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Abstract—Modern cloud computing systems have demon-
strated great aptitude for providing accessible, cheap, and
scalable computing infrastructure to businesses and the
public at large. However, the computing model comes with a
variety of challenges for cloud service providers. Especially
the task of automated distribution of computing resources,
called autoscaling, has proven difficult so solve. A variety
of different approaches have been proposed, chief among
them machine learning-based algorithms. Thus, this paper
aims to give an overview of recent developments in the
field of machine learning-based autoscaling. In particular,
we compare and contrast two approaches: MLScale, a su-
pervised learning-based solution utilizing neural networks
and multiple linear regression, and RLPAS, employing an
algorithm based on SARSA reinforcement learning. We come
to the conclusion that RLPAS’ ability to predict required
resource spikes and provision resources proactively, puts it
at a decisive advantage compared to the reactive MLScale.
However, as RLPAS is much more algorithmically complex,
we propose that further research is required to show safe
and effective scaling for more complex, real-world problems.

Index Terms—cloud computing, autoscaling, machine learn-
ing

1. Introduction

Cloud computing (CC) is an architecture that enables
on-demand network access to a pool of computing re-
sources, such as networks, servers, storage, applications,
or other services [1]. Hardware resources are owned and
managed by a cloud service provider (CSP), allowing
customers remote access. Besides eliminating capital ex-
penditure for users, the consolidation of resources also
reduces operating expenses due to higher resource utiliza-
tion [2, Chapter 1]. Combined with the offer of constant
availability and pay-as-you-go pricing options [3], this
service model is thus considered an attractive option,
especially for small- and medium-sized businesses [4] [5].

In order to reliably supply a service that can handle
large variations in requested operations, e.g. due to sudden
user demand, CSPs have to be able to automatically scale
the resources distributed to a specific application. This
allocation is a highly complex and important process,
as both under- and oversupplying resources will result
in major costs to the provider, in the form of contract
violations and excess operating expenses respectively [6,

Chapter 7.4]. Yet, major CSPs like Oracle still rely on
manually set autoscalers which base scaling decisions
purely on simple thresholds [7] that are unable to adapt
adequately to fluctuating user demand.

We reason that machine learning (ML), a field which
particularly excels in complex and dynamic environments,
represents the most promising approach vector towards
solving this problem. Thus, this paper aims to give
an overview of recent advances, especially comparing
MLScale [8] and RLPAS [9], proposals utilizing super-
vised (SL) and reinforcement learning (RL) respectively.
We show that while the papers differ considerably in their
approach, both demonstrate a substantial improvement
over manual threshold-based autoscalers. In addition how-
ever, we point out reactiveness as a prohibitive weakness
of the MLScale algorithm and identify safe and effective
scaling as an area requiring further research to achieve
industry-wide adoption of an RL-based solution.

In order to do so, the paper is structured as follows:
We will explain requisite theoretical knowledge in Section
2 and discuss related works in Section 3. Section 4 intro-
duces and contrasts the two algorithms in detail, closing
with a conclusion and an outlook on future development
in Section 5.

2. Background

In this section, the scientific concepts underlying this
paper will be discussed. Specifically, we will focus on the
current applications of cloud computing, as well as the
theory behind two central paradigms of ML: supervised
and reinforcement learning.

2.1. Cloud computing

The main advantage of cloud computing lies in the
ability for the provider to easily and swiftly split com-
puting resources, supplying a large amount of individual
customers [1]. In order to simplify this process and allow
division at a more granular level, CSPs utilize virtual
machines and a process known as autoscaling.

2.1.1. Virtual machines. A virtual machine (VM) is
a software-based emulation of the runtime environment
provided by a physical computer. In contrast to a real
computer however, the resources the VM has access to,
such as the CPU cores or memory, can be varied by
the underlying program. As a piece of software, multiple
instances of VMs can be run on a single server, each of
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which can be used independently and thus provided to a
different customer [10, Chapter 1]. This virtualization is
most common for servers, but has started to be increas-
ingly applied to networking appliances, such as routers,
switches or firewalls. Each instance of such virtualization
applied to a networking service is called a virtual network
function (VNF) [11].

