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Abstract—Confidentiality of code and data is an essential
part of modern computing. As cloud services become more
important as an easy way to use computational power, the
need for keeping the exact code of the running applications
from the companies that offer these services. A Trusted
Execution Environment (TEE) is an option to remove the
need for trusting the device the code is executed on and
hide data from other processes. In this paper, the concept
of a TEE is shown as well, as two implementations of
TEE are being analyzed. First, a general overview of TEEs
is given. Next, the functionality of Intel SGX and ARM
TrustZone is being explained. Afterwards, the features of
both implementations are shown, and the problems they have
are being analyzed. Next, there is a comparison between
the two implementations. Finally, other options to achieve
trusted execution are being shown.

Index Terms—trusted execution, privacy, security

1. Motivation

In today’s world, the need for security of the data used
every day has become a significant factor in determining
how to transport and process this data. Whilst looking at
security during communication between different devices
is common, the need to process data and execute pro-
prietary code on client devices brought a new problem.
The need to keep program code away from others has
been the main reason these problems have become of
more interest to companies. This is because the creation of
programs has become more expensive and time-intensive,
especially when Machine Learning models are a part of
the application. This leads to the following questions.
Does one trust the client’s device? How does one execute
code on data that the client’s device should not have access
to? Furthermore, is there a way to keep the client device’s
OS from accessing or influencing the execution of the
application’s code?

In recent years, research on ways to provide secure
execution of code on untrusted devices has progressed.
There are multiple ways to archieve the desired goal of
code and data confidentiality on remote devices. Trusted
Execution Environments (TEE) are one such option to
provide the secure execution of code without interference
from any other processes on the device. A TEE restricts
access to the code and data of an application inside of
it. Furthermore, it allows for verification of the TEE’s
content. A TEE requires some additional hardware on the
device as well as software to manage the interactions.
There are different implementations of TEE, and each

comes with different strengths and weaknesses, some of
which will be discussed later in this paper.

In this paper, the main components of a Trusted Exe-
cutions Environment (TEE) are shown. Furthermore, two
implementations of a TEE are being analyzed in terms of
their functionality. These implementations are Intel SGX
and ARM Trust Zone. Next, in Section 3 the features of
both Intel SGX and ARM TrustZone are being shown.
Afterwards, the problems of the respective implementation
are analyzed. Finally, Section 4 shows different frame-
works to help create applications intended for use with
TEE.

2. Trusted Execution Environments

The TEE is a Secure Operating System separated from
the original device’s Operating System (OS). Additionally,
it is supported by hardware components to provide the
functions required by the applications, which are executed
inside the TEE.

The features a TEE provides, depend on the individual
implementations. Most commonly, a TEE provides some
isolation of the processes from any process running in
the normal OS of the device and from other processes
inside the TEE. Furthermore, they allow verification of
the executed code and data.

As shown by Arfaoui et al. [1], there are different
ways to implement the hardware components of a TEE.
The first option for hardware components of a TEE in-
cludes a trusted ROM, RAM, and a trusted processing
environment. Furthermore, the TEE has its own crypto ac-
celerators and can support trusted peripherals. The second
option for the hardware components is to share the hard-
ware with the regular OS and have a state that specifies
if the currently executed process is trusted or untrusted.

The software part of a TEE is the TEE kernel, which
is an OS, that is different from the host OS [1]. It is au-
thenticated and validated during the start of the device and
takes control upon the execution of the TEE application.
Another software part is the TEE APIs. These APIs can
be differentiated into private and public APIs. The private
APIs provide a way for the Trusted Applications to use
the functions provided by the TEE. The public APIs offer
an interaction between applications running in the devices
OS and the TEE applications.

Two such implementations are being shown in the
following, and their functionality is being explained. Fur-
thermore, the requirements of each implementation are
being looked at.
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2.1. Intel SGX

The first implementation of TEE looked at is created
by Intel, called Software Guard Extensions (SGX). Ac-
cording to Intel [2], SGX provides isolation of program
code and data in memory through hardware-based en-
cryption of the memory. They claim this prevents more
privileged processes, like the OS, from accessing this
information. To use Intel SGX, the device needs to have
an Intel CPU that supports SGX and have SGX enabled in
the BIOS. The Intel CPUs that support SGX are all 6th to
10th generation processors as well as the server processors
of the 11th and 12th generation. SGX is depricated in non
server versions of th 11th and 12th generations due to lack
of use cases for private users.

The hardware requirements of SGX are similar to the
second option shown in Section 2. As such, the hardware
used for SGX is primarily the original hardware, with
some minor changes required. A Memory Encryption
Engine is needed to input and output data from the TEE
safely. The Memory Encryption Engine also stores the
keys used for encryption of each secure memory area.
Furthermore, SGX requires some additional microcode.

