (phil.buschmann@tum.de)
Technical University of Munich

Christopher Harth-Kitzerow (christopher.harth-
kitzerow@outlook.de)
Technical University of Munich

Max Helm (helm@net.in.tum.de)
Technical University of Munich

Kilian Holzinger (holzinger@net.in.tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Holger Kinkelin (kinkelin@net.in.tum.de)
Technical University of Munich

Filip Rezabek (rezabek@net.in.tum.de)
Technical University of Munich

Christoph Schwarzenberg (schwarzenberg@net.in.tum.de)
Technical University of Munich

Henning Stubbe (stubbe@net.in.tum.de)
Technical University of Munich

Florian Wiedner (wiedner@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ss22/seminars/

V

https://net.in.tum.de/teaching/ss22/seminars/

Contents

Block Seminar

Performance Limitations of the QUIC Protocol . 1
Jázmin Dojcsák (Advisor: Benedikt Jaeger)

Recycle, Reduce, Reuse - Surveying Instruction Set Architectures 7
Philipp Erhardt (Advisor: Henning Stubbe)

Network Path Monitoring . 13
Buse Barçın Halis (Advisor: Florian Wiedner, Max Helm)

Accuracy Tradeoffs of Federated Learning approaches . 19
Ilia Khitrov (Advisor: Christopher Harth-Kitzerow)

Survey on Scheduling Approaches in TSN . 25
Leon Kist (Advisor: Philippe Buschmann)

A Short Introduction To MASCOT: Faster Malicious Arithmetic Secure Computation with Obliv-
ious Transfer . 31
Florian Donatus Raabe (Advisor: Christopher Harth-Kitzerow)

Seminar

Shortest Path Awareness in Delay-Based Routing . 35
Mia Heinz (Advisor: Christoph Schwarzenberg, Florian Wiedner)

Digital Twins of Computer Networks . 41
Jacqueline Kroyer (Advisor: Kilian Holzinger)

Secure Data Marketplaces . 47
Daniel Petri Rocha (Advisor: Holger Kinkelin, Filip Rezabek)

A Case Study of Security Vulnerabilities in Smart Contracts . 53
Marvin Rautenberg (Advisor: Filip Rezabek)

A Brief Overview on HTTP . 59
Justus Wendroth (Advisor: Benedikt Jaeger)

Deterministic Networking - DetNet . 65
Berdiguly Yaylymov (Advisor: Filip Rezabek, Kilian Holzinger)

VII

Performance Limitations of the QUIC Protocol

Jázmin Dojcsák, Benedikt Jaeger∗, Johannes Zirngibl∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ge96voh@mytum.de, jaeger@net.in.tum.de

Abstract—QUIC is a departure from the traditional TCP-
based communication protocols as it is based on UDP. It
implements solutions for many issues of modern networking,
from head-of-line blocking to limiting ossification by middle-
boxes. It offers a full featured authenticated and encrypted
end-to-end communication form, with low overhead, imple-
mented in user-space. However, this does not come without
costs.

This paper examines the potential limitations of the new
protocol and possible solutions to overcome them. In order
to help understand the performance issues and the ongoing
efforts to solve them, this paper gives historical background
information on the developement of QUIC and highlights
relevant characteristics of QUIC. The paper also reviews
some open source implementations of QUIC.

The main goal of this paper is to review literature on
this topic and summarize key findings on bottlenecks.

Index Terms—quic, performance

1. Introduction

A new transport protocol recently standardized by the
IETF offers a solution for challenges of today’s ever-
increasing internet traffic and for the slowdown of the
computing performance growth.

Although QUIC is now a proposed standard by IETF,
the original development of this protocol was driven
by Google to provide an option for serving the rapidly
increasing HTTPS traffic. Google had the advantage of
being the vendor of a major web browser and addi-
tionally hosting popular web sites, so the company has
implemented and tuned the protocol on an Internet-scale
experimentation framework in the 2010s. This experiment
was so wide scale that in 2016 30% of Google’s traffic
was served via QUIC, which was ca. 7% of the global
Internet traffic [1].

Since then, QUIC gained wide acceptance, most desk-
top and mobile operating systems, the major browser
vendors, the leading cloud providers and CDNs support
QUIC. A relevant portion of Internet is served using this
protocol, almost 25% of all websites, including the top
3 (Google.com, Youtube.com, Facebook.com), are driven
by QUIC [2] [3].

This paper gives a brief overview about the motivation
and the technical considerations of its development, de-
scribes the basic features of the protocol, introduces differ-
ent implementations and presents challenges and potential

answers to them. Chapter 2 describes the related protocols
and problems that lead to the developement of QUIC.
This chapter introduces the technical details, relevant for
understanding the performance limitations presented in
chapter 4. Chapter 3 reviews the most popular open source
implementations of QUIC. Then, chapter 4 summarizes
bottlenecks and possible efforts to overcome them. Finally,
chapter 5 draws a conclusion.

2. Background

The Internet was built on mature and stable founda-
tions like the TCP/IP stack, which slowly became lim-
itation of this growth. QUIC was not the first attempt
to resolve these issues, e.g. the transport protocol SCTP
failed to gain wide acceptance [1].

HTTP Drawbacks. The application layer protocol HTTP
was driving the Internet from the 90s, HTTP/1.1 has
been in use since 1999. The limitations of the single
request-response based nature of this protocol were getting
more significant as web sites were getting more and more
complex, causing hundreds of requests to load a single
web page with its dependencies [4].

This is not the only problem with HTTP, among others,
it suffers from head-of-line blocking and an HTTP client
may require more than one TCP connection to effectively
fetch a single web page [1].

Introducing HTTP/2. Serious efforts were made to over-
come these limitations, Google developed SPDY and
based on this, the IETF standardized the new HTTP/2
protocol in 2015. HTTP/2 offers multiplexing requests
and responses, allows prioritization and features a more
effective data framing. A HTTP/2 server may push content
to clients before it is even requested. It has had consid-
erable benefits, it eliminated the head-of-line blocking of
HTTP/1.1 but it still suffered from the limitations of the
underlaying transport protocol [5].

TCP Drawbacks. HTTP uses the connection-oriented
TCP as transport layer protocol, providing a reliable data
channel between the communicating parties. HTTPS adds
a secure layer to the transmission (TLS). TCP requires a 3
way handshake to establish a connection, the secure layer
needs 2 additional round trips to negotiate the secured
channel [1]. On the other hand, TCP is a highly optimized
and mature solution with an established ecosystem. It
is implemented in the kernel of operating systems and
widely supported by middlebox vendors.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 1 doi: 10.2313/NET-2022-11-1_01

In addition to the handshake delay, retransmission of
a multiplexed HTTP/2 request results in a head-of-line
blocking delay [1].

2.1. Introducing QUIC

Although the page load time was enhanced by
HTTP/2, the efforts to reduce web latency were less suc-
cessful due to the nature of the underlaying TLS/TCP [1].
To overcome these limitations, Google started the develop-
ment of a UDP based transport protocol, QUIC was born.
Not only the transport layer was a novelty in this devel-
opment: the QUIC stack was intentionally implemented
in user-space to allow easier deployment and updates.

QUIC Features. One of the biggest accomplishments of
the QUIC protocol is the 0-RTT handshake. QUIC does
not have to perform a separate cryptographic and transport
handshake [1]. If a connection was previously established
between client and server, the client can start sending data
with no additional round trips. Without former acquain-
tance, the first connection to a server has to be set up in 1-
RTT. Figure 1 depicts QUIC’s initial 1-RTT and Figure 2
shows a subsequent 0-RTT handshake:

client server

inchoate client hello

reject

complete client hello

data

server hello

data

Figure 1: QUIC 1-RTT handshake [1]

1-RTT Handshake. : If a client is establishing a connec-
tion to a given server for the first time then it sends an
"inchoate client hello" message which will be responded
with a REJ message containing the server config with the
necessary cryptographic data, including long-term Diffie-
Hellman public value, the certificate chain, a signature
and a source-address token [6]. The client persists this
information for future use and it continues with the 0-
RTT Handshake method.

client server

complete client hello

data

server hello

data

Figure 2: QUIC 0-RTT handshake [1]

0-RTT Handshake. : If the client possesses a valid server
config then it can start (or continue) the communication
with a "complete client hello" message with the crypto-
graphic parameters of the client and without waiting for
the response it may immediately start sending packets
by applying an initial key calculated from the long term
public value of server.

The server responds with a "server hello" message,
including information for the session key, and any sub-
sequent communication will be conducted using this
ephemeral key, providing forward-secure encryption [1].

QUIC achieves this reduced connection setup, while
guaranteeing strong security like TLS/TCP. Even in the
case of 0-RTT, the communicating parties can negotiate
the cryptographic parameters and the protocol version.
The packet header and payload are authenticated and
encrypted [12].

The packets are sent via UDP between the endpoints
and multiple packets may be coalesced into a single UDP
datagram. The packet payload contains an array of frames
allowing multiplexing multiple logical streams in a single
communication unit [12].

UDP may provide better latency than TCP, however
it has no congestion control. Thus, QUIC has to imple-
ment loss detection and congestion control itself. QUIC
uses generic congestion control signals allowing different
algorithms to be applied, like the TCP CUBIC. Although
congestion control is based on TCP’s loss detection and
congestion control, QUIC adds important enhancements to
allow more efficient functionality like solving the retrans-
mission ambiguity issue, by using unique packet numbers
instead of sequence numbers [13].

QUIC makes it possible to avoid one of the most com-
mon bottlenecks of TCP, head of line blocking. A single
QUIC connection establishes multiple streams, therefore,
allowing out-of-order delivery. Hereby, lost packets only
influence the stream in which they are received. Other
streams remain unaffected and packet flow can continue.
Each stream receives its own unique ID, streams started by
the client will use odd numbers and even numbers will be
assigned to streams initiated by the server [1], [14], [15].

Seminar IITM SS 22,
Network Architectures and Services, November 2022 2 doi: 10.2313/NET-2022-11-1_01

QUANT picoquic quicly mvfst
Vendor NTAP private-octopus h2o facebookincubator

Language C C C C++
TLS 1.3 picotls picotls picotls fizz
Build system cmake cmake cmake cmake
Target Linux, FreeBSD, macOS Linux, FreeBSD, macOS, Windows Linux, FreeBSD, macOS Linux, macOS
Roles client, library, server library and test tools, test client, test server client and server client, server, library

GitHub Stars 211 321 495 1080
GitHub Forks 28 88 90 160
GitHub Commits 3329 3900 2079 4868

TABLE 1: Implementation details including GitHub metrics as of 2022-04-02 [7] [8] [9] [10] [11]

QUIC introduces a way to deal with network changes
more efficiently than TCP. While TCP connections are
identified by IP four tuples, QUIC ones are recognized
by connection IDs. When a client’s IP address changes, a
TCP connection is automatically broken. However, with
QUIC using connection IDs instead of IP four tuples, com-
munication between client and server can continue. This
effect is beneficial, when users are forced to change their
network connections, e.g. when switching from mobile
network to Wi-Fi [15].

HTTP/3. The pending Internet Draft defines HTTP/3
as an extension of HTTP/2. It replaces TLS/TCP with
QUIC, which "provides protocol negotiation, stream-based
multiplexing and flow control" [16]. HTTP/3 also offers
a more efficient compression method [16].

3. Implementations

The first major QUIC implementation was part of
the Chromium project by Google, it is now extracted
into the project QUICHE, which powers Google’s client
products, like Chrome and the servers running in Google
data centers [1]. Microsoft also develops an open source
and cross platform implementation of QUIC, MsQuic is
optimized for high performance offered in client products
and on Azure [7]. Apple also included QUIC support in
its latest mobile and desktop operating systems [17].

In this section some of the most popular open source
implementations of the QUIC protocol are reviewed. Ta-
ble 1 summarizes properties of the selected implementa-
tions.

Quant. The open source project QUANT (QUIC
Userspace Accelerated Network Transfer) provides a
client and server C implementation for POSIX and IoT
platforms [7] [8].

The project is managed by the company NetApp Inc.,
is actively maintained and it complies with the latest
versions of the standard (Draft-34 and v1 as of 2022-
04-02 [7]). Quant supports a memory mapped network
I/O solution (called “netmap”) which makes it possible to
bypass the traditional kernel network interfaces and thus
allows very fast packet I/O. It uses picotls [18] for TLS
1.3 cryptography [8] [19].

mvfst. Mvfst (move fast) is a C++ QUIC library for
servers and clients by Facebook. mvfst is intended to be
performant on both the client and server side, it has been
proven on mobile devices and in large data centers [11].

The software is deployed extensively in the Facebook
server infrastructure, Instagram servers use it, 75% of
Facebook’s egress is served via QUIC [20].

It features flexible Connection-ID routing, Zero Down-
time server restart option, multithreading with enhanced
scalability on multi-core systems, or pluggable congestion
control. mvfst complies with a somewhat outdated version
of the standard (draft-29 as of 2022-04-02) [7].

On GitHub this project has the most forks and stars
of the implementations examined in this paper [11].

picoquic. A minimalist implementation complying with
the latest versions of QUIC with emphasis on non-HTTP
transports, like DNS over QUIC. It uses picotls for the
TLS 1.3 cryptography and considers only single threaded
working modes. It supports most major features of QUIC
and also implements not yet standardized features, like
QUIC Multipath [21].

The picoquic library can be compiled for most major
desktop operating systems from Linux to Windows [10].

quicly. A modular implementation intended for the QUIC
support of the H2O HTTP server. It is currently somewhat
outdated, supporting protocol version Draft-27 [7]. The
vendor of quicly provides the picotls library which is used
by other implementations for TLS 1.3 [9].

4. Bottlenecks and Solutions

QUIC has shown great benefits to its predecessors,
however, a number of performance bottlenecks remain
unsolved. This section analyzes the limitations of QUIC
and investigates possible solutions to them.

Mobile Use

As discussed in Section 2.1, one of QUIC’s biggest
achievements is the 0-RTT handshake. However, this tech-
nological advancement does not always achieve a visible
performance improvement. Mobile users often do not see
the benefit of QUIC, as apps such as YouTube perform
handshakes in the background. Users often take their time
browsing and looking for media content, which enables
a proactive connection establishment. However, this op-
timization is only available when the server is known
beforehand. Furthermore, "mobile phones are also more
CPU-constrained than desktop devices" [1], therefore ben-
efit less when high bandwidth connection is available [1].

Seminar IITM SS 22,
Network Architectures and Services, November 2022 3 doi: 10.2313/NET-2022-11-1_01

Packet reordering

The packet reordering engine has great influence on
the number of lost packets and the throughput of the
QUIC protocol. Tests executed in both single- and multi-
connection scenarios in [22] have shown that some im-
plementations experience deduction in throughput when
packets exchanged between client and server are re-
ordered.

To achieve the desired throughput and congestion win-
dow size, the packet reordering engine has to be able
to process out-of-order packets as timely as possible.
Otherwise, packets will be regarded as lost and a new
request must be filed for the lost packets. Picoquic offers
insight into two different implementations of a reordering
algorithm: the newer version utilizes a splay tree (self-
balancing binary search tree) and an older one uses linear
search. Comparing these two approaches, reveals that
linear search worsens the throughput, unless there is no
packet reordering required. In this case splay trees perform
worse, because the whole tree has to be traversed in order
to find the packet [22].

Kernel and user space bottleneck

QUIC implementations are executed in user space,
to ease development and enable fast version changes,
therefore, overshadowing an optimal and efficient CPU
usage. Measurements show in [22] that the biggest CPU
overhead occurs when the user-space QUIC stack emits
the properly formatted and encrypted packets and passes
them to the kernel for UDP transmission. Thus, sending a
given blob via QUIC may result in an increased number
of kernel system calls and the necessary data copying,
causing higher CPU load.

Measurements depicted in in [1] highlight that QUIC’s
CPU costs were about 3.5 times bigger than TLS/TCP.
However, implementations like Quant were able to partly
eliminate this issue with the use of kernel-bypass tech-
niques [22]. QUANT may be configured to use the
"netmap" package which can bypass the data copy from
user-space to the kernel and allows sending a large number
of packets with a single call [19].

Crypto

Assessments in [22] showed that CPU utilization was
at its peak when crypto methods like aead_enc() and
aead_dec() were executed [22]. The aforementioned
crypto functions are stateless, thus they are good candi-
dates for offloading them to an external hardware device,
e.g. to SmartNIC.

SmartNICs (Smart Network Interface Cards) are get-
ting commodity devices in today’s data centers. These
hardware devices feature programmable components like
an application-specific integrated circuit (ASIC), a field-
programmable gate array (FPGA) or a built-in system-on-
chip (SoC). These programmable features make it possible
to offload some processing to the network hardware.

A possible architecture integration of QUIC with NIC
is introduced in [22]. New connections are managed in a

connection table and NIC is notified about every new en-
try. However, storing every connection is memory costly,
therefore, short connections are taken care of by the host
CPU. Nevertheless, the limited amount of memory of
NICs still has to be taken into consideration. A suitable
hash function could help to enhance memeory access.

However, there is a possibility that the NIC throughput
performs worse than desired, as hardware execution time
is almost ten times slower than CPUs. To resolve this
throughput issue, parallelization of modules can be intro-
duced. Further optimization enables a faster handling of
incoming packets, by arranging them to the first available
decoder/encoder [22].

QUIC on High bandwidth, Low-Delay, Low-Loss
Networks

If employed “on networks with plentiful bandwidth,
low delay, and low loss rate” in [22] QUIC does not
result in performance gain. Given that a connection solely
requires a few milliseconds of RTT, QUIC’s 0-RTT opti-
mization will not provide a measurable advance. In these
situations, TCP may outperform QUIC, as TCP is imple-
mented in kernel and thus provides lower CPU costs. Sim-
ilarly, extremely high-bandwidth results in a big number of
packets arriving in a short amount of time, causing high
CPU demands. Therefore, TCP’s CPU advantage could
once more lead to greater performance [22].

UDP Blocking

According to the large-scale experimentation frame-
work measurements in [1] ca. 4% of the clients were not
able to communicate via QUIC. Examining the individual
cases revealed that corporate networks often block or
throttle UDP traffic between the Internet and the enterprise
network due to security or performance reasons [1].

Some network operators may throttle UDP traffic
based on security concerns and this could hinder QUIC
performance or disable it [15].

It is a crucial task for the future to implement solutions
for preventing UDP based attacks and yet allowing QUIC
traffic. Until then, servers must support traditional TCP
transport and clients should be able to fall back to TCP-
based communication methods.

5. Conclusion

This paper looked at the evolution of the web protocols
which led to the development of QUIC, examined the core
functionality of the new protocol and inspected a handful
of open source implementations.

QUIC is a promising solution for today’s internet
challenges. It offers new approaches to existing problems:
it combats TCP’s head-of-line blocking, ideally reduces
round trip time, offers greater stability and better perfor-
mance in many scenarios.

However, the novelty of using UDP as a transmission
protocol may uncover some new issues which require
attention by implementors of QUIC software and by net-
work operators. QUIC offers enhanced congestion control
and loss detection ability.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 4 doi: 10.2313/NET-2022-11-1_01

Furthermore, the QUIC stack lives in user-space,
which provides many benefits but results in extra CPU
costs, causing a potential performance bottleneck. Some
implementations offer options for bypassing the traditional
interface between the kernel and the user-space for emit-
ting UDP datagrams. Efforts are in progress to offload
some of the CPU intensive processing of the QUIC stack
to the hardware: the FPGA circuits of SmartNICs may
take over some parts of QUIC protocol.

References

[1] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamil-
ton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” Proceedings of
SIGCOMM 2017, Los Angeles, CA, USA, August 21-25, 2017.

[2] W3Techs, “Usage statistics of HTTP/3 for websites,”
https://w3techs.com/technologies/details/ce-http3 as of 2022-
04-02, 2022.

[3] I. Alexa Internet, “The top 500 sites on the web,”
https://www.alexa.com/topsites as of 2022-04-02, 2022.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,”
https://www.ietf.org/rfc/rfc2616.txt as of 2022-04-02, 1999.

[5] I. H. W. Group, “This is the home page for HTTP/2, a major
revision of the Web’s protocol.” https://http2.github.io/ as of 2022-
04-02, 2022.

[6] M. Thomson and S. Turner, “Using TLS to Secure QUIC,” RFC
9001, 2021.

[7] quicwg, “Implementations,” https://github.com/quicwg/base-
drafts/wiki/Implementations as of 2022-04-02, 2022.

[8] NTAP, “QUIC implementation for POSIX and IoT platforms,”
https://github.com/NTAP/quant as of 2022-04-02, 2022.

[9] T. H. project, “A modular QUIC stack designed primarily for
H2O,” https://github.com/h2o/quicly as of 2022-04-02, 2022.

[10] P. Octopus, “Minimal implementation of the QUIC proto-
col,” https://github.com/private-octopus/picoquic as of 2022-04-02,
2022.

[11] F. Incubator, “An implementation of the QUIC transport proto-
col,” https://github.com/facebookincubator/mvfst as of 2022-04-02,
2022.

[12] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, 2021.

[13] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion
Control,” RFC 9002, 2021.

[14] G. Carlucci, L. D. Cicco, and S. Mascolo, “HTTP over UDP:
an Experimental Investigation of QUIC,” Proceedings of the 30th
Annual ACM Symposium on Applied Computing, 2015.

[15] P. Megyesi, Z. Krämer, and S. Molnár, “How quick is QUIC?”
Communication QoS, Reliability and Modeling Symposium, 2016.

[16] M. Bishop, “Hypertext Transfer Protocol Version 3 (HTTP/3)
draft-ietf-quic-http-34,” https://datatracker.ietf.org/doc/html/draft-
ietf-quic-http-34 as of 2022-04-02, 2021.

[17] Apple, “TN3102: HTTP/3 in your app,”
https://developer.apple.com/documentation/technotes/tn3102-
http3-in-your-app as of 2022-04-02, 2022.

[18] T. H. project, “TLS 1.3 implementation in C (master
supports RFC8446 as well as draft-26, -27, -28),”
https://github.com/h2o/picotls as of 2022-05-16, 2022.

[19] L. Rizzo, “netmap - the fast packet I/O framework,”
http://info.iet.unipi.it/ luigi/netmap/ as of 2022-04-02, 2022.

[20] M. Joras and Y. Chi, “How Facebook is bringing QUIC to billions,”
https://engineering.fb.com/2020/10/21/networking-traffic/how-
facebook-is-bringing-quic-to-billions/ as of 2022-04-02, 2022.

[21] Y. Liu, Y. Ma, Q. D. Coninck, O. Bonaventure, C. Huitema,
and M. Kuehlewind, “Multipath Extension for QUIC, draft-ietf-
quic-multipath-01,” https://datatracker.ietf.org/doc/draft-ietf-quic-
multipath/ as of 2022-04-02, 2022.

[22] X. Yang, L. Eggert, J. Ott, S. Uhlig, Z. Sun, and G. Antichi, “Mak-
ing QUIC Quicker With NIC Offload,” Workshop on Evolution,
Performance, and Interoperability of QUIC (EPIQ2020), August
10-14, 2020.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 5 doi: 10.2313/NET-2022-11-1_01

Seminar IITM SS 22,
Network Architectures and Services, November 2022 6

Recycle, Reduce, Reuse - Surveying Instruction Set Architectures

Philipp Erhardt, Henning Stubbe∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: philipp.erhardt@tum.de, stubbe@net.in.tum.de

Abstract—Code size can play an important role when imple-
menting emulators for an instruction set architecture (ISA),
as performance can in part depend on whether cache misses
occur frequently. Additionally, implementation complexity
is heavily correlated with the complexity of the ISA to
emulate. In this paper we take a look at different ISAs and
compare their complexity as well as the object code size of
an example function. A git repository is provided, allowing
reproduction and adaptation for analysis of other functions.
While disassembling executables, we also found a possible
size optimization in a RISC-V compiler.

Index Terms—instruction set architectures, code size

1. Introduction

When creating emulation software, the complexity of
the implementation is tightly coupled with that of the
emulated ISA. High complexity can increase effort needed
for testing and verification. Furthermore, reducing the size
of the input machine code can improve performance due
to fewer cache misses during interpretation as well as
reducing memory, storage and transmission overhead.

Both properties show a tradeoff when designing ISAs:
one can either use simple and usually small instructions of
which more will be needed to express complex programs,
or add more instructions that express the program at a
more direct level. Nowadays, there are many ISAs that
have taken different design decisions. Some have become
symbols for high complexity due to thousands of sup-
ported instructions, others aim to provide only a minimal
set. Variants for microcontrollers have been introduced to
minimize code size, improving usage of limited storage.

This paper aims to describe and compare different
ISAs to evaluate their fitness for the implementation of
an emulator, with focus being on code size reduction and
decreased implementation complexity. Section 2 explains
concepts of ISAs and introduces selected ones. Section 3
discusses related work on ISA complexity and usage,
Section 4 compares ISAs with regard to their complexity
and size.

2. Background

The first part of this section will present common
properties used to differentiate ISAs. The second part
presents selected ISAs that are compared in Section 4.

2.1. Instruction Set Architecture

The ISA of a processor defines operations for loading,
storing and manipulation of data, as well as how these
instructions are encoded and executed [1, 5.3 Instruction
Set Architecture]. ISAs can be compared by means of
their properties, of which selected ones will be presented.

Internal Storage Type The differentiation between
stack, accumulator or register machines is fundamental
when analyzing ISAs.

In a stack machine, an instruction operates by taking
zero or more arguments from the stack and pushing its
result to the top of the stack. For most instructions,
operands are implicit and need not be specified.

In an accumulator architecture an instruction operates
on the accumulator and zero or more explicit arguments,
with results being stored in the accumulator.

Instructions of register machines explicitly specify
both source and destination operands. In a register-
register machine, all operands must be registers, except
for operands of load and store instructions. These archi-
tectures are called load-store architectures. In a register-
memory architecture, most instructions can access memory
operands [2, A.2 Classifying Instruction Set Architec-
tures].

Instruction Encoding The instruction encoding of
an architecture defines the executable format. The exact
binary values of instructions differ widely between ar-
chitectures. We can however differentiate between fixed-
length and variable-length encodings [2, A.7 Encoding an
Instruction Set].

Complexity ISAs can be classified by the complexity
of their operations. The most common categories are
Reduced Instruction Set Computer (RISC) and Complex
Instruction Set Computer (CISC).

CISC processors are typically able to perform hun-
dreds of instructions of differing complexity with memory
operands and many addressing modes available for most.
These instructions can take many clock cycles to execute.

In comparison, RISC processors include mostly basic
instructions, more complex operations must be expressed
using them. Many RISC architectures aim to execute one
instruction per clock cycle [1, p. 91]. Often memory
access is only possible via load and store instructions [3,
Chapter 3].

Endianness The endianness of a processor defines the
byte order when accessing data from memory. With little
endian, the most significant byte is stored at the highest
address. With big endian byte order, the most significant
byte is stored at the lowest address [4, Section 2.4].

Seminar IITM SS 22,
Network Architectures and Services, November 2022 7 doi: 10.2313/NET-2022-11-1_02

Addressing Modes ISAs typically include different
ways of accessing operands, either as immediate values,
in registers or in memory. Memory addressing modes can
express the address as displacement relative to a known
location like the stack, as register indirect with an address
already being stored in a register or indexed addressing
where an offset is added to a base address (for accessing
data in arrays), as well as many more addressing modes
not mentioned here [2, Section A.3].

2.2. Selected ISAs

The following section briefly describes the ISAs that
will be compared in Section 4. These architectures were
selected for comparison because they either claim reduced
object code size, have a small number of instructions or
feature a design that is vastly different from the others.

ARM T32 The ARM T32 instruction set, previously
called Thumb-2, is a superset and successor of the ARM
Thumb instruction set [5] featuring 301 instructions [6,
p. 5-13]. Encoded instructions have variable length of
either 16 or 32 bits [7]. It is in the family of RISC
architectures. Since memory access is only possible using
load and store instructions, T32 can be classified as a
load-store architecture [8, p. 36]. Registers are 32 bits in
size [8, p. 38]. Processors with this architecture can switch
between big-endian and little-endian mode for memory
access using the SETEND instruction [8, p. 7569, F5.1.182].

RISC-V Compressed RISC-V is a free and open
family of RISC ISAs. While any RISC-V ISA includes
the base integer ISA, it is possible to add optional exten-
sions [9, Section 1.3]. The size of encoded instructions is
fixed to 32 bits for the base ISA, extensions can however
use a multiple of 16 bits to encode further instructions [9,
Section 1.5]. One extension providing 16-bit encodings for
common instructions is the standard “C” (“Compressed”)
extension [9, Chapter 16]. The RV32I Base Integer In-
struction Set defines 40 instructions [9, p. 31] and is little
endian [9, p. 8]. RV32I is load-store as memory access
is only possible using load/store instructions. All other
instructions use registers as operands, so these ISAs can
be classified as register machines [9, p. 42].

WebAssembly WebAssembly is an open standard for
a “virtual instruction set architecture” based on a stack
machine [10, p. 5-7]. Instruction opcodes are one or two
bytes long, but since immediate arguments can follow
these opcodes, the instruction set is variable-length [10,
Section 5.4]. Memory access is possible via load-store
instructions, the byte order is little endian [10, p. 22].
There are 437 valid opcodes, with an additional 69 being
currently reserved [11].

x86-64 The x86-64 instruction set is a backwards-
compatible successor of the Intel 8086’s architecture [12,
p. 37]. Instruction size is variable and ranges from 1 to
15 bytes [12, p. 3058], the byte order is little endian [12, p.
32]. The basic ISA provides 16 general purpose registers,
each having a width of 64 bits [12, p. 76]. The internal
storage type for x86 is a register-memory machine [2,
Figure A.3], with some instructions like MUL and DIV using
implicit accumulator registers as operands and destina-
tions [12]. Heule et al. count at least 981 mnemonics and
3,684 instruction variants [13], allowing classification as
CISC.

Z80 The Zilog Z80 is a microprocessor introduced
in 1976, with later versions still being used today [14].
It features 158 instructions of which 78 are adapted from
the Intel 8080 CPU, making the instruction set backwards-
compatible [15, p. 46]. Instruction size is variable ranging
from 1 to 4 bytes [15, p. 57]. They can operate on register
or memory operands, with some storing results in accu-
mulator registers [15, p. 40-47]. Featuring instructions like
LDIR that can occupy the CPU for many clock cycles [15,
p. 41], this instruction set can be classified as CISC.

3. Related Work

In [16], Davidson and Vaughan analyze the relation
between instruction set complexity and program size. A
technique called “instruction set subsetting” is used to
eliminate biases that could arise when comparing different
architectures. Three subsets of the rather complex VAX
instruction set are created with decreasing complexity:
while MAXVAX supports 16 addressing modes both in
source and destination operands for almost all instruc-
tions, MIDVAX supports only eight addressing modes and
restricts destination operands to registers only. Some more
complex instructions are not available at all. The MINVAX
instruction set further reduces available instructions and
addressing modes, memory access is only possible via
load-store instructions. Their comparison of the object
code size of ten different programs shows an increase in
average code size with reduced architectural complexity:
compared to the baseline MAXVAX instruction set, pro-
grams compiled for MIDVAX are on average 1.54 times
the size, while the average size of programs compiled
for MINVAX grows to 2.48 times. They also note that
average instruction sizes are 4.10 bytes for MAXVAX,
3.71 bytes for MIDVAX and 3.61 bytes for MINVAX,
showing that the compiler is able to use more complex
and large instructions when they are available.

