
Comparison of Different QUIC Implementations

Michael Kutter, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: michael.kutter@tum.de, jaeger@net.in.tum.de

Abstract—While the QUIC protocol was finalized by the
IETF back in May 2021, the standard still leaves some design
choices up to the developer. Especially for features like con-
gestion and flow control, multiple streams, retransmission,
packet size and 0-RTT, different approaches need to be con-
sidered. We give an overview of some of the considerations
done by the developer and evaluate the performance of some
implementations. We argue that future work needs to analyze
the effect of the design choices on performance more in detail
to find out which choice works best.

Index Terms—QUIC, implementation, design choices, perfor-
mance

1. Introduction

The QUIC protocol specifications were finalized on
May 2021 after nearly five years of development [1].
It is built on top of UDP, which enables support for
middleboxes, as no new transport layer protocol is defined.
The goal of this protocol was to improve performance for
HTTPS connections, while also achieving high security
[2]. This is realized in multiple ways. QUIC exchanges
cryptographic information during the connection estab-
lishment, thus reducing the round-trip times (RTT) and
amount of packets during the initial handshake (1-RTT).
When reconnecting to a server, it utilizes the already share
keys to directly send data during the handshake (0-RTT).
It uses connection IDs to identify connections after an IP
address changed, thus allowing immediate reconnection
to the server. To avoid the head-of-line blocking problem,
QUIC uses multiple independent data streams.

During the five years of developing the specifications,
different implementations have evolved. In this paper, we
compare QUIC implementations and outline the different
approaches they use. We focus on features which are up to
the developer, like congestion and flow control, multiple
streams, retransmission, packet size and 0-RTT [1] based
on the study done by R. Marx et. al in [3]. We also
try to compare the performance of some QUIC and TCP
implementations based on the test results of the paper by
A. Yu and T. A. Benson in [4].

In chapter 2 we list all the implementations we choose
for this analysis. Chapter 3 then outlines all the different
design choices considered by the developers. Afterwards
in chapter 4, we evaluate the performance.

TABLE 1: QUIC implementations

Name Developer Language Version

aioquic [5] Jeremy Laine Python RFC 9000
lsquic [6] LiteSpeed Technologies C RFC 9000
ngtcp2 [7] Tatsuhiro Tsujikawa C RFC 9000
quic-go [8] Lucas Clemente et. al Go RFC 9000
mvfst [9] Facebook Inc. C++ draft-29
picoquic [10] Private Octopus Inc. C draft-34

2. List of Implementations

The QUIC implementations taken for analysis are
shown in table 1.

3. Design Choices

When implementing the QUIC standard, different de-
sign choices can be considered. In the following sections
we outline design choices made by the listed implemen-
tations.

3.1. Congestion Control

Sending packets as fast as possible can lead to over-
loading the network and result in routers dropping packets.
These packets then need to be retransmitted, which leads
to a longer transmission time. To avoid this, congestion
control algorithms are used. These algorithms limit the
number of inflight packets, by controlling the congestion
window.

The QUIC standard defined by the IETF provides an
exemplary congestion control algorithm which is similar
to the TCP New Reno algorithm [11]. Therefore, it is up
to the implementation side to choose the algorithm. The
most used algorithms are New Reno, CUBIC and BBR.
Compared to the implementation for TCP they slightly
differ but the concepts stay the same.

New Reno: This algorithm is based on the Reno algo-
rithm but improves during retransmission [12]. It begins
with a “slow-start” phase, where it increases the conges-
tion window by one for each acknowledged packet, result-
ing in exponential growth. Once multiple duplicate ACKs
were received, or a packet was not acknowledged (re-
transmission timeout), it enters the “fast-recovery” phase.
During this phase, it immediately retransmits the lost
segments. When the retransmission was fully acknowl-
edged it keeps the current congestion window. But if the
retransmission was only partially acknowledged, it halves

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

51 doi: 10.2313/NET-2022-07-1_10



the current congestion window. After that it exits the “fast-
recovery” phase and linearly increases the congestion
window until the next packet was lost where it enters the
“fast-recovery” phase again. This algorithm is a loss-based
algorithm.

CUBIC: This algorithm is also a loss-based algorithm
and also similar to the Reno algorithm [13]. It starts with
the same “slow-start” phase. When a segment is lost it
also enters the “fast-recovery” phase, where it retransmits
the lost segments and halves the congestion window. The
main difference is after the “fast-recovery” phase. Here, it
uses a cubic function to increase the congestion window.
In the beginning it increases the congestion window very
slowly but increases it very fast later on. Compared to the
Reno algorithm, it recovers faster from packet loss while
not running into the next packet loss immediately. This
algorithm is also the default congestion control algorithm
in the Linux kernel for TCP.