2.1.2. Autoscaling. The virtual nature of the implemen-
tation allows for the easy up- and downscaling of the
computing resources provided to a particular service as
required by demand. This property is known as elasticity.
Doing so automatically, or using automated policies, is
called autoscaling. Applications can be scaled horizontally
(in and out), representing the removing and adding of
instances, as well as vertically (up and down), representing
the addition or removal of an existing instance’s resources
[6, Chapter 8.2]. Autoscaling policies are geared towards
a variety of different goals, such as improving resource
utilization or decreasing operating expenses. Most notably,
they aim to minimize service level agreement (SLA) vi-
olations, a type of contract stipulating the conditions of
the service provided by the operator [12]. As Zhang et al.
point out in [13, Section 6.1], in contrast to these complex
targets, they often rely on rather simplistic metrics, such
as throughput, response time, or amount of user requests,
further increasing complexity.

2.2. Machine learning

Machine learning is a field of computer science fo-
cused on training an algorithm through the use of ex-
periences and data, without programming explicit rules
[14]. This approach is especially useful in environments
where the ruleset is either particularly complex or not
explicitly known by humans, such as natural language
processing [15], computer vision [16], autonomous driving
[17] or board games like Go [18], among a large variety
of other use cases. There exist three basic paradigms
of machine learning: supervised, unsupervised, and rein-
forcement learning. We will first focus on SL using neural
networks and multiple linear regression, while the final
section will introduce RL using SARSA and present an
optimization technique called function approximation.

2.2.1. Supervised learning with neural networks. In
contrast to the other two paradigms, in supervised Learn-
ing the algorithm is trained using data which includes
the desired solutions [19, Chapter 1]. One such algorithm
is called a neural network (NN). At a basic level, this
algorithm tries to predict a set of m outputs (the solution),
based upon a set of n inputs (the data). It consists of a
set of simple processing units called neurons or nodes,
which are organized into l layers. Each neuron ν can hold
one value y. In a simple fully connected, feed-forward
network each node νi,j of layer i ∈ {1, 2, ..., l − 1} is
connected to every node νi+1,k of layer i+1, along with an
individual adaptive weight wi,j,k ∈ [0, 1] associated with
the connection from neuron j in layer i to neuron k in
layer i+1. The first layer is called the input layer, as every
node is initialized with one of the n inputs. Consequently,
it consists of n neurons. Similarly, the last (lth) layer
is called the output layer, where each of the m neurons

corresponds to one output. All layers in between are the
hidden layers. Given all values yi,1, ..., yi,p of layer i, the
value of the kth neuron in layer i + 1 can be calculated
using

yi+1,k = fi+1(wi,0,k +

p∑

j=1

wi,j,kyi,j), (1)

where fi+1 represents a non-linear function called the ac-
tivation function and wi,0,k represents a weighted bias for
layer i and neuron νi+1,k. f is often varied on a per-layer
basis. To train the NN, the individual connection weights
wi,j,k and biases wi,0,k can be adjusted through a process
called backpropagation until the prediction achieves good
accuracy when compared to a target output (vector). To
make a prediction, after initializing the input layer, we can
consecutively calculate the values for successive layers,
until the output layer is reached [19, Chapter 10] [20,
Chapter 2].

2.2.2. Supervised learning with multiple linear re-
gression. Prediction based on multiple linear regression
(MLR) uses a set of data points in order to fit a linear
function

Ŷ = a+

n∑

i=1

biXi. (2)

X1, ..., Xn represent a set of n inputs called explanatory
variables along with associated weights b1, ..., bn. Ŷ rep-
resents the predicted output called the response variable,
and a is the bias [21].