To reduce implementation complexity, only a subset
of an instruction set could be implemented. In [17],
Akshintala et al. analyze the distribution of instruction
opcodes in Linux packages for the x86-64 architecture.
A table [17, Table 5] shows the number of instructions
needed to support a given percentage of available pack-
ages. They find that an emulator aiming to run 80%
of available packages would have to implement 189 in-
struction mnemonics, while for 90% of packages 230
mnemonics are required. 611 additional instructions are
needed for full compatibility. They also recommend a
sequence of instructions that can be used for such an
implementation based on the popularity of packages using
these instructions.

Another approach for reducing complexity or effort
when implementing an emulator is using a very small ISA,
like LC-3 described by Yale N. Patt and Sanjay J. Patel in
[18, pp. 520-545]. With a total of 16 opcodes, one of them
reserved for the future, the instruction set is very small.
It features eight 16-bit general purpose registers and is a
load-store architecture [18, p. 553]. All instructions are
16 bits wide, with the upper 4 bits defining the opcode.
Originally it was planned to include this architecture in
the comparison in Section 4. However, due to a lack of
functioning compilers from C to LC-3, it did not end up
being included.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 8 doi: 10.2313/NET-2022-11-1_02

4. Comparison

This section compares the different ISAs introduced
in Section 2.2 with regard to their complexity and code
size.

4.1. Complexity

In order to assess the complexity required for an
emulator implementation, we can look at the complexity
of the target ISA. The distinction between CISC and RISC
is on a high level, but can be helpful for estimating the
complexity of operations before implementing them.

A typical difference is the concept of a load-store
architecture (usually used in RISC ISAs) versus mem-
ory operands. In CISC architectures, it is often possible
to directly operate on memory operands, requiring only
one instruction for manipulation. Load-store architectures
however must explicitly load and store data for manip-
ulation in a register. Even if the encoding for the CISC
instruction were larger in size than a typical RISC in-
struction, encoding only a single instruction instead of
three can still result in smaller code. In fact, as shown
in Figure 1, incrementing a value at a given memory
address stored in a register (r0 for ARM T32, rdi for
x86-64) needs triple the amount of bytes to encode for
the RISC architecture in this case.

03 68 ldr r3, [r0, #0]
01 33 adds r3, #1
03 60 str r3, [r0, #0]

ff 07 incl (%rdi)

Figure 1: Comparing ARM T32 (left) and x86-64 (right)1

Another method for comparing the complexity of dif-
ferent ISAs is comparing the number of operations that are
possible, including addressing modes. However, getting
an accurate and up to date count of available opcodes
for different architecture variants is challenging: as Heule
et al. note in [13], as well as Mahoney and McDonald
in [19], getting accurate data on x86-64 opcodes is hard.
Similar problems with other architectures, especially the
inaccessibility of PDF files for programmatically counting
opcodes, have prevented further analysis in this paper.

4.2. Code Size

To compare code size we compiled a simple C
function for different architectures. The code is shown
in Figure 2. A git repository containing all code, includ-
ing Makefiles for generating the results for all architec-
tures, is available online at https://github.com/xarantolus/
iitm-surveying-isas.

Tools This section will outline the tools used for
compiling and measuring program size for each architec-
ture. The installation steps are also available in the git
repository linked above.

All compilations were done on an Ubuntu 20.04.4
LTS x86_64 system. Where available, the -Oz option is
passed to compilers to “optimize aggressively for size
rather than speed”, else the -Os flag is used to “optimize
for size” [20]. The following lists the tools used for

1. Adapted from [2, Figure A.2]

int fib(int n) {
if (n <= 1) { return n; }
int prev = 0; int current = 1; int tmp;
for (int i = 2; i <= n; i++) {

tmp = current;
current += prev;
prev = tmp;

}
return current;

}

Figure 2: Fibonacci function written in C

compiling the C program for each architecture. More
detailed installation instructions can be found within the
git repository.

ARM T32 The compiler used is arm-linux-gnueabihf-
gcc 9.4.0 from the gcc-arm-linux-gnueabihf package.

RISC-V Compressed The riscv64-unknown-linux-
gnu-gcc (g5964b5cd727) 11.1.0 compiler from the RISC-
V toolchain available at [21] was used to compile the pro-
gram. An install script is available in the riscv directory
of the git repository.

WebAssembly Instructions for installing the emcc
3.1.8 compiler are available at [22].

x86-64 For compilation gcc 9.4.0 from the gcc pack-
age is used.

Z80 The clang 12.0.0 compiler is built from the
project at [23]. Installation steps were adapted from [24].

Results Table 1 shows the object code size of the
compiled fib function from Figure 2.

The ARM T32 object code includes 14 instructions
with a size of 2 bytes each, making it the smallest result.
No 4-byte instructions were needed, showing that the com-
piler was able to take advantage of the 16-bit instruction
variants.

Similarly, the compiled output for RISC-V Compressed
uses mostly 16 bit instructions, except for two 4-byte BGE
instructions used to implement branches. One interesting
detail is that the compiler generates two RET instructions
at the end of the function, adding an extra two bytes while
only one instruction would have sufficed. A maintainer of
the RISC-V toolchain responded to our inquiry, calling
this behavior “a missed optimization opportunity” [25].

The WebAssembly version uses mostly two-byte in-
structions. Despite the smaller average instruction size,
its comparatively high number of instructions results in
the largest output size.

The output compiled for x86-64 contains 14 instruc-
tions with a length of 1 to 5 bytes. Nine instructions have
a length of 2 bytes. Two MOV instructions are 5 bytes long
as they encode a 4-byte immediate value. Additionaly,
there is one single-byte, one three-byte and one four-byte
instruction present. The small instruction count compared
with WebAssembly and Z80 leads to the overall smaller
code size, despite the larger average instruction size.

While the instructions for the Z80 version have an
average size of only 1.88 bytes, it needs 34 instructions
to implement the function, resulting in the second largest
code size.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 9 doi: 10.2313/NET-2022-11-1_02

TABLE 1: Object code size of the fibonacci function from Figure 2 compiled for different architectures

Architecture Compiler Size Instruction Count Avg. Instruction Size

ARM T32 arm-linux-gnueabihf-gcc 9.4.0 28B 14 2.00B
RISC-V Compressed riscv64-unknown-linux-gnu-gcc 11.1.0 30B 13 2.31B
WebAssembly emcc 3.1.8 71B 37 1.92B
x86-64 gcc 9.4.0 36B 14 2.57B
Z80 clang 12.0.0 64B 34 1.88B

ARM A32 arm-linux-gnueabihf-gcc 9.4.0 52B 13 4.00B
RISC-V riscv64-unknown-linux-gnu-gcc 11.1.0 52B 13 4.00B

In addition to the ISAs presented in Section 2.2,
Table 1 also shows the code size of ARM A32 and RISC-
V without the “C” extension. Both ISAs have 32-bit wide
fixed-length instructions [9, p. 25] [26].

ARMs’ claim of code size reduction of the variable-
length ARM T32 ISA compared to ARM A32 [7] holds
true in this case with a reduction by almost half.

The code size for RISC-V Compressed is approxi-
mately 40% smaller than the size for its fixed-length
RISC-V counterpart, exceeding the “25%-30% code-size
reduction” claim for the compressed extension in this
case [9, p. 115].

Limitations This comparison is rather limited as only
one small program is compared using only one com-
piler for each architecture. In addition, different compilers
might support different optimizations regarding the pro-
gram size.

Comparison with Previous Work As mentioned in
Section 3, Jack W. Davidson and Richard A. Vaughan
found in [16] that reduced architectural complexity leads
to larger overall code size.

If we classify WebAssembly as closer to RISC than
CISC due to it being a load-store architecture, it fits this
observation. However, the Z80 instruction set also pro-
duces an overall large code size despite it being classified
as CISC. Additionally, contrary to the expectations one
might have on the basis of the mentioned study, the RISC
architectures ARM T32 and RISC-V Compressed result in
the overall smallest code size.

One explanation for these findings is the limited ex-
ample function. Its small amount of required variables
makes it possible for all data to be stored in registers,
foregoing the need to access memory. As mentioned in
Section 4.1, requiring more instructions to read and write
memory in RISC ISAs could lead to larger code size. Since
no explicit memory accesses are necessary for the fib
function, the disadvantages of RISC ISAs do not come
into consideration in this case.

5. Conclusion and Future Work

In this paper we analyzed the object code size of a pro-
gram when compiled for different architectures, creating
a system of Makefiles that can be adapted for analyzing
other C functions as well. While doing so, we found
variations in the code size when compiling for different
architectures and a possible size optimization in a RISC-V
compiler.

Our example code reached the smallest sizes when
compiled for the ARM T32 and RISC-V Compressed archi-
tectures, indicating that they can be suitable for reducing
overhead and cache misses in an emulator implementation.

However, the selection of ISAs is not the only fac-
tor when reducing code size. Future work can explore
reducing complexity by limiting the set of opcodes and
addressing modes available to a compiler when translating
a program. The effect of register spilling on code size,
especially for load-store architectures that need more in-
structions to operate on memory operands, can also be
explored. Additionally, analyses similar to [17] by Akshin-
tala et al. can be done for other ISAs before implementing
an emulator.

References

[1] C. Douglas, Essentials of Computer Architecture. Chapman and
Hall/CRC, 2017, vol. Second edition.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
quantitative approach, 5th ed. Morgan Kaufmann, 2011.

[3] J. Ledin, Modern Computer Architecture and Organization. Packt
Publishing, 2020.

[4] J. Catsoulis, Designing embedded hardware, 2nd ed. O’Reilly,
2005.

[5] Arm Limited, “About Thumb-2,” https://developer.arm.
com/documentation/ddi0308/d/Introduction-to-Thumb-2/
About-Thumb-2?lang=en, [Online; accessed 31-March-2022].

[6] ——, Arm® A32/T32 Instruction Set Architecture, December 2021.

[7] ——, “T32 Instruction Set,” https://developer.arm.com/
architectures/instruction-sets/base-isas/t32, [Online; accessed
24-March-2022].

[8] ——, Arm® Architecture Reference Manual for A-profile architec-
ture, 2022.

[9] Editors A. Waterman and K. Asanović, RISC-V Foundation, The
RISC-V Instruction Set Manual, Volume I: User-Level ISA, Docu-
ment Version 2019121, December 2019.

[10] WebAssembly Community Group, WebAssembly Specification, Re-
lease 1.1 (Draft 2022-03-21), https://webassembly.github.io/spec/
core/_download/WebAssembly.pdf, March 2022, [Online; accessed
1-April-2022].

[11] ——, “Index of Instructions – WebAssembly 1.1 (Draft
2022-03-21),” https://webassembly.github.io/spec/core/appendix/
index-instructions.html, [Online; accessed 1-April-2022].

[12] Intel Corporation, Intel® 64 and IA-32 Architectures Software
Developer’s Manual, 2021.

[13] S. Heule, E. Schkufza, R. Sharma, and A. Aiken, “Stratified
synthesis: Automatically learning the x86-64 instruction set,”
in Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI
’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 237–250. [Online]. Available: https://doi.org/10.1145/
2908080.2908121

[14] D. M. G. Preethichandra, “Z80—the 1970s microprocessor still
alive,” IEEE Micro, vol. 41, no. 6, pp. 156–157, 2021.

[15] Z80 Microprocessors, Z80 CPU User Manual UM008011-
0816, http://www.zilog.com/docs/z80/UM0080.pdf, [Online; ac-
cessed 30-March-2022].

Seminar IITM SS 22,
Network Architectures and Services, November 2022 10 doi: 10.2313/NET-2022-11-1_02

[16] J. W. Davidson and R. A. Vaughan, “The effect of instruction
set complexity on program size and memory performance,” ACM
SIGOPS Operating Systems Review, vol. 21, no. 4, pp. 60–64, Oct.
1987. [Online]. Available: https://doi.org/10.1145/36204.36184

[17] A. Akshintala, B. Jain, C.-C. Tsai, M. Ferdman, and D. E.
Porter, “X86-64 instruction usage among c/c++ applications,”
in Proceedings of the 12th ACM International Conference on
Systems and Storage, ser. SYSTOR ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 68–79. [Online].
Available: https://doi.org/10.1145/3319647.3325833

[18] Y. Patt and S. Patel, Introduction to Computing Systems: From
Bits and Gates to C and Beyond, 2nd ed. McGraw-Hill Higher
Education, 200.

[19] W. Mahoney and J. T. McDonald, “Enumerating x86-64–it’s not
as easy as counting.”

[20] GCC team, “Optimize Options (Using the GNU Compiler
Collection (GCC)),” https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html, [Online; accessed 4-April-2022].

[21] RISC-V Software Collaboration, “GNU toolchain for RISC-V,
including GCC,” https://github.com/riscv/riscv-gnu-toolchain, [On-
line; accessed 8-April-2022].

[22] The Emscripten project, “Emscripten SDK,” https://github.com/
emscripten-core/emsdk, [Online; accessed 8-April-2022].

[23] Retro Computing at Georgia Tech, “The LLVM Compiler Infras-
tructure,” https://github.com/gt-retro-computing/llvm-project, [On-
line; accessed 8-April-2022].

[24] The IMSAI Gang, “LLVM Z80: Building,” https://imsai.dev/posts/
build_llvm/, [Online; accessed 8-April-2022].

[25] “Duplicate ret instruction at end of function,” https://github.com/
riscv-collab/riscv-gnu-toolchain/issues/1048, [Online; accessed 8-
April-2022].

[26] Arm Limited, “A32 Instruction Set,” https://developer.arm.com/
architectures/instruction-sets/base-isas/a32, [Online; accessed 5-
April-2022].

Seminar IITM SS 22,
Network Architectures and Services, November 2022 11 doi: 10.2313/NET-2022-11-1_02

Seminar IITM SS 22,
Network Architectures and Services, November 2022 12

Network Path Monitoring

Buse Barcin Halis, Florian Wiedner∗, Max Helm∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ge23jod@mytum.de, wiedner@net.in.tum.de, helm@net.in.tum.de

Abstract—Network path monitoring is an important feature
of modern networks. It enables to understand the behavior of
the network. However, a network is a complex structure, and
therefore it is a challenge to measure network characteristics
from only the endpoints.

Since the early days of the Internet, various network
monitoring methods have been proposed. This paper focuses
on methods for measuring network metrics such as packet
loss, packet reordering, point of failure, round trip time,
and bottleneck router buffer size. The differences in their
implementation are highlighted, and some of their limitations
are pointed out. It is concluded that OneProbe is a reliable
method, but needs further development to measure more
metrics.

Index Terms—network path monitoring, network metrics,
network measuring methods

1. Introduction

Networks are the foundation of many applications.
When a problem occurs in the network, the state of the
network directly affects the applications. Therefore, it is
important to monitor networks and gain insights into the
network state. This makes it possible to understand the
behavior of the network, measure network performance,
identify the problems of a network and find the causes
for the problems. However, monitoring the network path
is a difficult process. The network is complex, and when a
fault occurs, it is difficult to determine what the problem is
or where in the network the problem occurs. Therefore, we
need accurate and efficient methods to monitor network
paths.

Many methods have been proposed that focus on
measuring network metrics [1]–[4]. This paper presents
network monitoring methods that focus on the metrics of
packet loss, packet reordering, point of failure, round trip
time, and bottleneck router buffer size.

The rest of this paper is structured as follows: Section
2 provides background information. In Section 3, the
detailed process of the methods for each presented metric
is explained. Section 4 provides a comparison between the
introduced methods, and Section 5 concludes the paper.

2. Background Information

In this section, network metrics are defined for which
measurement methods are proposed in the next section.
Packet Loss: Loss of data packets during transmission on

the network path from the source to the destination

and non-arrival of the data packet at the destina-
tion [5].

Packet Reordering: The arrival of data packets at the
destination not in the same order as they were sent
from the source [5].

Failure Point: The link where a network problem occurs,
such as packet loss or reordering [2].

Round Trip Time (RTT): Time interval between send-
ing a packet from the source to the destination and
receiving an acknowledgement for this packet at the
source from the destination [1].

Buffer Size: The buffer is a storage area on a router
where the data packets are temporarily stored. The
buffer size indicates the capacity of this storage
area [4].

3. Network Path Monitoring Methods

This section presents the methods categorized accord-
ing to their measured metrics.

3.1. Packet Loss

Many methods have been developed to measure packet
loss behavior in network paths. In this subsection, three of
them are introduced, namely OneProbe, Tulip and Sting.

OneProbe: OneProbe is a TCP probing method for
monitoring network paths and measuring network metrics,
proposed by Luo et al. [1]. OneProbe uses TCP data
probes. Each probe sent to the destination contains two
TCP data packets as probe packets and triggers two new
TCP data packets from the destination as response packets.
The probe packets are used to inspect the forward path,
while the response packets are used to inspect the reverse
path. The probing process works as shown in Figure 1.
The TCP data probe packets sent by OneProbe are de-
clared as Cm|n and the TCP data response packets sent
by the server are declared as Sm|n, where m corresponds
to the sequence number and n to the acknowledgment
number of a TCP data segment. Ŝm|n denotes a data
retransmission.

There are 5 different possibilities for two packets on
a path:

1) F0/R0: The server/OneProbe receives both
probe/response packets in correct order.

2) FR/RR: The server/OneProbe receives both
probe/response packets in reverse order.

3) F1/R1: The server/OneProbe receives only the second
probe/response packet, the first packet is lost.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 13 doi: 10.2313/NET-2022-11-1_03

Figure 1: Probing process of OneProbe [1]

TABLE 1: 18 path events in one round of OneProbe [1]

Path events 1st response 2nd response 3rd response
packets packets packets

1. F0 x R0 S3|3’ S4|4’ -
2. F0 x RR S4|4’ S3|3’ -
3. F0 x R1 S4|4’ Ŝ3|4’ -
4. F0 x R2 S3|3’ Ŝ3|4’ -
5. F0 x R3 Ŝ3|4’ - -
6. FR x R0 S3|2’ S4|2’ Ŝ3|4’
7. FR x RR S4|2’ S3|2’ Ŝ3|4’
8. FR x R1 S4|2’ Ŝ3|4’ -
9. FR x R2 S3|2’ Ŝ3|4’ -
10. FR x R3 Ŝ3|4’ - -
11. F1 x R0 S3|2’ S4|2’ Ŝ3|2’
12. F1 x RR S4|2’ S3|2’ Ŝ3|2’
13. F1 x R1 S4|2’ Ŝ3|2’ -
14. F1 x R2 S3|2’ Ŝ3|2’ -
15. F1 x R3 Ŝ3|2’ - -
16. F2 x R0 S3|3’ Ŝ2|3’ -
17. F2 x R1 Ŝ2|3’ - -

18. F3 Ŝ1|2’ - -

4) F2/R2: The server/OneProbe receives only the first
probe/response packet, the second packet is lost.

5) F3/R3: The server/OneProbe receives no
probe/response packet, both packets are lost.

There are 18 possible scenarios for packet loss and
reordering in a probe round, resulting from the combi-
nation of the above events on the forward and reverse
paths. These combinations and the response packets that
the source host receives for all these 18 scenarios are
listed in Table 1. Based on the response packets the source
receives, OneProbe can identify which scenario is present
and whether there is packet loss or reordering in the
forward or reverse path. Scenarios 11 to 18 describe the
scenarios of packet loss in the forward path. Scenarios 3,
4, 5, 8, 9, 10, 13, 14, 15, 17 describe the scenarios of
packet loss in the reverse path. There are only 3 cases
where the scenario cannot be distinguished because the
responses are not unique:

• Scenario 14 and 15
• Scenario 12 and 13
• Scenario 5 and 10
The packet loss rate is measured by OneProbe by send-

ing successive probe rounds to the destination. OneProbe
only considers the first packet for measuring the loss rate.
The packet loss rate for the forward path is calculated as
follows:

#Probe rounds with first probe packet loss
#Total probe rounds

(1)

The packet loss rate for the reverse path is calculated

Figure 2: Packet loss scenarios in Tulip [2]

as follows:
#Probe rounds with first response packet loss

#Total probe rounds
(2)

Tulip: One of the other tool which detects packet
loss on a network path is Tulip proposed by Mahajan
et al. [2]. Except detecting packet loss, Tulip can also
identify the location of the packet loss within three hops.
Tulip measures network characteristics in the forward
path. If we want to meaure the reverse path, tulip can be
used at the destination point. Tulip uses the IP identifier
counters feature of routers to detect packet loss. Each
IP packet contains a unique identification field (IP-ID)
to enable IP fragments to be reassembled. Most routers
implement the IP-ID using a counter, and the IP-ID is
incremented with each packet generated. Tulip exploits
these IP-IDs.

The loss detection mechanism of Tulip works as fol-
lows: The source sends three probe packets: two control
packets and one data packet in the middle, to the router.
Different protocols such as UDP, TCP or ICMP can be
used for these probe packets. Each of these probe packets
generates a response packet from the router. There are 3
possibilities for the data packet loss, as shown in Figure 2:

1) The source receives all three responses: No Loss
2) The source receives only two responses triggered

by control packets and the IP-IDs of the response
packets are consecutive: Forward Loss

3) The source receives only two responses triggered by
control packets and the IP-IDs of the response pack-
ets are not consecutive: Indistinguishable whether
forward loss or reverse loss

A few prerequisites exist for Tulip’s loss detection
mechanism: The control packets should always be re-
tained, because if a control packet or its response is lost,
it is not possible to detect the direction of data loss. The
probe packets should arrive at the router close together
in time and in the correct order so that they can obtain
consecutive IP-IDs. The packet loss rate is calculated as
follows:

#Probe rounds with forward loss
#Total probe rounds

(3)

Sting: Sting, introduced by Savage, is another tool
that can measure packet loss rates along both the forward
and reverse paths between a source and a destination [3].
Sting’s loss deduction algorithm measures packet loss rate
by leveraging the features of the TCP protocol. For packet
loss measurement, Sting uses TCP acknowledgments.

The algorithm measuring the loss rate on forward path
consists two phases, namely data seeding and hole filling.
In the data seeding phase, sequential TCP packets are

Seminar IITM SS 22,
Network Architectures and Services, November 2022 14 doi: 10.2313/NET-2022-11-1_03

sent from the source to the destination. In the hole filling
phase, the source sends another TCP data packet with
a sequence number one higher than the last TCP data
packet in the data seeding phase. If the source receives
an acknowledgment for this packet, it concludes that no
packet was lost in the data seeding phase. If the source
receives a duplicate acknowledgement, it means a packet
loss, and the number of the acknowledgement indicates
which packet was lost. The source resends the correspond-
ing packet. This process is continued until the last data
packet sent in the data seeding phase is acknowledged. In
this way, the total number of lost data packets is obtained.

Measuring the loss rate in the reverse path can be prob-
lematic. The source cannot count the acknowledgments
that the destination sends. This is where ack parity is used.
Sting ensures ack parity using a method that will not be
elaborated on here. Ack parity guarentees that destination
sends an acknowledgment for every packet it receives.

Five attributes are defined for the calculation of the
forward and backward path loss rate:
dataSend: The total number of data packets sent from

source to the destination, can be measured directly
at the source.

dataLost: The total number of lost data packets measured
with Sting’s loss deduction algorithm.

dataReceived: dataReceived = dataSend - dataLost
ackSent: ackSent = dataReceived. Due to ack parity, an

acknowledgement is issued for each received packet.
ackReceived: The total number of acknowledgments that

have reached the source, can be measured directly at
the source.

The loss rate for the forward path is calculated as
follows:

1− (dataReceived/dataSent) (4)

The loss rate for the reverse path is calculated as
follows:

1− (ackReceived/ackSent) (5)

3.2. Packet Reordering

Many methods have been developed to measure packet
reordering behavior on network paths. In this subsection,
two of them are introduced, namely OneProbe and Tulip.

OneProbe: All 18 possible scenarios for packet loss
and reordering in a probe round for the OneProbe method
have already been shown in Table 1. Scenarios 6 to 10
describe the scenarios of packet reordering in the forward
path. Scenarios 2, 7, 12 describe the scenarios of packet
reordering in the reverse path. The packet reordering rate
is measured by OneProbe by sending successive probe
rounds to the destination. OneProbe only considers the
first packet for measuring the loss rate.

The packet reordering rate for the forward path is
calculated as follows:

#Probe rounds with reordered probe packets
#Total probe rounds

(6)

The packet reordering rate for the reverse path is
calculated as follows:

#Probe rounds with reordered response packets
#Total probe rounds

(7)

Figure 3: Packet reordering scenarios in Tulip [2]

Figure 4: Building Blocks: The properties of link R2→R3
can be estimated by subtracting the measured properties
of path A→R2 from the measured properties of path A→
R3. [2]

Tulip: Tulip uses IP-IDs to obtain information about
packet reordering on the forward path [2]. To measure
the reordering of the packets, the source sends two probe
packets to the router. Each of these probe packets gen-
erates a response packet from the router that contains
the headers of the probe packets so that they can be
differentiated. Tulip uses IP-IDs to obtain information
about the order in which packets reach the router.

There are 4 possibilities to reorder these two packages
in the forward and backward paths, as shown in Figure 3:

1) No reordering: The responses are received in order
and the second probe’s response has a higher IP-ID.

2) Forward path reordering: The second probe’s re-
sponse has a lower IP-ID and reaches the source first.

3) Reverse path reordering: The second probe’s re-
sponse has a higher IP-ID but reaches the source first.

4) Forward and reverse path reordering: The second
probe’s response reaches the source second but has
a lower IP-ID.

The packet reordering rate is calculated as follows:

#Reordered probe pairs
#Probe pairs for which both responses

are received

(8)

3.3. Point of Failure for Packet Loss and Packet
Reordering

The characteristics of the single links in the network
can not be measured individually. In order to locate the
point of a failure, we first make forward path measure-
ments to both ends of a link and then compare the
resulting measurements. This method is called Building
Blocks, and is illustrated in Figure 4.

Tulip: The third metric that Tulip can measure is the
point of failure on the network path using the Building
Blocks method [2]. Tulip has 2 steps for locating the
failure point. In the first step, the path from the source
to the destination is determined using traceroute. In the
second step, tulip performs either a parallel search or a
binary search. In parallel search, the forward path to each
router is measured one after another. In binary search, the
forward path to the destination is measured first. If there is

Seminar IITM SS 22,
Network Architectures and Services, November 2022 15 doi: 10.2313/NET-2022-11-1_03

a fault, the forward path to middle point is measured, and
depending on which part of the path contains the fault, the
measurement continues with that part, and this continues
recursively until the faulty link is found.

3.4. Round Trip Time

OneProbe: The third metric that OneProbe can mea-
sure is round trip time (RTT) [1]. OneProbe only considers
the first packet for measuring round trip time. This is
because the RTT of the second probe packet can be
affected by the first packet [6]. The RTT is calculated
as follows:

First response packet
receive time

− First probe packet
sending time (9)

3.5. Bottleneck Router Buffer Size

Loss Pairs: Liu and Crovella develop a tool called
Loss Pairs for specify network characteristics such as the
packet dropping behavior of a bottleneck router [4]. A
loss pair defines a pair of packets where exactly one of
the packet is discarded in the network while they were
traveling on the same path and were close to each other
in time [4]. The network conditions observed by these two
packets are very similar. Thus, if one of the packets gets
lost, very accurate estimates of the network conditions at
the time of packet loss can be made based on the residual
packet. This idea of loss pair method is used to identify
router properties in the network and estimate the buffer
size at a bottleneck router, assuming that most packet
losses and delays occur at the bottleneck. If one packet
of the pair is dropped, it indicates that the queue of the
bottleneck router is full, and the calculated RTT for the
residual packet includes the drain time of a full queue on
the router. Therefore, the focus lies on the round trip time
of the residual packet. The round trip time is obtained
from the TCP data packets and their acknowledgments.
And the calculated RTT is used to estimate the buffer
size. It is assumed that we already know the bandwidth
of the bottleneck link and the propagation delay along the
path. Then the buffer size is calculated as follows:

Bandwidth · (RTT− Propagation Delay) (10)

4. Comparison of the Methods

Traditional ICMP-based tools such as Ping and Tracer-
oute work universally and can be run on only one end-
point, but they provide limited and inaccurate results [3].
One problem with ICMP-based tools is that it is impossi-
ble to determine whether packet loss has occurred on the
forward or reverse path [3]. The second problem is that
routers and end hosts do not always respond to ICMP
Ping and Traceroute [7], resulting in an inflated packet
loss rate.

Sting overcomes these problems by exploiting the
properties of the TCP protocol. Sting can distinguish in
which direction packet loss occurs while still running
on only one endpoint. One problem with Sting is that
Sting uses TCP ACKs on the reverse path, even though it
uses TCP data packets on the forward path. That is why

Sting’s reverse path measurement does not support differ-
ent response packet sizes. Moreover, Sting’s TCP ACKs
based measurement fails for large response packet sizes.
Because the TCP ACKs based measurement of reverse
path loss may be underestimated for larger packets [8].
In an evaluation, Sting shows a failure rate of 54.8% for
41-byte probes and nearly 100% failure rate for 1053-byte
probes [1].

Tulip can measure multiple metrics. Compared to
Sting, it uses different patterns of probes. Sting targets
end hosts running TCP-based servers on known ports,
while Tulip can be used with both routers and hosts.
Tulip provides reliable results for TCP data packets, but
unreliable results for other packet types, such as UDP
packets [9], since most routers in the network do not
respond to UDP packets [10]. In addition, Tulip requires
routers to support consecutive IP-ID measurement. Router
without IP-ID counters do not support Tulip. In an eval-
uation, Tulip fails 80% of the time on packet loss and
reordering measurements, 50% of the failures are due to
Tulip using UDP probes, and 30% are due to some routers
not supporting IP-ID measurements [1]. Also, Tulip can-
not measure some packet loss scenarios [2].

Loss pairs enable the determination of router charac-
teristics that were previously not directly measurable, such
as the buffer size of bottleneck routers in the network. This
method provides sufficiently accurate and robust results
over a wide range of network configurations as well as
under noisy network conditions [4]. In [4], it is claimed
that whether the remaining packet is the first or the second
in a loss pair makes no difference in determining the
queuing delay of a congested router. However, an analysis
performed in [11] shows that using the delay of the first
packet tends to be more accurate than the delay of the
second packet.

