
Seminar Innovative Internet Technologies: Zero Knowledge Proofs

Sebastian Hohl, Filip Rezabek∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: sebastian.hohl@in.tum.de, frezabek@net.in.tum.de

Abstract—In this paper the general idea and properties
of zero knowledge proofs are discussed. The modern zero
knowledge proofs zk-STARKs, zk-SNARKs (Ligero and
Sonic) and Bulletproofs are compared regarding their need
for a trusted setup, proof length, proving time and veri-
fication time. Zero knowledge proofs are (non-)interactive
proofs that yield no information to the verifier. They are
widely useable as they exist for every problem in NP . Zero
knowledge proofs are used for many applications like signa-
tures, anonymous decentralized payments on blockchains or
verifying computations.

Index Terms—zero knowledge proof

1. Introduction

How much information have to be used to perform
a certain action and how to minimize the released
information? Any information given away might be used
for attacks and other malicious activities, so information
minimization is a fundamental security principle [1].
Especially if the aim is to convince someone of
something, minimizing the released information seems to
be hard. Zero knowledge proofs provide a solution for
this problem. The idea of zero knowledge proofs (ZKPs)
shown in [2] is that they guarantee that a polynomial
time verifier gains essentially no information from a
proof.
The verifier is only convinced that the given statement is
valid. The prover does not release its secret information.
So zero knowledge is a property a proof has. This is
a way to show that a proof does not reveal too much
information. [2, 3]
As ZKPs are well suited for the use on blockchains, they
have got more attention with the recent rise of blockchain
technology [4].
In this paper a part of the general theory about ZKPs is
introduced in Section 2. Then modern ZKP systems are
considered in Section 3 and in Section 4 applications of
ZKPs are discussed. In the last Section 5 related works
are recommended.

2. What are Zero Knowledge Proofs?

This section introduces to the basics of ZKPs. They
have an extensive theory, so more advanced topics cannot
be discussed in this brief paper. After reading this section
the reader will know the meaning of every part of the term

(non-)interactive zero knowledge argument of knowledge,
therefore this section prepares the reader for the used
terms of Section 3. At first in Subsection 2.1 the parts of a
ZKP system are discussed. Then the essential properties of
every ZKP are introduced in Subsection 2.2. Furthermore,
differences between interactive and non-interactive ZKPs
and how non-interactivity is achieved are considered in
Subsection 2.3. After that the meaning of the suffix “of
knowledge” is explained in Subsection 2.4. Finally, in
Subsection 2.5 a possible use of the functionality of ZKPs
is discussed from a blackbox perspective.

2.1. Framework

The statement to be proven is a decision problem. It
consists of a language L1 and for any given input x one
has to decide whether x ∈ L. A ZKP system consists
of such a decision problem and two programs2: One is
the verifier and has typically limited resources like a
polynomial runtime limit for its calculations. The other
one is the prover that either has more computational power
or usually a witness for the problem. The used language
and the input x are known to both verifier and prover, so
the secret information is the witness allowing to prove the
membership of x efficiently. [2, 3, 6, 7]
Polynomial runtime limits in this Section 2 are taking
the size of the common input |x| as argument of the
polynomial limiting the runtime.
For interactive ZKPs the verifier and prover communicate
in alternating rounds or in the case of non-interactive
ZKPs (NZKPs) the prover creates one proof that can be
verified without further interaction (see Subsection 2.3).
The purpose of the prover is to convince the verifier that
x ∈ L is correct without revealing more information. The
task of the verifier is to check if x ∈ L is correct with
sufficiently high probability. Both prover and verifier can
use randomness, so a recording of the view of the verifier
of a proof is a random variable. [2, 3, 6, 7] This framework
is illustrated in Figure 1.

2.2. Properties of a ZKP

A ZKP system fulfills the following three properties:
Completeness:

1. A language is a set of words over an alphabet.
2. Anything like algorithms or Turing machines or equally computa-

tionally powerful is considered according to the Church-Turing Hypoth-
esis [5].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

39 doi: 10.2313/NET-2022-07-1_08

Figure 1: The prover has to convince the verifier that the
statement is valid.

