
Applications of Q-Learning to Network Optimization and Graph Problems

Marco Dollinger, Max Helm, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: dollingm@in.tum.de, helm@net.in.tum.de, jaeger@net.in.tum.de

Abstract—This paper provides a theoretical overview of
Markov Decision Processes (MDP), Reinforcement Learning
(RL) in general, and (Deep) Q-Learning in particular. Fur-
thermore, we examine the application of Deep Q-Learning in
network optimization of Software-defined Satellite-terrestrial
networks and in general graph problems like the traveling
salesman problem (TSP) and a graph representation of the
boolean satisfiability problem (SAT). Furthermore, we ref-
erence the results obtained by Deep Q-Learning approaches
to the examined application areas. Moreover, we give an
overview of recent research progress in the field of Reinforce-
ment Learning and present open questions and challenges.

Index Terms—Q-Learning, Reinforcement Learning,
Software-defined Satellite-terrestrial Networks, SAT, TSP

1. Introduction

In the recent past, Reinforcement Learning has re-
ceived extensive research interest from academia as
well as industry. In particular, Reinforcement Learning
promises meaningful advances in the field of robotics,
control theory, statistics, and economics among others.
The Google DeepMind application AlphaGo, which is
based on Reinforcement Learning, was even covered by
mainstream media for beating world-class players in the
board game Go. This paper is structured as follows:
Section 2 provides an introduction to the theoretical foun-
dations of Reinforcement Learning, and in particular to Q-
Learning which is a specific type of Reinforcement Learn-
ing. Section 3 analyzes and categorizes applications of Q-
Learning to graph problems like the traveling salesman
problem and the boolean satisfiability problem as well
as applications to network optimization on the example
of Software-defined Satellite-terrestrial networks. In Sec-
tion 4, an overview of recent developments and future
challenges of Reinforcement Learning research is given.
Lastly, Section 5 concludes the paper and summarizes the
results.

2. Theoretical Foundations

In this section, an overview of the theoretical foun-
dations of Reinforcement Learning and specifically Q-
Learning is presented.

2.1. Reinforcement Learning

Reinforcement Learning is one of the three main
paradigms of modern machine learning, next to supervised

and unsupervised learning. In Reinforcement Learning, an
agent takes actions within an environment to maximize
rewards. Usually, a Reinforcement Learning environment
is modeled as a Markov Decision Process. In [1], Watkins
defined an MDP as:

• a set of actions A
• a set of states S,
• Ra(s, s

′): a reward function that rewards the agent
when transitioning from state s to state s’ using
action a

• Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a): a

probability function that expresses the probability
that a certain action a which is taken at time t in
state s will result in state s’.

It is important to note that Markov Decision Processes
satisfy the Markov Property that transitions and rewards
only depend on the current state and are independent of
previous actions or states.
Further, we will only introduce finite Markov Decision
Processes with finite sets of actions and states. The model
of an MDP is the combination of transition function and
reward function. When the model of an MDP is unknown,
Reinforcement Learning is a possible technique to find
an optimal policy ("when to choose which action"). As
described by Kaelbling et al. in [2], we can divide RL
techniques into model-free approaches and model-based
approaches.

• Model-free: learn a policy without learning the
model.

• Model-based: learn the model to derive a policy.

The goal for the RL agent is to find a policy that max-
imizes the acquired rewards until a sequence of actions
leads to a final state, or the algorithm is aborted (e.g. by
a time constraint). Figure 1 shows the general framework
for Reinforcement Learning of a Markov Decision Process
as illustrated by Wang et al. in [3].
In a Reinforcement Learning process, the term "regret"

describes the performance differences between the actual
agent and a (hypothetical) optimal agent which we aim
to minimize. A common obstacle to minimizing regret
is the tradeoff between long-term rewards (exploration)
and short-term rewards (exploitation). Exploitation means
learning from previous experiences and choosing the most
optimal action as the next decision. In contrast, explo-
ration is the process of trying new policies/decisions that
can offer a smaller immediate reward but enables the agent
to learn more information about the environment [2].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

33 doi: 10.2313/NET-2022-07-1_07



Figure 1: The Reinforcement Learning Framework [3]

2.2. Q-Learning

Q-Learning is a model-free Reinforcement Learning
algorithm that learns a controller without learning transi-
tion probabilities or rewards from the environment. The
Q-function calculates the quality of a state-action combi-
nation which is a measure of how good it is to take an
action in a specific state.