2.2.3. Reinforcement learning. Reinforcement learning
is a subcategory of machine learning, where an agent
interacts with an environment [19, Chapter 1]. The states
the world can be in, the actions that can be taken in it, as
well as its time, are discretized into states s ∈ S, actions
a ∈ A and time steps t. Thus, at time time t, the agent
can transition from states St to St+1 using actions At.
Accordingly, the process can be modelled as a markov
decision process (MDP) [22] [23, Chapter 3.1].

The agent is further awarded a positive or negative
reward Rt+1, based upon which it aims to construct an
optimal action-value function

q?(s, a) = E[Gt | St = s,At = a]. (3)

q? : S ×A→ R reflects the expected total reward Gt, or
in other words the value of an action given a certain state.
Deriving from q?, the algorithm creates the optimal policy
π? : S → A, mapping every state to the action that will
lead to the highest expected value. π? is the final decision-
making function [23, Chapter 4]. This approach to RL is
called model-free, as it does not require an explicit model
of the environment to learn, instead simply observing the
rewards in relation to the given states and taken actions.

SARSA. The state-action-reward-state-action algo-
rithm is one such model-free approach that aims to con-
verge to q?. This estimate is denoted by Q. In order to
do so, it starts with an initial function Q and updates the
function every time an action is taken:

Q(St, At) := Q(St, At)

+ α[Rt+1 + γQ(St+1, At+1)−Q(St, At)].
(4)
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It is proven that Q converges to q? [23, Chapter 6.4] [24].
Function approximation. Whereas for smaller state

spaces it can be enough to iteratively apply SARSA and
update the policy function π, a process called policy itera-
tion, this can become computationally infeasible even for
comparatively simple tasks. The upper bound for greedy
policy iteration is considered to be O(k

n

n ) [25], where n is
the number of states, and k the number of available actions
per state. Instead of using a tabular representation of Q,
function approximation utilizes a differentiable function

Q̂ : S ×A× Rd → R : (s, a,w) 7→ y, (5)

where w := (w1, w2, ..., wd)
T represents a vector of

weights and y represents the calculated value. Applying
stochastic gradient descent [26], w is updated after every
action so that Q̂(s, a,w) approximates Q(s, a) [23, Chap-
ter 9]. However, as d < |S|, Q can often not be exactly
approximated. This approach converges in O(n3) [27].

2.2.4. Parallel learning. In order to speed up conver-
gence, N agents can interact with the environment at the
same time and independently of each other [28]. In the
implementation used by Benifa et al. [9], each agent j
keeps track of its own local action-value function Qlj .
Periodically, every agent shares its local estimate Qlj
with every other agent, receiving the other local estimates
(Qg1 , Qg2 , ..., QgN−1

) known as global estimates. To com-
pute a final estimate Qfj every agent calculates a weighted
average

Qfj =
1

2
(Qlj +

∑N−1
i=1 wiQgi

N − 1
). (6)

This process is repeated until the final estimates for each
agent converge to a single value [9, Section 3.1].

3. Related work

Given the wide applicability of a given solution, an
extensive selection of related work is available. Singh
et al. [29] and Qu et al. [30] provide a comprehen-
sive analysis of autoscaling web applications in a cloud
environment. Additionally, they introduce an expansive
taxonomy further distinguishing between metrics, type,
policy, and pricing, among other factors. Garì et al. [31]
present an extensive survey of reinforcement learning-
based autoscalers in particular, differentiating between
model-free and model-based, sequential and parallel, as
well as deep reinforcement and fuzzy logic learning. They
conclude with a classification of the different approaches
and provide a taxonomy based on their findings.

However, to the best of our knowledge, no survey ex-
ists which addresses and compares approaches in different
machine learning paradigms specifically.

4. Comparison between MLScale and RL-
PAS

In the following chapter we will compare two contrast-
ing approaches to autoscaling in cloud computing environ-
ments. The first paper, "MLscale: A Machine Learning
Based Application-Agnostic Autoscaler" by Wajahat et al.
[8], presents an algorithm that predicts key metrics, such

as the response time, using simple application-independent
inputs and makes autoscaling decisions based on the
output. The prediction utilizes a simple neural network,
combined with multiple linear regression for the decision
making process. The second paper, "RLPAS: Reinforce-
ment Learning-based Proactive Auto-Scaler for Resource
Provisioning in Cloud Environment" by Benifa et al. [9],
defines a SARSA-based parallel reinforcement learning
algorithm that tries to predict future workload, based upon
which it scales the applications proactively.