Completeness means that for x ∈ L the prover having a
witness or enough computational power can/will convince
the verifier of this correct statements. This convincing can
either be successful with sufficiently high probability or in
case of perfect completeness with certainty. This assumes
that the verifier fulfills its part of the protocol3. [2, 3, 6]
Soundness:
If the statement is not correct (if x /∈ L) the verifier should
only be convinced by any program4 with a sufficiently
low probability. This means that wrong statements are not
likely accepted. Also note that this is not defined as chance
of zero to convince the prover of a wrong statement. This
property is often weakened to computational soundness
like in Section 3. In this case the soundness property
only has to hold against programs that have polyno-
mial runtime. Therefore any program with more runtime
could convince the verifier of at least one false statement
with a higher probability. Often ZKPs with computational
soundness are called zero knowledge arguments instead
of ZKPs [3, section 2.1], like the ZKPs mentioned later
in Section 3. But the term ZKPs in this work includes
zero knowledge arguments aswell. [2, 3, 6]
Zero Knowledge:
For the zero knowledge property soundness and correct-
ness are not regarded. The prover is the same as in the
ZKP system, but the verifier can be any potentially adver-
sarial program that might try to get additional information.
The idea of [2] was that the no information5 gain of any
verifier can be defined by the notion of indistinguishability
between the distribution6 of the recorded view7 of this
verifier and another distribution that is made by a simula-
tor running in expected polynomial time. This simulator
only assumes that x ∈ L and does not use the prover
at all, so that the conclusion is that this verifier cannot
gain anything new from the proof it could not compute in
(expected) polynomial time on its own. [2, 3]
There are many variants and slightly changed definitions
for this, but two common are:

• Perfect zero knowledge: Both distributions are
identical and thus indistinguishable.

• Computational zero knowledge: Both distributions
cannot be distinguished by any algorithm with
polynomially bounded computation time except
with a negligible small probability difference.

Note that perfect zero knowledge implies computational
zero knowledge. Computational zero knowledge is the

3. A “troll” verifier could always reject.
4. This means not only the prover of the system, but every program

that can take its place.
5. except that the statement is true
6. It is a distribution as both programs might use randomness.
7. This includes everything it can read from and the communication.

most general and therefore often used as a synonym for
zero knowledge. [2, 3, 8, 9]
One disadvantage of this definition of no information
gain is that following these definitions every interactive
proof for a problem in polynomial time (P) is a ZKP, as
the verifier/simulator could solve it in polynomial time
on its own. So zero knowledge makes only sense for
problems that do need more than (expected) polynomial
time, therefore the name zero knowledge proof may be a
bit misleading.
There are many variants [3] and slight variations of these
definitions, here only the most basic can be mentioned.
Another more restrictive variant is honest verifier zero
knowledge [3, Section 3], which means that there only
has to exist such a simulator for the one verifier of the
ZKP system (e.g. any dishonest/cheating verifier may get
information).
A more restrictive definition is auxiliary input zero
knowledge, where the simulator and the verifier both get
access to a string of already known knowledge. This
means that no previous knowledge can be used by a
verifier to gain more information from the interaction
than it could compute with this previous knowledge by
itself. Auxiliary input zero knowledge implies that the
composition of ZKPs stays a ZKP. [10]
A less restrictive variant is that of witness
indistinguishability, where the used witness from a
set of possible ones cannot be determined. This can be
combined with witness hiding (e.g. no new witness can
be computed from the proof). [11]

2.3. Non-Interactive ZKP

Interactivity is sometimes too difficult or too costly
to achieve. This is especially important for blockchains
(or other similar structures) as very relevant use case of
non-interactive ZKPs (NZKPs), where the proofs must be
publicly verifiable. This means that the proof must be a
one-way message created by the prover, that is then saved
on the blockchain. This proof must be verifiable by any
participant of the blockchain without any interaction with
the prover, only using the blockchain data. [6] [4].
Only very limited languages like those in BPP8 have
NZKPs [10]. Therefore the used model has to be changed.
As in many ZKPs the verifier only sends randomly se-
lected challenges to the verifier, this random selection
could be done by a trustworthy public source of ran-
domness instead. So the prover and verifier would both
know the resulting random challenges, but there would
be no need for the verifier to send these questions to the
prover. The verifier would still receive all answers to these
challenges in the one-way proof of the prover. [7, 12]
An initial approach is to have a shared random bit string
per statement [13] that allows the creation of a ZKP
that can be verified non-interactively. As common random
strings do not simply exist, there are the following two
approaches. For each approach common data is generated
in an interactive setup at the start of the ZKP system.
After this setup the system can be used for non-interactive