Q : S ×A→ R (1)

The learning goal is to find an optimal Q-function for
each state-action pair that can be used to achieve our goal
of maximizing reinforcement rewards. At the beginning
of learning, the Q-function might be randomly initialized.
During learning, the agent will update the Q-function with
each decision step with the following formula [1]:

Qnew(st, at)←
Q(st, at) + α · (rt + γ ·max

a
Q(st+1, a)−Q(st, at))

(2)

where:

• rt is the reward that our agent receives when
moving from state s to state st+1 using action a

• the learning rate α : 0 < α ≤ 1 defines how much
we weight "new knowledge" compared to previ-
ous experiences. This is similar to many machine
learning algorithms.

• the discount factor γ : 0 < γ ≤ 1 weighs
immediate rewards against future rewards

• maxaQ(st+1, a) is an estimate of the maximum
reward that can be obtained from state st+1

When implementing the Q-Learning algorithm in an RL
agent, it would be understandable that for every action
decision, the agent should choose the action with the
highest Q-value for the current state. However, with
this approach, the agent is purely exploiting previous
knowledge and neglects the exploration aspect of the RL
task. This problem is solved by ε-greedy Q-Learning as
proposed by Wunder et al. in [4]. In ε-greedy Q-Learning,
the agent chooses the action with maximum Q-value
with the probability of (1 − (ε(k − 1)/k) and selects
one of the remaining actions with a uniform probability
distribution. With increasing ε, the agent increasingly
explores the environment rather than exploiting its
knowledge. However, ε needs to be sufficiently small
to avoid unnecessarily increasing the learning duration.

Since in basic Q-Learning (2), we calculate the Q-
function for the whole, (sparse) action-state-matrix, the

Figure 2: An illustration of DQL. DNN: deep neural
network [5]

algorithm can become very computationally expensive.
To speed up our computations we can use Quantization
which means grouping similar actions or states together at
the cost of quantization errors. Quantization can discretize
infinite spaces or decrease the cardinality of discrete
state/action spaces. Another approach to handle large
action and state spaces is function approximation. With
function approximation, the agent does not compute the
complete action/state matrix, but rather only "estimates"
the Q-function values, for example by using neural
networks. [3]

2.3. Deep Q-Learning

Deep Q-Learning (DQL) uses a neural network to
realize non-linear function approximation which enables
efficient Q-Learning in high dimensional action and state
spaces. Figure 2 shows the general Reinforcement Learn-
ing framework with a neural network agent as illustrated
by Tham et al. in [5]. The input of the neural network
represents the current environment state, whereas the max-
imum value of the output layer encodes the next action to
take by the agent.

3. Applications of (Deep) Q-Learning

This section introduces example applications of
(Deep) Q-Learning to network optimization and graph
problems. Since the examined problems are very high-
dimensional and computationally expensive, (Deep) Q-
learning promises great performance in their respective
solutions.

3.1. Network Optimization of Software-Defined
Satellite-Terrestrial Networks (SDSTN)

One goal of network optimization is the optimal net-
work resource allocation to many different actors. This
matching problem is a high-dimensional task that can be
modeled as an MDP and therefore solved with Reinforce-
ment Learning. In other words, network optimization aims
to fulfill user requirements/requests while minimizing re-
source consumption.
As Chao et al. showed in [6], Deep Q-Learning can