BBR: This algorithm is called Bottleneck Band-
width and Round-trip propagation time (BBR) and is a
congestion-based algorithm developed by Google [14].
Compared to loss-based algorithm, it handles congestion
based on the round-trip time. The algorithm tries to oper-
ate at the optimal point which is defined by the Bandwidth
Delay Product BDP = bandwidth · RTT . However, it
is not possible to measure the bandwidth and the RTT at
the same time, therefore estimated values are used [14].
The main advantage of this algorithm is that it does not
fill the buffer of intermediate network nodes because this
would lead to a bigger RTT.

Of the analyzed implementation New Reno is imple-
mented by aioquic, ngtcp2, quic-go, mvfst and picoquic.
CUBIC is implemented by lsquic, ngtcp2, quic-go mvfst
and picoquic. BBR is implemented by lsquic, ngtcp2
mvfst and picoquic. We can see that a lot of implemen-
tations leave it to the user which algorithm to choose.
This is escpecially beneficial for networks using different
congestion control algorithms because some algorithms
might outperform other algorithms which can lead to a
sender barely sending any data due to a small congestion
window [13].

3.2. Flow Control

While congestion control is about preventing the net-
work from being overloaded, flow control is responsible
for not overloading the receiver buffer. This is needed
because the application might not be able to read data
in the same speed the network delivers it, or the data was
not received in the correct order. In TCP, each ACK packet
provides the current receive window, which indicates the
current available space in the receiver buffer [15]. Com-
pared to TCP, QUIC allows multiple parallel data streams,
therefore the QUIC protocol additionally applies flow con-
trol for each stream. The abstraction between stream level
and connection level flow control is needed to prevent a
single stream consuming the entire receivers buffer. This
limitation is done through the MAX_STREAM_DATA
(stream level) and the MAX_DATA (connection level)
parameters [1]. Here, multiple approaches are possible to
implement, and the following are most common.

Figure 1: Flow control of mvfst and aioquic [3]

Static Allowance: With static allowance, the receive
buffer has a fixed size, while the maximum allowance rate
is increased linearly [3]. Typically, when the application
has handled 50% of the received data in the buffer, the
receive window is updated by adding the current buffer
size. The downside of this method is that it can cause the
sender to stop sending, when the updates of the receive
window are delayed. This method is used by most of the
analyzed implementations (lsquic, ngtcp2, quic-go, mvfst,
picoquic), as it is easy to implement.

Growing Allowance: Growing allowance works sim-
ilar to the static allowance method, but allows the receiver
buffer to grow over time. This reduces the problem that
this sender may stop sending, due to delayed receive
window updates. Of the analyzed implementations, only
aioquic used this method.

A detailed example of these approaches can be found
in Figure 1 with mvfst (static allowance) and aioquic
(growing allowance).

Regardless of the above mentioned methods, the most
important aspect in regards to performance, is the size
and the frequency of the receive window updates, as too
small receive windows or too few updates can lead to a
stalling sender. Flow control in QUIC remains an open
issue, therefore, further study is required to identify the
best possible approach.

3.3. Multiple Streams

TCP offers a single reliable in-order stream to transmit
data. When transmitting independent resources, this is vul-
nerable to head-of-line blocking. This occurs when a sin-
gle resource prevents other resources from being received,
which happens when TCP loses a packet. The QUIC pro-
tocol defines multiple data streams to get around this prob-
lem [1]. In order to handle and multiplex these streams,
a scheduler is required. Therefore, two approaches can be
used to divide the bandwidth between the resources.

Sequential: When using a sequential scheduler, all
data of one stream is send first before sending data of
another stream. This is expected to work best for loading
Web pages, as the application can prioritize which data
should be sent first. However, this can lead to head-of-
line blocking again e. g. when the data of a single stream
is too big. Aioquic, ngtcp2 and picoquic are using this
scheduler approach.

Round-Robin: When using a Round-Robin scheduler,
the bandwidth is equally distributed between all resources.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

52 doi: 10.2313/NET-2022-07-1_10



However it is important to avoid sending data of multiple
different streams inside one packet because this could
lead to head-of-line blocking again. The typical approach
is to send a few packets of data of the same stream
before switching to another stream. The downside of this
approach is that it can take longer to receive all data of
a single stream. lsquic, quic-go and mvfst are using this
approach.