8. In BPP are problems that can be solved with high probability in
probabilistic polynomial time.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

40 doi: 10.2313/NET-2022-07-1_08

proofs, even by non-participants of the setup.
One option is the Common Reference String model, where
from a distribution a common string can be generated
[14]. But this requires a trusted setup of the distribu-
tion. The trusted setup of a NZKP system consists of
several participants9 that each generate their own secret
and use these in an interaction that is used to create the
distribution. In the best case these individual secrets are
destroyed immediately. But if anyone gets all those secrets
(for example if all participants collude) the soundness and
the zero knowledge property are no longer guaranteed [7,
14]–[16].
Another option to get NZKPs is to use the Fiat-Shamir
heuristic from [12], which replaces the random decisions
of the verifier by a hash function over the parameters of
the proof. As this requires no trust in the confidentiality
of a setup this is called transparent setup instead [6].
This function is used instead to make the choices that
the verifier would do randomly. The hashfunction is not
selected by the prover, but it is part of the common shared
data. [12, 17, 18]
Although there is some controversy about it, this heuristic
is secure for honest verifier ZKPs according to [18] in the
Random Oracle Model.

2.4. Proof of Knowledge

Many ZKPs10 are ZKPs of knowledge. Proof of knowl-
edge [19] intuitively means that the prover proves its
knowledge about a witness usable to prove the given
problem in polynomial time. Therefore some (explicit or
extractable) knowledge is guaranteed to be possessed by
the prover. This can be formalized by defining another
probabilistic polynomial algorithm extracting the witness
using the prover as an oracle machine. [19]

2.5. Example: Blackbox Workflow of a ZKP

The properties mentioned before are about the require-
ments a ZKP should fullfill, not about how one would use
a ZKP in a concrete way. As even simple examples of
ZKPs are too long for this paper, this is now discussed
from a blackbox perspective and assumes that eventual
setups for NZKPs are already done. In Figure 2 this high-
level view is depicted for non-interactive ZKPs and to
its parts are now referred to with (1) to (8). At first
(1) the statement over the common input is transformed
into the input type usable by the zero knowledge proof
(2), in most cases this is some low level representation
like boolean or arithmetic circuits. These are circuits over
finite fields. For the circuits the satisfiability problem11

is to be proven. There are programs to transform from
higher level languages like TinyRAM (a small subset of
the programming language C) into this input format [4].
The resulting number of gates |C| of the circuit C is one
variable of the proof length and costs as shown in Section
3. This problem representation is then used by the prover

9. This group does not have to consist of everyone that ever uses the
system. It can be a reasonably sized subset balancing the trustworthiness
of the setup and setup costs.

10. including the ones presented in Section 3
11. Showing that there exists inputs to the circuit so that the specified

output (e.g. 1 for boolean circuits) is achieved.

Figure 2: A high level view of the usage of non-interactive
ZKPs.

(6) to either do an interactive proof or to generate the
non-interactive proof over the common input (3) and its
private information (4) using the proving key of the setup
data (5). The verifier checks this (non-)interactively using
(the common verification key (7) of the setup data and)
the input data of the proof (8). [4, 6, 7].
Note that for statements like that a transaction on a
blockchain 12 [20] is correct, data (either public or com-
mitted13) of that blockchain is part of the common input
of the proof, so the proof refers to that specific blockchain.
The user can formulate the statements on a higher level
language and let the ZKP system do the complex math-
ematical part. Even without deep mathematical under-
standing of ZKPs usage of a provided implementations
is possible. For such implementations see [4].

3. Examples of Modern ZKPs

In this section ZKPs are compared regarding their
capabilities. This is a limited and simplified selection
due to the complexity and extent of the topic. For this
the popular term zk-SNARKs is introduced in Subsection
3.1. Then newer ZKPs called zk-STARKs are covered in
Subsection 3.2. The popular ZKP Bulletproof and Ligero
as zk-SNARK without and Sonic as a zk-Snark with
trusted setup are discussed in the remaining Subsections.