In SGX, the encrypted memory section and the re-
spective key that belongs to it are called enclaves. Any
user process that wants to use the SGX functions can
create an enclave, as shown by Gu et a. [3]. On startup,
the enclave is verified, usually through a hash, either
on the local machine or remotely. The hash is 256 bits
long and includes the code and the initial data of the
enclave, as well as security flags and page locations within
the enclave. This hash is then signed by either Intel or
the program developer. If the developer signed the hash
himself, the public key that is needed for verification of
the signature has to be signed by Intel and added by
the executing device to SGX [4]. The untrusted process,
which the enclave belongs to, and the enclave share the
same memory address space. The difference being that the
enclave’s memory is encrypted, as described in Jauernig et
al. [5]. Any OS functionality, like memory management,
interrupt handling, and I/O is still done by the device’s
OS. Still, neither the OS nor any other process can access
or change any data or code inside the enclave’s memory.
When an enclave function is called, the encrypted memory
section that belongs to this function is loaded into the CPU
and then decrypted on the CPU for execution.

Any developer who wants to use SGX for their ap-
plication has to create two parts. As shown in Figure 1,
there is an untrusted part of the application and a trusted
part, which is the enclave. The developer decides which
functions of the application and which data require the
enclave’s security and then creates the enclave part out
of it. The enclave needs to be verifiable, so a hash of
the enclave’s contents needs to be made. This hash is
used to verify the enclave after the creation on the client
device, most likely remotely by a server belonging to
the program’s creator. The untrusted part initializes the
enclave on the client device, which is then verified. Once
the application requires the contents of the enclave, the
untrusted part calls the respective function of the enclave.
The enclave then takes over and executes the called func-
tion and returns the output of this function. Then, the
program’s normal execution continues until an enclave

function is required again. For any communication with
the enclave that contains data, a secure channel is created
by the enclave, and the enclave includes its verification
for the other process to verify the data is coming from or
going to the correct enclave [4].

Application
Untrusted Process Enclave Process

1. initializes enclave

2. calls enclave function

5. continues execution

3. executes secure function

4. returns function data

Figure 1: Application using SGX enclave

2.2. ARM TrustZone

The other implementation being analyzed is called
TrustZone. It is created by ARM [6]. Similar to SGX,
TrustZone’s hardware components are the ones described
as the second option in Section 2. In TrustZone, the
execution environment is split into two parts: the secure
world and normal world. These two worlds are not just
different terms used by ARM to describe the same thing
as untrusted and enclave parts in SGX. While the un-
trusted part is about the same as the normal world, an
enclave does not represent the same as the secure world
in TrustZone. To use TrustZone, an ARM processor with
TrustZone support is required. The ARM processors that
the Cortex-A and Cortex-M classes of their processors.

The hardware changes required for TrustZone are very
minimal. The memory controller needs to be able to
differentiate between secure and normal world processes.
The device’s OS is considered a normal world process
in this context. The CPU needs to be able to do the
same differentiation between secure and normal world.
This ability to differentiate keeps anything running in the
normal world from interfering with secure world appli-
cations. The context switch between these two worlds is
done by trusted firmware on the device [5].

On the software side, there is a separate OS that runs
in the secure world, unlike in SGX. During the device’s
boot, the image of TrustZone is verified and authenticated.
This is not done for individual application initializations
as all the applications run in the same TEE instance
for TrustZone, while in SGX, each enclave is a separate
TEE instance. Thus any program in the secure world
can influence other programs in it. In order to deal with
this problem, an application can only be added to the
TrustZone of a device if the device’s creator allows this
application’s inclusion.

A developer who wants to use TrustZone can decide
to create a secure world-only application. Developers can
also choose to develop both an application that runs in the
normal world and have an application in the secure world
for the security-relevant features.
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3. Features and Problems
In the following, different implementations of TEE

are being analyzed with a focus on Intel SGX and ARM
TrustZone. The features of each implementation are being
shown, and finally, the problems of the implementation are
being analyzed.

3.1. Intel SGX Analysis

As described in Section 2.1, SGX enclaves are en-
crypted while they are in the device’s memory. Thus an
attacker can not read any of the contents of an enclave.
Furthermore, the attacker can not access the encryption
key, as it is stored on the Memory Encryption Engine.
The attacker could still change any part of the encrypted
enclave, but the enclave is verified when it is used, which
means the attack would be noticed. The enclave can be
initialized again to match the actual content the developer
intended. These features result in the fact that the pro-
gram’s developer no longer needs to trust the entire device
the program runs on. The developer’s trust must now only
be in the CPU that the code is executed on. SGX provides
separation between processes executed inside of enclaves
as well, which means the execution of one enclave can
not impact any other enclave. However, one feature is not
provided by SGX, which is support for trusted peripherals.
The fact that this feature is missing means that no device
directly connected to the client can influence anything in
the enclave or be used directly for I/O purposes.