We can see that stream multiplexing can have a
significant impact on performance. Therefore, the QUIC
standard additionally requires the implementations to have
a prioritization system, which the application can use to
prioritize streams [1]. With this system, the impact of
the scheduler approach becomes less important, as higher
priority streams will be sent first. However, this is only
relevant if the application supports prioritization of re-
sources. We think that the round-robin scheduler is a more
general approach because it avoids head-of-line blocking
regardless of the data size and it could also simulate a
sequential scheduler when using the prioritization system.

3.4. Packet Size

The QUIC protocol requires a minimum UDP payload
size of 1200 bytes, but to further improve throughput,
a bigger packet size is required [1]. When using big-
ger packets, the chance of dropping a packet, due to
an intermediate network node not supporting this size,
highly increases. Therefore, it is recommended to either
use Path MTU Discovery (PMTUD) or Data Packetization
Layer Path MTU Discovery (DPLMTUD)1, to find out the
maximum packet size supported by all network nodes [1].
These methods works by sending a large packet to the
destination. If the corresponding ICMP error message is
received, we know that the MTU was too large and and
intermediate network node dropped the packet. Therefore,
we repeat the process by reducing the packet size until
successful transmission. This feature is currently only sup-
ported by lsquic, quic-go and picoquic. The other imple-
mentations use a fixed packet size. Therefore, they are not
allow to exceed the minimum UDP payload of 1200 bytes
to ensure compatibility of intermediate network nodes.

3.5. Client Validation of 0-RTT

A new feature in the QUIC protocol is the 0-RTT
connection establishment, where it is possible to send data
before receiving any response from the server. This is
made possible by reusing the preshared encryption keys
of the session ticket, which were negotiated in the first
connection. This feature is vulnerable to replay attacks
and amplification attacks. Therefore, the QUIC protocol
specifies that the server is not allowed to send back more
than three times the data it received from the client until
the address of the client is validated [1]. The validation
can be done in two ways.

Approach 1: After the client requested data during
the 0-RTT connection establishment, the server answers

1. https://blog.litespeedtech.com/2020/10/19/
improve-performance-with-dplpmtud/

Figure 2: Client validation of 0-RTT [3]

directly within the 3x limit. It then waits until the ac-
knowledgment of the client. When the acknowledgment
was received the address can be considered validated and
the server can send the rest of the data. The disadvantage
of this method is that the server can only respond in the
beginning with small packets inside the 3x limit. However,
it is possible to increase this limit by adding some padding
to the initial data request. This approach is currently used
by aioquic and ngtcp2.

Approach 2: During the first connection establishment
(1-RTT), the server sends an encrypted NEW_TOKEN
frame to the client, which can be used by the client
during the 0-RTT connection establishment to validate
its address. The server then can ignore the 3x limit and
directly send large amounts of data to the client, if the
token matches. This is done by lsquic, quic-go, mvfst and
picoquic.

A detailed diagram about these approaches can be
found in Figure 2.

4. Performance

A. Yu and T. A. Benson measured the performance of
different QUIC implementations and compared them to
different TCP implementations in their paper “Dissecting
Performance of Production QUIC“ [4]. Compared to most
other papers, they focused more on already deployed
implementations, instead of testing it on a local setup. This
approach in benchmarking resembles a more real world
scenario. In their analysis, they also tried to diffentiate, if
the results were due to the protocol specifications or due
to the design of the implementation.

For their benchmarking, they use public available end-
points by Google, Facebook and Cloudflare on the server
side. On the client side they choose to use cURL, Google
Chrome, Facebook Proxygen and ngtcp2. All these im-
plementations are using the HTTP/2 (H2) stack for TCP
and HTTP/3 (H3) stack for QUIC. With the Network Link
Conditioner, they simulate different network conditions. It
is also worth mentioning, that they setup the flow control
mechanism to not have any impact on the performance.

When transmitting a single resource, we and the au-
thors excpect similar results between QUIC and TCP. For
a small file size the QUIC implementations did outperform

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

53 doi: 10.2313/NET-2022-07-1_10



the TCP implementations. This is due to the improved
handshake of the QUIC protocol. For larger files the im-
pact of the improved handshake minimizes. Consequently,
the performance between all the implementations are sim-
ilar. However, when adding packet loss to the network,
the Cloudflare H3 endpoint worsens compared to H2. The
authors identified that this is due to different congestion
control algorithms between H3 (CUBIC) and H2 (BBR).
The other endpoint which stands out is Facebook. Their
H3 endpoint performed significantly worse when adding
extra delay. It was identified that this is due to a bug
in the congestion control algorithm. We can see that the
choice of the congestion control algorithm can have a huge
impact on the performance as already outlined in chapter
3.1.