3.1. zk-SNARKs

Zero Knowledge Succinct Non-Interactive Argument
of Knowledge (zk-SNARKs) is a common term for
NZKPs. After Section 2 only the word succinct has
to be explained, which means that the proof size and
verification time are less than linear in the input size or
even constant. Some zk-SNARKs use trusted setups like
Sonic [22], while more recently zk-SNARKs without
trusted setup (transparent setup or also interactively
useable) like Ligero [23] have been created. [4, 6, 24]

3.2. zk-STARKs

Zero Knowledge Scalable Transparent Arguments of
Knowledge (zk-STARKs) use cryptographic hashfunctions

12. or a similar system like central signature authority [12], as long
as provers and verifiers trust the integrity of the data provided by it

13. Committing data means to use a one-way hashfunction so that
the given argument cannot be changed without altering the hash, but the
hash also contains no useable information about the used argument [21].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

41 doi: 10.2313/NET-2022-07-1_08

for their security assumptions. Quantum computers cannot
find collisions for these hashfunctions efficiently [25]. For
this reason zk-STARKs are believed to be more resistant to
quantum computers than other ZKPs. For non-interactive
proofs they use the Fiat-Shamir heuristic. Scalability
means quasilinear proving time (n · polylog(n)) and
polylogarithmic verification time. In [26, 27] zk-STARKs
are defined and some are constructed. Their new feature
is the combination of scalability on both the provers and
verifiers side combined with their transparency. Thus their
prover timer outperforms zk-SNARKs (or Bulletproof)
[26, Section 1.3]. But the proof sizes of STARKs are
significantly larger for small input sizes (like validating
blockchain transactions), which make them less suitable
for this common use case on blockchains. [24, 26, 27]

3.3. Bulletproof

Bulletproof [28] is a ZKP that is used to prove that
a committed secret value v ∈ Zp is in a given range
[0, 2n − 1]. Bulletproof relies on the Discrete Logarithm
Problem as security assumption. Bulletproof has the fea-
ture to accumulate m range proofs into one bigger range
proof with a smaller total size. The size of the proof14

consists of 2(log2(n) + log2(m) + 4) elements of G and
always 5 elements of Zp. Also a multi party protocol was
proposed [28, section 4.5] that can be used for merging
multiple proofs of multiple parties while each party keeps
their secret with linear communication in the number
of proofs m and a logarithmic number of rounds in n.
Therefore the total size of the accumulated proof grows
logarithmic per additionally range proof over [0, 2n − 1].
More generally Bulletproof can be used to prove that a
given computation over an arithmetic circuit C is correct.
The computation times needed for prover and verifier are
each linear in n respectively |C| [4, table 3]. Also the non-
interactivity is achieved using the Fiat-Shamir heuristic, so
Bulletproof requires no trusted setup. [28]

3.4. Ligero

Ligero [23] is a zk-SNARK made non-interactive
with a transparent setup using the Fiat-Shamir transform.
Like zk-STARKs its security assumption is based on
cryptographic hash functions. It is used to verify for a
given arithmetic circuit C, which checks the membership
of a language L in NP , whether an input x is in L. The
sublinear proof size is in Θ(

√
|C|), therefore Ligero is

called a succinct non-interactive argument of knowledge
(zk-SNARK). Both the running times of the verifier and
prover are in O(|C| · log(C)) [4, table 3]. This protocol
can also be used with a multi-party protocol merging
multiple instances for a better amortized run time for the
verification. [23]

14. The proof size is the length of the communication between prover
and verifier in the interactive case, otherwise the length of the one-way
message.