OneProbe is another tool capable of measuring mul-
tiple metrics, like Tulip. The packet sizes in OneProbe
are configurable so that it can measure path metrics with
different response packet sizes. This feature of OneProbe
is used in [11] to confirm that the accuracy of de-
lay estimation generally increases with a smaller packet
size. OneProbe also overcomes some limitations of Tulip:
OneProbe can measure multiple path metrics on the for-
ward and reverse paths simultaneously with the same
probe. Tulip’s probe packets, on the other hand, differ in
the loss and reordering measurements in the method itself.
One problem with OneProbe is that it cannot distinguish
some path events due to the ambiguity of some responses.

5. Conclusion and future work

In this paper an overview of network path monitoring
methods with respect to packet loss, packet reordering,
point of failure, round trip time, and bottleneck router
buffer size is given. The technniques they use are ex-
plained, their missing features are pointed out, and a
comparison between them is made.

OneProbe is the most reliable of the presented methods
and provides correct and accurate results. It was tested
on 39 systems and 35 web servers and found to be
successful [1]. However, it does not cover a wide range
of metrics. It could be promising to develop it to include
more metrics. In the future, existing methods can be

Seminar IITM SS 22,
Network Architectures and Services, November 2022 16 doi: 10.2313/NET-2022-11-1_03

further developed to overcome their limitations. Then,
attempts can be made to add more metrics from other
methods to OneProbe. In this way, a reliable method with
a wide range of metrics can be developed.

References
[1] X. Luo, E. W. Chan, and R. K. Chang, “Design and Implementation

of TCP Data Probes for Reliable and Metric-Rich Network Path
Monitoring,” in USENIX Annual Technical Conference, 2009.

[2] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “User-level
Internet Path Diagnosis,” ACM SIGOPS Operating Systems Review,
vol. 37, no. 5, pp. 106–119, 2003.

[3] S. Savage, “Sting: a TCP-based Network Measurement Tool,” in
USENIX symposium on Internet Technologies and Systems, vol. 2,
1999, pp. 7–7.

[4] J. Liu and M. Crovella, “Using Loss Pairs to Discover Network
Properties,” in Proceedings of the 1st ACM SIGCOMM Workshop
on Internet Measurement, 2001, pp. 127–138.

[5] A. Lamberti, “How to Measure Network Per-
formance: 9 Network Metrics,” https://obkio.com/
blog/how-to-measure-network-performance-metrics/
#how-to-measure-network-performance, 2022, [Online; accessed
01-April-2022].

[6] J.-C. Bolot, “End-to-End Packet Delay and Loss Behavior in the
Internet,” in Conference proceedings on Communications architec-
tures, protocols and applications, 1993, pp. 289–298.

[7] M. Luckie, Y. Hyun, and B. Huffaker, “Traceroute Probe Method
and Forward IP Path Inference,” in Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, 2008, pp. 311–
324.

[8] S. Floyd and E. Kohler, “Tools for the Evaluation of Simulation
and Testbed Scenarios,” Internet Draft: draft-irtf-tmrg-tools, Tech.
Rep., 2008.

[9] C. Parsa and J. Garcia-Luna-Aceves, “TULIP: A Link-Level Pro-
tocol for Improving TCP over Wireless Links,” in WCNC. 1999
IEEE Wireless Communications and Networking Conference (Cat.
No. 99TH8466), vol. 3. IEEE, 1999, pp. 1253–1257.

[10] A. Haeberlen, M. Dischinger, K. P. Gummadi, and S. Saroiu,
“Monarch: A Tool to Emulate Transport Protocol Flows over the
Internet at Large,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, 2006, pp. 105–118.

[11] E. W. Chan, X. Luo, W. Li, W. W. Fok, and R. K. Chang,
“Measurement of Loss Pairs in Network Paths,” in Proceedings
of the 10th ACM SIGCOMM conference on Internet measurement,
2010, pp. 88–101.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 17 doi: 10.2313/NET-2022-11-1_03

Seminar IITM SS 22,
Network Architectures and Services, November 2022 18

Accuracy Tradeoffs of Federated Learning approaches

Ilia Khitrov, Christopher Harth-Kitzerow∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ilia.khitrov@tum.de, christopher.harth-kitzerow@net.in.tum.de

Abstract—Federated Learning is a technique that implements
distributed privacy preserving machine learning principles.
The idea is useful for scenarios where data owners do not
want to reveal private data, but a model that takes into
account multiple databases is desired. However, a trade
off between accuracy and privacy is implied for such ap-
proaches. We review well known algorithms of federated
learning including Federated averaging, FedSGD, FedProx,
FedNOVA, SCAFFOLD and SecureBoost, and compare their
accuracy with each other and with a minibatch baseline.
Ranging scenarios for applications of Federated Learning
algorithms are discussed and existing theoretical advantages
and limitations are mentioned.

Index Terms—federated learning, benchmarks, accuracy

1. Introduction

We live in a data driven world where every day
enormous amounts of data are collected directly from
our mobile devices and personal computers. Analyzing
this data is a rapidly developing area both in research
and application fields widely known as machine learning
(ML). The most common techniques in ML today rely
on centralized approaches, which impose problems with
privacy in case of data leakage and can require powerful
computation units [1]. Federated Learning (FL) is an
approach that attempts to solve both of these problems
by using distributed computations and encrypted infor-
mation exchange between these units. In recent years, a
lot of research was dedicated to developing algorithms
for privacy-preserving machine learning, and FL has been
proved to be a reliable and efficient way to deal with such
challenges [2].

In this paper we will review the existing approaches
for Federated Learning, key ideas behind them, and sce-
narios in which they are the most effective, as well as
compare their performance with models trained on cen-
tralized data. We will start by introducing to the readers
the ideas behind FL approaches and categorization of such
algorithms.

2. Overview of Federated Learning

2.1. Definition of FL and notation

In a typical application scenario [1], the goal of
Federated Learning algorithm is to train a model by
collecting training information from distributed devices

without revealing actual training datasets to the organizer.
Let K be the set of data owners (clients), indexed
as k, with corresponding datasets D1, ...Dk; none
of data owners has direct access to other clients’ data.
The algorithm consists of the following basic steps [1] [2]:

1) Clients for next training iteration are selected by
the server;

2) Current machine learning model W is communi-
cated to selected clients;

3) Each client k keeps their local databases Dk

private and uses them to update weights of in-
dividual models Wk;

4) Server collects local models W1, ...Wk and ag-
gregates them to update the global model W ′.

The algorithm is visualized in a typical application
scenario by Google in Figure 1. Scenarios may differ from
the one mentioned here, e.g. direct communication and
aggregation of updated weights is possible [3]. However,
such approaches lie beyond the scope of this paper.

Figure 1: Each client’s phone personalizes the model
locally, based on their usage (A). Many users’ updates
are aggregated (B) to form a consensus change (C) to the
shared model, after which the procedure is repeated. [4]

2.2. Categorizations of FL Algorithms

Federated learning algorithms can be classified by type
of data partitioning, used machine learning model, privacy
mechanism, and communications architecture. [2]. Since
this paper is focused on accuracy trade off only first two
classifications are discussed here.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 19 doi: 10.2313/NET-2022-11-1_04

2.2.1. Data partitioning. Another study proposed
categorization of tasks for FL algorithms which is based
on data split pattern [3].
Horizontal federated learning (a), also known as
sample-based federated learning, is applicable in
scenarios where all individual datasets Dk have about
the same feature space but are different in samples. FL
systems aimed for such scenarios usually have specific
architecture in which all clients compute local gradient
and communicate it to the server for aggregation into
global model. One of the major complications here is that
real world datasets are rarely independent and identically
distributed (IID), which causes problems for aggregation
of local models [1].
Vertical federated learning (b) is applied when feature
spaces of datasets Dk overlap only a little, but the sets
of IDs overlap significantly. In this scenario various ML
algorithms proved to be effective, including statistical
analysis, gradient descent and safe linear regression [2].
Federated transfer learning (c) is applied to scenarios
when neither feature spaces nor IDs spaces of datasets
are close to each other [1]. Such algorithms require
complicated architectures and are not reviewed in this
paper.

Figure 2: Categorization of Federated Learning by data
partitioning. [5]

2.2.2. Applicable Machine Learning model. Three fam-
ilies of ML algorithms to be combined with federated
learning approaches can be considered: linear models, tree
models, neural networks (NNs) [2]. Each type of ML
model can be useful under constrains on performance
of clients’ devices, data types and distribution of data
between clients. However, NNs and some tree boosting
algorithms are more popular today [3].

3. Original Federated Learning Algorithms

3.1. Background

In 2017, McMahan et al. introduced the term Fed-
erated Learning and created two implementations that
formed the basis of the whole branch. Both of the ap-
proaches use stochastic gradient descent (SGD), as most
of successful applications of deep learning relied on this
technique at the time [6]. Minibatch SGD is used as
a reference (and baseline for benchmarks) for these al-
gorithms, since it is controlled by hyperparameters that
can be easily adopted for distributed ML techniques. The
paper proposed that a C-fraction of clients is selected on
each round t, and gradient of the loss function over the
Dk is computed. Selected clients performs E epochs of
local-update SGD with a mini-batch size B; loss function
l(w,Dk) is to be minimized. Pk denotes the index set

of samples in Dk, n being the total number of samples.
This approach is focused on non-convex neural networks
objectives, but the architecture can be applied to wider
family of ML models. These algorithms are widely used
in scenarios of horizontal federated learning [1].

3.2. The algorithms

3.2.1. FedSGD. The Federated Stochastic Gradient De-
scent (FedSGD) algorithm derives its settings from large-
batch synchronous SGD. This algorithm is referred to as
a naive approach for the FL algorithm. Proposed imple-
mentation with C = 1 (i. e. full-batch gradient descent)
and fixed learning rate η includes each client k computing
averaged gradient on Dk: gk = ∇Fk(wt), wt being the
current model, and then central server updates wt using
aggregated gradients: wt+1 ← wt − η

∑K
k=1

nk

n gk.

3.2.2. FedAvg. For Federated Averaging (FedAvg) al-
gorithm, more computation is added to each client by
iterating the local update multiple times before averag-
ing. Algorithm 1 is an exact reproduction of pseudocode
from [1]. Three parameters are controlling the amount
of computation and accuracy of the final model: selected
fraction of clients C, number of epochs E each data owner
goes through his batch to compute local gradient, and
local minibatch size B(B = ∞ indicates usage of the
whole local dataset as training dataset); the algorithm with
B = ∞ and C = 1 is the same as FedSGD described
earlier.

Algorithm 1 Federated Average, [6]

Server executes:
initialize w0

for each round t = 1, 2, ... do
m← max(C ·K, 1)
St ← (random set of m items)
for each client k ∈ St in parallel do
wkt+1 ← ClientUpdate (k,wk)

end for
wt+1 ←

∑K
k=1

nk

n w
k
t+1

end for

ClientUpdate(k,w):
B ← (split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η∇l(w, b)

end for
return w to server

end for

4. Further Improvements

Since 2017, when FedAvg was introduced, many at-
tempts to improve this algorithm were made [1].Some
of the most established approaches are mentioned in this
chapter.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 20 doi: 10.2313/NET-2022-11-1_04

4.1. FedProx

A detailed review of theFederated averaging technique
pointed out the importance and influence of number of
epochs E on the resulting performance of the algorithm
[7]. From obtaining these insights a modification of this
algorithm called FedProx was introduced. In this approach
each client minimizes approximated loss function instead
of exact one. In particular, local updated weights wkt+1 are
obtained by solving minw hk(w,wt) = l(w, b) + µ

2 ||w −
wt||2, i.e. minimizing loss function l with given batch b
so that ||w − wt||2 < ε. This is a simple way to ensure
that local updates are not too far from the global optima.
µ is another hyperparameter that has to be tuned; very
low values of µ impose almost no regularization effect,
and large values cause a drastic slowdown of convergence
rate.

4.2. SCAFFOLD

Another study introduced the algorithm SCAFFOLD
(Stochastic controlled averaging for federated learning)
which aimed to improve performance of Federated av-
eraging in case of non-IID partitioned dataset by using
variance reduction techniques [8]. Control variates are
introduced both for the server (c) and clients (ck), and
are used to determine corresponding update directions.
These variates are updated either by reuse of previously
calculated gradients or by computing values of gradients
of the local datasets on global model. First approach im-
plements idea similar to Gradient descent with momentum
and has lower computation costs, while the second tends to
be more stable. This algorithm can significantly improve
convergence rate, but communication costs are double the
costs of FedAvg because of additional control variates.

4.3. FedNOVA

The Federated normalized averaging (FedNOVA) al-
gorithm is also similar to FedAvg, but has improved
aggregation stage. In this algorithm the local updates wkt+1

are scaled in accordance with the actual volume of lo-
cally performed training, which may be different because
of time constraints combined with different computation
speeds of clients, or ranging sizes of local datasets. This
allows prioritizing better-trained local weights while keep-
ing communication costs at the same level as FedAvg and
only slightly enlarging local computation costs [9].

4.4. Worth noting

Besides algorithms reviewed here, a lot of different
federated learning approaches were introduced. Out of this
large number of algorithms we considered worth noting
the FedPAGE [10], which improves convergence rate in
both convex and non-convex settings by implementing
recent probabilistic gradient estimator instead of SGD
and FedFA [11], which aims at achieving better accuracy
and fairness in horizontal federated learning scenarios by
employing double momentum gradient and new weight
selection algorithm. We consider analyzing accuracy of
these and other algorithms as a possibility for future work.

5. Accuracy Analysis of Horizontal Feder-
ated Learning Approaches

5.1. FedAvg and FedSGD

5.1.1. Synthetic IID data. Experiments showed that
FedSGD and FedAvg can both perform well with a
wide range of ML models including multi-layer percep-
tron, convolutional NNs, two-layer character Long short-
term memory (LSTM) networks and large-scale word-
level LSTM, and FedAvg tends to reach better test ac-
curacy than FedSGD with same number of communica-
tion rounds. To give a better insight of how these FL
approaches perform, let us review benchmarks performed
on CIFAR-10 [12] with balanced and IID data partitioning
[6]. It is shown that FedAvg reaches an accuracy of
85% already after 2000 communication rounds, while
centralized SGD needs around 197500 communications
to show a similar accuracy of 86%, since communication
after every batch is assumed. However, if compared by
number of minibatch computations, SGD on united data
has better convergence, as gradient updates after each
minibatch computation (see Figure 3).

Figure 3: Comparison of accuracy on IID data [6].

5.1.2. Further evaluation. In a later study [13] bench-
mark aimed specifically for testing performance from dif-
ferent perspectives was developed. It was shown that both
these FL approaches converged towards an accuracy level
similar to that of a centralized ML model, and significantly
higher than that of the same ML model trained only on
local data; these results were obtained on IID partitioned
MNIST, FEMNIST and ColabA datasets using MLP and
LeNet ML models. For robustness evaluation the same
datasets were used, but now with non-IID partitioning
between clients; it was shown that accuracy of FL ap-
proaches drops when clients have only instances of few
classes in their training datasets, e. g. in the scenario when
training dataset was split so that each client has only one
class of samples (see Figure 4).

Theoretical analysis showed [14] that for quadratic
objectives performance of FL approaches is strictly better
then that of minibatch algorithms, and accelerated variant
is minimax optimal. For general convex objectives it is
proven that first error upper bound of FL is not worse
than that of minibatch SGD, if typical noise scaling is
applied. However, lower bound of the error of local SGD

Seminar IITM SS 22,
Network Architectures and Services, November 2022 21 doi: 10.2313/NET-2022-11-1_04

Figure 4: Comparison of accuracy on non-IID data. [13]

approach in worst-case scenario is higher than the worst-
case error of minibatch SGD.

5.2. Other Algorithms

Performance of FedAvg, FedNOVA, SCAFFOLD and
FedProx was analyzed in the setting of non-IID par-
titioned dataset [15]. This study showed that none of
mentioned algorithms dominates others, and each of them
can show outstanding performance under specific con-
strains. In case of label distribution skew or quantity
skew FedProx usually performs better than mentioned
alternatives. The accuracy of SCAFFOLD is quite un-
stable, but in some cases it can significantly outperform
other approaches.FedNOVA does not show superiority inn
analyzed scenarios, but can sometimes be slightly more
effective than other approaches. To illustrate behavior of
different approaches, their learning curves on CIFAR-10
[12] with partition in accordance with Dirichlet distribu-
tion are shown in Figure 5. We chose this dataset as it
was stated to be a challenging task for federated learning
approaches under non-IID conditions.

Figure 5: Comparison of accuracy on non-IID data from
CIFAR-10 with 100 parties, C = 0.1, Dirichlet distribu-
tion is used to simulate Label distribution skew (left) and
Quantity skew (right) [15].

6. Approaches for Vertical Federated Learn-
ing

6.1. SecureBoost

A recent study introduced a new algorithm called
SecureBoost that is aimed at vertical federated learning
[16]. This system implements federated tree-boosting ML
model in accordance with principles of FL that is lossless,
i.e. is as accurate as other non-federated tree-boosting
algorithms trained on centralized data. SecureBoost is
based on the XGBoost algorithm, which was recently
shown to be one of the most effective ways to work with
panel data [17].

6.2. SecureBoost+

Slightly modified version of this algorithm with im-
provements in performance on large and high dimensional
datasets called SecurityBoost+ was recently published
[18]. The new approach converges towards similar accu-
racy, but can be trained much faster to reach the same
classification error. The following table illustrates their
performance.

Figure 6: Area under the receiver operating characteristic
(ROC) curve for SecureBoost, SecureBoost+ and XG-
Boost on centralized data for different datasets [18].

7. Conclusion

In this paper we surveyed the literature on various
implementations of federated learning approaches and
provided information on existing benchmarks of these
algorithms, analyzing their accuracy in different scenarios.
We showed that existing implementations can demonstrate
very similar accuracy in comparison with centralized ap-
proaches while having advantages in terms of privacy,
and are guaranteed to reach the same accuracy in some
scenarios. However, some settings can impose difficulties
for such approaches, e.g. non-IID partitioned datasets held
by clients, which is quite common in real-world problems.
Depending on the scenario different approaches reviewed
in this article can show better performance, and none of
them can be considered as universally best one.

References

[1] H. B. McMahan et al., “Advances and open problems in federated
learning,” Foundations and Trends® in Machine Learning, vol. 14,
no. 1, 2021.

[2] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey
on federated learning,” Knowledge-Based Systems, vol. 216, p.
106775, 2021.

[3] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[4] “Federated learning: Collaborative machine learning without
centralized training data,” Apr 2017. [Online]. Available: https:
//ai.googleblog.com/2017/04/federated-learning-collaborative.html

[5] S. Chen, D. Xue, G. Chuai, Q. Yang, and Q. Liu, “Fl-qsar:
a federated learning based qsar prototype for collaborative drug
discovery,” 02 2020.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Artificial intelligence and statistics. PMLR,
2017, pp. 1273–1282.

[7] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and
V. Smith, “On the convergence of federated optimization in hetero-
geneous networks,” arXiv preprint arXiv:1812.06127, vol. 3, p. 3,
2018.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 22 doi: 10.2313/NET-2022-11-1_04

[8] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for feder-
ated learning,” in International Conference on Machine Learning.
PMLR, 2020, pp. 5132–5143.

[9] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling
the objective inconsistency problem in heterogeneous federated
optimization,” Advances in neural information processing systems,
vol. 33, pp. 7611–7623, 2020.

[10] H. Zhao, Z. Li, and P. Richtárik, “Fedpage: A fast local stochastic
gradient method for communication-efficient federated learning,”
arXiv preprint arXiv:2108.04755, 2021.

[11] W. Huang, T. Li, D. Wang, S. Du, and J. Zhang, “Fairness and
accuracy in federated learning,” arXiv preprint arXiv:2012.10069,
2020.

[12] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[13] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra,
“Federated learning with non-iid data,” 2018. [Online]. Available:
https://arxiv.org/abs/1806.00582

[14] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. Mcma-
han, O. Shamir, and N. Srebro, “Is local sgd better than minibatch
sgd?” in International Conference on Machine Learning. PMLR,
2020, pp. 10 334–10 343.

[15] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning
on non-iid data silos: An experimental study,” arXiv preprint
arXiv:2102.02079, 2021.

[16] K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and
Q. Yang, “Secureboost: A lossless federated learning framework,”
IEEE Intelligent Systems, vol. 36, no. 6, pp. 87–98, 2021.

[17] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not
all you need,” Information Fusion, vol. 81, pp. 84–90, 2022.

[18] W. Chen, G. Ma, T. Fan, Y. Kang, Q. Xu, and Q. Yang, “Se-
cureboost+: A high performance gradient boosting tree frame-
work for large scale vertical federated learning,” arXiv preprint
arXiv:2110.10927, 2021.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 23 doi: 10.2313/NET-2022-11-1_04

Seminar IITM SS 22,
Network Architectures and Services, November 2022 24

Survey on Scheduling Approaches in TSN

Leon Kist, Philippe Buschmann∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: leon.kist@tum.de, phil.buschmann@tum.de

Abstract—Modern concepts such as Industry 4.0 or in-
vehicular networks feature complex, interconnected systems.
These systems often depend on highly time-critical commu-
nication. One approach to provide this type of communica-
tion is supplied by Time-Sensitive Networking (TSN). TSN
is standardized in IEEE 802.1Q and encapsulates several
different mechanisms. Among these mechanisms is the Time-
Aware Shaper (TAS), which allows the creation of Time
Division Multiple Access (TDMA) schemes for traffic in the
network. However, the synthesis of these schemes entails
several problems, such as exponential computation times.
Another difficulty arises from the prioritization of traffic,
i.e., which streams to prioritize in order to maximize the
functionality of applications.

In this paper we survey two different approaches to
scheduling in TSN. The first approach leverages hierarchical
structures in factory automation networks to simplify sched-
ule creation. The second approach aims at improving the
Quality of Service (QoS) of less time-critical traffic, while still
adhering to the requirements of more time-critical traffic.
Both approaches succeed in their goals.

Index Terms—time-sensitive networking, scheduling

1. Introduction

Modern concepts such as Industry 4.0, smart factories,
and in-vehicular networks feature complex, interconnected
systems which often depend on various IoT devices and
sensors to enhance productivity and avoid errors or mal-
functions [1] [2]. In order to provide such functionality,
communication between different elements of these sys-
tems, needs to adhere to strict timing constraints or even
has to have real-time properties [3].

One approach to meet these constraints is provided
by Time-Sensitive Networking (TSN). TSN uses wired
ethernet and is standardized by the IEEE TSN task
group, which has released several standards for TSN
starting in 2012. One such standard, IEEE 802.1Qbv (now
included in IEEE 802.1Q), introduces the Time-Aware
Shaper (TAS). The TAS can be used to create a Time
Division Multiple Access (TDMA) scheme for traffic in
the network, based on a given schedule [4] [5] [3] [6].

Schedule creation for the Time-Aware Shaper how-
ever, entails a number of different problems. The creation
of schedules itself can be considered as a NP-Hard prob-
lem. The computational effort associated with creating
schedules is therefore often large. This is especially true
in many common applications where networks are large

and many streams of data are exchanged. Another issue
is the prioritization of different streams in the network.
Some components can tolerate missing communication
deadlines, while others would fail in the presence of a sin-
gle deadline-miss. In order to maximize the functionality
of applications it is necessary to avoid deadline-misses
for highly critical traffic, while still providing adequate
properties for less critical streams [3] [6].

The goal of this work is to survey different approaches
or improvements to scheduling for the Time-Aware Shaper
in TSN. To do this we will first explore some related
work in Chapter 2. Afterwards in Chapter 3 some essential
background information will be explained. Next, we will
analyze the scheduling approaches in Chapter 4. After this
in Chapter 5 we will compare the approaches. Then finally
Chapter 6 will provide some conclusions and a possible
outlook for future work.

2. Related work

As this is a survey of different, preexisting works, we
will explore some of the mentioned works in more depth
in Chapter 5. For now, we only give a short outline of the
main papers we are surveying.

In the first work we analyze Hellmanns et al. [3]
describe an hierarchical scheduling approach that exploits
common properties of Factory Automation Networks.

Second we explore a paper by Houtan et al. [6],
which seeks to improve existing scheduling approaches
in regards to the performance of less time critical best
effort (BE) traffic.

While there exist numerous other papers on scheduling
approaches or improvements thereof, we are not able to
analyze them further, due to the limited scope of this
work. Other work includes an approach by Oliver et al.
[7], which focuses on the creation of schedules using
the first-order theory of arrays. Another paper by Vlk et
al. [8], seeks to improve the performance of scheduled
traffic, as well as the creation of schedules by improving
hardware and the scheduling mechanism itself. A paper by
Syed et al., explores a Mixed-integer Programming based
approach for both scheduling and routing combined [9].

3. Background

In this chapter we provide some background informa-
tion necessary for understanding the surveyed approaches.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 25 doi: 10.2313/NET-2022-11-1_05

Queue
(traffic class 0)

Transmission Selection

Transmission
Gate

State: Open

Queue
(traffic class 7)

Transmission
Gate

State: Open

...

...

Queue
(traffic class i)

Transmission
Gate

State: Closed
...

...

Figure 1: Simplified visualization of transmission selec-
tion (based on Figure 8-14 of IEEE 802.1Q) [4]

3.1. The Time-Aware Shaper

As already mentioned, the TAS can be used to create
TDMA-schemes for traffic in a network. To achieve this,
IEEE standard 802.1Qbv specifies a gating procedure to
restrict the amount of traffic forwardable by a switch at
each point in time [3] [6].

To understand this mechanism, it is necessary to first
explore transmission selection in TSN capable switches
(as specified by IEEE 802.1Q). Such switches possess be-
tween 1 and 8 separate queues for each of its egress ports
(transmission selection happens separately for each egress
port). Each queue corresponds to a traffic class. Traf-
fic classes are categorizations assigned to frames/streams
based on their priority. Frames are chosen for transmission
based on traffic class and transmission selection algo-
rithms supported by the queues [4].

The gating mechanism introduced by IEEE 802.1Qbv
now specifies an additional Transmission Gate for each
queue. This gate can either be Open or Closed. If the
Transmission Gate for a queue is closed, then frames
of that queue are ineligible for transmission selection. A
simplified version of this is illustrated in Figure 1.

The state for each gate is controlled by the so called
Gate Control List (GCL). The GCL is an ordered list
of Gate Operations. Each Gate Operation consists of a
vector specifying the state for all gates and a time interval
specifying how long the state should persist. The sum of
all such time intervals is referred to as network cycle. All
egress ports cycle over a separate GCL. Schedule synthe-
sis effectively corresponds to the creation of Gate Control
Lists. Suitable timing allows not only for scheduling on
traffic class level, but also on stream-level [5] [3].

3.2. Schedule Creation

Approaches for schedule creation can generally be dis-
tinguished into two distinct groups: exact approaches and
heuristic approaches Exact approaches calculate solutions
with provable properties, such as optimality or satisfiabil-
ity. These approaches are often based on mathematical
methods, like Integer Linear Programming, Satisfiability
Modulo Theories (SMT), or Optimization Modulo Theo-
ries (OMT) [3] [6].

While the calculation of exact results can be ad-
vantageous, it is generally a NP-Hard problem. Using
mathematical methods can therefore cause issues, such
as very high resource consumption or exponentially long

computation times. This is especially problematic when
calculating schedules for larger networks [3] [6].

To avoid these problems, it is also possible to use
heuristic approaches. Heuristic approaches forgo the cal-
culation of provably optimal solutions in favor of an
optimized calculation duration [3] [6].

4. Analysis

In this chapter we analyze the previously mentioned
surveyed work. First, we explore the hierarchical approach
proposed by Hellmans et. al [3]. After this we dive into
improvements to the performance of Best-effort (BE) traf-
fic introduced by Houtan et al. [6].

4.1. Hierarchical Approach

As already noted, the creation of schedules can be
computationally intensive. This is especially true for large
networks or networks where a large amount of different
data-flows are exchanged. In order to reduce this overhead,
Hellmans et al. propose a scheduling approach lever-
aging the hierarchical structure of Factory Automation
Networks [3].

4.1.1. Terminology and Network Characteristics. Be-
fore we elaborate on the actual scheduling approach pro-
posed in [3], we need to explain some specific terminology
and assumptions about the network.

The first term we define is stream isolation. This
refers to scheduling where each stream is assigned a
specific (separate) time slot in the created TDMA-scheme.
In contrast, stream batching refers to scheduling where
multiple streams share a single time slot.

Next we briefly explain certain characteristics of fac-
tory automation networks as used in e.g., smart factories
[10]. Such networks are hierarchical in nature and can
therefore be divided into several sub-networks. These sub-
networks are connected by boundary switches.

Based on [11] and [3] we differentiate between several
types of traffic, each with unique deadline/latency require-
ments. However, to understand this work it is mostly
important to understand that such types exist. The only
type we need to elaborate on in a more detailed manner is
isochronous traffic. This type of traffic has strict deadline
requirements and occurs periodically. The exact timing
of when an isochronous stream is sent is chosen during
design time. All other traffic types have less strict timing
requirements.

We can distinguish two types of streams of
isochronous traffic: intra-level streams (within a sub-
network) and inter-level streams (between sub-networks).
We assume that intra-level streams have even stricter
timing constraints than inter-level streams [3].

4.1.2. Approach. Now that the necessary terminology
and network characteristics have been explained, we can
explore the scheduling approach. This approach envelopes
two separate parts: (1) a phase model which isolates the
different types of traffic in the network and (2) a schedule
creation mechanism for isochronous traffic [3].

The phase model essentially divides the network cycle
into separate cycle phases. Each cycle phase is assigned to

Seminar IITM SS 22,
Network Architectures and Services, November 2022 26 doi: 10.2313/NET-2022-11-1_05

a traffic type. This cycle phase is then exclusively reserved
to this single traffic type. Scheduling happens separately
for each cycle phase. This simplifies scheduling, as sched-
ulers only ever have to consider one type of traffic at
a time. It also allows the usage of different scheduling
mechanisms for different types of traffic [3].

The schedule creation mechanism for isochronous
traffic consists of two stages executed in the following
order: 1) intra-level scheduling (intra LS) and 2) inter-
level scheduling (inter LS). Separating the traffic in such
a manner is possible due to the hierarchical nature of
factory automation networks, as well as the differences in
timing constraints between intra-level streams and inter-
level streams. Both phases are visualized in Figure 2.

Stage 1): Intra LS creates a separate schedule for each
machine ring sub-network. This drastically reduces the
complexity of schedule synthesis. Schedules incorporate
both intra-level streams and inter-level streams. However,
inter-level streams are only forwarded to their respec-
tive boundary router (on the local ring) in this stage.
There they are queued until the second stage. Intra LS
uses stream-isolation to accommodate the strict timing
requirements of intra-level streams. Any of the previously
mentioned schedule creation approaches (e.g., heuristic,
SMT, OMT) can be used in this stage.