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

34 doi: 10.2313/NET-2022-07-1_07



improve network resource allocation in software-defined
satellite-terrestrial networks. The physical resources of
the network are categorized in the data layer as net-
working capabilities through low earth orbiters (LEO),
caching/storage space in distributed infrastructure and
computing capacity of distributed mobile edge computing
(MEC servers). Software-defined satellite-terrestrial net-
works virtualize physical resources by a logically cen-
tralized control layer that allocates the optimal resources
to user/application requests like communication or navi-
gation tasks [7]. Since the physical network resources are
distributed over many different entities, allocating specific
devices to a user request is a high-dimensional matching
problem that can be modeled by the general reinforcement
framework in Figure 1 and thus solved by Deep Q-
Learning. The data layer of the network represents the
state S(t) at time t of the RL task, in particular the posi-
tion and availability of LEOs, the cached contents, and the
idle/occupied computing capabilities. The RL agent is the
control layer that decides for a given user u request at time
t the optimal action au(t) which includes assigning an
LEO, deciding if the requested content should be cached,
and allocating a MEC server to execute the computation
task. According to He et al. in [8], the control layer needs
to pay fees to consume the physical resources, whereas the
user u pays the control layer for executing a request. The
RL reward function calculates the ratio of fees paid by the
control layer divided by the fees paid by the user. With
increasing efficiency of physical resource consumption,
while maintaining constant user fees, the respective fee
ratio increases which rewards the agent to optimize its
allocation policy [6].
To measure the performance/efficiency of the Deep Q-
Learning approach to resource allocation, Chao et al. sim-
ulated an SDSTN with three LEOs, five MEC servers, and
five content caches. Compared to a static resource-to-user
allocation strategy, the DQL-based resource allocation
achieved greater utility per resource and thus increased
the efficiency of the network. Additionally, the authors
showed that "with the increase of training episodes, the
expected utility per resource increases" [6] which proves
that the modeled reward function can be used to optimize
the agent’s policy, and therefore optimize the network’s
allocation strategy.

3.2. Graph Problems

3.2.1. Boolean Satisfiability Problem (SAT). Given a
boolean formula, the Boolean Satisfiability Problem is
the task of finding a satisfying variable configuration.
Since SAT is NP-complete, commercial solvers rely on
heuristics to speed up finding a satisfying configuration
or proving unsatisfiability. As shown by Kurin et al.
in [9], Deep Q-Learning can potentially be applied to
commercial settings and reduce wall-clock time to solve
SAT problems. In [9], Kurin et al. introduce Graph-Q-
SAT that uses Q-Learning with graph neural networks as
function approximation. Similarly to Selsam et al. in [10],
boolean formulas in conjunctive normal form (CNF) are
represented by bipartite graphs. Since boolean formulas
vary in size and the graph changes during solving by
setting variables, the DQL input must support dynamic di-
mensionality. Therefore, Graph-Q-SAT uses Graph Neural

Figure 3: Graph representation of (x1∨x2)∧ (−x2∨x3).
The annotations are Q-function values for setting variables
to true or false respectively [9].

Networks as formalized by Battaglia et al. in [11]. Be-
sides vertices and edges, Graph Neural Networks include
annotations, which change by their operations. For exam-
ple, Figure 3 shows a possible input/output of a Graph
Neural Network of the formula (x1 ∨ x2) ∧ (¬x2 ∨ x3).
To decide the next action (setting one variable to True
or False), the agent selects the highest annotation value
of all variable nodes. In the example of Figure 3, the
agent will set x1 = True. The reward function pun-
ishes the agent for each non-terminating decision which
incentivizes the agent to find a satisfying configuration as
fast as possible. For unsatisfiable formulas, Graph-Q-SAT
will try all configurations to prove unsatisfiability [9]. To
evaluate Graph-Q-SAT, Kurin et al. trained the agent with
Random 3-SAT instances from the SATLIB benchmark. It
is demonstrated that Graph-Q-SAT outperforms Variable
State Independent Decaying Sum (VSIDS) by reducing
the required iterations to solve SAT problems by 2-3
times. VSIDS is a frequently used Conflict Driven Clause
Learning (CDCL) branching heuristic which means that
for each iteration the solver chooses a variable and assigns
a binary value, similarly to Graph-Q-SAT. In particu-
lar, Graph-Q-SAT needed less than half the iterations
of VSIDS for SAT-50-218 instances (50 variables, 218
clauses). Further important characteristics to evaluate are
the generalization properties of Graph-Q-SAT. Compared
to VSIDS, "Graph-Q-SAT has no difficulty generalizing
to larger problems, showing almost 4X improvement in
iterations for a dataset 5 times bigger than the training
set" [9] which shows great generalization to other problem
sizes of Graph-Q-SAT. Another important characteristic is
the generalization to unSAT problems (unsatisfiable SAT
instances) when trained only on SAT problems. While
Graph-Q-SAT can solve unSAT problems, its performance
is worse than on SAT problems relative to VSIDS. This is
partly because unSAT differs from SAT problems, where
proving unsatisfiability requires exhausting all possible
assignments, whereas one satisfying assignment suffices
to prove satisfiability. While Graph-Q-SAT achieved great
performance overall, Kurin et al. noted that "more work is
needed to apply Graph-Q-SAT to reduce wall clock time
in modern SAT solving settings" [9].