3.5. Sonic

Sonic is a zk-SNARK with trusted setup. The proof
size is constant in regard to the input. The proving time
is in |C| log |C| as well as the costs of the universal
updatable trusted setup. Updatable means that the trusted
setup can continue indefinitely, i.e. new participants
can be later added to increase the trust in the setup.
The universal setup has not to be repeated for different
circuits, instead all circuits with circuit sizes up to a at
the setup fixed size are allowed. The verification time is
linear to the size N of the inputs of the gates and also
logarithmic in |C| [4, Table 3]. The security bases on the
Algebraic Group Model. [22]

3.6. Comparison

In Table 1 are the asymptotic runtimes and proof
sizes of the mentioned ZKPs depicted. Be aware that
for small input sizes zk-STARKs create proofs of sig-
nificantly larger sizes than Bulletproof or zk-SNARKs
(including Sonic and Ligero). Because zk-SNARKs were
introduced several years earlier than zk-STARKs, they
have more available implementations to use. As shown
these algorithms have different strengths and should be
chosen depending on the use-case. Note that this is only
a limited selection of the many ZKPs, more are listed in
[4].

4. Use Cases

It was shown in [29] and [30] that every problem in
NP 15 has computational (non-)interactive ZKPs. Also
the ZKPs in 3 all support at least all problems in NP as
input. Of this wide applicability of ZKPs some potential
use cases are discussed next.
Generally, there are a lot of applications of ZKPs
on blockchains like anonymous payments, voting,
age verification, risk assessment, or auctions [7, sec.
Zero-Knowledge Proof Applications], smart contracts,
verifying computations or delegated computing [4].

4.1. Signatures

Like shown in [12] one can create non-interactive
signatures having a zero knowledge property, issued by a
central authority that is not required for authentication.
There are interactive zero knowledge undeniable
signatures like in [31]. They cannot be verified without
the signer, making it much harder (or not possible) for
anyone but the private key owner to convince a third
party that a message is signed correctly. Besides proving
the correctness of a signed message, they can also be
used to prove (also a ZKP) that a message is not correctly
signed to protect the signer against false accusations. [31]

15. Decision problems that can be solved in exponential time and
checked with a witness in polynomial time

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

42 doi: 10.2313/NET-2022-07-1_08

Name Trusted Setup Proof Size Proving Time Verification Time
Bulletproof No O(logM) O(M) O(M)

Ligero No O(
√
|C| |C| log |C| |C| log |C|

STARK No O((log |C|)2) O(|C| (log |C|)2) O(|C|)
Sonic Yes O(1) |C| log |C| N + log |C|

TABLE 1: Table part from [4, Table 3], |C| is the number of gates of the computation expressed as arithmetic circuit,
M the number of And gates in it, N the length of the inputs and outputs of the computation [4, Table 3].

4.2. Private Transactions on Blockchains

Digital currencies like Bitcoin are pseudo-anonymous.
The transactions between all addresses are publicly visible
to verify the correctness of the transactions. If an identity
is linked to an address, the transaction history belonging
to that address is retraceable. Using a new address for
each new transaction or coin mixers makes this harder,
but does not implicitly guarantee anonymity. [32]
Digital currencies for decentralized and trustless payments
like the protocol Zerocash described in [20], solve this
problem with the use of zk-SNARKS. Such currencies
thereby offer a possibility for more anonymous (hidden
amount, origin and destination) payments. The payment
is found by scanning over the block chain using the
corresponding private key searching for a commitment to
the related address. [20]
Furthermore, for such currencies a trusted setup might be
a disadvantage. As this requires trust in the correctness of
key ceremonies with a big number of participants like
that of Zcash that are only insecure if all participants
are dishonest [16]. So instead NZKPs with a transparent
setup might solve this issue. For example the previously
mentioned Bulletproof which requires no trusted setup is
used by the crypto currency Monero to prove that the sum
of committed inputs is greater than the committed outputs
of a transaction. [28, 33].

4.3. Verifying Computations

Even for checking computations on a von Neumann
RISC architecture like vnTinyRAM in [34] verifying
the computations via generating arithmetic circuits is
possible for moderate code lengths. In this scenario both
client and server know a function F and a given input
x, the server knows or computes a secret w so that
z = F (x,w). The zk-SNARK used enables verifying the
correct computation while the server keeps its secret and
also the verification needs only very limited ressources.
The cited work tests up to 32.000 machine cycles and
10.000 instructions on a desktop computer, achieving
universality of the computations as only the time bound
of the program execution has to be known ahead of the
proof. But the work also shows that ZKPs for universal
computations are still expensive for bigger and more
complex programs. [34]

5. Related Works

A survey paper about ZPKs and the more recent
development is [35]. An extensive document about the
concepts of ZKPs is [6]. For a basic overview of some of
the theory of interactive ZKPs see [3]. A basic example of

a ZKP can be found in [29, Protocol 4]. [36] gives an good
listing of some the theory of NIZKPs and the research
history. [37] is a short overview of the use of NIZKPs in
Blockchains. The later mentioned paper about Bulletproof
[28] is also possibility to get a better understanding of a
modern NIZKPs. For an overview of some of the many
use cases and implementations of non interactive zero
knowledge proofs for blockchains see [4].