Stage 2): Inter LS is used to create schedules for inter-
level streams (which are buffered at their boundary routers
after the first stage). However, in contrast to stage 1),
stream-batching is used instead of stream-isolation. All
streams queued at a boundary router after stage 1) are
grouped together. Schedule creation itself does not use
any of the previously mentioned approaches. Instead, the
forwarding of all isochronous traffic is simulated, as if
there was no scheduling (i.e., all gates for isochronous
traffic are open). The simulation then determines for how
long each gate has to be open. After all gates are closed
the cycle phase for isochronous traffic can end. As there is
no other traffic in the network during stage 2) (due to the
phase model), the simulation should be able to accurately
predict forwarding in the network.

It is important to note, that should stage 2) detect a
deadline failure, it has few mechanisms to prevent this.
The only possible recourse is to try and manipulate the
arrival time of said stream at the boundary switch in stage
1) to gain an advantageous position in the queue of the
switch. However, as it is assumed that inter-level streams
are less time-critical, no detailed strategy is presented [3].

4.2. QoS Improvements

As already mentioned, TSN can be used to guarantee
the timing requirements of time-critical traffic in networks.
However most networks also feature less (or non) time-
critical traffic. While delaying this traffic might not be
as detrimental to the application, as delaying highly time-
critical traffic, it can still affect its performance negatively.
This approach therefore aims to improve the Quality-of-
Service (QoS) of less time-critical BE traffic, while still
guaranteeing the deadlines of time-critical streams [6].

4.2.1. Terminology and OMT. Before we can explore
the actual approach, we once again need to define some
terminology.

(a) Phase 1): Intra LS

(b) Phase 2): Inter LS

Figure 2: Visualization of phases in the heuristic approach
for a simple network

ST ST

Time0

ST

T1 T2 T3 T4 T5 T6

Figure 3: Visualization of slack (in blue) based on [6]

As in the previous approach we need to differentiate
between multiple types of traffic in the network. However,
for this approach we only need to distinguish highly time-
critical scheduled traffic (ST) and less time-critical BE
traffic.

This approach uses the previously mentioned OMT,
and can therefore be classified as an exact approach.
OMT allows the scheduling problem to be expressed as a
constrained optimization problem. This problem can then
be solved using SMT/OMT solvers [6]. The approach
seeks to improve a previous approach by Craciunas et al.
proposed in [12].

4.2.2. Approach. To accommodate BE frames, the con-
cept of slack is introduced. Slack describes a time interval
after a ST frame is sent in which no other ST frame can
be sent. This time may then be used for BE frames. This
is visualized in Figure 3 This approach essentially aims to
find feasible schedules for ST traffic, while still guaran-
teeing a certain slack. In order to achieve this, several new
constraints and objective functions are introduced. As the
scope of this work is quite limited, we will only explain
their objective and effects. For a more detailed view, we
refer to [6].

To optimize QoS of BE traffic, the approach introduces
four new constraints.

The porous link constraint is a modification of the link
constraint introduced in [12]. The original constraint had
the purpose of preventing temporal overlap of frames on
the same link, i.e., two frames being sent at the same time.
This modified version also incorporates slack, it therefore

Seminar IITM SS 22,
Network Architectures and Services, November 2022 27 doi: 10.2313/NET-2022-11-1_05

disallows overlap of ST frames with previous ST frames
and their associated slack.

The slack size constraint has the purpose of defining
the acceptable slack size for each frame.

The hop slacks constraint encompasses several equa-
tions, which ensure that the total amount of slack on a
link is within acceptable bounds.

The equal slack constraint is optional. Its purpose is
to enforce equal slack sizes for all frames on one link.
This can be used to improve the optimization time, as it
limits the amount of eligible ST schedules [6].

In addition to these new constraints, three new objec-
tive functions are introduced.

In previous work a minimization objective function
is used. This function minimizes the total offset of ST
streams. Therefore, schedules created using this function
(subject to the preexisting constraints mentioned), feature
all ST traffic right in its beginning. This can be detrimental
to BE traffic in the network.

The first objective function introduced is the maxi-
mization function. In contrast to the minimization function,
the maximization function, puts all ST frame transmissions
as close to their deadlines as possible. All deadlines are
therefore still guaranteed, however BE traffic can (depend-
ing on the amount of ST frames) be scheduled much
earlier (in many cases). This function does not use the
notion of slack and is therefore still only subject to the
preexisting constraints.

The sparse schedule objective function aims to maxi-
mize the total amount of slack on each link. Schedules
created by this function distribute ST frames sparsely,
with gaps (slack) in between for BE traffic. This function
is subject to both the preexisting and newly introduced
constraints (without the equal slack constraint).

The evenly sparse schedule objective function is essen-
tially the same as the sparse schedule objective function,
however it is also subject to the equal slack constraint.
This leads to the creation of schedules with an even dis-
tribution of ST frames. Gaps (slacks) between ST frames
are of the same length.

Using the sparse schedule function or the evenly
sparse schedule function has the advantage of avoiding
long queueing times for BE frames, as well as reducing
the search space, which can lead to faster computation
times [6].

5. Evaluation

This chapter is dedicated to the evaluation of the intro-
duced approaches. First, we discuss the results achieved
by the two approaches. Afterwards we assess their com-
patibility.

5.1. Results

In this section we present and compare the results
measured in both papers.

5.1.1. Hierarchical Approach. To evaluate the effective-
ness of their approach, Hellmans et al. compare the per-
formance of their approach to that of a (heuristic) global
1-stage approach. The same approach is used for intra

LS in the hierarchical approach. The following metrics
are evaluated: execution time, cycle phase duration, and
the average number of GCL entries per port. Each metric
is evaluated for a variety of topologies using different
amounts of sub-networks and sub-network sizes. The
amount of streams in the network is varied as well.

The impact of different topologies is minor compared
to that of the number of streams in the network. Regarding
cycle phase length, both approaches perform about the
same with slightly shorter (<0.1ms) cycle phases using
the global approach. The amount of GCL entries is com-
parable for both approaches when fewer streams are in
the network (≤500). When more streams are present, the
hierarchical approach significantly outperforms the global
approach, up to a factor of four. This is because the global
approach requires two entries per hop, per stream. The
hierarchical approach acts similarly in stage 1), but only
requires two additional entries in stage 2). The largest
difference occurs when comparing the execution times.
Similarly to the GCL lengths, the execution times are
comparable for fewer streams (≤100), with the global
approach even outperforming the hierarchical approach.
This is due to the overhead caused by the increased
number of calls to the scheduler in stage 1. However,
for more streams the global approach is outperformed
up to a factor of more than 100. For more than 1250
streams, the global approach is unable to find a solution
(even after more than 200h), due to insufficient hardware
capabilities [3].

5.1.2. QoS Improvements. To evaluate their results,
Houtan et al. simulate a network with six end stations,
two connected TSN switches and ten streams. Streams
have varying probabilities to be ST or BE. To measure the
QoS of BE streams, the end-to-end delay of BE streams,
deadline misses (for BE streams), as well as execution
time (of schedule synthesis) were chosen.

Regarding end-to-end delay, the minimization function
performs the worst out of all four functions. The sparse
schedule function and evenly sparse schedule function per-
form about the same. The maximization function performs
the best out of all objective functions. This remains true
across all scenarios. The maximization function outper-
forms the other functions, since it schedules ST traffic as
late as possible. This allows BE traffic to be scheduled
earlier, thereby decreasing its end-to-end delay. Weak-
nesses of the maximization function reveal themselves
when looking at deadline misses. Here the maximization
function, as well as the minimization function produced
significant amounts of deadline misses for one of the
tested scenarios. Both the sparse schedule function and
evenly sparse schedule function produce virtually no dead-
line misses in any of the scenarios. The sparse schedule
function and evenly sparse schedule function also per-
form the best regarding execution time. The minimization
function performs significantly worse than either of the
previously mentioned functions. The performance of the
maximization function varies depending on the amount
of ST streams in the network. The more ST streams
are present, the worse its performance becomes. In the
presence of large amounts of ST streams, the maximization
function is significantly outperformed by the minimization
function [6].

Seminar IITM SS 22,
Network Architectures and Services, November 2022 28 doi: 10.2313/NET-2022-11-1_05

5.1.3. Comparison. Both approaches have quite different
objectives and mechanisms. This, in conjunction with the
vastly different network topologies used for their mea-
surements, make a comparison between the results of
the approaches quite difficult. The only metric measured
for both approaches is execution time. Both approaches
succeed in significantly improving the schedule creation
time, under the right circumstances. For the heuristic
approach, these improvements depend on the amount of
streams in the network. Only in the presence of more
than 100 streams, does the hierarchical approach provide
significant improvements. However, the more streams are
present, the larger the improvements. The global approach
in turn is only measured for a fairly small network with
few streams. However here it manages to significantly
improve the execution time [3] [6].

We can therefore conclude that for small networks or
networks with few streams (≤100) the global approach
would yield larger performance improvements. For net-
works with a great number of streams (>100) however,
the hierarchical approach is likely to achieve greater im-
provements. In networks with more than 1250 streams it
is possible that a hierarchical approach is the only feasible
solution (depending on the existing hardware).

5.2. Compatibility

The first scheduling approach introduced divides the
network cycle into several different phases for each type
of traffic. Scheduling is done for each type of traffic
separately. In contrast, the second approach aims at find-
ing a unified schedule for all traffic combined. As the
first approach requires separation of traffic types and the
second approach requires knowledge about all traffic, a
direct combination of both approaches seems infeasible.
However the notion of leveraging hierarchical structures in
the network itself and using a multi-stage approach could
be used for multiple types of traffic combined. In a setup
like this, something akin to the second approach might be
applicable.

6. Conclusion and Future Work

In this survey we look at two very different approaches
to improve scheduling for TSN. The first approach we
survey aims to utilize hierarchical characteristics of the
network to improve scheduling. The second approach tries
to improve the performance of less time-critical traffic
by better utilizing the deadlines of more critical traffic.
Both approaches succeed in improving different aspects
of scheduling.

Looking at the hierarchical approach, we are able
to see that leveraging characteristics of certain types of
networks allows for significant improvements to schedul-
ing. Determining and utilizing such characteristics could
provide an excellent avenue for future work.

Another interesting approach might be to combine the
introduced hierarchical, multi-stage approach with other
approaches in order to explore their compatibility.

From the improvements to QoS of less time-critical
traffic we can see that synthesizing feasible schedules for
highly time-critical traffic is possible, even in the pres-
ence of other objectives. It might therefore also be worth

investigating if there are issues with other scheduling
approaches which can be mitigated or solved like this.

References

[1] “What is Industry 4.0?” https://www.ibm.com/topics/industry-4-0,
[Online; accessed 21-March-2022].

[2] W. Zhou and Z. Li, “Implementation and Evaluation of SMT-
based Real-time Communication Scheduling for IEEE 802.1Qbv
in Next-generation in-vehicle network,” in 2020 2nd International
Conference on Information Technology and Computer Application
(ITCA), 2020, pp. 457–461.

[3] D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer,
and F. Dürr, “Scaling TSN Scheduling for Factory Automation
Networks,” in 2020 16th IEEE International Conference on Factory
Communication Systems (WFCS), 2020, pp. 1–8.

[4] “IEEE Standard for Local and Metropolitan Area Network–Bridges
and Bridged Networks,” IEEE Std 802.1Q-2018 (Revision of IEEE
Std 802.1Q-2014), pp. 1–1993, 2018.

[5] “IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks - Amendment 25: Enhancements
for Scheduled Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to
IEEE Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015,
IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-
2015), pp. 1–57, 2016.

[6] B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjödin, and
S. Mubeen, “Synthesising Schedules to Improve QoS of Best-
Effort Traffic in TSN Networks,” in 29th International Conference
on Real-Time Networks and Systems, ser. RTNS’2021. New York,
NY, USA: Association for Computing Machinery, 2021, p. 68–77.
[Online]. Available: https://doi.org/10.1145/3453417.3453423

[7] R. Serna Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1Qbv
Gate Control List Synthesis Using Array Theory Encoding,” in
2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2018, pp. 13–24.

[8] M. Vlk, Z. Hanzálek, K. Brejchová, S. Tang, S. Bhattacharjee,
and S. Fu, “Enhancing Schedulability and Throughput of Time-
Triggered Traffic in IEEE 802.1Qbv Time-Sensitive Networks,”
IEEE Transactions on Communications, vol. 68, no. 11, pp. 7023–
7038, 2020.

[9] A. A. Syed, S. Ayaz, T. Leinmüller, and M. Chandra, “MIP-
based Joint Scheduling and Routing with Load Balancing for TSN
based In-vehicle Networks,” in 2020 IEEE Vehicular Networking
Conference (VNC), 2020, pp. 1–7.

[10] “What is Factory Automation and what are the benefits for
today’s IoT enterprises?” https://www.cassianetworks.com/blog/
factoryautomation/, [Online; accessed 15-May-2022].

[11] “Time Sensitive Networks for Flexible Manufacturing
Testbed - Description of Converged Traffic Types,”
https://hub.iiconsortium.org/tsn-converged-traffic-types, [Online;
accessed 29-March-2022].

[12] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner,
“Scheduling Real-Time Communication in IEEE 802.1Qbv Time
Sensitive Networks,” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, ser. RTNS ’16.
New York, NY, USA: Association for Computing Machinery,
2016, p. 183–192. [Online]. Available: https://doi.org/10.1145/
2997465.2997470

Seminar IITM SS 22,
Network Architectures and Services, November 2022 29 doi: 10.2313/NET-2022-11-1_05

Seminar IITM SS 22,
Network Architectures and Services, November 2022 30

A Short Introduction To MASCOT:
Faster Malicious Arithmetic Secure Computation with Oblivious Transfer

Florian Raabe, Christopher Harth-Kitzerow∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: florian.raabe@tum.de, christopher.harth-kitzerow@tum.de

Abstract—The MASCOT protocol allows a secure multiparty
computation of arithmetic circuits over a finite field. Using
oblivious transfer in an arithmetic context, it creates mul-
tiplication triples which are used to compute products of
additively secret-shared values. The expensive computation
to securely generate these triples is done in a preprocess-
ing phase. After a one-time setup, the protocol is based
entirely on fast, symmetric cryptography. By making use
of efficient oblivious transfer extensions, the total cost for
multiplications is reduced. With careful consistency checks
and other techniques for privacy amplification MASCOT
achieves active security. It considers a dishonest majority
where any number of parties can act actively maliciously.

Index Terms—multiparty computation; oblivious transfer

1. Introduction

Secure Multiparty Computation (MPC) is a
cryptographic method to jointly evaluate a function
on private inputs without revealing those to the other
parties. To realize this functionality, one approach is
to secret-share input values between all parties. Most
protocols use a linear secret-sharing scheme which allows
the local addition and subtraction of shares. The parties
obtain a share of the corresponding operation on the
secrets. A simple example is the additive secret-sharing
scheme. To secret-share a value s between n parties, a
tuple (s1, ..., sn) is sampled uniformly random so that
s1 + ... + sn = s. In order to compute every function in
a field on these secret shares, multiplication is needed.

The Malicious Arithmetic Secure Computation
with Oblivious Transfer protocol by Marcel Keller,
Emmanuela Orsini and Peter Scholl [1] also makes use
of additive sharing. It allows for efficient and secure
computation of general arithmetic circuits using almost
exclusively fast, symmetric cryptography. The advantage
of arithmetic circuits over Boolean circuits is that secure
addition can be done locally, thus not requiring any
communication.

MASCOT is the first protocol to use oblivious
transfer with a dishonest majority setting to generate
multiplication triples in any sufficiently large field. It
works with n parties and considers a corruption of up
to n − 1 active malicious adversaries. The adversary is
considered to be static, meaning that corruption can only
take place before a protocol starts.

The MASCOT protocol achieves this through simple
consistency checks and privacy amplification techniques
which will be introduced in the following section.

2. Preliminaries

The main task in preparing the MPC protocol is the
creation of multiplication triples. These are additive secret
sharings of tuples (a, b, a · b, a ·∆, b ·∆, a · b ·∆) where
a, b are random values used for the multiplication and ∆
is a secret-shared random global MAC key. To generate a
triple, the shares for a, b and ∆ can be chosen randomly
by each party. How secret sharings of the products are
created will be shown in Section 3.

2.1. Information-theoretic MACs

Message authentication codes (MACs) are short tags
used to confirm the authenticity of a message or its sender.
For this, strong universal functions can be used. In this
context, information-theoretic refers to the security aspect
of the MAC. Perfect security can never be achieved since
the adversary can always guess a random tag. This is why
the probability to find a valid tag should be 1

2|n| for n-bit
fields [2]. In this protocol, a secret value x is represented
by

JxK = (x(1), ..., x(n),m(1), ...,m(n),∆(1), ...,∆(n)).

Each party Pi holds a random share x(i), a random MAC
share m(i) and a share of the fixed MAC key ∆(i), such
that the MAC relation m = x · ∆ holds. J.K denotes
the linear authenticated secret sharing scheme. To open
a value, all parties broadcast their shares to one party
which adds them together and publishes the result x. All
parties then check the MAC by committing and opening
m(i)−x·∆(i). These shares then need to sum up to zero in
order for the check to pass. To increase efficiency, random
linear combinations of the MACs can also be checked.

2.2. Oblivious Transfer

1-out-of-2 Oblivious Transfer (OT) is a protocol be-
tween two parties. The sender transmits two messages
from which only one will be received. This is decided
by the receiver with a choice bit. However, it remains
oblivious to the sender which message was received.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 31 doi: 10.2313/NET-2022-11-1_06

Most existing protocols require public-key cryptography
to implement this functionality. The MASCOT protocol
uses the concept of OT extensions from Beaver intro-
duced in 1996 [3]. A single oblivious transfer is used in
combination with a seed as an initialization. From this
point on many OTs can be generated with cheap, sym-
metric primitives. New correlated values can be created
by using a generator function and adjusting the output of
the receiver. In MASCOT, this is realized with the COPE
protocol which will be explained later in Section 3.1. A
consistency check in form of a sacrifice is used to make
it maliciously secure.

2.3. Sacrificing technique

To ensure the correctness of a secret-shared value, a
correlated shared value can be used. The share of a that
should be checked is masked with the other secret-shared
value â by computing p = s · a− â where s is a random.
The resulting share p is then opened and can be checked
by all parties using their part of the global MAC key.
To check a triple, another share is computed shown in 1
which has to open to zero. Note that c = a · b and ĉ is
the correlated value. By this, some bits of the correlated
value might be leaked if the adversary input inconsistent
values to one of the OTs.

s · c(i) − ĉ(i) − b(i) · p (1)

3. Preparation Phase

To obtain an actively secure product-sharing protocol,
MASCOT improves the passively secure protocol of
Gilboa [4]. The basic concept of this is to run OT
instances between every pair of parties so that every
party has a share of the products in the triple. A k-bit
field element is split into bits, hence k oblivious transfers
are used. Still, malicious parties can provide inconsistent
inputs which will lead to potentially incorrect results
when the generated triples are used. In order to prevent
this, two strategies are used.

First of all, the correctness of the products in the MAC
generation has to be ensured. Therefore, random linear
combinations of the MACs are checked immediately
after the creation as well as later when opening values.
Secondly, to verify the correctness of the multiplication
triples a standard sacrifice technique is used where a
pair of triples is checked in order to use one securely.
Furthermore, the privacy of a triple can be assured by
producing several triples and taking random combinations
to get a uniformly random triple. These strategies are
realized by differnet subprotocols shown in Figure 1.

Figure 1: Dependency among subprotocols

3.1. Correlated Oblivious Product Evaluation

To obtain an additive sharing, the MASCOT protocol
uses an arithmetic generalization of the passively secure
OT extension of Ishai et al. [5]. The correlated oblivious
product evaluation (COPE) transforms the multiplication
x · ∆ where ∆ is fixed at the start of the protocol and
future iterations can create sharings for different values
of x. The foundation of the COPE protocol is Gilboa’s
method for oblivious product evaluation.

Oblivious Product Evaluation. The concept of oblivious
product evaluation (OPE) uses k sets of oblivious
transfers on k-bit strings to obtain an additive sharing of
the product. Let us assume PA is the sender and PB is
the receiver. Now, PA samples a random value ti in each
iteration and inputs the correlated value ti + a where a
is the sender’s input. In every OT the receiver PB inputs
one bit of their secret value. From this follows the output
PB receives in every ith iteration: qi = ti+bi ∗a. Finally,
both parties compute the inner product of their values
(qi)i and (−ti)i to obtain q and t for which it holds that
q + t = x ·∆.

COPE. The MASCOT protocol now optimizes this
functionality of OPE to perform the OTs only once.
Therefore, the COPE protocol is initialized at the
beginning by calling the Initialize command. Because
one party’s input is still fixed, the receiver simply inputs
their bits of ∆. On the other hand, the sender now does
not input their secret but k pairs of random λ-bit seeds.
In this case, λ is the computational security parameter
and k = logb|F|c the number of bits in the field.

Secondly, the protocol provides the Extend command
which expands the original seed using a pseudo random
function (PRF). This creates k bits of new, random OTs
while still remaining the same receiver choice bits. To
realize this, PA uses both seeds in combination with a
counter as input for the PRF to create new random seeds.
Now a correlation between these outputs is created using
the secret input of the sender. This masked correlation is
sent to PB who uses it to adjust their PRF output. Finally,
both parties have k correlated OTs on field elements.
These are then mapped into a single field element to
obtain an additive sharing again.

If both parties follow the protocol, they gain an
additive sharing of the multiplication. However, because
the MASCOT protocol assures security against an active
adversary, it has to be considered what happens if
parties do not follow the protocol. Since the input of the
receiving party is fixed at the start of the protocol and PB
sends no messages afterwards, there is no possibility to
deviate from the protocol. Nevertheless, the sending party
might use different input values in the extend phase. This
is not considered a security issue because the seeds are
uniformly random and the input will later be checked.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 32 doi: 10.2313/NET-2022-11-1_06

3.2. Authentication with COPE

As shown in Figure 1, the functionality of the COPE
protocol is used to create authenticated shares. Further-
more, it is used to securely open linear combinations with
a MAC checking procedure. The main goal is to prevent
the adversary from inputting errors in COPE and opening
an authenticated share to the incorrect value. The protocol
maintains a dictionary of the authenticated values and
includes five commands shown in Figure 2.

Input: takes a list of values x1, ..., xl from one
party and stores them with identifiers.
LinComb: computes linear functions on values
that have been input.
Open: reassembles a secret-shared value and
outputs it to all parties.
Check: verifies the correctness of a value that
was output by an adversary.
Abort: terminates the protocol and informs
all parties, that it failed.

Figure 2: List of commands

In this functionality, the value which was opened
might be incorrect. The Check command will confirm
this. To check a MAC, the party Pi inputs an opened
value y, a MAC share m(i) and a MAC key share ∆(i).
Next, they compute σ = m(i) − y · ∆(i), commit and
open it. If σ(1) + ... + σ(n) = 0 they continue and the
opened value is correct. Otherwise, they abort.

Using the correlated oblivious product evaluation
protocol to create authenticated sharings is not enough to
ensure active security. To simplify, let us consider a model
with only two parties P1 and P2. In this scenario, P1 is
honest and wants to authenticate its input x. Therefore,
they initialize the COPE protocol and P1 inputs x in the
extend phase. P2 inputs its MAC key share ∆2. They
receive t and q so that t + q = x · ∆2. Following both
parties define MAC shares m1 = x ·∆1 + t and m2 = q
so that clearly m1 +m2 = x ·∆. To create shares of x, P1

simply generates random additive shares and sends one
to P2. Because the shares and the MACs are linear, both
parties can compute linear combinations on authenticated
values locally.

Although this is passively secure, if P1 is actively
malicious, it can choose what value to open at the time of
opening a value. The party is not committed to opening a
particular value and therefore it is not a secure realization
of the functionality. To solve this problem, it suffices to
authenticate another random value and check a random
linear combination of all MACs during the input phase.
This requires two changes in the Input stage. P1 samples
a random dummy input x0 and authenticates it with the
other inputs. In addition to this, after computing the
MACs using the COPE protocol, P1 opens a random
linear combination of the inputs x0, ..., xl and the MAC
is checked by all parties. x0 masks the actual inputs.
Hence, P1 cannot later open to a different value and is
committed to their inputs during the Input stage.

Even though the secret values are masked, only
random combinations of inputs can be checked. This
could be used as an advantage because the check just
relates to the randomly weighted sum of the vectors.
With a probability of 1

|F| there is one bit in the input
vector that does not affect the MAC check. This results in
two different vectors and the adversary could decide later
which value to open. This can be neglected depending
on the security parameter in which the subtrahend comes
from the number of possible pairs where the bits are
different. The protocol still securely implements the
functionality with a statistical security parameter of
log |F| − 2 log log |F|. Note that a repeated check can
ensure statistical security of log |F|.

Finally, the protocol can easily be extended to the use
with n parties. When a party Pj inputs a value, they run
COPE with every other party Pi 6= Pj . Naturally, they
provide their MAC key share ∆(i) as input. This allows
Pj to obtain an authenticated share under the global MAC
key ∆ = ∆1 + ...+ ∆n. Through this, more possibilities
emerge where a corrupted party might cheat and devi-
ate from the protocol. They could for example provide
inconsistent x’s or use an incorrect share of ∆ when
authenticating other parties input. This is not problematic
because except with a probability of 1

|F| the MAC check
will fail in the Input stage if this happens.

3.3. Generation of Multiplication Triples

The functionality described before is now being used
to generate multiplication triples. In more detail, a triple
(a, b, c) with b ∈ F and a, c ∈ Fτ will be created. For
k-bit statistical security in a k-bit field, it is sufficient to
use τ = 4. Note that τ = 3 suffices for k

2 -bit statistical
security. This is due to the probability of passing the
sacrifice check and the probability of distinguishing the
output distribution from random. By multiplying these
the number of triples that have to be combined can be
determined to implement the protocol with the according
statistical security parameter.

To guarantee the randomness of b, it can be checked
with a sacrifice. However, this may leak some bits of a
if a malicious party used inconsistent inputs in some of
the OTs before. This is the reason why inner products
are used. All parties sample a random value r ∈ Fτ and
obtain the triple (a, b, c) with a = 〈a, r〉 and c = 〈c, r〉.
This ensures that any leaking bits of a are combined with
not leaking bits so a appears uniformly random. The
same applies to c. Since b is checked with a sacrifice, a
second triple needs to be generated. Instead of repeating
this step, another random r can be sampled and used to
create a correlated triple with the same b.

The triple generation protocol realizes this optimized
idea. It starts with the Multiply step which uses random
oblivious transfer (ROT) to compute a secret sharing of
the product a · b. This is done by each pair of parties
running τ copies of the basic two-party product sharing
protocol. To clarify, for each finally created triple there
are τ triples generated which will be combined to one.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 33 doi: 10.2313/NET-2022-11-1_06

In this step a corrupt party might guess some bits of a,
that is why τ components of a are used instead of only
one. Since b is already uniformly random, no privacy
amplification is needed here. Afterwards, each party
sums up their shares to obtain an additively shared triple
which can be incorrect if a malicious party was dishonest.

In the next step, the Combine step, the parties take
random linear combinations of the τ components and
two randomly sampled values r, r̂ ∈ Fτ . Thereby, they
obtain the two triples where one will be sacrificed later.
Following the Authenticate step adds MACs to both
triples. Because the b is included in both triples, only five
values need to be authenticated. Lastly, the correctness of
one triple is checked in the Sacrifice step. Therefore, all
parties first sample a random value s. They then locally
compute and open JpK = s · JaK − JâK. In this context,
J.K is used to describe a share. With this, they are able to
compute the left side of 2 because it is linear. By inserting
p and transforming it comes clear that it needs to open up
to zero in order for the triples to be correct.

s · JcK− JĉK− JbK · p = Js · (c− a · b) + (â · b− ĉ)K (2)

With this protocol, the adversary has no chance to
cheat. Starting with the Multiply stage, any nonzero
errors will be detected by the share of the random
honest party. This results in an incorrect triple with a
high probability. Another approach for the adversary
is to guess some bits of a. If all guesses succeed, the
triple can be correct and will pass the sacrifice. Thus
the adversary learns the bits that were guessed which is
called a selective failure attack. However, this is made
more difficult by the Combine step. To guess a single bit
of the final computed share of a, they must guess many
bits of the initially generated a which is very unlikely
to happen. Finally, the Sacrifice stage checks the triple
with a random value which is unknown when the triples
are authenticated. Therefore, it can only pass with a
probability of 1

|F| if the triple is incorrect.

Complete preprocessing. By securely generating triples,
the main goal of the preprocessing stage was achieved
with this protocol. In addition to this, it should also pro-
duce random shared values to allow the parties to provide
inputs in the online phase. The party simply creates an
authenticated additive share of a random value. When
later inputting a value, the party broadcasts the difference
between the input and the random shared value so that the
other parties can adjust their share.

4. Online Phase

The online phase of the MASCOT protocol is
quite forward. To share an input x, the party takes a
preprocessed random value JrK and computes x− r. The
random value works as a one-time pad and perfectly
masks the secret input since it is unknown. After
broadcasting the result, all parties compute JrK + (x− r)
to obtain a share of x.

The multiplication is based on Beaver’s circuit ran-
domization technique. Using the multiplication triple
(a, b, c) it is straightforward to multiply two secret-shared
values JxK and JyK. For this the values ε = x − a and
ρ = y − b are computed and opened, where the triple
masks the input perfectly as it is uniformly random. Now
the sharing of x · y can be computed locally with:

JzK = JcK + ε · JbK + ρ · JaK + ε · ρ
To output a share, all previously opened input values

are checked. Then the share is opened and verified through
the check. If any check fails, the protocol aborts and
informs all parties that no value could be computed.
Since most computation was moved to the preparation
phase, the amount of communication in the online phase
is quite small. The only values sent in this phase of
the protocol are masked openings for multiplications and
outputs. Compared to other implementations, the time for
a single multiplication is 200 times faster [1].

5. Conclusion

MASCOT makes faster secure computation of
general arithmetic circuits possible. By computing the
multiplication triples in the preprocessing phase it allows
for a fast online phase without heavy computation.
Moreover, through the arithmetic view of oblivious
transfer, the COPE protocol succeeds to create sharings
of products for the triples. Their generation is based on
oblivious transfer extensions where OTs can be realized
with fast, symmetric cryptography after a one-time
setup. In combination with information-theoretic MACs,
it authenticates the triples immediately after creation
and when later opening values. By sacrificing another
triple the correctness of the multiplication triple is
verified. Through the consistency checks and with the
sacrifice technique it achieves active security against up
to n−1 corrupted parties considering a dishonest majority.

In conclusion, the MASCOT protocol improves the
SPDZ protocol in the preprocessing phase. Through the
reduced computation and communication, it is applicable
in the real world by still ensuring active security. It is the
first protocol that is making use of oblivious transfer to
generate the multiplication triples.

References

[1] M. Keller, E. Orsini, and P. Scholl, “Mascot: Faster malicious
arithmetic secure computation with oblivious transfer,” https://eprint.
iacr.org/2016/505.pdf, 2016, [Online; accessed 07-April-2022].

[2] P. K. Madhusudan L, “Information-theoretic macs,” https://www.csa.
iisc.ac.in/~arpita/Cryptography15/CT4.pdf, 2015, [Online; accessed
07-April-2022].