When transmitting multiple resources, we and the
authors expect QUIC to perform better as TCP, due to
QUIC’s protocol design with the introduction of multiple
data streams. However, the results were similar compared
to transmitting a single resource. For small files, the H3
endpoints performed better, which could be traced back
to QUIC’s handshake design again, and for larger files
the performance was similar. The only exception was the
Cloudflare endpoint. Here, H3 also outperformed H2 for
larger resources. The authors traced this issue back to
different application configurations which favored the H3
implementation. The authors also analyzed the effect of
the different scheduling approaches. Cloudflare is using
a sequential scheduler, while Facebook and Google are
using a round-robin scheduler. Here, the different sched-
uler did not have any effect on the performance due to
the prioritization system by the H3 stack. This is also the
same, which we concluded in section 3.3.

The authors concluded that most performance discrep-
ancies are a result of the developers design or the operators
configuration. These results can also be verfied by other
papers [16], [17].

5. Conclusion and future work

In this work, we have discussed multiple design
choices which needs to be considererd when implementing
the QUIC protocol. We saw that there are multiple differ-
ent approaches to implement congestion and flow control,
multiple streams, packet size and client validation of 0-
RTT. While not all aspects will have high impact on the
performance and some might be application dependent,
we concluded that further research is needed to find out
which approach works best in practice.

We also analyzed the tests performed by A. Yu and
T. A. Benson, where they compared the performance of
different QUIC implementations with TCP over public
available endpoints. We saw that in gerneral the QUIC im-
plementations had the advantage when transmitting small
resources due to the improved handshake design of the
protocol. For larger files, the performance balances out
because the impact of the handshake minimizes. However,
we saw some discrepancies to this behavior. Most of these
performance differences could be traced back to the devel-
opers design of the implementations or the configuration
of the operators.

We feel that future analysis is needed to compare
the performance of the different implementations. It is

espacially important to focus on which design choices
impacts the performance of the protocol.

References

[1] J. Iyengar and M. Thomson, “Rfc 9000,” https://datatracker.ietf.org/
doc/rfc9000/, May-2021, [Online; accessed 26-February-2022].

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Sweet, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamil-
ton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” August-2017.

[3] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementa-
tion Diversity,” August-2020.

[4] A. Yu and T. A. Benson, “Dissecting Performance of Production
QUIC,” April-2021.

[5] J. Laine, “aioquic,” https://github.com/aiortc/aioquic, [Online; ac-
cessed 26-February-2022].

[6] L. Technologies, “Litespeed quic (lsquic) library,” https://github.
com/litespeedtech/lsquic, [Online; accessed 26-February-2022].

[7] T. Tsujikawa, “ngtcp2,” https://github.com/ngtcp2/ngtcp2, [Online;
accessed 26-February-2022].

[8] “A quic implementation in pure go,” https://github.com/
lucas-clemente/quic-go, [Online; accessed 26-February-2022].

[9] Facebook, “mvfst,” https://github.com/facebookincubator/mvfst,
[Online; accessed 26-February-2022].

[10] “picoquic,” https://github.com/private-octopus/picoquic, [Online;
accessed 26-February-2022].

[11] J. Iyengar and I. Swett, “Rfc 9002,” https://datatracker.ietf.org/doc/
rfc9002/, May-2021, [Online; accessed 26-February-2022].

[12] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “Rfc 6582,”
https://datatracker.ietf.org/doc/html/rfc6582, April-2021, [Online;
accessed 26-February-2022].

[13] M. Geist and B. Jaeger, “Overview of TCP Congestion Control
Algorithms,” May-2019.

[14] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Ja-
cobson, “BBR Congestion-Based Congestion Control,” Septemper-
2016.

[15] I. S. I. U. of Southern California, “Rfc 793,” https://datatracker.
ietf.org/doc/html/rfc793, Septemper-1981, [Online; accessed 26-
February-2022].

[16] S. Endres, J. Deutschmann, K.-S. Hielscher, and R. German, “Per-
formance of QUIC Implementations Over Geostationary Satellite
Links,” Feburary-2022.

[17] M. Moulay, F. D. Munoz, and V. Mancuso, “On the Experimental
Assessment of QUIC and Congestion Control Schemes in Cellular
Networks,” June-2021.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

54 doi: 10.2313/NET-2022-07-1_10