6. Conclusion

As shown ZKPs have a complex theory and wide
applicability. The aim of these algorithms is to minimize
released information that is not to be proven, but is needed
to prove something. The basic zero knowledge, soundness
and completeness properties should definitely be fulfilled
by all ZKPs. Especially the zero knowledge property
shows a way to formalize that no usefull information ex-
cept the validity of the statement to be proven is released.
ZKPs are an interesting topic and wide research field
with much theory and an important part of cryptography.
The use of this technology on blockchains is a promising
ongoing development as well as the improving NZKPs
with transparent setup removing the trust issues of trusted
setups. Also its many use cases like signatures, crypto
currency transactions or even verifying computations are
very versatile.

References

[1] C. Jackson, S. Russell, and S. Sons, Security from
First Principles. Sebastopol, CA, USA: O’Reilly Media,
Inc. [Online]. Available: https://www.oreilly.com/library/view/
security-from-first/9781491996911/ch04.html

[2] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge
complexity of interactive proof systems,” SIAM Journal on
Computing, vol. 18, no. 1, pp. 186–208, Feb. 1989. [Online].
Available: https://doi.org/10.1137/0218012

[3] O. Goldreich, “Zero-knowledge twenty years after its invention,”
01 2003.

[4] J. Partala, T. Nguyen, and S. Pirttikangas, “Non-interactive zero-
knowledge for blockchain: A survey,” IEEE Access, vol. PP, pp.
1–1, 12 2020.

[5] B. J. Copeland, “The Church-Turing Thesis,” Jan 1997,
[Online; accessed 5. Dec. 2021]. [Online]. Available: https:
//plato.stanford.edu/entries/church-turing

[6] ZKProof, “Zkproof community reference,” December 2019.

[7] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey
on zero-knowledge proof in blockchain,” IEEE Network, vol. 35,
no. 4, pp. 198–205, 2021.

[8] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian,
S. Micali, and P. Rogaway, “Everything provable is provable in
zero-knowledge,” in Advances in Cryptology — CRYPTO’ 88,
S. Goldwasser, Ed. New York, NY: Springer New York, 1990,
pp. 37–56.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

43 doi: 10.2313/NET-2022-07-1_08

[9] J. Thaler, “Proofs, arguments, and zero-knowledge,” August
2021, [Online; accessed 5. Dec. 2021]. [Online]. Available:
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

[10] O. Goldreich and Y. Oren, “Definitions and properties of
zero-knowledge proof systems,” Journal of Cryptology, vol. 7,
no. 1, pp. 1–32, Dec. 1994. [Online]. Available: https:
//doi.org/10.1007/bf00195207

[11] U. Feige and A. Shamir, “Witness indistinguishable and witness
hiding protocols,” 1990.

[12] A. Fiat and A. Shamir, “How to prove yourself: Practical
solutions to identification and signature problems,” in Advances
in Cryptology — CRYPTO’ 86. Springer Berlin Heidelberg,
1987, pp. 186–194. [Online]. Available: https://doi.org/10.1007/
3-540-47721-7_12

[13] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in Proceedings of the twentieth
annual ACM symposium on Theory of computing - STOC '88.
ACM Press, 1988. [Online]. Available: https://doi.org/10.1145/
62212.62222

[14] R. Canetti and M. Fischlin, “Universally composable commit-
ments,” in Advances in Cryptology — CRYPTO 2001, J. Kilian,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.
19–40.

[15] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers,
“Updatable and universal common reference strings with applica-
tions to zk-snarks,” in Advances in Cryptology – CRYPTO 2018,
H. Shacham and A. Boldyreva, Eds. Cham: Springer International
Publishing, 2018, pp. 698–728.