[3] D. Beaver, “Correlated pseudorandomness and the complexity of
private computations,” Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, pp. 479–488, 1996.

[4] N. Gilboa, “Two party rsa key generation,” Advances in Cryptology
- CRYPTO, pp. 116–129, 1999.

[5] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” Advances in Cryptology - CRYPTO, pp. 145–
161, 2003.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 34 doi: 10.2313/NET-2022-11-1_06

Shortest Path Awareness in Delay-Based Routing

Mia Heinz, Christoph Schwarzenberg∗, Florian Wiedner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: mia.heinz@tum.de, schwarzenberg@net.in.tum.de, wiedner@net.in.tum.de

Abstract—The back-pressure routing (BP) algorithm is
proveably throughput optimal which makes it a very promis-
ing algorithm, but it struggles with high end-to-end delay.
In this paper, we will compare existing approaches on delay-
based routing, shortest-path-aided back-pressure routing
and possible combinations of both to determine how they
decrease the end-to-end delay while maintaining throughput
optimality.

Index Terms—back-pressure, shortest path, delay metric,
end-to-end delay

1. Introduction

Efficient and fast routing is becoming increasingly im-
portant especially in real-life applications, like streaming
where a large end-to-end delay is very noticeable.

The BP algorithm promises throughput optimality
which means that it guarantees system stability in a net-
work. The network is stable meaning that queue occu-
pancy does not increase endlessly.
Under a high traffic load the algorithm works compara-
bly well as it exhausts all possible paths and therefore
distributes the traffic over the whole network instead of
concentrating it on one or few paths.
If the traffic is lighter, however, this becomes a problem.
With a low traffic load the algorithm chooses randomly
between all possible paths, therefore sending data over
unnecessary long paths or even loops causing high end-
to-end delay2.

First, the paper describes the BP algorithm in Section
2. Section 3 gives an overview of existing optimization
methods and in Section 4, we focus on shortest-path-
awareness and delay-based algorithms.

2. Background

The BP routing algorithm was first proposed by Tas-
siulas and Ephremides in [1]. It was originally developed
for wireless multihop radio networks but can easily be
transferred to wired multihop networks.

The algorithm works with congestion gradients in
queueing networks. Each node has a queue for each
destination in the network. A flow is a sequence of packets
belonging to one activity. A link weight is calculated
by the difference of queue length for a flow and the
neighbor’s queue length for the same flow. The biggest
weight signifies the least congested path. Then in each
time slot, the scheduling decision is made to maximize
the sum of the weights for activated links.

Figure 1: General principle of the BP algorithm [2]

Figure 1 shows an example illustrating a multihop
queueing network. For the shown link (1, 2) in this ex-
ample the BP algorithm would choose the green flow, as
the difference in queue length is the highest.

Another way to understand the principle is imagining
the links of a network as pipes and the data as water.
The water is put into the pipe network in one place and
can only escape at its destination. If it is only a little
bit of water it will randomly distribute over the pipes.
If more water is introduced to the network, the water
pressure pushes the water out at the destination. With the
BP algorithm pressure builds up leading the data to its
destination the same way water pressure builds up and
pushes the water out of the pipes at the destination.

The BP algorithm is provably throughput optimal and
stable. But challenges are the high end-to-end delays, es-
pecially in low data load traffic because it always exploits
all possible paths.
According to Hai et al. in [3], the high end-to-end delay
is caused by three main factors:

1) The initial delay describes the initial startup time
it takes to build up pressure for the BP algorithm
to work.

2) The random walk delay is the delay that is cre-
ated when two links have the same weight, so a
random choice is made which can lead to looping
or unnecessary long paths.

3) The last packet delay describes a delay of the
last packet of a flow. If no packets to the same
destination are following the last packet of a flow,
the queue remains lightly filled and the packet
may starve for an undefined amount of time.

The following section analyses approaches to reduce
the end-to-end delay.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 35 doi: 10.2313/NET-2022-11-1_07

3. Related Work

Since the first introduction of the BP algorithm there
have been many attempts to improve it.

The first group of optimization methods is based on
queue structure and management.
One approach is the clustering of nodes, which was ex-
plored by Ying et al. in [4]. The idea is that nodes are
combined in clusters and if the source and destination are
already in the same cluster, the standard BP algorithm is
applied. If they are in different clusters, the BP algorithm
is used to reach one gateway of the cluster containing the
destination. This not only reduces the end-to-end delay
but also the memory complexity, as fewer queues have to
be maintained. The main problem of this algorithm is the
question of how to cluster the nodes.
In [5] Alresaini et al. introduce a BP algorithm with
adaptive redundancy (BWAR). If a node has a queue
backlog below a certain threshold, it duplicates the packets
it is sending in another buffer. Then when the queue is
empty those copies are sent. By creating several copies
of one packet, more pressure is built up and the chance
that one arrives at the destination is higher. When one of
them arrives at the destination, all other copies have to
be deleted. Deleting all copies is a problem which can be
solved with timeouts.

Another approach is combining the BP algorithm with
data science and machine learning. In [6] Huang et al.
propose a predictive BP algorithm that predicts and pre-
serves the arriving packets based on a lookahead-window.

Furthermore, approaches that reduce the delay by
decreasing the path length or the number of hops, like
avoiding or reducing loops [7] or including shortest-path-
awareness [8], will be considered in detail in Section 4.1.

Delay-based algorithms, that use metrics other than the
queue length to make the routing decisions, can also be
used to reduce the delay, which will further be explained
in Section 4.2.

4. Approaches

In the following we will have a closer look at the
approaches using shortest-path-awareness and delay-based
routing.

4.1. Shortest-Path-Awareness

In [8], Ying et al. combine the traditional BP algo-
rithm with shortest-path-awareness based routing which
decreases end-to-end delay while maintaining throughput
optimality.

The end-to-end delay is dependent on the hop count
of packet i.e., the path length and the time it spends in the
queues. Using an algorithm like Dijkstra or Bellman-Ford
the shortest path to each destination can be calculated for
every node.
If the routing algorithm would now always use the shortest
path, the path becomes congested very fast and this leads
to a very high queue delay as the packets are buffering
and waiting in the queues.
Therefore, in the proposed algorithm not only the shortest
path is used but all paths with a specified maximum path

length. This hop constraint gets adjusted as the data rate
in the network rises.

First, Ying et al. propose an algorithm for a specified
hop constraint h, which uses the BP algorithm but only
exploits paths with a length ≤ h. So every node knows
the minimum hops for every destination and every flow
has a hop constraint h. Then the path (a, b) is only a valid
option if node b is less than h − 1 hops away from the
destination. From all possible hops, the one with the least
congestion is picked via the BP algorithm.

In a network we usually do not have a set hop con-
straint but the maximum path length is dependent on
the data rate and h has to be chosen dynamically. They
introduce a variable K which is the price for taking a
longer path, so a larger K minimizes the average number
of hops but leads to a larger queue delay as not that many
paths can be used. A smaller K means that longer and
therefore more paths can be used, better distributing the
flows and leading to a smaller queue delay.
Using this K, the optimal h is calculated dynamically to
minimize the tradeoff between hops and queue delay.

The combination of the BP algorithm and the shortest-
path-aided BP algorithm significantly reduces the initial
delay as in the beginning no pressure is needed to guide
the data to its destination and just the shortest path is used.
The random walk delay is also decreased because if links
have the same weight, now the shorter path is chosen and
loops are prevented by limiting the hop constraint to the
number of nodes.

Figure 2: Simulation results comparing end-to-end delay
in traditional BP algorithm and shortest-path-aided BP
algorithm with different values for K using OMNeT++
with λ arrival rate of flows in packets/time slot [8]

As we can see in Figure 2 for a low data rate the
delay of the BP algorithm first decreases before increasing
again with higher data loads. This is due to the initial
packet delay. In the shortest-path-aided BP algorithm the
end-to-end delay is significantly reduced compared to the
traditional BP algorithm, as especially under a low data
rate excessively long paths are not explored. But also for
higher data rates, there is an improvement as the random
walk delay is reduced and loops are prevented. However,
the problem of the last packet delay is not solved as
starvation is still possible.
But it all depends on the value of K. If K chosen is
too large, the algorithm always chooses the shorter path
independent from the queue backlogs, because the penalty
of choosing a longer path is too high. Hence, the delay

Seminar IITM SS 22,
Network Architectures and Services, November 2022 36 doi: 10.2313/NET-2022-11-1_07

caused by buffering in the queues is not considered. If K
is too small, however, unnecessary long paths are taken
even if the shorter path would have been faster. The
optimal value for K is specific to the network and the
problem of how to choose it is still open.

In [7], Rai et al. developed a loop-free BP (LFBP)
algorithm. By giving the links in the network a direction a
directed acyclic graph (DAG) is created. Then in this DAG
the BP algorithm is applied. If it now overloads at some
point in the network, the directions of the links pointing
from the non-overloaded nodes to the overloaded nodes
are reversed which creates a new DAG. This procedure
prevents congestion in the network by routing packets
away from overflowing areas and towards less busy areas
of the network.

Another hop minimizing algorithm is presented in [9]
by Bui et al. The Enhanced Backpressure (EBP) algorithm
uses shortest path heuristics to first use short paths and
only add longer ones if the links are overloaded.
This algorithm also uses shadow queues and only main-
tains queues for the direct neighbors, which reduces the
memory complexity as well as the delay.

Figure 3: Simulation results comparing end-to-end delay
in traditional BP algorithm, EBP and LFBP [7]

As we can see in Figure 3, both the EBP and the
LFBP have a far smaller delay than the traditional BP
algorithm with the EBF showing slightly better results.
One can especially see that both algorithms do not suffer
from the initial packet delay.

4.2. Delay-Based Algorithms

In [3], Hai et al. introduce a delay-based optimization
method, which combines the queue length with the packet
delays to calculate link weight. They introduce a metric
called the sojourn time backlog (STB) and an STB-based
BP algorithm (STBP). Instead of the length of the queue
the sum of sojourn time, the time passed since a packet
arrived in the network, of all packets in the queue is used.

If every packet just has the weight 1, like in the
traditional BP algorithm, there cannot be a prioritization
of packets, which already have a high delay. Giving the
packets different weights by assigning the STB as the
link weight, leads to more pressure on packets with a
higher delay, preventing starvation and unnecessarily long
paths, therefore reducing the average end-to-end delay.

Hai et al. introduce an implementation of this algorithm
using First-In-First-Out (FIFO) queues and virtual queue
management.

As synchronization in networks is very hard to
achieve, another option Hai et al. propose is taking the
hop count as the delay instead of the actual time. Using
this hop approach the delay of the packets is not increasing
while buffering, therefore packets can be stuck in queues
for a very long time and starve without their priority
increasing. It still reduces the average number of hops
and the end-to-end delay because if a packet was already
transmitted over many hops, it is then prioritized and the
remaining number of hops is therefore on average smaller.

Both versions decrease the initial delay and the ran-
dom walk delay, but the last packet delay is only decreased
by the STBP using the actual time and not the hops
because the starvation problem is not fixed.
Considering flow dynamics the last packet delay is es-
pecially important as all packets of a flow have to be
transmitted. So in this context the STBP algorithm using
the actual time has a significant advantage over the hop
count based version.

In [10], McKeown et al. introduce another weight
metric. It uses the sojourn time only of the head-of-line
(HOL), the first packet in the queue. The so-called oldest
cell first (OCF) algorithm, which uses HOL delay as a
metric to calculate the link weights, achieves less delay
compared to the traditional BP algorithm.
In the BP algorithm queues with a short length can be
starved if the length remains small and other queues
receive new packets regularly, therefore being prioritized
over the shorter queues. This problem is solved with the
OCF algorithm as the waiting time of the HOL increases
in each time slot. This way the HOL delay gets bigger
until it is eventually served.
The OCF algorithm also reduces the last packet delay as it
prevents starvation of shorter queues by only considering
the first packet.
Another HOL delay-based algorithm is introduced by Ji
et al. in [11].

Figure 4: Simulation results comparing end-to-end delay
in traditional queue-based BP (QBP), the STBP, the hop
based STPB (STPB-hop) and an HOL delay based algo-
rithm (DBP) using NS-2 network simulator [3]

In Figure 4 the network saturation point at about

Seminar IITM SS 22,
Network Architectures and Services, November 2022 37 doi: 10.2313/NET-2022-11-1_07

70kb/s is visible. After this point, the delay of all algo-
rithms increases sharply. According to Hai et al. after the
saturated point the network is no longer able to stabilize
the data rate and operates in an overload.
When looking at the range where the network is still
stable, we can clearly see the biggest improvement in end-
to-end delay is achieved with the STBP but the hop-based
STBP and the HOL delay-based algorithm are still better
than the traditional BP algorithm.

When comparing the STBP, the HOL delay-based
based algorithm and the traditional BP algorithm it be-
comes obvious that the STBP, which is a combination of
the other two has the best performance. The end-to-end
delay gets higher the longer packets are buffering in the
queues.
The HOL algorithm ignores very long queues if the first
packet only has a small delay, as the algorithm does not
consider queue length. As the delay increases constantly,
these longer queues are not starved. The longer a packet
is not served, the higher the delay gets and the more likely
it will be served in the next time slot. It can however lead
to a slightly bigger delay for the waiting packets.
The queue-length-based BP on the other hand ignores
short queues even if the packets in it already have been
waiting for a long time. The STBP prioritizes long queues
and highly delayed packets combining the advantages of
both algorithms.

Another approach is the LIFO-backpressure which
is explored by Huang et al. in [12]. They show that
by simply combining FIFO and Last-In-First-Out (LIFO)
queues a significant improvement in delay can be achieved
as the packets with the highest delay can be served first
regardless of if they are at the head or tail of the queue.

4.3. Comparison and Combination

The algorithm reducing the path length and delay-
based algorithms focus on different aspects.
Both algorithms still have unsolved problems for example
how to choose K in the shortest-path-aided BP algorithm
or how to achieve synchronization but both approaches
already accomplish a significant improvement compared
to the traditional BP algorithm.

By reducing the path lengths a packet is directed to its
destination faster but packets can still starve and especially
with a high data load almost as many paths are used as
in the traditional BP algorithm.

In delay-based algorithms we create a prioritization of
packets that already have a high delay but the path is still
chosen randomly and loops can still occur.

So naturally one could try combining both algorithms
to decrease the end-to-end delay even more and optimize
the BP algorithm further. One idea would be using the
joint algorithm from [8] but instead of the queue length the
STB is used as the metric to make the routing decisions.
By combining the algorithms it would be possible to
profit from the shortest-path-aided BP algorithm reducing
the initial packet delay and the STBP reducing the last
packet delay and both algorithms reducing the random
walk delay. This would decrease the overall delay even
more. However, when combining the two algorithms one
also has to consider the challenges of both algorithms.

Especially in flow-based routing we cannot only look
at per packet delay but have to consider the overall delay
until all packets of the flow have arrived. Therefore the
last packet delay plays an important role, as all packets
of a flow have to arrive.

5. Conclusion

We analyzed and compared the shortest path and
delay-based approach. Both reduce the end-to-end delay
and have their specific advantages and challenges. For
shortest path based approaches the biggest improvement
is the reduction of the hops in low data load and the
biggest challenge is the tradeoff between minimizing the
path lengths and the delay from buffering in the queues.
But if an optimal parameter K is chosen for this, the end-
to-end delay is also reduced for higher data loads, e.g. by
avoiding loops.

Delay-based algorithms reduce the end-to-end delay
by prioritizing already heavily delayed packets and bring-
ing those to their destination first. The challenge with
this is how to measure the delay as synchronization in
networks is very hard to achieve and also while they
are prioritized, it is still possible that the packets are
transmitted in loops or overly long paths.

All in all a combination might benefit from both algo-
rithms’ strengths and lead to an even better optimization
but we have to consider that we also have to deal with
both algorithms’ challenges.

References

[1] L. Tassiulas and A. Ephremides, “Stability properties of con-
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks,” in 29th IEEE Conference
on Decision and Control, 1990, pp. 2130–2132 vol.4.

[2] J. Kampen, “Route guidance and signal control based on the back-
pressure algorithm,” 2015.

[3] L. Hai, Q. Gao, J. Wang, H. Zhuang, and P. Wang, “Delay-optimal
back-pressure routing algorithm for multihop wireless networks,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp.
2617–2630, 2018.

[4] L. Ying, R. Srikant, and D. Towsley, “Cluster-based back-pressure
routing algorithm,” in IEEE INFOCOM 2008 - The 27th Confer-
ence on Computer Communications, 2008, pp. 484–492.

[5] M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, and M. J.
Neely, “Backpressure with adaptive redundancy (bwar),” in 2012
Proceedings IEEE INFOCOM, 2012, pp. 2300–2308.

[6] L. Huang, S. Zhang, M. Chen, and X. Liu, “When backpressure
meets predictive scheduling,” IEEE/ACM Transactions on Network-
ing, vol. 24, no. 4, pp. 2237–2250, 2016.

[7] A. Rai, C.-p. Li, G. Paschos, and E. Modiano, “Loop-free back-
pressure routing using link-reversal algorithms,” IEEE/ACM Trans-
actions on Networking, vol. 25, no. 5, pp. 2988–3002, 2017.

[8] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining
shortest-path and back-pressure routing over multihop wireless
networks,” IEEE/ACM Transactions on Networking, vol. 19, no. 3,
pp. 841–854, 2011.

[9] L. Bui, R. Srikant, and A. Stolyar, “Novel architectures and
algorithms for delay reduction in back-pressure scheduling and
routing,” in IEEE INFOCOM 2009, 2009, pp. 2936–2940.

[10] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand,
“Achieving 100% throughput in an input-queued switch,” IEEE
Transactions on Communications, vol. 47, no. 8, pp. 1260–1267,
1999.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 38 doi: 10.2313/NET-2022-11-1_07

[11] B. Ji, C. Joo, and N. B. Shroff, “Delay-based back-pressure
scheduling in multihop wireless networks,” IEEE/ACM Transac-
tions on Networking, vol. 21, no. 5, pp. 1539–1552, 2013.

[12] L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “Lifo-

backpressure achieves near optimal utility-delay tradeoff,” in 2011
International Symposium of Modeling and Optimization of Mobile,
Ad Hoc, and Wireless Networks, 2011, pp. 70–77.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 39 doi: 10.2313/NET-2022-11-1_07

Seminar IITM SS 22,
Network Architectures and Services, November 2022 40

Digital Twins of Computer Networks

Jacqueline Kroyer, Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: kroyerjackie@gmail.com, holzinger@net.in.tum.de

Abstract—Digital Twin Technology such as Digital Twins
(DTs) and Digital Twin Networks (DTNs) are part of an
emerging trend in the operation of computer networks.
However, in order to apply the appropriate digital twin
technology, their functionality, core goals and technical
requirements have to match the field of application. By
examining digital twin technology and providing a structured
overview of the relevant parameters around terminology,
goals and requirements of DTs and DTNs, this seminar paper
contributes to existing research in the field of DTs. A widely
pursued goal is to leverage all available machine data by
applying digital twin technology.

Index Terms—Digital Twin, Digital Twin Technology, Digital
Twin Network, Computer Network, P2V Communication

1. Introduction

The idea of leveraging state of the art computer
network technology in the field of machine to human
communication is highly relevant as it bears the potential
to revolutionize many industries as well as our every
day lives. Digitization of the industry is continuously
progressing and its demands are increasing. The process
is referred to as Industry 4.0 and requires a tremendous
amount of machine data. The development of digital twin
technology can e.g. be harnessed for more efficient and
sustainable cities. Applying digital twin technology goes
beyond smart cities: manufacturing, aviation, healthcare
or transportation systems are just a few examples.

This seminar paper researches and examines digital
twins of computer networks. It focuses on the question
which technical requirements have to be met for respective
technological core goals and their implementation in the
form of fields of applications.

With the increased amount of personal data and es-
pecially the increased amount of available machine data,
the statistical relevance increases as well as the reliability
of the models used for the virtual twin and all elements
related to the digital representation of the physical object.

Within this seminar paper, after outlining the theoret-
ical background of digital twin technology by defining
the most relevant terms the functionality of digital twins
and digital twin networks will be examined. Building on
technical requirements of DTs and DTNs, core goals will
be derived and illustrated in which fields of application
DTs and DTNs are most relevant. In the following theoret-
ical foundations such as relevant definitions around digital

twins, their functionality as well as technical requirements
and core goals will be illustrated.

2. Theoretical Background of Digital Twins
of Computer Networks

In order to provide the reader with the relevant, theo-
retical underlying concepts, the following section defines
DTs and DTNs, their functionality as well as the different
types of DTs.

2.1. Digital Twins and Digital Twin Networks

“ [. . .] DT is an intelligent and constantly evolv-
ing system, which monitors, controls, and optimizes the
physical object through its life-cycle.” [1]. This system
consists of one or more physical and virtual interconnected
objects. Figure 1 shows the typical concept of a DT.
The arrows connecting the physical with the virtual twin
represents the transmission of information and decision-
making assistance. It also indicates the direction of the
data flow.

Three aspects related to DTs are especially relevant.
Firstly, the type of connection between the physical ob-
ject and the physical object is a one-to-one connection.
Secondly, the concept is comprehensive as it contains and
relies mostly on these two objects. Thirdly, the static form
of a DT is a perfect virtual representation of the physical
object and therefore can be a mere simulation of the status-
quo.

The formal definition of DT by Michael Grieves em-
phasizes the three elements of a physical object in the
physical space, a virtual object in the virtual space and
the data link between the two objects and spaces [2].
From an industry perspective, this definition is tightly
knit to concepts in product engineering [2]. Examples for
physical objects are machines, humans or human-related
things like in a smart city. Types of physical objects are
complex physical systems, machines, robots or industrial
processes [1]. The concept of a virtual twin in general
can also be described as a virtual representation of the
physical object. It is a virtual 3D model [3]. Consequently,
it is arranged and conceptualized as similarly as possible
to the corresponding physical object. A physical object
and its virtual twin can be developed together and are
connected via a bi-directional data flow which also marks
a shift from a static to a dynamic scenario.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 41 doi: 10.2313/NET-2022-11-1_08

Figure 1: Concept of a DT; information transmission and
decision-making assistance; own illustration based on [1];

DTs can be categorized in three types, depending on
perspective, focus and type of connection.

• 1st DT type: The first type covers the exact vir-
tual representation of a physical object. It has no
automatic connection to the physical twin and is
characterized by no data exchange between phys-
ical object and virtual object.

• 2nd DT type: The second type possesses a uni-
directional connection to the virtual twin and is
therefore able to illustrate an evolution of the
physical object.

• 3rd DT type: The third and last type is the most
enhanced category of DTs and includes services
and the respective connection among the objects.
Thus, it enables mirroring the current state of the
physical object because it continually adapts and
predicts future states.

As a second crucial term within the field of DT
technology, DTNs will be explained. Within the course
of this paper, DTNs can be defined as multiple one-to-
one DTs, building a many-to-many mapping network [1].

This means the physical object is connected to other
physical twins as well as to the virtual twin and its virtual
twins which enables real-time information interaction. By
applying key technologies such as communications, ac-
curate DT modeling, physical data processing, cloud and
edge computing, a DTN can capture dynamic interactions
and evolutions of multiple physical as well as virtual
objects [1].

Figure 2 illustrates the typical concept of a DTN. The
ways of communication are a physical-object-to-physical-
object connection (P2P), a virtual-twin-to-virtual-twin
connection (V2V) as well as the typical physical-object-
to-virtual-object connection (P2V). For P2V connections
shared intelligence and cooperation is applied. For a
P2V connection, information is transmitted. It also serves
decision-making assistance. Three aspects about DTNs are

important to emphasize. Firstly, the type of connection
between the physical objects and the virtual twins is a
many-to-many connection. Secondly, the physical objects
and virtual twins aren’t isolated. Consequently, it is a
cooperation approach. Thirdly, when creating and con-
ceptualizing a DTN, the physical objects and the virtual
twins are put in relation and co-developed. Therefore, the
physical objects and the virtual twins evolve together. This
concept is called co-evolution.

Figure 2: Concept of a Digital Twin Network: informa-
tion transmission and decision-making assistance (P2V);
shared Intelligence and Cooperation (P2P, V2V); own
illustration based on [1];

When comparing DTs and DTNs one quickly notices
a shift from a static to a dynamic scenario [4]. This
means, time independent, three dimensional objects turn
into actionable CAD objects. Thereby changes can be
simulated and behavior can be predicted more accurately
and precisely over time.

So called cyber-physical systems (CPS) are often men-
tioned in the context of DT technologies. It is impor-
tant to terminologically differentiate a DT and a DTN
from a CPS. A CPS is defined to be a “physical and
engineered system whose operations are monitored, co-
ordinated, controlled and integrated by a computing and
communication core” [5]. A DT, DTN or CPS differ in
application scenarios. DTs and DTNs are often used in an
industrial context whereas a CPS is more often applied in
embedded systems due to physical properties like sensors
or actuators. Furthermore, it is important to highlight that

Seminar IITM SS 22,
Network Architectures and Services, November 2022 42 doi: 10.2313/NET-2022-11-1_08

DTs and DTNs are model-based systems that are either
applicable for a single object (DT) or a group of objects
(DTN).

2.2. Functionality

When looking at the functionality of DTs and DTNs
one has to understand the underlying key technologies. As
briefly mentioned previously, these are namely commu-
nications, physical data processing, DT modelling, cloud
computing as well as edge computing [1]. In the following
they will be explianed in more depth.

Communications are focused on the type, direction
and content of exchange of information. This can be P2P,
P2V or V2V communications:

• Physical object to virtual twin: P2V communica-
tions describe the exchange of data of a physi-
cal object with a virtual twin through the means
of wireless communication technologies. This ex-
change and transmission of data can be conducted
in real-time. In addition to that the virtual twin is
able to receive and apply feedback provided by
the physical object. Suitable networks are LoRa
or 5G/6G cellular communication networks. Ac-
curate mapping and real-time feedback are desired
goals.

• Physical object to physical object: P2P communi-
cations refer to exchange of information between
two physical objects. By connecting with IoT gate-
ways or Wi-fi access points, RFIDs, actuators or
controllers of the respective physical devices the
connection between two physical objects can be
established. The network connection itself is sup-
ported by several communication protocols such
as Wireless Personal Area Network or Low Power
Wide Area Networks.

• Virtual twin to virtual twin: V2V communica-
tions reflect ongoing communications between two
physical objects. As virtual twins can be seen
as virtual replicas they mirror the exchange of
data between physical objects. Hence, V2V trans-
mission of data occurs between DT model enti-
ties. The virtual level of communication relies on
computing capabilities in order to mirror the data
transmission behavior in the respective DT model.

Besides communications, it is important that the raw
data that derives from multiple sources is appropriately
handled as it is typically still full of noise. This is specif-
ically relevant in order to make effective use of the data
as the amount of raw data is likely to increase with the
increasing number of sensors and data sources.

Furthermore, it is important to clarify the applied DT
model and framework early in the process. Although there
are several options, the state-of-the-art framework would
be Tao et al. ’s who suggest a DT five-dimensional model

taking the physical part, virtual part, data connection and
service modeling into consideration [6].

Cloud Computing is a key technology in the context
of DTs as it enables large-scale computing. Thereby, it is
a crucial element to allow sharing processes on demand
and also facilitating the option to use the services anytime
and anywhere.

As a last key technology, edge computing uses new
computing models for several operations such as analysing
or storing data. It is a solution for privacy protection,
reduced latency and also reduces power and costs as well
as makes the system more reliable.

It takes all the mentioned technologies to efficiently
handle processing data and ensure well-functioning DT
or DTN communication.

3. Digital Twins of Computer Networks

In the context of DTs and DTNs the respective core
goals as well as the technical requirements to meet these
goals are important building blocks to properly apply DT
technology. Examples for fields of applications will be
derived from technical requirements and core goals.

3.1. Core Goals and Technical Requirements

All of the addressed key technologies of DTs and
DTNs, including the three types of communications (P2P,
P2V, V2V), physical data processing, digital twin model-
ing, cloud computing as well as edge computing possess
certain technical requirements that have to be met. This
specifically applies to the types of communications of
DTNs.

In the context of this seminar paper the most important
technical requirements are addressed. Namely they are:

• Low latency for real-time feedback: In most situ-
ations and scenarios real-time feedback and inter-
actions are necessary. The P2V connection deter-
mines the required latency needed for the specific
scenario. The higher the time sensitivity for the
physical object as well the data connection is the
lower the latency has to be. Medical use cases
require ultra-low latency.

• High transmission reliability for accurate model-
ing: Accurate data needs to be exchanged in a
reliable and immediate way in order to implement
and make use of dynamic high-fidelity modeling
approaches. Depending on the use case either
medium transmission reliability is sufficient. In
certain use cases like medical scenarios, it has to
be especially high.

• Secure data transmission for higher data privacy
and security: At the level of data exchange, mostly
between the physical object and the virtual twin,
the security of data and its privacy are of high
priority. Typical protocols and encryption methods

Seminar IITM SS 22,
Network Architectures and Services, November 2022 43 doi: 10.2313/NET-2022-11-1_08

of the field of IT security need to be applied in
order to guarantee safe and private data exchange.

• Higher network bandwidth and capacity increase
than rise of demand of interconnected elements
in the network for reliability and availability: As
sensors deliver a much greater amount of data the
total amount available increases which is helpful in
terms of prediction accuracy of the relevant mod-
els. Due to the sheer amount of data, it remains
challenging to process the data. Therefore the
bandwidth as well as the capacity of the network
has to increase faster than the demand of the risen
number of interconnected objects.

In total, all of these requirements, namely, low la-
tency, high transmission reliability, secure and private data
exchange as well as a fast enough increase of network
demand and bandwidth are crucial but also strongly de-
pendent on the use case and therefore the industry in
which the DT or DTN is applied.

The corresponding core goals are the provision of real-
time feedback, accurate modeling, privacy and security as
well as reliability or respectively availability.

3.2. Comparison of DT and DTNs

When comparing DTs and DTNs, several parameters
are relevant and decisive to consider: The modelling ap-
proach, interaction, collaboration with other models, ef-
ficiency, accuracy, components and mapping relationship.
Table 1 shows how DTs and DTNs differ or resemble.

Both categories still aim at accurate modeling, real-
time feedback as well as the higher level goals of security,
privacy and availability.

Comparing DTs and DTNs
DT DTN

Modeling
Approach

Single,
independent
object

Group of objects
with complex
internal interactions

Interaction w.
other models

Not applicable; no
interaction with
other models

Cooperation
approach;
processing results
shared among
collaborative DTs

Accuracy

Mirroring
approach; Virtual
twin as accurate
digital replica

Higher; Physical
and virtual twin
evolve together

Components

Physical object
and virtual twin;
P2V data
exchange

Physical objects
and virtual twins;
P2V, P2P and V2V
data exchange

Mapping
Relationship

One-to-one
method

Many-to-many
method

Table 1: Comparison between the concept of DTs and
the concept of DTNs; own illustration slightly based on
[1]

The direct comparison of DTs and DTNs emphasizes
how the two concepts tend to differ. Depending on the

field of application, the specific industry or even just the
use case, one of the two concepts might fit better than the
other. Furthermore, certain aspects like the exact definition
of the technical requirements will have to be adjusted.