As for the disadvantages of using SGX, the enclave
needs to be decrypted each time its functions are executed.
After execution of the enclave function, the entire enclave
needs to be encrypted again before it can be stored in
the device’s memory. Both of these operations increase
the application’s execution time on the client device.
Depending on the size of the enclave and the frequency
of calls to enclave functions, this en-/decryption time can
be a significant part of the overall execution time of the
application. Furthermore, Section 2.1 shows the need for
the developer to split the application into two parts and
also create means to verify the content, i. e. creating a
hash of it and signing the enclave. This increases the
development time of such an application.

To summarize, SGX provides an environment to exe-
cute code without the interference of other processes on
the device and guarantees the confidentiality and integrity
of both code and data, as described by Narra et al.
[7]. Furthermore, it allows for the remote verification of
the created enclave. As for the drawbacks of SGX, the
development effort is more significant than making a reg-
ular program. On the client-side, the processing overhead
increases because the enclave needs to be decrypted for
execution and the verification of the data entering the
enclave. Dinh Ngoc et al. [8] describe the preformance
overhead based on the different calls in SGX and the
amount of CPU cycles each of them takes. Finally, SGX
does not protect against side-channel attacks. Thus some
information about the program can still be inferred.

3.2. ARM TrustZone Analysis

In Section 2.2, TrustZone was shown to have the
secure world and the normal world. The secure world is

also described to be the part of TrustZone, which holds
the TEE part. In the secure world, the applications are
shielded from any influences coming from the normal
world. Thus no normal world process can read or change
the content of the memory areas belonging to any secure
world application. Neither can any normal world process
interfere in the execution of code belonging to the secure
world. Should the attacker have access to the hardware
itself though, TrustZone does not offer any protection.
This comes from the fact that the memory is not encrypted
like it is in SGX, and the context switch is done by
the trusted firmware. In TrustZone’s case, the developers’
trust needs to be put into the TrustZone firmware and
the additional hardware parts of TrustZone. However, in
contrast to SGX, TrustZone does offer support for trusted
peripherals by including the drivers for the peripherals in
the secure OS [5]. Unlike SGX, there is no en-/decryption
needed for execution, only a context switch that takes very
little time to do.

The disadvantages of using TrustZone are, as pre-
viously mentioned the fact that there is no separation
between applications running in the secure world. Addi-
tionally, TrustZone only protects against software attack-
ers and does not protect against hardware-level attackers,
as there is no encryption of the secure memory parts.
Furthermore, the developers of applications, which are
running inside the TrustZone of a device, need to trust
each other because of the missing separation. Finally,
TrustZone is only verified on boot of the device and does
not verify applications before they are executed.

In summary, TrustZone offers an execution environ-
ment for code without the influence of processes in the
normal world. The integrity of the secure world is checked
on boot, and the contents of the secure world are kept
confidential from the normal world but not from the secure
world. In terms of drawbacks, TrustZone only protects
against software attackers. Furthermore, there is no sepa-
ration between programs inside the secure world, forcing
developers to additionally trust other applications in the
device’sTrustZone. Similar to SGX, TrustZone does not
protect against side-channel attacks.

TABLE 1: SGX and TrustZone features

Intel SGX ARM TrustZone

Trusted Part CPU Firmware and
Hardware

Protection against
Hardware Attacks yes no

Separation of TEE
applications yes no

Verification of
Trusted application

remotely or locally
when called

only on system
boot (entire TEE
not individual
applications)

Trusted Peripherals no yes

4. Applications

After understanding how Intel SGX and ARM Trust-
Zone work and what they offer, we take a look at how to
create applications that use either SGX or TrustZone.
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For Intel SGX, there are multiple frameworks, which
are meant to help develop an application for it. There are
two kinds of frameworks for SGX. The first of them is
intended for the creation of new applications which use
SGX. The other type of framework can make an existing
application run in an SGX environment.

Intel themselves created one framework that is of the
first kind, and it is called SGX SDK [9]. SGX SDK
is a framework that supports C and C++ programming
languages, and its development tools can be used on both
Windows and Linux operating systems. It does not only
include the libraries for SGX but also contains tools for
debugging and some examples to help understand how to
use this framework. Intel actively updates the SGX SDK.

Another framework for creating new TEE applications
is Open Enclave SDK [10]. Open Enclave is an open-
source framework for TEE applications. Same as SGX
SDK, it works with C and C++ languages and has versions
for both Windows and Linux. Unlike SGX SDK, though, it
does not only work for developing applications intended
for Intel SGX. It also allows for creating programs de-
signed for use on ARM TrustZone. Open Enclave is also
regularly updated by multiple authors.