[16] “Parameter Generation - Zcash,” Aug 2019, [Online; accessed
13. Dec. 2021]. [Online]. Available: https://z.cash/technology/
paramgen

[17] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum,
R. D. Rothblum, and D. Wichs, “Fiat-shamir: from practice
to theory,” in Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing. ACM, Jun. 2019. [Online].
Available: https://doi.org/10.1145/3313276.3316380

[18] D. Pointcheval and J. Stern, “Security proofs for signature
schemes,” in Advances in Cryptology — EUROCRYPT ’96,
U. Maurer, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 387–398.

[19] M. Bellare and O. Goldreich, “On defining proofs of knowledge,”
in Advances in Cryptology — CRYPTO’ 92, E. F. Brickell, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 390–420.

[20] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza, “Zerocash: Decentralized anonymous
payments from bitcoin,” in 2014 IEEE Symposium on Security and
Privacy, 2014, pp. 459–474.

[21] A. Jain, S. Krenn, K. Piertrzak, and A. Tentes, “Commitments and
effcient zero-knowledge proofs from learning parity with noise,”
2021.

[22] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic:
Zero-knowledge snarks from linear-size universal and updateable
structured reference strings,” Cryptology ePrint Archive, Report
2019/099, 2019, https://ia.cr/2019/099.

[23] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam,
“Ligero,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, Oct. 2017.
[Online]. Available: https://doi.org/10.1145/3133956.3134104

[24] “Zero-Knowledge Proofs: STARKs vs SNARKs | ConsenSys,”
Dec 2021, [Online; accessed 11. Dec. 2021]. [On-
line]. Available: https://consensys.net/blog/blockchain-explained/
zero-knowledge-proofs-starks-vs-snarks

[25] “Defeating Quantum Algorithms with Hash Functions,”
Feb 2017, [Online; accessed 25. Feb. 2022]. [On-
line]. Available: https://research.kudelskisecurity.com/2017/02/01/
defeating-quantum-algorithms-with-hash-functions

[26] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,”
Cryptology ePrint Archive, Report 2018/046, 2018.

[27] ——, “Scalable zero knowledge with no trusted setup,” in
Advances in Cryptology – CRYPTO 2019. Springer International
Publishing, 2019, pp. 701–732. [Online]. Available: https:
//doi.org/10.1007/978-3-030-26954-8_23

[28] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell, “Bulletproofs: Short proofs for confidential transac-
tions and more,” Cryptology ePrint Archive, Report 2017/1066,
2017, https://ia.cr/2017/1066.

[29] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that
yield nothing but their validity or all languages in NP
have zero-knowledge proof systems,” Journal of the ACM,
vol. 38, no. 3, pp. 690–728, Jul. 1991. [Online]. Available:
https://doi.org/10.1145/116825.116852

[30] M. Blum, A. de Santis, S. Micali, and G. Persiano, “Noninteractive
zero-knowledge,” pp. 1084 – 1118, 1991.

[31] D. Chaum, “Zero-knowledge undeniable signatures (extended ab-
stract),” in Advances in Cryptology — EUROCRYPT ’90, I. B.
Damgård, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1991, pp. 458–464.

[32] F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin
system,” in 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third International Con-
ference on Social Computing, 2011, pp. 1318–1326.

[33] “Moneropedia: Bulletproofs,” Dec 2021, [Online; accessed
13. Dec. 2021]. [Online]. Available: https://web.getmonero.org/
resources/moneropedia/bulletproofs.html

[34] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct
Non-Interactive zero knowledge for a von neumann architecture,”
in 23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, Aug. 2014, pp.
781–796. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/ben-sasson

[35] S. Kassaras and L. A. Maglaras, “Zkps: Does this make the
cut? recent advances and success of zero-knowledge security
protocols,” CoRR, vol. abs/2006.09990, 2020. [Online]. Available:
https://arxiv.org/abs/2006.09990

[36] H. Wu and F. Wang, “A survey of noninteractive zero knowledge
proof system and its applications,” TheScientificWorldJournal, vol.
2014, p. 560484, 05 2014.

[37] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey
on zero-knowledge proof in blockchain,” IEEE Network, vol. 35,
no. 4, pp. 198–205, 2021.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

44 doi: 10.2313/NET-2022-07-1_08