3.3. Fields of Application

The use cases for DT technology are broad and have
strong advocates in the industry. Microsoft’s HoloLens for
example can be applied to view the three dimensional,
virtual model of a physical smart factory. Moreover it
can then be used to control some of the production’s
functions remotely. Batty also names industries, cities and
communities as some of the most relevant application
fields [2].

The most relevant industries and use cases are man-
ufacturing, aviation, healthcare, 6G networks, intelligent
transportation systems as well as urban intelligence [1]. In
each of the examples DT technologies bear vast potential
to add more efficiency to the related business processes,
increase the control over what processes are actually con-
ducted in real-time and enhance monitoring capabilities.
This means that certain insights, like the current energy
consumption, can be displayed or intelligent control mech-
anisms of production processes in manufacturing can be
leveraged.

In summary, the virtual twins can be generally seen
as human-centric user interfaces for data exchange and
specifically for the transmission of digital information
from the physical object [3].

4. Conclusion

DT technology is a field of high relevance for manifold
technologies evolving based on DTs or DTNs. It is crucial
to understand the differences in the technologies in order
to properly apply, implement and efficiently use it.

Core goals like reliability, latency, capacity, connec-
tivity and efficiency require different values depending on
the type of communication: P2V, P2P or P2V. It is also
decisive to depend on the design of the DT technology
on the type of use case it is applied to. The most relevant
fields of application are around business and production
contexts like manufacturing or key use cases in medicine
and health care.

As DTs and DTNs bear tremendous potential for our
economy and foster technological progress and innova-
tion, further research has to be conducted to meet the
technology’s potential.

Acknowledgment

This work was not supported by any grant. I want
to express my gratitude to my advisor Kilian Holzinger
who supported me throughout the writing process from
the beginning. Because of his idea for this highly relevant
and interesting topic I got the chance to explore it further.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 44 doi: 10.2313/NET-2022-11-1_08

References

[1] Y. Wu, K. Zhang, Y. Zhang (2021) Digital Twin Network: a Survey,
in: IEEE Internet of Things Journal, pp. 1-17.

[2] M. Batty (2018) Digital Twins, in: Environment and Planning B:
Urban Analytics and City Science, pp. 817-820.

[3] M. Kritzler, M. Funk, F. Michahelles, W. Rohde (2017), The
Virtual Twin: Controlling Smart Factories Using a Spatially Correct
Augmented Reality Representation, in: IoT ’17: Proceedings of the
Seventh International Conference on the Internet of Things, pp. 1-
2.

[4] M. Grieves, J. Vickers (2017) Digital Twin: Mitigating Unpre-
dictable, Undesirable Emergent Behavior, in: Complex Systems,
pp. 85–113.

[5] R. R. Rajkumar, I. Lee, L. Sha, J. A. Stankovic (2010) Cyber-
physical Systems: The Next Computing Revolution, in: Design
Automation Conference.

[6] F. Tao, H. Zhang, A. Liu, A. Y. C. Nee (2019) Digital Twin
in Industry: State-of-the-art, in: IEEE Transactions on Industrial
Informatics, pp. 2405–2415.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 45 doi: 10.2313/NET-2022-11-1_08

Seminar IITM SS 22,
Network Architectures and Services, November 2022 46

Secure Data Marketplaces

Daniel Petri Rocha, B.Sc., Dr. Holger Kinkelin∗, Filip Rezabek, M. Sc.∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: daniel.petri@tum.de, kinkelin@net.in.tum.de, frezabek@net.in.tum.de

Abstract—Big data powers the growing data economy. But
critical data sets needed for research and development re-
main isolated. Those selling such data have no means of
preventing copies from being created. This paper summa-
rizes the building blocks required to construct a secure data
market, where privacy and control are inherently built into
the system despite large-scale information access remaining
possible. Mechanisms for granting access to data as desired
by the owner are described, enabling data to be leased
without exposing it. Secured data processing techniques and
blockchain technologies are suitable for assembling privacy-
preserving data marketplaces.

Index Terms—data market, data silo, blockchain

1. Introduction

Data is valuable — the European Union’s data econ-
omy alone is forecast at 550 billion Euros by 2025 [1]. The
analysis of vast data collections fuels technologies that aid
in the accurate and deep understanding of areas of soci-
etal importance, yielding, for instance, advancements in
scientific research. Big data sets help uncover treatments
for severe illnesses by studying the human genome [1];
healthcare centers can improve patient care with shared
information [2]. However, trading such data often does
not happen in practice, given that a separate entity with a
copy could choose to redistribute it indiscriminately.

Therefore, enterprise information holders keep a
monopoly on highly demanded data even though they
know its value [3]. These data silos are a financial loss
and liability source since a breach would leak business se-
crets or personally identifiable information without usage
restrictions, artificially imposing a cap on the data’s po-
tential [3]. Instead, incentives should make organizations
provide data to others in a discoverable and integrable
manner [4].

A way to accomplish this without exposing sensitive
information is by selling data as a good or service on
secure data marketplaces. They offer the tools needed
to create an additional revenue stream for data holders
while ensuring the owner’s data privacy and control [2].
Consumers use the market to locate and access the data
they need without trusting a central authority. They can
then work with it perpetually, only for a period or a limited
number of times [3]. Interactions against the bought data
occur with programs, e.g., running queries or machine
learning algorithms to get a trained model back. Unlike
downloading a file or tapping a stream, data is employed

without risking it being cloned as it does not leave the
holder’s premises.

This paper is structured as follows: Section 2 describes
where and how such technology is being applied or envi-
sioned to be. Section 3 explains the desirable properties
of data markets in conjunction with their motivation.
Section 4 addresses what a data market consists of. Sec-
tion 5 provides approaches to designing, implementing,
and maintaining data marketplaces with the identified
parts and properties. Section 6 concludes this proceeding.

2. Application Scenarios

Data marketplaces available today meet specific infor-
mation demands. The subsections below analyze promi-
nent data market applications and where to find them.

2.1. Ocean Market

The Ocean Protocol is a project attempting to supply
an interface to simplify setting up data markets. Their
open-source protocol provides the necessary infrastructure
to give and withdraw paid data access. A transport com-
pany could increase revenue by using Ocean to deploy a
data market for annotated dashcam footage they currently
silo, which may be of interest for the computer vision
models of the automakers engineering self-driving vehi-
cles.

An exemplary Ocean-powered market is the Ocean
Market1, on which users pay with their crypto wallet. In
return, they redeem a token for that asset, which can be
considered a license of the original data set. Depending
on the fine-grained permissions set by the data owner, this
license is the ticket to data services such as downloading
a copy or using it as input for an algorithm without
revealing the underlying data. The provider can approve
or deny programs to avoid privacy infringements. Ocean
itself does not store any data: ownership corresponds to
minting a non-fungible token on the Ethereum blockchain
pointing to an external resource [3].

However, a decentralized identifier for the resource
is stored on-chain, together with a separate document
offering a metadata description to make it easily discover-
able. For precise data control access, required credentials
may be embedded in the metadata store, representing an
additional type of identification besides token ownership.
Using a role-based access control server whose implemen-
tation Ocean provides, capabilities around service con-
sumption can be restricted.

1. https://market.oceanprotocol.com/

Seminar IITM SS 22,
Network Architectures and Services, November 2022 47 doi: 10.2313/NET-2022-11-1_09

Besides self-hosting a secure market, opening up
siloed databases, or refining public data sets by making
them effortlessly integrable and discoverable, an addi-
tional income stream can come from staking on data.
Since Ocean Protocol data sets are tokenized and have
value, prices can automatically be determined by an au-
tomated market maker — effectively transforming the
data set into a cryptocurrency. The market maker dictates
how expensive a token should be given its availability
in a liquidity pool. The pool’s liquidity is defined by
the number of data tokens and cryptocurrencies such as
Ethereum or Ocean (the organization’s coin) it holds. An
asset’s cost increases as it is purchased and used, paying
dividends to those providing liquidity. It decreases when
data tokens are sold since the automated market maker
derives the price from the assumption that the ratio of
data tokens to, e.g., Ocean should stay constant at 50:50.
Thus, a monetary incentive exists to curate data, which
provisions liquidity [3]. An engineer, satisfied with the
better rate of red traffic lights detected in their model after
using a data set, may choose to stake it for profit. That, in
turn, signals the market that the data set’s quality is high.

2.2. Kara

Kara2 is a secure market for medical data whose
goal is to improve research and outcomes in medicine
by recognizing that valuable health-related databases are
siloed and offering a user-centric solution that lets patients
share data themselves. The Oasis blockchain [5] fuels it.

After a doctor’s visit, e.g., to perform a back of the eye
scan, they let patients upload that image to a medical data
cloud in exchange for cryptocurrency alongside a policy
of use. An example guideline the patient provides could
be to revoke their scan’s use for commercial purposes or
only grant research access for a certain number of years.
They remain the data owner at all times instead of an
intermediary company they may not trust.

Collaboration is fostered among doctors and scientists
as the data units are inherently sharable due to a privacy-
preserving architecture, ensuring the unencrypted scan can
never be seen. Nonetheless, surveying the information
remains possible, with applications including performing
statistical analysis for genomics research and training
machine learning models against the data set.

3. Properties of Data Markets

Transactions in a data marketplace occur between
a data supplier, which owns a unit of information they
are willing to sell, rent, or barter, and a consumer
ready to enter the trade to obtain access [6]. As
rational participants, a guarantee that a subset of the
characteristics described below is enforced may interest
both parties and the marketplace network to create a
growing self-sustaining environment.

Data as (crypto-)currency A currency is a medium that
facilitates trade. As with money, data is an asset belonging
to an individual and can therefore be classified as a
currency [2]. Personal data is part of how access to some

2. https://kara.cloud/

online services remains free, being given up as payment.
Data markets could enable users of these platforms to
be remunerated for the use of their information in novel
ways, an example being micro-deposits of cryptocurrency.
In the Kara market, patients whose medical data played a
role in training artificial intelligence models get to choose
charities to which donations will be made. On Ocean, data
is published as a non-fungible token from which tokens
for access are created, similar to a cryptocurrency’s initial
coin offering. A user’s crypto wallet then becomes, in ef-
fect, a data wallet for a stable commodity currency backed
by sets of data [3]. Consequently, Ocean as a coin does
not inherit other cryptocurrencies’ fiat-like properties.
Discoverability Markets are only attractive to consumers
if they can fulfill their data needs, which cannot happen
if data sets are difficult to find. Incentives need to exist
for sellers to describe their assets appropriately, with the
market platform potentially being capable of blending
multiple data sets based on metadata [4]. Suppose a
customer wants to train their machine learning model
on road signs, for instance. In that case, pictures from
two separate collections, EuropeanTrafficImages and
AmericanTrafficImages, could automatically be fed into
the program, remunerating each seller.
Fairness An exchange should only occur if the seller and
sellee concur with the transaction’s commodity, policy,
and price. A policy may define the data’s extent to which
it can be used: by whom, for what purposes, and for how
long. Trade is fair if the buyer receives what they paid
for, the policies are followed, and the seller is remuner-
ated. Since either party involved can withdraw from the
sale, fairness leads to both leaving empty-handed in that
case [6].
Integrability Data may come from differing sources,
contain missing or erroneous information, and be available
in a format not directly usable by a consumer. Integrable
data has been extracted, transformed, and cleansed. This
time-consuming process makes it worth more than raw
data. A market should provide incentives for sellers to
prepare their assets in this handleable way [4].
Ownership Ownership must be kept track of publicly
in a data market to preserve intellectual property rights.
Howbeit, traditionally proprietorship of information is in
the hands of silos in place of the individuals responsible
for generating it. Data exhaust emanating from passive ac-
tivities such as a purchase on a web store, interactions with
smart sensors, and browsing history are monetizable yet
do not enjoy the legal protection brought on by copyright
laws for active data creation, e.g., writing an email [2].
They are covered by privacy laws instead. Data markets
can help establish an economic model ascertaining people
control their data through policies.
Provenance Knowing where data came from permits
buyers and sellers to audit transactions better. The source
may be a factor in determining a data set’s quality: inferred
data, for instance, is likelier incorrect [2].
Quality Information is prone to change. As it stales over
time, its value decreases [2]. Therefore, data correctness
is a factor in data markets if the price is automatically
discovered.
Security Suppliers of data need to be assured that a leak
can not occur. A fair trade in which no other party besides
the buyer and seller can see the information (including

Seminar IITM SS 22,
Network Architectures and Services, November 2022 48 doi: 10.2313/NET-2022-11-1_09

intermediaries) is privacy-preserving [6]. However, piracy
cannot be prevented if a dishonest buyer receives a full
copy of the data. As a result, data escapes need to be
prevented by only allowing compute access to sensitive
information [3]. Still, the computation cannot occur on a
remote machine set up by a cloud operator unless secured
computing techniques are employed. Privacy issues and
concerns riddle cloud providers. With clients not storing
data locally, the attack surface is increased: they may
be subject to having their virtual machines cloned or
tampered with; audits are burdensome. The cloud provider
may subcontract to third parties, making compliance with
regulations hard since it is unclear whose responsibility
and jurisdiction the data falls under.
Transparency Pricing transparency is necessary for ex-
changes involving a trade facilitator, i.e., a mediator that
may host the marketplace platform. Buyers should be
aware of the initial price and the terms of use of the
transaction between the seller and the broker [6].

4. Building Blocks

In a secure data market, a seller must convince buyers
that they have data the customer needs without revealing it
at any point in the trade. Consumers, meanwhile, require
assurances that their investment will return the desired
results even though they do not know how valuable the
data set is in advance [4]. That is fundamentally different
from traditional product sales, as the partakers in the
exchange are not dealing with a physical good. Instead,
a service is provided to a data consumer in which they
never get a copy of the information used to produce the
final output [5]. Sophisticated technologies come into play
to realize this paradigm shift.

4.1. Blockchain

Buying data off silos is problematic since they are in
control of an entity that needs to be trusted not to modify
it unfairly. A blockchain is a suitable data structure to
permanently and irreversibly store the state of a database.
Blockchains are immutable, i.e., entries are non-erasable
and non-modifiable, meaning that once a transaction is
added to the ledger, malicious actors cannot change its
contents [7]. Additionally, they are decentrally run and
managed, removing the need for an intermediator. As a
component of secure markets, blockchains make the entire
transaction history traceable, logging accesses and what
buyers used it for. Health data usage, for instance, is
required to comply with regulations. The chain’s trans-
parency lets them track ownership of, e.g., patient records
and monitor whether the rules are followed since the
ledger’s nature ensures entries can only be added but not
removed [6]. People that sold Kara their X-rays could
see how and where their data is employed in the data
economy.

4.2. Smart contracts

Smart contracts are programmable agreements exe-
cuted on a blockchain-based architecture [8]. In data
markets, contracting parties can algorithmically describe

the terms of use of private data in the form of a policy [9],
such as with whom providers can share banking data. An
automatic market maker to establish the price of assets can
also be implemented as a smart contract. The contract’s
code is cryptographically secured and automatically runs
once agreed-to conditions are met, e.g., only starting
training a supplied machine learning model after the funds
have been received. A smart contract can thus act as a
trusted trade intermediator in this context [5].

4.3. (Non-fungible) data tokens

Controlling access to data and maintaining intellectual
property rights are tasks to be solved in secure data
markets such as Kara and Ocean. A naive approach for
managing access would be to issue a ticket for users
that paid for a service. However, sharing the pass with
numerous others, even those who should be barred from
possessing one, would be trivial [3]. A mechanism to
impose digital scarcity preventing the repeated spending
of the same ticket is therefore needed. Blockchain archi-
tectures enable this through tokens, whose ownership is
tracked and which can either be fungible or not.

A fungible token is identical to others of the
same denomination. Holding a data token called
$LabeledTrafficImages, for example, is a permit that
gives the same functionality when using the data services
as any other token of that instance. As an analogy, a 1C
coin has equal value to another.

On the other hand, a non-fungible token (NFT) is a
digital deed for an asset —– like a collection of labeled
traffic images —– that can be stored on the chain, con-
veying ownership over that property. The non-fungibility
comes from the realization that data sets differ, as do
physical belongings.

While NFTs could act as data tokens to solve the
double-spending issue, the pictures likely interest more
than one person. Therefore, the proprietor instead mints
an NFT to represent possession of that asset’s intellec-
tual property and issues a limited number of licenses
($LabeledTrafficImages data tokens) at their discretion
to the annotated photos.

Since data tokens can be transferred, a form of identifi-
cation could additionally be required to redeem the service
to combat unrestricted access by people without proper
credentials [3].

4.4. Secured data processing

The data market component in which the final output is
produced must be secured to prevent intellectual property
rights violations and sensitive disclosures of personal dig-
ital information. A trusted execution environment offers
this degree of protection by computing the result of the
buyer’s program in a figurative black box [5]. Decrypted
data can never be interacted with from the outside by
manipulating the data in enclaves, i.e., containers hold-
ing the confidential information to be processed and the
instructions on how to perform the computation [10]. The
application’s address space is encrypted in memory [11]
and decrypted by the computer’s central processing unit.

In some data market architectures, the seller includes
the decryption key in the smart contract alongside the use

Seminar IITM SS 22,
Network Architectures and Services, November 2022 49 doi: 10.2313/NET-2022-11-1_09

policy. The key is revealed once the provider’s contract
verifies that the customer’s request satisfies the terms of
use [9] [12]. The buyer’s smart contract then performs
the operations on the raw data inside the trusted exe-
cution environment. Alternatively, research and industry
standardization efforts are underway [13] for techniques
directly performing the computation on encrypted data,
namely fully homomorphic encryption.

4.5. Program rewriting and verification

Ensuring policy compliance is an additional challenge
requiring a separate module. The motivation of this com-
ponent is to have a verifier mechanically determine that,
given the buyer’s program and the data owner’s terms of
use, the program will not disclose private information once
executed. The output is a sound boolean value, meaning
that if it certifies the policy is followed, proof of that fact
is provided. In case the verifier can not assure that the
conditions governing the data’s use are met, the module
could rewrite the program into one that does so [5].

Say a company wants to price a new product and
purchases access to a data set about customers in their
target market. They then write a program to query the
mean income of students in Bavaria. Intuitively, this is
different from asking the average salary of pupils enrolled
at the Technical University of Munich with Alice as a first
name. While the former question is broad enough to pass
the verification step, the latter inquires about an individual
and does not bode well with Alice’s policy. However, if
she is the only person in the data set, both queries are
identical.

If removing Alice’s record from the data set signifi-
cantly affects the program’s output, the query is said not
to be differentially private enough. Differential privacy
is a property that algorithms like deep learning models
can fulfill that limits how much information concerning
their inputs can be revealed [14]. Open-source imple-
mentations of differential privacy tools are emerging for
general public use, contributing to the adoption of the
technique in academia and the industry [15]. To accelerate
its prevalence, systems exist that seamlessly integrate with
current SQL databases and automatically rewrite queries
enforcing differential privacy [16].

5. Architecture

With a secure data market’s components and properties
now identified, a sample architecture for its realization is
provided next. A distinction is made between the stage
in which data is added to the market and the one where
it is acquired, as they run asynchronously.

1) Publish step
a) A seller publishes an encrypted data set to a cloud
storage service accessible via a URI that compute jobs
may need [9].
b) They provision a smart contract that mints an
ERC7213-compliant non-fungible token on the Ethereum
blockchain pointing to their service [3], claiming them-
selves as the intellectual property rights holder.

3. "Ethereum Request for Comment": technical proposal for a standard

c) The decryption key is secretly kept in the contract with
constraints such as the use policy [9].
d) In the desired quantity, the seller’s smart contract also
mints a pool of ERC203 data tokens (licenses) for utilizing
the service [3].
2) Consume step
a) After identifying relevant data for their purposes in a
market’s front-end interface, a shopper pays for a data
token and writes a smart contract with the code they want
to run using the seller’s data as input.
b) Once executed, the contract transfers a data token to
the seller’s crypto wallet as a request to rent access to the
data [3].
c) The seller’s contract verifies that performing the re-
quest will be privacy-preserving (rewriting the request
or withdrawing from the sale if necessary) and returns
the decryption key for use inside a trusted execution
environment [9].
d) The buyer’s smart contract runs securely in a trusted
execution environment, returning only the computation
result.

Figure 1: Data sale transaction as outlined in Section 5.

6. Conclusion

In this paper, we established that even though value
can be extracted from raw data, little incentive exists for
people to curate it in a way that makes it accessible and
usable by others. Existing secure data markets, e.g., Kara
and Ocean, encourage such behavior while assuring user
privacy and control over their information is paramount.
Blockchain technologies are fitting in tackling such a task
as they enable data trading in a controlled fashion. With
smart contracts facilitating data transactions, ensuring ad-
herence to terms of use, and automatic price determina-
tion, data assets turn into cryptocurrencies supported by
real-world applications.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 50 doi: 10.2313/NET-2022-11-1_09

References
[1] European Commission, Directorate-General for Communications

Networks, Content and Technology, Cattaneo, G., Micheletti, G.,
Glennon, M., et al., The European Data Market Monitoring Tool:
Key Facts & Figures, First Policy Conclusions, Data Landscape
and Quantified Stories: d2.9 Final Study Report. Publications
Office, 2020.

[2] C. Gates and P. Matthews, “Data Is the New Currency,” in
Proceedings of the 2014 New Security Paradigms Workshop,
ser. NSPW ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 105–116. [Online]. Available:
https://doi.org/10.1145/2683467.2683477

[3] “Tools for the Web3 Data Economy,” https://oceanprotocol.com/
tech-whitepaper.pdf, Ocean Protocol Foundation with BigchainDB
GmbH, Tech. Rep., 2022, last accessed on 2022/05/22.

[4] R. C. Fernandez, P. Subramaniam, and M. J. Franklin, “Data
Market Platforms: Trading Data Assets to Solve Data Problems,”
Proc. VLDB Endow., vol. 13, no. 12, p. 1933–1947, Jul. 2020.
[Online]. Available: https://doi.org/10.14778/3407790.3407800

[5] N. Johnson, “Building a Secure Data Market on Blockchain.”
Burlingame, CA: USENIX Association, Jan. 2019.

[6] P. Banerjee and S. Ruj, “Blockchain Enabled Data Marketplace –
Design and Challenges,” https://arxiv.org/abs/1811.11462, 2018.

[7] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
Dec. 2008, last accessed on 2022/06/04. [Online]. Available:
https://bitcoin.org/bitcoin.pdf

[8] V. Buterin, “A Next Generation Smart Contract & Decentralized
Application Platform,” 2015.

[9] N. Hynes, D. Dao, D. Yan, R. Cheng, and D. Song,
“A Demonstration of Sterling: A Privacy-Preserving Data
Marketplace,” Proc. VLDB Endow., vol. 11, no. 12, p. 2086–2089,
Aug. 2018. [Online]. Available: https://doi.org/10.14778/3229863.
3236266

[10] V. Costan and S. Devadas, “Intel SGX explained,” IACR
Cryptol. ePrint Arch., p. 86, 2016. [Online]. Available: http:
//eprint.iacr.org/2016/086

[11] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: An Open Framework for Architecting Trusted
Execution Environments,” in Proceedings of the Fifteenth
European Conference on Computer Systems, ser. EuroSys ’20.
New York, NY, USA: Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3342195.3387532

[12] D. Dao, D. Alistarh, C. Musat, and C. Zhang, “DataBright:
Towards a Global Exchange for Decentralized Data Ownership
and Trusted Computation,” 2018. [Online]. Available: https:
//arxiv.org/abs/1802.04780

[13] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gor-
bunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam,
D. Micciancio, D. Moody, T. Morrison, A. Sahai, and V. Vaikun-
tanathan, “Homomorphic Encryption Security Standard,” Toronto,
Canada, Tech. Rep., November 2018.

[14] N. Carlini, C. Liu, U. Erlingsson, J. Kos, and D. Song, “The Secret
Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks,” in Proceedings of the 28th USENIX Conference on
Security Symposium, ser. SEC’19. USA: USENIX Association,
2019, p. 267–284.

[15] “The OpenDP White Paper,” https://opendp.org/, OpenDP, Tech.
Rep., May 2020, last accessed on 2022/06/09.

[16] N. M. Johnson, J. P. Near, J. M. Hellerstein, and D. Song,
“Chorus: Differential Privacy via Query Rewriting,” CoRR, vol.
abs/1809.07750, 2018. [Online]. Available: http://arxiv.org/abs/
1809.07750

Seminar IITM SS 22,
Network Architectures and Services, November 2022 51 doi: 10.2313/NET-2022-11-1_09

Seminar IITM SS 22,
Network Architectures and Services, November 2022 52

A Case Study of Security Vulnerabilities in Smart Contracts

Marvin James Rautenberg, Filip Rezabek∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: marvin.rautenberg@tum.de, rezabek@net.in.tum.de

Abstract—Ethereum is the first blockchain network that in-
troduced smart contracts which is code that can be executed
on a distributed and publicly visible ledger. This makes a
trustless and secure system of transaction possible that can
not be altered after execution. As a result handling transac-
tions and contracts is significantly improved no matter if the
data being processed is tangible or intangible. To ensure this
system is appropriate for use in a large scale it is important
to analyze the security of it, what possible vulnerabilities
the programming language has and how to minimize them
which we conclude in a case study that refers to related work
and combines all the conclusions. Subsequently we come to
the deduction that Turing Completeness is rarely needed
in terms of functionality in smart contract programming
languages and rather harms the security of it.

Index Terms—ethereum, blockchain, smart contracts, solid-
ity, turing complete

1. Introduction

Blockchain Technology is steadily growing in popular-
ity and importance posing as one of the most interesting
new asset classes on the finance market as even banks
now invest into blockchain technology like Bitcoin and
Ethereum. Whereas Bitcoin is very limited, Ethereum
expanded greatly in the number of use cases it has by
introducing the first version of smart contracts that make
it possible to run code on a distributed network. This
system can eliminate the need for trust in sensitive ar-
eas like financial transactions which make transactions
much more automated, secure and stable. Having no need
for a middle-man to conduct the transaction makes the
blockchain a tool to verify and track every transaction
that is made on the network.

Even though smart contracts bring multiple advantages
compared to traditional contracts, there is the question
of how secure this new system is and how it relates
to Turing completeness. Additionally the security of the
programming language and how to improve the security of
the language specifically is important. The paper explains
the key concepts needed to understand the analysis in
Section 2, then analyze the design of smart contracts
and find the connection to security in Section 3. After
that we conduct a case study on where the sources of
vulnerabilities in the smart contract language Solidity are
and how to reduce them in Section 4 and talk about related
work in Section 5. Following we come to the conclusion
why Turing completeness is rather counterproductive in
respect to security in Section 6.

Node Node

Node Node

Node Node

[3]
Figure 1: Blockchain Network

2. Background

2.1. Blockchain

A blockchain is a distributed electronic ledger which
records transactions and tracks assets [1]. It is crucial for
applications where traditionally you need a trusted middle-
man to complete sensitive transactions. These transactions
can range from a simple currency transaction to law
documents and more since a blockchain can track tangible
assets like houses or cars, but also intangible assets like
intellectual property [1].

Distributed means it is a decentralized network of
nodes like shown in Figure 1. These nodes can be com-
puters running the software of a specific blockchain where
every node is connected to each other instead of having a
centralized hub of operations like a single server [2].

This means that all the data of the blockchain is
publicly visible but the blocks containing the data are not
modifiable. Blocks contain the hash of the previous block
and multiple transactions in addition to other data like
shown in Figure 2.

As this paper will largely focus on Ethereum’s imple-
mentation of smart contracts we will look further into the
attributes of the Ethereum blockchain as other blockchains
with the option to create smart contracts are very similar
to the Ethereum system.

Transactions on the Ethereum blockchain can only
occur between an externally owned address (EOA) and
another EOA, between an EOA and a smart contract, or
between two smart contracts. An externally owned address
usually represents a human made address also called
wallet that has a private and public key. A public key is
needed to be able to address a specific wallet for a simple

Seminar IITM SS 22,
Network Architectures and Services, November 2022 53 doi: 10.2313/NET-2022-11-1_10

Block n

Hash of previous block

Timestamp

Transactions

Block Summary

[3]
Figure 2: Block Artchitecture

transaction and the private key is to sign transactions. The
private key is used like a PIN on a credit card to confirm a
transaction before it is executed. Whereas an EOA stores
the balance and nonce which counts the number of all
confirmed transactions, a contract-address additionally has
code and a storage to track the states it has. This means
that a contract address has at least the same amount of
actions it can execute as a human created address.

Transactions can not be altered after execution which
eliminates the need for trust in a transactions. Usually you
have a system in place that needs to be trusted to make
sure transactions take place as intended like a bank making
sure they deliver your payment and in turn make sure that
the seller in a transaction receives his payment from the
buyer. Both the seller and the buyer expect the bank to
handle everything related to processing the payment and
thus have to trust it. The system depends on this trust
which is a disadvantage as the trust can be exploited by
malicious bankers and the way of making transactions
would fall apart if banks became untrustworthy. Smart
contracts on the other hand eliminate what would be
the bank in a transaction and introduce an electronic
contract that is executed on all nodes of the blockchain so
everybody can verify that the contract is being executed
correctly.

Only one node, the one which completes the contract
the fastest actually alters the blockchain by adding the
data to the next block of transactions that is chained to
the rest of the blocks which in turn permanently alters
the whole blockchain for all participants by adding a new
block. This process is also called mining. For using the
node’s computational resources the blockchain rewards
the node with the currency the blockchain uses which
is Ether in the case of Ethereum. Being able to see all
transactions and not being able to change transactions
makes the blockchain "highly trustworthy, transparent, and
incorruptible" [2]. For all the nodes to agree on certain
data values to determine what is a correct output of a
transaction there are consensus mechanisms like Proof of
Work, Proof of Stake, Proof of Authority and more.

2.2. Smart Contracts

A smart contract is code that is executed in the virtual
machine of a blockchain which in our case is the Ethereum
Virtual Machine (EVM). The programming language of
Ethereum is Solidity which is a Turing Complete pro-
gramming language. Turing Completeness in the case of
Solidity means it can run all programs a Turing Machine

can run which mostly differentiates itself from Turing
incomplete languages by being able to have complex
programs including loops and recursion. The EVM works
as a state machine that has an existing state, takes a
transaction as an input and combines the two to create
a new state. So the blockchain mostly consists of states
that are changed over time. A Turing Machine and thus
also a turing complete language have the important ability
of disregarding the limitations of finite memory which will
be an important fact in the analysis in section 3.