4.1. MLScale: Autoscaling using Neural Net-
works and Regression

The algorithm introduced by Wajahat et al. consists of
two different prediction algorithms: neural networks and
multiple linear regression. In order to build the MLScale
algorithm, Wajahat et al. split the program into 3 phases.
Initially, the authors trained a neural network on a set
of 8 application-independent input metrics m1, ...,m8,
such as RR: number of requests received per second, or
CPU : average CPU usage, in order to predict a single
performance metric RT : the response time. The network
consists of 8 input nodes, one 4-node hidden layer, and
one output node. The activation function is f(x) = 1

1+e−x

and is only applied in the hidden layer.
To automatically scale any given application, MLScale

continuously monitors all input metrics m1, ...,m8 and
predicts RT . Should the response time exceed the target
or even cause an SLA violation, MLScale will try to
provision resources accordingly. To calculate the size of
the additional resources, the program has to anticipate
how this scaling will affect the new response time R̂T .
Thus, another prediction is necessary. Deriving from 2, the
authors employ a simple multiple linear regression model
predicting the new value m̂i for every metric mi after
scaling:

m̂i = a+ b1mi
w

w + k
+ b2mi

k

w + k
. (7)

w ∈ N represents the currently deployed workstations,
while k ∈ Z represents the additional workstations. Pos-
itive k is to be understood as a scale-out and negative k
as a scale-in. MLScale can not scale vertically.

Using the same network presented above, the predicted
metrics m̂1, ..., m̂8 are then used to calculate the new
R̂T after the scaling operation has concluded, based upon
which the size of the scaling operation is decided.

4.2. RLPAS: Autoscaling using Parallel Rein-
forcement Learning

In contrast, Benifa et al. [9] attempt to construct an au-
toscaler using reinforcement learning. To define the MDP,
the authors utilize a state set S = {Ureq, UVM, URT, UTHR},
representing the number of requests, percentage of allo-
cated VMs, response time, and throughput. Additionally,
the action set A = {Ascale_up, Ascale_down, Ano_change} is
considered, each A(VMn,VMtype) describing an amount
VMn and type VMtype ∈ {small, medium, large} to be
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scaled. VMn represents horizontal scaling, while VMtype
represents vertical scaling. The reward

Rt =
PerfVM

UVM
(8)

is computed utilizing

PerfVM =
RTSLA

RTobs
+

THRobs

THRSLA
−PenaltyRT−PenaltyTHR. (9)

The agent is thus rewarded for low RT and high through-
put compared to the target. Meanwhile, the Penalty terms
are applied when the agent exceeds the SLA thresholds.
They are calculated based on the amount the SLA was
violated by, as well as a manual weight. This ensures
SLA-compliant behaviour, but also allows the operator to
manually tune how severely a violation is to be punished,
and thus, how close to the target the agent operates. 8
ensures that the agent does not overprovision VMs. As
it covers all functionality laid out in Section 2.1.2, we
believe this to be a sensible choice of reward function. In
addition, 9 allows easy extension for other metrics.

The authors use a function approximation based on the
gradient descent algorithm shown in Section 2.2.3, as well
as parallel learning to considerably speed up convergence
[9, Figure 9]. Because q? is estimated by taking into
consideration all future rewards as shown in 3, RLPAS
can account for possible future developments of the input
metrics. As such, this makes it a proactive algorithm, able
to scale applications in preparation for incoming changes
in request rate.

4.3. Discussion

Both approaches show very promising results for solv-
ing the problem of autoscaling according to user demand.
Yet, in both solutions we were able to identify weaknesses
which will require further research to address.