3.2.2. Travelling Salesman Problem (TSP). Given a
weighted graph where vertices represent cities, the trav-
eling salesman problem is the task of finding the shortest

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

35 doi: 10.2313/NET-2022-07-1_07



Hamiltonian circle. Since the TSP is NP-complete, we rely
on heuristic algorithms to efficiently solve the problem for
large graphs. Introduced by Gambardella et al. in [12], the
Reinforcement Learning-based algorithm "Ant-Q" can be
applied to the TSP and achieve competitive performance
compared to other heuristic algorithms.
Ant-Q is inspired by the "ant system" (AS) as described
by Colorni et al. in [13], and the Q-Learning algorithm
[1]. Because Ant-Q is a distributed algorithm, the perfor-
mance can be further increased by additional (distributed)
computing capacity. Given an agent k located in city r,
the agent moves to city s using the following formula:

s = argmax
u∈Jk(r)

[AQ(r, u) ·HE(r, u)] (3)

where:

• Jk(r) is the list of cities that agent k has not yet
visited.

• AQ(r, u) is the equivalent to the Q-function (2)
that expresses the usefulness of moving to city u
when located in city r

• HE(r, u) is a heuristical value that is used to
prefer small distances. E.g. by multiplying the
inverse of the distance between r and u

While Ant-Q was the best performing algorithm "com-
pared to the elastic net, simulated annealing, the self-
organizing map, and farthest insertion" [12] for specific
standard sets of the symmetric TSP (symmetric weights),
Ant-Q’s polynomial time complexity makes it impossible
to apply it to large TSPs. However, for asymmetric TSPs,
which are harder than the symmetric case, Ant-Q delivered
promising results that are usually only achieved by very
specialized algorithms [12].

4. Recent Developments in Deep Reinforce-
ment Learning Research

Hardware advances, particularly GPUs, have driven
increased interest in Deep Learning over the last decade.
As mentioned in Sections 2 and 3, Deep Neural Networks
are used for function approximation in Deep Reinforce-
ment Learning. Since function approximation made it
feasible to apply Reinforcement Learning to increasingly
large action and state spaces, DRL continues to be suc-
cessfully applied to fields like robotics, control theory,
and more. Recent examples were the super-human perfor-
mance DRL agents achieved in playing Atari games [14]
or the success of DeepMind’s AlphaGo achieving world-
class performance in the board game GO [15], which is
computationally considerably more complex than chess.
Another example is the OpenAI Gym Bipedal Robot,
which successfully applies DRL to the control of robotic
joint angles which has analog, or potentially very large,
state and action spaces [15].
However, the increasing applications of DRL have also
raised further problems and open questions which con-
tinue to drive research interest. For example, how to
secure the stability of DRL, which refers to the stability
of weights of the DNN, remains a mostly open question
[16]. Another research area is the application of transfer
learning to speed up the training process. When training
a robotic DRL agent with visual input, transfer learning

enables the agent to learn from simulated data before using
real-world data which makes training more cost-efficient
and speeds up development cycles [14].