3. Smart Contracts Design and Analysis

3.1. Execution of Smart Contracts

You can use an Ethereum Node API to read data
from the blockchain. Writing data to the blockchain is
much more complicated than reading. You need to send a
transaction to the Ethereum Network that specifies which
smart contract to alter, which function to execute, any
arguments you want to include, and if you are sending
any Ether. After signing this transaction it needs a node to
accept this transaction which does not have to also execute
it. It is possible that the transaction will be forwarded
to another node for execution. The transaction will be
added to a transaction pool which will be only executed
when there are enough transactions to fill a new block.
To validate the transaction the transaction is passed as
an input to the smart contract which is executed in the
EVM. This transaction pool is handled by the miners that
all simultaneously execute the transactions in the pool by
solving a mathematical problem until one miner finishes
all the transactions in the pool and solves the mathematical
problem. So only one miner modifies the blockchain and
adds a new block and all the other miners are used for
verification of the result of the transactions but ultimately
discard their calculations. Most of the other blockchains
have a similar way of executing smart contracts.

Executing a smart contract is synonymous to buying
something from a vending machine [4]. You enter at least
the amount of money you need to buy a specific product,
you press a button, you get your product and possibly
some change back.

Since Solidity, the language Ethereum smart contracts
are based on, is Turing complete you can not predict
whether a program will finish or not which is why the
developers of Ethereum have introduced gas fees to imple-
ment some of the benefits of having a Turing incomplete
language. Gas fees are payed with every transaction. The
person or contract trying to send the transaction has to
specify how much they are willing to pay in gas for
the transaction to arrive. It is possible to set the limit
too low for the transaction to be declined in which case
you will still lose the gas fees and the transaction will
not be executed. If the gas limit is set appropriately to
where the fees do not exceed the limit the transaction
will be executed and possible remaining gas that is left
over will be reimbursed to the sender of the transaction.
Gas fees depend on how busy the Ethereum network
is and change over time. Gas fees fix the disadvantage
of Turing completeness disregarding the limits of finite
memory which could lead to endless looping programs

Seminar IITM SS 22,
Network Architectures and Services, November 2022 54 doi: 10.2313/NET-2022-11-1_10

that never finish as the gas fees will at some point in
the execution run out and stop the process. Blocks have
an upper gas limit which can not be exceeded by the
cumulative sum of the gas fees of the transactions that are
in the pool of transactions for the specific block [2]. This
ensures that not all transactions will be written into the
same block. The nodes of the network can act as miners
or EVM depending on the situation [2].

3.2. Other Smart Contract Languages

While Ethereum is the biggest blockchain with the
ability to write smart contracts there are several alter-
natives like Algorand with the programming language
TEAL, Cardano which is a blockchain platform using
Proof of Stake and EOS.IO which is also a platform built
for smart contracts. Algorand tries to solve the problem
of scalability, speed of transaction and security that is
common among blockchain technology networks [5]. The
Ethereum Network can only handle up to 15 Transactions
per second [5] whereas Algorand can process up to 1000
transactions per second [6].

The dramatic difference in efficiency is mostly due to
Algorand using a different type of consensus mechanism.
Reviewing scalablity between different platforms shows
a trend of higher transactions per second often being
accompanied by weaker security as higher security often
implies more resource intensive concepts [5]. Ethereum
uses Proof of Work as of the time writing this paper
and Algorand uses Proof of Stake which does not require
nearly as much resources and scales much better. A switch
to Proof of Stake for the Ethereum Network is planned for
the future. Algorand’s Proof of Stake Mechanism uses the
Verifiable Random function to randomly select a Holder
of the Algorand currency to validate the next block in the
chain instead of using miners like in the Proof of Work
approach of Ethereum. A minimum amount of ALGO,
the token of the Algorand network, needs to be pledged
by a node to be able to validate blocks to ensure that
the validator does not act maliciously as it would be
unprofitable.

The security advantages TEAL has over Solidity come
from it being a Turing incomplete language. Although
Solidity is not as limited in the variety of algorithms it
can compute like TEAL, being Turing incomplete is the
key to reducing the possible attack vectors of the programs
that are written with it. [7] concluded that at most 35.36%
of smart contracts written in Solidity require Turing com-
pleteness to be executable. Therefore the majority does
not require it and [7] states that it makes sense to rather
use a Turing incomplete language. Although it is also
mentioned that a mix of both language types could be
the best option to still retain some of the more complex
algorithm capabilities of Turing complete languages.

3.3. Security

Since Solidity is the first practical smart contract ca-
pable language [8] it does have the benefit of being most
popular choice among smart contract developers [5] which
makes identifying security vulnerabilities and adopting
generalized good practices for coding in Solidity much
easier than lesser known languages like TEAL. Major

hacks like the DAO hack on the Ethereum network were
only possible because of Solidity’s Turing completeness,
allowing reentrancy attacks causing major financial loss
[9]. The EVM was working as intended and the DAO
contract itself did not have any flaws but the language
itself has flaws due to it being Turing complete which the
designers of the language might have overlooked [9].

Most security vulnerabilities are flaws in the coding
of the smart contract itself. Some of the most common
vulnerabilities are reentrancy attacks and the use of ora-
cle manipulation. Oracles provide data from outside the
blockchain. An Oracle could be a sensor on a car tire to
monitor the health of the tire to monitor if it is about to
break. This kind of information is not on the blockchain as
it is real-world data capture by sensors and oracles provide
the connection needed to use this external data in smart
contracts. Now depending on how sensitive the contract is
the choice of oracle can be crucial for the smart contract
to work as intended. If an oracle only gets data from one
sensor in our example of the car tire, the sensor could be
faulty and send wrong data which might trigger a chain
of transaction that leads to an emergency call saying a
tire broke even though it did not. Using multiple sensors
would be needed to make the contract more robust. In
other scenarios it is advised to use decentralized points
of data sources in an oracle to make sure the data is
correct and confirmed by many other sources as this is
very important for the contract. Now this also presents
an attack vector if you manipulate the oracle you can
directly influence the execution of the transactions made
by the smart contracts relying on this oracle. This is less
a vulnerability of Solidity itself but rather a possible flaw
in developing smart contracts made by the developers.

An example for a reentrancy attack could be two
people writing each other letters, person A receives a
letter from person B, starts writing an answer to the letter
from B but does not complete it and starts writing a new
letter concerning a different topic and sends it to person B.
Now person B answers the letter sent by person A and A
finishes writing his first response and sends it to B which
would confuse B as it refers to a different conversation
that was had before. This type of concept was used in the
DAO hack to request Ether multiple times from a smart
contract before the contract checked the balance which
resulted in the attacker receiving more Ether than intended
[10]. Attacks like these can be prevented by better coding
practices discussed in section 4.

4. Case Study

4.1. Sources of vulnerabilities

Table 1 shows multiple known vulnerabilities of the
Ethereum Network and on what level they appear on
according to [11]. We can see that most vulnerabilities can
be traced back to Solidity. Considering that the benefits
of Turing completeness are not used most of the time in
smart contracts made with Solidity it is reasonable to think
that the smart contracts would be much more secure if
the programming language used was not Turing complete
without having to sacrifice too much functionality as the
additional functionality of Turing completeness is rarely

Seminar IITM SS 22,
Network Architectures and Services, November 2022 55 doi: 10.2313/NET-2022-11-1_10

TABLE 1: Security Vulnerabilities

Solidity EVM Blockchain

Reentrancy 3
Type casts 3
Generating Randomness 3
Gasless send 3
Immutable Bugs 3
Keeping Screts 3
Stack size limit 3
Unpredictable state 3
Call to unknown 3

needed. Although it would be much more secure to use
a Turing incomplete language we can not neglect the
less than 35.36% that [7] concluded to be needing turing
completeness. The quantity of the contracts using this
complexity does not directly tell the importance of these
smart contracts in the network. This 35.36% could be
relied on by a lot of other smart contracts that do not
need Turing completeness themselves so the influence on
the network might be and is probably much higher than
the aforementioned 35.36%.

It is important to carefully weigh the benefits of
more security versus more functionality and decide which
approach is more important in the application of smart
contracts to be able to decide if the programming language
should be Turing complete. Finding a way to combine
both types of languages by having two separate languages
that are Turing complete and incomplete to find a middle
between the benefits and disadvantages as mentioned in
section 3.2 seems to be the best option at the moment.

4.2. Guidelines for writing secure smart contracts

Despite the clear vulnerabilities of a Turing complete
language like Solidity, it is possible to minimize the
potential security issues in a smart contract by following
coding principles. Auditing a smart contract depending on
how important it is a good way of reducing the risks of
security attacks. We can use static analysis like Slither
which is a python program that would directly identify
some of the biggest vulnerabilities and warn the developer
if his code is prone for issues like Reentrancy. To create
safe smart contracts we can not completely rely just on
static analysis and need to use manual analysis tools like
symbolic execution tools. Echidna is a symbolic execution
tool where you can simulate transaction execution without
running the code on the public blockchain. This allows
us to use Fuzz-Testing to manually assess if functions
work as intended. Vulnerabilities like generating random-
ness where the random values are not as random as the
developer wants it to be can just be tested by creating a
lot of values with the Fuzz-Testing tool and checking if
values are repeated.

5. Related Work

Even though there is literature on similar topics like
[12] and [11], they usually only focus on security aspects
of smart contracts without connecting the vulnerabilities to
the Turing completeness of the language and how this loss
or gain in security weighs compared to the functionality.

There is literature about the need of Turing completeness
in smart contract programming but these mostly are in
regard to functionality and do not make a connection
to security as well. There is a lot of work regarding
blockchain technology, smart contracts in general, how to
write smart contracts and most of them refer to Solidity as
it is one of the most commonly used languages for smart
contracts. There are generally a lot of unscientific guides
on how smart contracts work and what practices conclude
in a more secure smart contract and what to avoid when
programming with Solidity for example. Big attacks on
the security of smart contracts are well documented like
the DAO hack. This paper rather combines all of these
findings and forms a new conclusion.

6. Conclusion

It seems using a Turing complete language has a large
negative effect on security as most vulnerabilities can be
linked to attributes that only occur in Turing complete lan-
guages like a program not terminating by itself. Problems
like this can be reduced partly by introducing limitations
that are more similar to Turing incomplete languages seen
in the introduction of gas fees in the Ethereum network
to combat the problem of a program not terminating by
itself and thus wasting resources on the network. But
it is not always possible to neglect the functionality of
Turing complete languages which can provide crucial
algorithm support that Turing incomplete languages do
not. So either the combination of Turing completeness
and incompleteness or using a Turing complete language
and using strict security guidelines while creating smart
contracts can be viable compromises to ensure security.

Generally the Ethereum Network seems like a very
resource intensive network with the use of Proof of Work
as the consensus mechanism and the Turing completeness
of Solidity which allows for more wasteful and inefficient
algorithms compared to a Turing incomplete language like
TEAL which also works with a Proof of Stake consensus
mechanism that allows the whole Algorand Network to be
much more energy efficient than Ethereum. This not only
reduces transaction times but also improves scalability and
security which seems like an overall improvement.

References

[1] “What is blockchain technology? - ibm blockchain,” 2022. [On-
line]. Available: https://www.ibm.com/topics/what-is-blockchain

[2] R. Modi, Solidity Programming Essentials: A beginner’s guide to
build smart contracts for Ethereum and Blockchain. Packt, 2018.

[3] T. Salman, R. Jain, and L. Gupta, “Probabilistic blockchains:
A blockchain paradigm for collaborative decision-making,” 2018
9th IEEE Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), pp. 457–465, 2018.

[4] R. Wilkens and R. Falk, Smart Contracts: Grundlagen,
Anwendungsfelder und rechtliche Aspekte, ser. essentials.
Springer Fachmedien Wiesbaden, 2019. [Online]. Available:
https://books.google.de/books?id=k9UyyQEACAAJ

[5] G. A. Tsihrintzis and M. Virvou, “Advances in core computer
science-based technologies,” Jan 1970. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-41196-1_1

Seminar IITM SS 22,
Network Architectures and Services, November 2022 56 doi: 10.2313/NET-2022-11-1_10

[6] N. Borisov and C. Diaz, Financial Cryptography and Data
Security: 25th International Conference, FC 2021, Virtual
Event, March 1–5, 2021, Revised Selected Papers, Part II,
ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2021. [Online]. Available: https://books.google.de/
books?id=TuVJEAAAQBAJ

[7] M. Jansen, F. Hdhili, R. Gouiaa, and Z. Qasem, “Do smart contract
languages need to be turing complete?” Advances in Intelligent
Systems and Computing, p. 19–26, 2019.

[8] D. Gerard, C. Wagner, K. Boyd, and B. Gutzler, Attack
of the 50 Foot Blockchain: Bitcoin, Blockchain, Ethereum &
Smart Contracts. David Gerard, 2017. [Online]. Available:
https://books.google.de/books?id=R7hEDwAAQBAJ

[9] H. HackerNoon, “Should smart contracts be non-turing
complete?” Jul 2019. [Online]. Available: https://hackernoon.com/
should-smart-contracts-be-non-turing-complete-fe304203a49e

[10] M. Derka, “What is a re-entrancy attack?” Aug
2019. [Online]. Available: https://quantstamp.com/blog/
what-is-a-re-entrancy-attack

[11] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts,” https://eprint.iacr.org/, 2016. [Online].
Available: https://eprint.iacr.org/2016/1007.pdf

[12] N. F. Samreen and M. H. Alalfi, “A survey of security vulnera-
bilities in ethereum smart contracts,” ArXiv, vol. abs/2105.06974,
2021.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 57 doi: 10.2313/NET-2022-11-1_10

Seminar IITM SS 22,
Network Architectures and Services, November 2022 58

A Brief Overview on HTTP

Justus Wendroth, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ge35fup@mytum.de, jaeger@net.in.tum.de

Abstract—HTTP has evolved over the last 32 years as new
requirements had to be tackled due to the changing use of
the web. In this paper, we compare HTTP/1.1, HTTP/2, and
HTTP/3 regarding their features and show the limitations
they have. Additionally, we compare the versions in terms of
latency, packet loss, and usage. We see that higher latency
affects HTTP/1.1 worse than HTTP/2. When packet loss
increases, the advantages of HTTP/2 decrease and HTTP/1.1
can also be faster. HTTP/3 performs better under high
packet loss than HTTP/2. The picture is more mixed for
the impacts of latency. HTTP/2 currently appears to be the
most widely used version, while the use and adoption of
HTTP/3 is increasing.

Index Terms—HTTP/1.1, HTTP/2, HTTP/3, QUIC, latency,
packet loss

1. Introduction

The modern Internet is powered by many technologies:
IP addresses for connecting across multiple hops, TCP for
reliable data transfer, and TLS for secure data transfer.
In this paper, we look at the application protocol HTTP.
HTTP is a stateless protocol which was first conceived
for sending hypertext (HTML documents). Over the years
HTTP evolved and gained new features, including the
ability to send data other than HTML. Nowadays, HTTP is
not only used for retrieving websites but also to exchange
data using REST APIs.

To give a better understanding of HTTP, we briefly
look at its history and explore key features introduced
with new versions. In Section 2, we also look at the
limitations of the three major HTTP versions (HTTP/1.1,
HTTP/2, and HTTP/3). For readability, we use h1, h2, and
h3 to mean HTTP/1.1, HTTP/2, and HTTP/3 respectively.
We then compare the effects of latency and packet loss,
and usage for the three major versions in Section 3.
In Section 4 we examine related work on comparing
HTTP versions. Section 5 concludes this paper.

2. Background

HTTP/0.9, formerly known simply as HTTP, was the
first version of the protocol, developed by Tim Berners-
Lee at CERN and released in 1990 [1]. HTTP/0.9 only
supported GET requests to retrieve resources specified by
their path [1]. Due to no HTTP headers being included
in this version, only HTML documents could be transmit-
ted [1].

HTTP/1.0 was defined in RFC 1945 in 1996 [2].
This RFC describes the common practices and usages
for HTTP at the time as the protocol was extended by
different parties and interoperability problems often oc-
curred [1]. One issue with HTTP/1.0 was that a connection
could not be reused for multiple requests [1].

HTTP/1.1 (h1) was the first standardized version of
HTTP and released in 1997 in RFC 2068 [3]. h1 added
new headers, the ability to reuse a connection, pipelining
to send multiple request before receiving a response, and
other additional functionality.

HTTP/0.9, HTTP/1.0, and HTTP/1.1 could only trans-
fer textual data [2], [3]. HTTP/2 (h2) standardized in 2015
in RFC 7540 is a binary protocol [4]. h2 stems from the
Google SPDY1 project [5]. Additional features include
multiplexing of requests (using streams) over a single
connection, stream prioritization, and more [4].

HTTP/3 (h3) was standardized in June 2022 [6]. h3
operates on top of QUIC [7], which is a UDP-based trans-
port protocol, instead of TCP. QUIC was first developed at
Google [8]. Additional features of h3 and QUIC are the
ability for 0-RTT2 handshakes [7], header compression
using QPACK [9], and more.

In the following subsections, we take a closer look at
h1 (Section 2.1), h2 (Section 2.2), and h3 (Section 2.3).

2.1. HTTP/1.1

In this section, we look at RFC 2616 from 1999 [10]
which was an update of the first h1 version in 1997 [3].
If not otherwise mentioned, we are referring to RFC
2616 [10] in this entire section. One additional feature
of HTTP/1.1 is caching, which allows minimizing the
number of requests a client has to make to a server as
the client can cache previous responses for a certain time.
Caching can also be performed by proxy servers, which
is another feature of HTTP not discussed further here.

Messages. To transfer data between endpoints (e.g. server
and client) HTTP uses HTTP messages. There are two
different types of messages. Requests can be used to
retrieve data or send data. Responses are the answer to
a request. HTTP messages consist of a Request-Line or
Status-Line, a list of headers to convey additional in-
formation, and the message body with the actual data.
Requests have a Request-Line consisting of an HTTP

1. SPDY, QUIC, HPACK, and QPACK are not acronyms but names
of projects or standards.

2. RTT = Round-Trip Time

Seminar IITM SS 22,
Network Architectures and Services, November 2022 59 doi: 10.2313/NET-2022-11-1_11

GET /en-US/docs/Glossary/Simple_header HTTP/1.1
Host: developer.mozilla.org
Accept: text/html, application/xhtml+xl, application/xml;q=0.9,⁎/⁎;q=0.8
Accept-Language: en-US, en; q=0.5
Accept-Encoding: gzip, deflate, br
...

200 OK
Connection: Keep-Alive
Content-Encoding: gzip
Content-Type: text/html; charset=utf-8
Keep-Alive: timeout=5, max=1000
Transfer-Encoding: chunked
...

(content)

Figure 1: h1 message exchange. Adapted from [1].

method (e.g. GET, POST, PUT, etc.), a Request-URI to
indicate the server and resource to be retrieved or sent,
and the HTTP version. A Status-Line is composed of the
HTTP version, a Status-Code (e.g. 1xx informational, 2xx
success, 3xx redirection, 4xx client error, and 5xx server
error) to indicate the success of a request, and a Reason-
Phrase, which is a textual description of the Status-Code.
Status-Lines are used within responses. Fig. 1 shows an
example message exchange with h1.

Headers. Headers in HTTP are used to send additional
information with a message. There are headers which are
required to be sent in requests or responses. Examples
of headers are Content-Length to specify the length of
the message body, Content-Type to specify the type of
resource transported via the message body, Cache-Control
to instruct caching mechanisms how to cache resources,
and the Cookie headers to add state management to
HTTP [11].

Persistent connections. In contrast to HTTP/1.0, h1 al-
lows persistent connections. This means that multiple
requests and responses can be sent over a single TCP
connection. By not having to open multiple TCP connec-
tions for multiple requests overhead is reduced. h1 also
introduces pipelining. Pipelining enables sending multiple
requests without having to wait for the responses of earlier
requests. Responses to pipelined requests must be sent
back in the same order in which they were received. Non-
idempotent requests (e.g. using the POST method) cannot
be pipelined.

Limitations of HTTP/1.1. h1 has several limitations
which led to the development of h2 [4]. Pipelining has the
problem of head-of-line blocking (HoLB) [12]. HoLB can
occur when the first request is for a large file. Sending this
large file will cause subsequent responses to be blocked.
Pipelining is not widely used by clients and servers as
it is difficult to implement [13]. As a solution, multiple
TCP connections are opened to be able to send multiple
requests at the same time [12]. This causes additional
overhead, especially if HTTPS [14] is used. As a conse-
quence, browsers limited the amount of TCP connections
per host [12]. A workaround for this is domain sharding,
which places resources on different hosts to be able to
evade this limitation [12]. Browsers then limited the total
number of TCP connections [12]. Other workarounds for
h1 include CSS spriting [12].

Figure 2: h2 connection. Adapted from [15].

2.2. HTTP/2

h2 builds on top of the core semantics of h1 but
introduces multiplexing of requests and responses, which
completely changes how data is transferred [4]. In contrast
to h1, h2 is a binary protocol, which means that message
bodies can be sent in binary format. For most of the new
features presented in this section we are referring to RFC
7540 [4]. If this is not the case, we mention this explicitly.

Multiplexing. h2 communication between a client and
a server takes place over a single TCP connection
(see Fig. 2). A connection is split into multiple streams,
where every exchange of request and response is assigned
its own stream (see Fig. 2). A request/response exchange
fully consumes a stream. Both clients and servers can open
new streams. Each stream has an ID, which is assigned by
the endpoint initiating the stream and cannot be reused.
As can be seen in Fig. 2, Streams are divided into multiple
frames. There are different types of frames. For example,
the DATA frame carries data, and the HEADER frame
is used to open a stream. In every connection there is
the stream with ID zero, used for exchanging control
messages. In contrast to h1, where most of the information
regarding the connection is transferred using headers, h2
conveys a lot of this information using the control stream.

Prioritization. In h2, streams can be dependent on other
streams. A dependent always has a lower priority than its
parent. When a stream is reprioritized, their dependents
move with them. A stream that does not depend on another
stream has the stream with ID zero as its parent. If two
streams depend on the same stream (can be the zero
stream), they can be assigned weights from 1 to 256
and resources should be allocated proportionally to their
weight. Assigning priorities is only a suggestion and does
not have to be followed by other endpoints.

Server Push. h2 allows a server to push data to a client
without a specific request from a client. This can be useful
when a client requests a website from the server. Instead of
just sending the HTML and waiting for requests of other
resources of the website, a server could also push these
resources (e.g. CSS and images) directly. Before pushing
data to the client, a server needs to send a PUSH_PROMISE
frame to inform the client about the push.

Flow Control. h2 provides flow control for data frames
on the level of individual streams and on the level of
the whole connection. Flow control is always specific to
connection and cannot be disabled. A receiver can regulate
how much data they are able to receive by sending a
WINDOW_UPDATE frame to the other endpoint.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 60 doi: 10.2313/NET-2022-11-1_11

Header Compression. Header fields (i.e. the name-value
pairs in a header) are repetitive and verbose, which
causes overhead. Therefore, h2 introduces HPACK [16]
for header compression. HPACK uses static and dynamic
tables, which are dictionaries that are indexed by indices
and contain header fields, to reduce the amount of data
to send. The static table is ordered and read-only and
provides a list of 61 commonly used headers (e.g. ’accept-
encoding: gzip, deflate’ has index 16 in the static ta-
ble) [16, Appendix A]. Dynamic tables are specific to
a connection. They are constrained in size and store the
header fields encountered during a connection. Addition-
ally, any string can be Huffman encoded using a static
Huffman code created for HTTP [16, Appendix B].

Limitations of HTTP/2. h2 has the problem of TCP
HoLB, as only one connection is used in h2 [12]. TCP
HoLB occurs when one stream has a packet loss, since
then all streams have to wait. This is caused by TCP’s in-
order delivery of packets. h1 does not have this problem,
since most of the time multiple TCP connections are used.

Another problem with h2 is the cost of TCP and TLS,
since handshakes for TCP and TLS need to be completed
to establish a connection [8]. This was also a problem with
h1 over TLS, as we have seen previously in Section 2.1.
TLS is an optional feature of h2, but most browsers only
allow h2 over TLS [12].

2.3. HTTP/3

h3 is the newest version of HTTP [6]. Instead of
operating on top of TCP and TLS, h3 operates on top of
QUIC [7], which is UDP-based and includes TLS. Using
QUIC alleviates the problem of TCP HoLB. h3 includes
many of the features introduced with h2. Some of them
are implemented directly in h3, while others were moved
to QUIC. The semantics of h3 are similar to h1, and
h2 [17]. Similar to h2, h3 supports protocol extension.
h3 also supports server push [6].

Multiplexing. For this entire subsection, we are referring
to [6]. h3 uses QUIC streams for communication, as it
has no separate multiplexing mechanism. Similar to h2,
a request-response pair consume a stream. To communi-
cate over streams, h3 uses frames similar to h2. There
are multiple frame types, including DATA, SETTINGS
and HEADERS frames. To exchange control information,
h3 uses two separate unidirectional QUIC streams. Two
unidirectional streams allow the endpoints to send data
as soon as their able to do so after a 0-RTT or 1-RTT
connection.

Header compression. In this section, we are citing [9]
unless mentioned otherwise. h3 uses QPACK [9] instead
of HPACK [16] for header compression. This is because
HPACK relies on all frames across all streams being
delivered in order. Using HPACK with h3 would therefore
cause HoLB, since QUIC does not guarantee in-order
delivery across streams but only within a stream. QPACK
has similar design goals and concepts as HPACK (e.g.
a dynamic table, a static table, and a static Huffman
encoding) but uses different mechanisms to achieve this.

QUIC. In this section, we are citing [7] unless mentioned
otherwise. To multiplex data QUIC uses streams. Streams
are a visible abstraction for application protocols (e.g. h3)
operating on to of QUIC. To prioritize streams, QUIC
relies on information from the application protocol, as
there is no built-in mechanism for exchanging priorities.
Streams are split into multiple frames (e.g. STREAM
frames to send data or ACK frames to acknowledge
packets). For transferring data QUIC uses QUIC packets
which consist of multiple frames (from different streams).
Packets are sent using UDP datagrams (multiple packets
can be in one datagram).

QUIC enables 0-RTT and 1-RTT handshakes by com-
bining the cryptographic (uses TLS 1.3 [18], [19]) and
transport handshake. 0-RTT handshakes are possible if
there was a prior connection between endpoints. In con-
trast, h2 over TCP and TLS has a 3-RTT handshake [20].

QUIC connections have ConnectIDs which allow the
connection to persist across changes to the underlying IP
or port.

Additional features of QUIC include flow control for
individual streams and the entire connection, loss detec-
tion and recovery mechanisms, and others.

Limitations of HTTP/3. Googles’ QUIC implementation
consumes twice as much CPU as TCP/TLS [8]. The
reasons for the higher CPU usage are the cryptography,
the exchange of UDP packets, and maintaining QUIC
state. TLS 1.3 enables 0-RTT and 1-RTT cryptographic
handshakes [19]. Using TLS 1.3 with h2 reduces the
advantages of QUIC over TCP/TLS.

3. Evaluation

In this section, we compare the different HTTP ver-
sions regarding their usage and how they react to latency
and packet loss.

Effects of latency. Two aspects that have an impact on
the latency of the different versions are the handshake
they perform (i.e. cryptographic handshake and transport
handshake) and their general structure.

h3 performs at most 1-RTT handshakes as the cryp-
tographic and transport handshakes are combined. h1 and
h2 over TLS need to perform the TLS handshake and the
TCP handshake separately. As mentioned previously, for
TLS 1.2 and earlier versions this takes 3-RTT. Therefore,
an increase in latency should affect the h3 handshake less
than h1 and h2. Latency should affect h2 less than h1
because when h1 is used, often multiple connections are
opened and for each connection the handshake has to be
repeated. Langley et al. [8] show that the handshake la-
tency increases linearly for h2 over TCP/TLS and remains
almost constant for Google QUIC.

Since h2 and h3 support multiplexing of requests
and responses, they should handle latency better than h1.
References [12], [21] show that h2 reacts better to latency
than h1. Trevisan et al. [22] show the order h3, h2, and
h1 from best to worst. In contrast, Saif et al. [23] show
h3 performing worse than h2 regarding QoE (Quality
of Experience) measurements using Lighthouse. This is
because in their tests LCP (i.e. Largest Contentful Paint:
time for the largest payload to be rendered completely)

Seminar IITM SS 22,
Network Architectures and Services, November 2022 61 doi: 10.2313/NET-2022-11-1_11

performed consistently much worse for h3 than h2. In
addition, no 0-RTT handshakes were used for h3.

Effects of packet loss. h2 has the problem of TCP head
of line blocking, where a packet loss affects all streams
which are multiplexed over a single TCP connection.
Therefore, packet loss might affect h2 worse than h1. h3
solves the TCP HoLB by using QUIC over UDP instead of
TCP. It should therefore react better to packet loss than
h2. De Saxcé et al. [12] show decreasing performance
improvements for h2 compared to h1 with higher rates of
packet loss. h1 can also perform better for higher packet
loss. In contrast to this, Corbel et al. [21] show that h2
performs better than h1 under high packet loss rates. This
might be because they used h1 pipelining over a single
TCP connection which would also be affected by TCP
HoLB. h3 shows better performance than h2 at higher
packet loss rates [22], [23].

Usage. In this section, we mostly focus on data provided
by Cloudflare, w3tech and the HTTP archive, as data men-
tioned in papers quickly becomes outdated. For example,
Trevisan et al. [22] measured the adoption of h3 at 4.8% in
October 2020, but as we show in the following subsection,
the adoption of h3 has significantly increased over the last
1.5 years.

For the 30 days prior to June 11, 2022, Cloudflare
radar showed that the traffic passing through their in-
frastructure was 8% h1, 68% h2, and 24% h3 [24].
Additionally, over the 12 months prior to June 2022, h2
made up the majority of requests for Cloudflare customer
content and the number was increasing [25]. h1 requests
were stable, while h3 requests increased and surpassed h1.
W3tech measures the adoption of h3 and h2 by websites
by examining the top 10 million websites from Alexa3and
1 million from Tranco3 [26]. When a technology is found
on a website, that website adopts the technology. h2 is
adopted by 45.8% of websites, which has stayed relatively
stable over the 12 months prior to June 2022 [27]. h3
is adopted by 25.2% of websites, which has increased
over the 12 months prior to June 2022 [28]. The HTTP
archive crawls millions of URLs from the Chrome User
Experience Report on a monthly basis [29]. For June 1,
2022, h3 support was at 15% for desktop and 15.3% for
mobile and has been steadily increasing since May/June
2020. The number of h2 requests on June 1, 2022, was at
67.7% for desktop and 67.8% for mobile and also steadily
increasing.

It is difficult to compare data from different sources.
However, a general trend in increasing usage of h2 and
increasing adoption and usage of h3 can be seen. h1 is
also still widely used. For example, the Facebook bot,
Google bot, and LinkedIn bot, which are crawlers for the
respective social media sites and search engines, perform
a lot of their requests using h1 [25].