Utilizing easily obtainable input metrics, a small feed-
forward NN, and MLP, MLScale [8] provides a prediction-
based reactive autoscaling algorithm. In essence, Wajahat
et al. present an ML-based approach to the traditional
manual threshold-based autoscaling, allowing for an au-
tomated solution utilizing more metrics than would be
possible by hand. For comparison, manual thresholds of-
ten rely on as little as one or two metrics [29, Section
5.2], compared to MLScale’s 8. It’s main advantage lies
in this relative simplicity, as the architecture of the neural
network can be trained in a few seconds. As the authors
mention in [8, Section 3.1], the labeled training data can
be acquired by sampling only a few hours worth of normal
application behaviour, ideally including a wide variety of
workload and scaling actions.

However, this simplicity also leads to its largest de-
ficiencies. For one, the paper only considers a single
target metric: response time. Yet, in order to achieve the
complex goals set for the algorithm, other performance
indicators such as CPU utilization, throughput, or power
consumption should also be taken into consideration.
While the authors argue in [8, Section 3.1] that the NN
could be easily extended to account for these metrics, we
expect this to increase both complexity and training time.
In addition, the presented method represents a reactive
autoscaler, meaning the algorithm does not predict future

workloads and can only react to them once they occur.
As shown by Wajahat et al. in [8, Section 5], MLScale
incurs a substantial (up to 5.9%) amount of SLA violations
especially during large and sudden request spikes, also
tending to overprovision resources in response. While this
still represents an improvement in comparison to tradi-
tional scalers and achieves near optimal performance for
workloads less prone to spiking [8, Table 5], the problem
remains near impossible to solve using reactive methods.

In contrast, the algorithm presented by Benifa et al. [9]
is of a proactive nature. As the authors are able to show in
[9, Section 4.4] and especially [9, Figure 7], after an initial
phase of fluctuation, RLPAS is able to achieve very steady
performance metrics even for rapidly changing workloads.
Unfortunately the authors do not quantify the number of
SLA violations, which would allow a more direct compar-
ision to MLScale. However, as the measurements suggest
highly stable target metrics, we have no reason to believe
any substantial amount of violations occurred. In addition,
this approach is able to outperform competitors in a vari-
ety of different measurements, including RT, throughput,
and CPU utilization. Importantly, RLPAS can scale both
horizontally and vertically, while MLScale is restricted
to horizontal scaling. This increases the flexibility of the
algorithm and enhances its ability to find a good solution.

However, in comparison with the simple mechanisms
used by MLScale, RLPAS is a more algorithmically
complex solution. As Sutton points out in [23, Part II],
major weaknesses of reinforcement learning tend to be
two-fold: (1) poor initial performance as the agent be-
gins to explore the environment and the Q-table values
have not yet converged and (2) long convergence time.
Especially for very large state spaces, the consequently
larger value table can result in very long training times,
thus further amplifying the first weakness (see Section
2.2.3). The authors attempt to combat this problem by
combining function approximation and parallel learning
in order to speed up convergence. Nonetheless, the paper
only demonstrates acceptable convergence for up to 16
VMs per application [9, Figure 8] as well as a limited set
of 4 state and 3 action variables [9, Section 3.1]. As this
convergence issue is a well-known problem faced by the
wider RL community, further research is required to show
acceptable performance in such situations.

5. Conclusion

In conclusion, both machine learning-based solutions
in general, and the analyzed algorithms specifically, pro-
vide a marked improvement over manual, threshold-based
autoscaling methods. However, as we have shown in the
preceding sections, the reactive nature of the MLScale
algorithm represents a major weakness preventing its
adoption in favor of more advanced, proactive algorithms,
such as RLPAS. In addition, RLPAS’ ability to predict
multiple different important metrics, as well as scale both
horizontally and vertically, gives it a further edge when
optimizing for complex scenarios. As such, we conclude
from our analysis that exploration in the direction of
reinforcement learning appears the most promising. Al-
though having already produced encouraging results, we
believe further research into the safe and effective scaling
is required to achieve industry-wide adoption.
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