5. Conclusion

This paper provides a theoretical introduction to Rein-
forcement Learning and in particular Q-Learning as well
as the techniques to apply Q-Learning to high dimen-
sional data through function approximation. Additionally,
Section 3 summarized possible applications and results of
Deep Q-Learning (function approximation with deep neu-
ral networks) to network optimization and graph problems.
As shown in Section 3, Deep Q-Learning outperformed
static resource allocation strategies in the simulation of
Software-defined Satellite-terrestrial networks [6]. Addi-
tionally, Deep Q-Learning promises to reduce wall-clock
time in SAT-solving [9] and asymmetric TSPs [12]. Sec-
tion 4 outlined recent research activity in reinforcement
learning and raised open questions/challenges to further
apply Deep Q-Learning in fields like robotics.

References

[1] C. Watkins, “Learning From Delayed Rewards,” 01 1989.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” CoRR, vol. cs.AI/9605103, 1996. [Online].
Available: https://arxiv.org/abs/cs/9605103

[3] H. Wang, X. Chen, Q. Wu, Q. Yu, X. Hu, Z. Zheng, and
A. Bouguettaya, “Integrating Reinforcement Learning with Multi-
Agent Techniques for Adaptive Service Composition,” ACM Trans-
actions on Autonomous and Adaptive Systems, vol. 12, pp. 1–42,
05 2017.

[4] M. Wunder, M. Littman, and M. Babes-Vroman, “Classes of
Multiagent Q-learning Dynamics with ε-greedy Exploration,” 08
2010, pp. 1167–1174.

[5] M.-L. Tham, A. Iqbal, and Y. Chang, “Deep Reinforcement Learn-
ing for Resource Allocation in 5G Communications,” 11 2019, pp.
1852–1855.

[6] Q. Chao, H. Yao, F. Yu, F. Xu, and C. Zhao, “Deep Q-Learning
Aided Networking, Caching, and Computing Resources Allocation
in Software-Defined Satellite-Terrestrial Networks,” IEEE Transac-
tions on Vehicular Technology, 04 2019.

[7] B. Yang, Y. Wu, X. Chu, and G. Song, “Seamless Handover
in Software-Defined Satellite Networking,” IEEE Communications
Letters, vol. 20, 06 2016.

[8] Y. He, F. Yu, N. Zhao, and H. Yin, “Software-Defined Networks
with Mobile Edge Computing and Caching for Smart Cities: A Big
Data Deep Reinforcement Learning Approach,” IEEE Communi-
cations Magazine, vol. 55, pp. 31–37, 12 2017.

[9] V. Kurin, S. Godil, S. Whiteson, and B. Catanzaro, “Improving
SAT Solver Heuristics with Graph Networks and Reinforcement
Learning,” CoRR, vol. abs/1909.11830, 2019. [Online]. Available:
http://arxiv.org/abs/1909.11830

[10] D. Selsam, M. Lamm, B. Bunz, P. Liang, L. Moura, and D. Dill,
“Learning a SAT Solver from Single-Bit Supervision,” 02 2018.

[11] P. W. Battaglia, J. B. Hamrick, V. Bapst, and ..., “Relational
inductive biases, deep learning, and graph networks,” CoRR, vol.
abs/1806.01261, 2018. [Online]. Available: http://arxiv.org/abs/
1806.01261

[12] L. M. Gambardella and M. Dorigo, “Ant-Q: A Reinforcement
Learning Approach to the Traveling Salesman Problem.” 01 1995,
pp. 252–260.

[13] A. Colorni, M. Dorigo, and V. Maniezzo, “An Investigation of
some Properties of an “Ant Algorithm”.” 01 1992, pp. 515–526.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

36 doi: 10.2313/NET-2022-07-1_07



[14] K. Arulkumaran, M. P. Deisenroth, and ..., “A Brief Survey
of Deep Reinforcement Learning,” CoRR, vol. abs/1708.05866,
2017. [Online]. Available: http://arxiv.org/abs/1708.05866

[15] J. Shin, T. Badgwell, K.-H. Liu, and J. Lee, “Reinforcement
Learning – Overview of Recent Progress and Implications for

Process Control,” Computers & Chemical Engineering, vol. 127,
05 2019.

[16] L. Busoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko,
“Reinforcement learning for control: Performance, stability, and
deep approximators,” Annual Reviews in Control, vol. 46, 10 2018.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

37 doi: 10.2313/NET-2022-07-1_07