4. Related work

De Saxcé et al. compare h1 and h2 using page load
time as the performance indicator [12]. They clone 20
popular websites to a server and use a LAN connection to

3. Alexa [30] and Tranco [31] provide top sites rankings

that server to test the impact of latency and packet loss on
h1 and h2. They show that an increase in latency impacts
page load times for h1 more than h2. In contrast, h2 shows
less performance benefits the higher the packet loss is. h2
can also take longer than h1 for higher packet loss. Some
limitations include not using TLS and no domain sharding,
as all data is on a single server.

Saif et al. compare h2 (over TCP and TLS 1.3) and
h3 using the Lighthouse open-source tool, which measures
performance and QoE (Quality of Experience) aggregat-
ing different metrics to give a performance score [23].
Their test setup is a server in a virtual machine and
Google Chrome as the client on the same machine. They
use web content to resemble a realistic web page. To
compare effects of latency and packet loss, they increase
these parameters individually (latency to 1000ms and even
2000ms; packet loss to 1.4%). The baseline score without
any adjustments to latency or packet loss was 65 for h3
and 87 for h2. h3 showed consistently worse performance
for increases in latency. For packet loss, h3 performed
better than h2 for a packet loss starting at 1% and the score
stayed relatively flat in contrast to h2. h3 had consistently
worse scores for LCP (i.e. Largest Contentful Paint: time
for the largest payload to be rendered completely) which
makes up a large percentage of the Lighthouse score.
One limitation is that no 0-RTT connection establishments
were used for h3.

Trevisan et al. look at the adoption and performance
of h3 [22]. Using a data set of 5 million URLs, they found
that 4.8% of these websites supported h3 in October 2020.
Of the websites that support h3, 51% still retrieve one
or more objects using h1. For testing performance they
make requests to a subset of websites supporting h3. They
increase latency to 200ms, increase packet loss to 5% and
decrease bandwidth to 1 Mbit/s separately. To compare
the effects of varying these parameters, they used onLoad
(when all elements of a webpage have been loaded and
parsed) and speedIndex (when visible portions of the page
are displayed). They compared h1, h2, and h3 regarding
latency and found that the mean onLoad and speedIndex
times are best for h3, second for h2, and worst for h1.
The improvements increase with higher latencies. They
also compare h2 and h3 regarding bandwidth and packet
loss and found that h3 had better performance at low
bandwidth, but performance was similar for high packet
loss. They always use a fresh browser profile with empty
cache and no pre-existing connections. This means no 0-
RTT for h3.

A limitation of all papers presented here is that they
only compare two different HTTP versions (h1 and h2
or h2 and h3). Trevisan et al. have measurements across
all versions, but they mostly focus on comparing h2 and
h3 [22].

5. Conclusion

This paper gave an overview of the different HTTP
versions HTTP/1.1 (h1), HTTP/2 (h2), and HTTP/3 (h3)
and their most important features. In h1, messages are
exchanged via requests and responses and headers can be
used to convey additional information. h2 builds on these
features from h1 by including mechanisms to multiplex

Seminar IITM SS 22,
Network Architectures and Services, November 2022 62 doi: 10.2313/NET-2022-11-1_11

requests and compress headers. h3 builds on the multi-
plexing from h2 by using QUIC and UDP instead of TCP
and therefore alleviating the TCP HoLB problem of h2.

We then compared h1, h2, and h3 in terms of how they
perform under different amounts of latency and packet
loss. We also compared the usage of the different versions.
h2 performs better than h1 at high latency. For higher
packet loss, the benefits of h2 are reduced and h1 can
also perform better. By comparing h3 and h2, we see that
h3 performs better under higher packet loss. For higher
latency, h2 performs better for some tests and h3 for
others. h2 currently seems to be the most used version
(June 2022). The use and adoption for h3 is increasing.
h1 usage is relatively stable.

In the future, there is room for a comparison of all
three HTTP versions regarding latency, packet loss, band-
width, and maybe other parameters, since most papers
only compare two different HTTP versions (h1 and h2
or h2 and h3).

References

[1] “Evolution of HTTP - HTTP | MDN.” [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_
of_HTTP/Evolution_of_HTTP

[2] H. Nielsen, R. T. Fielding, and T. Berners-Lee, “Hypertext
Transfer Protocol – HTTP/1.0,” Internet Engineering Task Force,
Request for Comments RFC 1945, May 1996, num Pages: 60.
[Online]. Available: https://datatracker.ietf.org/doc/rfc1945

[3] R. T. Fielding, H. Nielsen, J. Mogul, J. Gettys, and T. Berners-Lee,
“Hypertext Transfer Protocol – HTTP/1.1,” Internet Engineering
Task Force, Request for Comments RFC 2068, Jan. 1997, num
Pages: 162. [Online]. Available: https://datatracker.ietf.org/doc/
rfc2068

[4] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer
Protocol Version 2 (HTTP/2),” Internet Engineering Task Force,
Request for Comments RFC 7540, May 2015, num Pages: 96.
[Online]. Available: https://datatracker.ietf.org/doc/rfc7540

[5] “SPDY.” [Online]. Available: https://www.chromium.org/spdy/
[6] M. Bishop, “Hypertext Transfer Protocol Version 3 (HTTP/3),”

Internet Engineering Task Force, Internet Draft draft-ietf-quic-
http-34, Feb. 2021. [Online]. Available: https://datatracker.ietf.org/
doc/draft-ietf-quic-http

[7] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” Internet Engineering Task Force, Request
for Comments RFC 9000, May 2021, num Pages: 151. [Online].
Available: https://datatracker.ietf.org/doc/rfc9000

[8] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” in Proceedings
of the Conference of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’17. New York, NY, USA:
Association for Computing Machinery, Aug. 2017, pp. 183–196.
[Online]. Available: https://doi.org/10.1145/3098822.3098842

[9] C. B. Krasic, M. Bishop, and A. Frindell, “QPACK: Header Com-
pression for HTTP/3,” Internet Engineering Task Force, Internet
Draft draft-ietf-quic-qpack-21, Feb. 2021, num Pages: 51. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-quic-qpack

[10] H. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding, J. Gettys,
P. J. Leach, and T. Berners-Lee, “Hypertext Transfer Protocol
– HTTP/1.1,” Internet Engineering Task Force, Request for
Comments RFC 2616, Jun. 1999, num Pages: 176. [Online].
Available: https://datatracker.ietf.org/doc/rfc2616

[11] A. Barth, “HTTP State Management Mechanism,” Internet
Engineering Task Force, Request for Comments RFC 6265, Apr.
2011, num Pages: 37. [Online]. Available: https://datatracker.ietf.
org/doc/rfc6265

[12] H. de Saxcé, I. Oprescu, and Y. Chen, “Is HTTP/2 really faster than
HTTP/1.1?” in 2015 IEEE Conference on Computer Communica-
tions Workshops (INFOCOM WKSHPS), Apr. 2015, pp. 293–299.

[13] M. Nottingham, “Making HTTP Pipelining Usable on the
Open Web,” Internet Engineering Task Force, Internet
Draft draft-nottingham-http-pipeline-01, Mar. 2011, num
Pages: 10. [Online]. Available: https://datatracker.ietf.org/doc/
draft-nottingham-http-pipeline-01

[14] E. Rescorla, “HTTP Over TLS,” Internet Engineering Task Force,
Request for Comments RFC 2818, May 2000, num Pages: 7.
[Online]. Available: https://datatracker.ietf.org/doc/rfc2818

[15] “HTTP/1.1 vs HTTP/2: What’s the Difference? | DigitalOcean.”
[Online]. Available: https://www.digitalocean.com/community/
tutorials/http-1-1-vs-http-2-what-s-the-difference

[16] R. Peon and H. Ruellan, “HPACK: Header Compression
for HTTP/2,” Internet Engineering Task Force, Request for
Comments RFC 7541, May 2015. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc7541

[17] R. T. Fielding, M. Nottingham, and J. Reschke, “HTTP Semantics,”
Internet Engineering Task Force, Internet Draft draft-ietf-httpbis-
semantics-19, Sep. 2021, num Pages: 252. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-httpbis-semantics

[18] M. Thomson and S. Turner, “Using TLS to Secure QUIC,”
Internet Engineering Task Force, Request for Comments RFC
9001, May 2021, num Pages: 52. [Online]. Available: https:
//datatracker.ietf.org/doc/rfc9001

[19] E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3,” Internet Engineering Task Force, Request for
Comments RFC 8446, Aug. 2018, num Pages: 160. [Online].
Available: https://datatracker.ietf.org/doc/rfc8446

[20] “Introducing Zero Round Trip Time Resumption (0-RTT),”
Mar. 2017. [Online]. Available: http://blog.cloudflare.com/
introducing-0-rtt/

[21] R. Corbel, E. Stephan, and N. Omnes, “HTTP/1.1 pipelining vs
HTTP2 in-the-clear: Performance comparison,” in 2016 13th Inter-
national Conference on New Technologies for Distributed Systems
(NOTERE), Jul. 2016, pp. 1–6, iSSN: 2162-190X.

[22] M. Trevisan, D. Giordano, I. Drago, and A. S. Khatouni, “Measur-
ing HTTP/3: Adoption and Performance,” in 2021 19th Mediter-
ranean Communication and Computer Networking Conference
(MedComNet), Jun. 2021, pp. 1–8.

[23] D. Saif, C.-H. Lung, and A. Matrawy, “An Early Benchmark
of Quality of Experience Between HTTP/2 and HTTP/3 using
Lighthouse,” in ICC 2021 - IEEE International Conference on
Communications, Jun. 2021, pp. 1–6, iSSN: 1938-1883.

[24] “Cloudflare Radar.” [Online]. Available: https://radar.cloudflare.
com

[25] “HTTP RFCs have evolved: A Cloudflare view of HTTP usage
trends,” Jun. 2022. [Online]. Available: http://blog.cloudflare.com/
cloudflare-view-http3-usage/

[26] “Web Technologies Statistics and Trends.” [Online]. Available:
https://w3techs.com/technologies

[27] “Usage Statistics of HTTP/2 for Websites, June 2022.” [Online].
Available: https://w3techs.com/technologies/details/ce-http2

[28] “Usage Statistics of HTTP/3 for Websites, June 2022.” [Online].
Available: https://w3techs.com/technologies/details/ce-http3

[29] “HTTP Archive: State of the Web.” [Online]. Available:
https://httparchive.org/reports/state-of-the-web

[30] “End of Service Notice.” [Online]. Available: https://www.alexa.
com/

[31] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Kor-
czyński, and W. Joosen, “Tranco: A research-oriented top sites
ranking hardened against manipulation,” in Proceedings of the 26th
Annual Network and Distributed System Security Symposium, ser.
NDSS 2019, Feb. 2019.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 63 doi: 10.2313/NET-2022-11-1_11

Seminar IITM SS 22,
Network Architectures and Services, November 2022 64

Deterministic Networking - DetNet

Berdiguly Yaylymov, Filip Rezabek∗, Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: berdiguly.yaylymov@tum.de, rezabek@net.in.tum.de, holzinger@net.in.tum.de

Abstract—Deterministic networking is rapidly gaining im-
portance, as several network applications and industries
demand deterministic network services. Several of those
network applications demand low end-to-end latencies and
low packet loss. The IETF Deterministic Networking ar-
chitecture provides network-layer services and IEEE 802.1
Time-Sensitive Networking provides data link-layer services.
Both DetNet and TSN play a critical role in providing real-
time low latency and deterministic services for the next-
generation networks. In such context, this paper presents a
broad overview of DetNet and summarizes its key features.

Index Terms—Deterministic Networking (DetNet), Time Sen-
sitive Networking (TSN), Ultra-Low Latency (ULL)

1. Introduction

Traditional Ethernet does not fulfill the communica-
tion requirements of critical real-time systems such as
aerospace, industrial automation, automobiles, etc., which
require high-bandwidth and low delay for communication
networks with the increasing communication data traffic.
Therefore, industries and customers turn their attention to
Quality of Service (QoS) metrics and Ultra-Low Latency
(ULL) paradigms, which provide end-to-end latencies in a
matter of a few microseconds and milliseconds, depending
on the applied applications [1] [2].

The IEEE 802.1 Time-Sensitive Networking Task
Group (TG) and the IETF Deterministic Networking
Working Group (WG) are collaborating [2] to estab-
lish a common architecture for Layers 2 and 3 of the
OSI1 model. DetNet focuses on Layer 3 routed segments,
whereas TSN focuses on Layer 2 bridged networks [2].
Their main goal is to provide support for high reliability
in packet delivery, deterministic worst-case bounds on
latency [2] and better worst-case QoS metrics for best-
effort flows [3]. This survey is intended to provide a com-
prehensive overview of the IETF DetNet and its features
and discuss its current state and future.

The rest of this paper is organized as follows. Section
2 deals with some background studies on Deterministic
Networking and how it emerged and gained interest.
Section 3 provides an overview of IEEE TSN and TSN-
related studies and focuses on the data link layer. Section 4
covers an overview of IETF DetNet, its architecture, flow
types and practical use cases and focuses primarily on the
network layer. Section 5 illustrates the existing DetNet and

1. OSI - Open Systems Interconnection

TSN standards and studies and provides some similarities
and differences between both paradigms, and tries to
summarize their key features. Previously published related
work and research studies on this article are provided in
Section 6. Finally, in Section 7 we discuss and review
practical problems in DetNet and conclude this proceeding
with future research directions.

2. Background

The increasing demand for ultra-low latency network-
ing standards led to the development of a unified data
link-layer protocol by the IEEE 802.1 WG called Audio
Video Bridging (AVB) in 2005 [4]. AVB ensured real-
time requirements such as the transmission of audio and
video streams but lacked fault-tolerance to enhance its
reliability [5] and was subject to some system failures
and malicious cyber attacks [4].

Consequently, in 2012, the IEEE 802.1 WG expanded
the current AVB and renamed it to Time-Sensitive Net-
working (TSN). The TSN enhances time synchronization,
supports the scheduling of real-time time-sensitive data
streams, and improves the streams’ reservation ability [4].
Together with this expansion, the networks were get-
ting larger, requiring deterministic networks. For exam-
ple, public infrastructures such as electricity automation
require deterministic paradigms over a wide area, whereas
the TSN provides support for Layer 2 control systems
and cannot support structures beyond LAN boundaries.
Therefore, Layer 3 networks were required without losing
Layer 2 capabilities [6].

Motivated by these shortcomings, the IETF, in cooper-
ation with Standards Development Organizations (SDOs)
and IEEE 802 developed the Deterministic Networking
(DetNet) WG in 2015 [7]. A key feature of DetNet
is the ability to establish a multi-hop path over the IP
network with a particular flow and ultra-low jitter and
low latency [6].

In general, latency refers to a time delay in an end-
to-end packet delivery between a sender and a receiver.
Thus, the term ultra-low latency usually refers to latencies
that have speeds under 1 millisecond. The term bounded
latency is often used in ULL systems and describes time
delay that must not exceed some predetermined value,
e.g., to ensure the appropriate functionality in automation
systems.

Jitter refers to variations of packet latencies, which
are often caused by congestion. Therefore, two key QoS
metrics of ULL networking are jitter and latency.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 65 doi: 10.2313/NET-2022-11-1_12

3. Overview of Time-Sensitive Networking

The IEEE 802.1 TSN TG standards and services
extend the Ethernet data-link layer and guarantee data
transmission with ultra-low latency and jitter [2]. The
TSN is based on a best-effort packet network consisting
of bridges and network appliances.

3.1. TSN Features

Time synchronization: Time synchronization is accom-
plished using IEEE 1588 Precision Time Protocol (PTP)
configuration, which is, e.g., a stand-alone standard IEEE
802.1AS [8]. All of the devices in a network can syn-
chronize their internal clocks with an accuracy of up to
10ns.

Contracts between transmitters: Each TSN flow func-
tions with a contract between the transmitter of the flow
and the network. Therefore, such features are provided:

• Zero congestion loss and bounded latency:
Congestion and packet loss are caused by the
overflowing streams in the network node. These
shortcomings are eliminated thanks to buffer al-
location and queuing algorithms [2]. Buffer allo-
cation is accomplished through computing worst-
case buffer requirements. There are a couple of
queuing algorithms defined in IEEE Std 802.1Q,
which are: Credit Based Shaper (CBS), Time-
Scheduled Queues, Transmission Preemption and
Asynchronous Traffic Shaping (ATS).

• Ultra reliability: Equipment failure is also one of
the main reasons for packet loss. The main method
of improving the reliability of TSN networks is
Frame Replication and Elimination for Reliability
(FRER) [9].

A sample FRER is illustrated in Figure 1. Packets can be
both replicated and eliminated at each node of the TSN
Timing Model [7].

Figure 1: Packet replication and elimination [7]

3.2. TSN Use Cases

TSN use cases are similar to DetNet use cases and are
thoroughly explained in [7]. Some of them are:

• Professional audio and video studios.
• Electrical power generation and distribution.
• Cellular radio.
• Automotive and other vehicle applications.

4. Overview of Deterministic Networking

In this section, a detailed overview of the IETF De-
terministic Networking (DetNet) WG will be described.
According to [2], the IETF DetNet WG collaborates with
IEEE 802.1 TSN TG to define a common architecture for
Layers 2 and 3. DetNet is considered to be a representative
wide-area networking technology. To overcome the limita-
tions of the LAN-based narrow-area networking technolo-
gies, such as TSN, IP/MPLS2-based wide-area networking
technology is being standardized [10]. Like TSN, DetNet’s
main goal is to support deterministic worst-case bounds
on latency, jitter, zero/low packet loss and reliability.

4.1. DetNet Architecture

DetNet data plane and functionality are composed
of two sub-layers: DetNet service sub-layer and DetNet
forwarding sub-layer. Each one of these layers is clas-
sified according to the DetNet flow. The service sub-
layer provides service protection functions and classifies
time-determined flows. The service protection function
duplicates and delivers packets through several packets,
and deletes the duplicated packets according to their
sequence number [10]. The forwarding sub-layer pro-
vides explicit routes and resource reservations for time-
determined flows, which are the basis of wide-area net-
works. Note that these sub-layers are helpful, but not
mandatory to implement and should not be considered a
formal requirement. Some technologies are still capable of
providing DetNet services, even if they do not adhere to
this strict sub-layer division. The illustration of the DetNet

TABLE 1: DetNet Data-Plane Protocol Stack [11]

Sub-layers Source Destination

Service sub-layer
Packet sequencing
Flow replication
Packet encoding

Duplicate elimination
Flow merging

Packet decoding

Forwarding sub-layer Resource allocation
Explicit routes

Resource allocation
Explicit routes

Lower layers Lower layers

data-plane layering model is presented in Table 1. Not
all sub-layers are required for a particular network or a
particular application.

Application: Source and Destination are considered to be
any application that is going through the stack.

Packet sequencing: This sub-layer supplies the sequence
number for packet elimination and replication. It is not
needed if a higher-layer protocol performs the sequencing.

Duplicate elimination: This sub-layer discards all dupli-
cate packets generated by DetNet flow replication based
on the specified sequence number. It can also resequence
the packets to restore the order of the packets, which may
be disrupted by the loss of packets on multiple paths [11].

2. IP/MPLS - Internet Protocol/Multiprotocol Label Switching: rout-
ing system that enables fast data switching

Seminar IITM SS 22,
Network Architectures and Services, November 2022 66 doi: 10.2313/NET-2022-11-1_12

Appl.

TSN

Forwarding

TSN
End System

Svc Proxy

Edge
Node

TSN

Fwd

Svc

Fwd Fwd

DetNet flow

End-to-End Service

Transit
Node

Service

Fwd Fwd

Appl.

Service

Forwarding

Relay
Node

DetNet
End System

Link
Sub-

network
Sub-

network

Link

Figure 2: A simple DetNet-enabled network [11]

Flow replication: This sub-layer is part of DetNet service
protection. Packets belonging to DetNet compound flow
are replicated, apart from packet sequencing, into several
DetNet member flows. This replication may also be per-
formed using techniques such as multicast replication but
with resource allocation implications [11].

Flow merging: The functions for flow merging combine
DetNet member flows together for packets coming up
the stack. This sub-layer performs packet replication and
elimination, together with packet sequencing, duplicate
elimination and flow replication [11].

Packet encoding and decoding: These sub-layers take
packets from different DetNet member flows. Packet en-
coding combines the information and transmits them to
different DetNet member flows. Packet decoding com-
putes the original packets and transmits them to different
DetNet member flows.

Resource allocation: Providing paths for DetNet flows,
queuing, and shaping mechanisms are usually provided by
this sub-layer.

Explicit routes: These are arrangements of fixed paths,
based on the DetNet forwarding sub-layer that is specified
in advance to avoid the effects of network convergence on
DetNet flows [11].

A simple concept of a DetNet network is illustrated
in Figure 2. In this figure, "Fwd" and "Forwarding" refer
to the forwarding sub-layer, "Svc" and "Service" refer to
the service sub-layer [11].

4.2. DetNet Flow Types

Depending on the type of end systems, DetNet flow
may have different formats. According to the end system
types, the following four types of a DetNet flow are
distinguished:

App-flow: The native data (payload) flows between the
DetNet source and destination end systems.

DetNet-s-flow: This flow contains the DetNet-related spe-
cific attributes that provide services for elimination and
replication functions. This flow is a specific data flow
format that requires the service protection feature and is
bound to the service sub-layer.

DetNet-f-flow: This is also a specific format of a DetNet
flow. This flow is bound to the forwarding sub-layer
and contains specific attributes that provide services for
congestion protection.

DetNet-sf-flow: This is a specific data flow format, which
signals the forwarding function during forwarding. This
flow is bound to the both service and forwarding sub-
layers of the DetNet stack model.

4.3. DetNet Use cases

DetNet is not considered to be "a new kind of net-
work", but is supported by Ethernet extensions, including
elements of TSN and related standards. There are several
use cases in [12], which explains the type of these use
cases, their future, and what IETF should deliver to en-
able them. DetNet shares same use cases [12] as TSN,
including some additional cases:

• Building automation systems (BASs)
• Industrial machine to machine (M2M)
• Private blockchain
• Mining industry
• Network slicing

However, there are various use cases, which were
considered by DetNet WG and the Design Team to be out
of the scope of DetNet. The scope of DetNet networks is
limited to services that can be centrally controlled, e.g.,
corporate networks. From this point of view, "the open
Internet" is excluded from DetNet networks. Maintaining
a high-quality user experience and low latency is critical
for the use cases listed below. Due to jitter and time delay,
these use cases, when run over the open Internet, are
considered to be outside the scope of DetNet [12]. These
use cases are:

• Media content delivery
• Online Gaming
• Virtual Reality

Nevertheless, we provide a detailed overview of the two
applications that fall under the scope of DetNet from the
use cases listed above.

Building Automation Systems (BASs): Building Au-
tomation Systems manage devices and sensors in a facility
to improve the comfort of occupants, reduce energy con-
sumption and respond to emergencies and failures [12].
For instance, the BAS controls the heating, ventilation,
and air conditioning to maintain and reduce energy con-
sumption. The basic architecture of BAS is shown in
Figure 3. The BAS network has two layers: the upper
layer – management network and the lower layer – field
network. IP-based communication protocols are used in
the upper layer, while in the lower layer, non-IP-based

Seminar IITM SS 22,
Network Architectures and Services, November 2022 67 doi: 10.2313/NET-2022-11-1_12

Management Network

Field Network

BMS HMI

LC

Dev Dev Dev Dev

LC

 BMS: Building Management Server
 HMI: Human-Machine Interface

 LC: Local Controller

Figure 3: BAS Architecture [12]

communication protocols are used. Management networks
can be best effort, whereas field networks have particular
timing requirements.

Private Blockchain: Blockchain has spread far beyond its
original host into several other industries. These industries
are logistics, security, smart manufacturing, legal rights,
and others. Designated and carefully managed networks
of these industries, in which blockchain runs, may require
deterministic networking. These kinds of implementations
are called "private blockchains". Blockchain operation
could be much more efficient if DetNet services were
available to reduce packet loss and latency [12].

Currently, private blockchain runs in Layer 2 or Layer
3 VPNs without guaranteed determinism. Industries have
realized that implementing and improving determinism in
their blockchain networks would also improve the perfor-
mance of their service, because low latency would speed
up the consensus process. Some of the private blockchain
requests [12] to the IETF are listed below:

• Layer 2 and 3 multicasts of blockchain traffic
• Item and block delivery with low latency and low

packet loss
• Coexistence of IT traffic and blockchain in a single

network

5. Comparison of DetNet and TSN

There are several differences and similarities between
these two standards. The main difference between DetNet
and TSN is the layering in the OSI model. DetNet operates
on the Layer 3 protocols whereas TSN is confined to Layer
2.

The data plane of these standards is also different.
DetNet nodes can connect to other subnetworks, such as
Optical Transport Network (OTN) and MPLS Traffic En-
gineering. TSN cannot achieve multi-layer systems, while
DetNet can. However, TSN and DetNet share the same
features such as time synchronization, frame replication
and elimination.

DetNet has to deal with more security challenges than
TSN because it operates on Layer 3 networks and in open
environments, which results in more security threats. As
a result, DetNet focuses on and offers more security solu-
tions than TSN. An example of such an attack is a man-
in-the-middle attack, which can impose and adjust delays
in a node and undermine a real-time application [13].

6. Related Work

There are a couple of surveys on Deterministic Net-
working in [6] [12] [11]. An IEFT draft of the problem
statement on deterministic networking has been presented
in [6]. A broad survey about the use cases of deterministic
networking and its overall architecture has been provided
in [12] and [11] respectively. A sample DetNet Simulator
based on OMNET++ and NeSTiNG, which overcomes
some limitations such as allowing simulations of the full
DetNet/TSN protocol stack, has been presented in [3]. A
broad survey of the Audio and Video Bridging (AVB)
standard, the predecessor of TSN, has been introduced
in [4] and in [5]. An introduction to Time-Sensitive Net-
working and its essential features has been provided in
[7]. Furthermore, an up-to-date comprehensive survey of
the studies that specifically target the support of ULL in
5G networks, DetNet and TSN has been presented in [2]
and in [10].

Many applications are likely to use techniques to
increase the probability that a particular packet will be
delivered. And when topology-fixed paths are used, which
are protected against congestion loss a Frame Replication
and Elimination for Reliability standard can guarantee a
substantial reduction in the probability of packet loss than
any other standards. Therefore, a survey on Frame Repli-
cation and Elimination for Reliability has been provided
in [9].

7. Discussion and Conclusion

One of the future challenges of Deterministic Net-
working is packet replication and elimination (PRE). Det-
Net can ensure reliability, the increase in the probability of
packets reaching their destination and the overall reduction
of end-to-end latency [14] through packet replication and
elimination. However, the increase in effective bandwidth
required for a DetNet flow is a major disadvantage of PRE.
This can be overcome by reducing the replication level,
but it can affect the reliability and thus impact the balance
between packet replication and bandwidth [2]. Neverthe-
less, the balance must be ensured for the operation of the
DetNet.

This paper provided a broad overview of deterministic
network management and control systems, which can
operate on DetNet components and provide ULL services
and features such as low jitter, low congestion loss, relia-
bility and time synchronization. This survey also discusses
the differences and similarities between DetNet and TSN
standards and provides their features and use cases. De-
spite their shortcomings and numerous limitations, there
is a need for an extensive evaluation of both DetNet and
TSN standards. A combination of these standards has a
high chance of impacting the traditional Ethernet networks
and providing effective low latency services to users.

References

[1] J. Prados-Garzon, T. Taleb, and M. Bagaa, “LEARNET: Rein-
forcement Learning Based Flow Scheduling for Asynchronous
Deterministic Networks,” pp. 1–6, 2020.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 68 doi: 10.2313/NET-2022-11-1_12

[2] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-Low Latency (ULL) Net-
works: The IEEE TSN and IETF DetNet Standards and Related
5G ULL Research,” IEEE Commun. Surveys Tuts., vol. 21, no. 1,
pp. 88–145, Firstquarter 2019.

[3] V. Addanki and L. Iannone, “Moving a step forward in the quest
for Deterministic Networks (DetNet),” pp. 1–9, 2020.

[4] L. Deng, G. Xie, H. Liu, Y. Han, R. Li, and K. Li, “A Survey of
Real-Time Ethernet Modeling and Design Methodologies: From
AVB to TSN,” ACM Computing Surveys, vol. 55, no. 2, pp. 1–36,
2022.

[5] O. Kleineberg, P. Fröhlich, and D. Heffernan, “Fault-tolerant Audio
and Video Bridging (AVB) Ethernet: A novel method for redundant
stream registration configuration,” Proceedings of 2012 IEEE 17th
International Conference on Emerging Technologies & Factory
Automation, pp. 1–8, 2012.

[6] N. Finn and P. Thubert, “Deterministic Networking Problem State-
ment,” pp. 1–11, 2019.

[7] N. Finn, “Introduction to Time-Sensitive Networking,” IEEE Com-
munications Standards Magazine, vol. 2, no. 2, pp. 22–28, 2018.

[8] K. B. Stanton, “Distributing deterministic, accurate time for tightly
coordinated network and software applications: IEEE 802.1AS, the

TSN profile of PTP,” IEEE Communications Standards Magazine,
vol. 2, no. 2, pp. 34–40, 2018.

[9] I. L. S. Committee, “IEEE Standard for Local and metropolitan
area networks-Frame Replication and Elimination for Reliability,”
IEEE Communications Standards Magazine, pp. 1–102, 2017.

[10] E. Kim, Y. Ryoo, B. Yoon, and T. Cheung, “Active control and
management system for providing the ultra-low latency service on
deterministic networks,” 2021 Twelfth International Conference on
Ubiquitous and Future Networks, pp. 70–74, 2021.

[11] N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic Net-
working Architecture,” pp. 1–38, 2019.

[12] E. Grossman, “Deterministic Networking Use Cases,” pp. 1–97,
2019.

[13] T. Mizrahi, “Security Requirements of Time Protocols in Packet
Switched Networks,” pp. 1–36, 2014.

[14] J. De Armas, P. Tuset, T. Chang, F. Adelantado, T. Watteyne, and
X. Vilajosana, “Determinism through path delivery: Why packet
replication makes sense,” 2016 International Conference on Intelli-
gent Networking and Collaborative Systems (InCoS), pp. 150–154,
2016.

Seminar IITM SS 22,
Network Architectures and Services, November 2022 69 doi: 10.2313/NET-2022-11-1_12

ISBN 978-3-937201-76-4

9 783937 201764

ISBN 978-3-937201-76-4
DOI 10.2313/NET-2022-11-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Performance Limitations of the QUIC Protocol
	Recycle, Reduce, Reuse - Surveying Instruction Set Architectures
	Network Path Monitoring
	Accuracy Tradeoffs of Federated Learning approaches
	Survey on Scheduling Approaches in TSN
	A Short Introduction To MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer
	Shortest Path Awareness in Delay-Based Routing
	Digital Twins of Computer Networks
	Secure Data Marketplaces
	A Case Study of Security Vulnerabilities in Smart Contracts
	A Brief Overview on HTTP
	Deterministic Networking - DetNet