The other kind of framework is used to make an
already existing application run in an SGX enclave. There
are multiple commercial frameworks for this purpose, like
Fortanix [11]. Furthermore, there are some open-source
frameworks like Graphene [12]. They work based on
LibOS. To use Graphene, the host it should run on needs
to support SGX SDK. The application is signed together
with the Graphene enclave part to form the enclave. Then
the created enclave is sent to the host it should run on
together with Graphene.

Both of the shown TEE implementations are also
available for use on different devices. While ARM Trust-
Zone is mainly used on mobile devices, Intel SGX is
aimed for use on client pcs and servers. Some cloud
service providers already include support for SGX on
their platform. One such Cloud service is Microsoft Azure
Confidential Computing [13]. Microsoft Azure supports
applications using SGX SDK, Open Enclave and some
other frameworks used to create SGX programs. Further-
more, it allows for remote attestation of the enclaves. On
Azure, there is also support for another kind of TEE called
AMD SEV, which was not presented in this paper.

5. Related work

There are other papers, which are looking into differ-
ent implementations of TEE. One such paper is Jauernig
et al. [5], describing five different TEE implementations
there. The implementations described are Intel SGX,
AMD SEV, ARM TrustZone, as well as the two academic
TEE implementations, Sanctum and Sanctuary. They are
described in terms of their functionality and the provided
features.

Other concepts can provide security features to a
device. One such concept is the Trusted Platform Module
(TPM). A TPM is a hardware module that contains some
data storage capacity, as well as the hardware required
to generate both symmetric and asymmetric encryption
keys and can create cryptographic hashes. Aaraj et al. [14]
explain that a TPM offers cryptographic functions as well

as protected storage to perform integrity checks on the
platform or any application that is using it. The TPM itself
is only encrypted storage for keys in a hierarchical system
of keys, some of which are bound to data on the system’s
storage, and others are just used to keep the bound keys
safe. The TPM is only a cryptographic co-processor and
cannot be used for general computation.

Another option for trusted execution is smart cards.
Smart cards are small chips protected from the physical
environment and usually break if one tries to overcome the
physical protection of the chip. A smart card has a small
connection interface, and some smart cards can even be
accessed remotely. A typical example of a smart card is a
credit card. Naccache and M’Raihi [15] explains, that the
connection interface of a smart card is standardized and
smart cards do not possess a power source of their own. In
essence, a smart card is a small computer that is powered
as long as it is connected to another device and can be
authenticated against the connected device or remote users
and then do some computation on the smart card. As a
smart card is equipped with cryptographic functions, all
of the data entering and leaving the card can be secured
as well. There are two types of smart cards, cryptographic
smart cards, that only offer cryptographic functions like
authentication or encryption. The other type of smart card
is called the java smart card. This second type of smart
card allows for more general computational use of the
computer inside.

6. Conclusion

In conclusion, we looked at what a TEE is and what
is required to implement a TEE and then analyzed two
different implementations. The requirements for a TEE
are split into hardware and software parts, and there exist
multiple ways to implement a TEE in both of these parts.
Of the implementations looked at, each has its respec-
tive advantages and disadvantages. SGX is built only to
require minimal hardware changes and relies primarily
on encrypting memory areas. These areas are decrypted
only for the CPU upon execution of the contained code
and can not be read or altered without detection. The
enclaves in SGX are also kept separate to prevent one
from influencing another.

In TrustZone, on the other hand, the separation in
different worlds is mainly achieved through the trusted
firmware performing a context switch. In Section 2.2,
we saw that TrustZone allows for secure peripherals, in
contrast to SGX, but it does not separate applications
running in the secure world.

Finally, other ways to achieve trusted execution on
untrusted devices are shown. Each of these options has its
own individual features and problems, each with slightly
different use cases. TPM offers cryptographic operations
on a coprocessor; smart cards can either be used for cryp-
tographic functions only or be a general-purpose execution
environment on a small card that needs to be connected
to another device for power.

A TEE does not guarantee that an attacker can not
gain information about the code or data executed inside
the TEE despite the features provided. The vulnerabilities
of specific implementations could be an exciting topic for
further research, as well as general problems of TEE.
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Another subject for further research could be an anal-
ysis of the performance overhead of different implementa-
tions. Different implementations use different mechanisms
to achieve their features and have very different execution
times.

References

[1] G. Arfaoui, S. Gharout, and J. Traoré, “Trusted execution environ-
ments: A look under the hood,” in 2014 2nd IEEE International
Conference on Mobile Cloud Computing, Services, and Engineer-
ing, 2014, pp. 259–266.

[2] [Online]. Available: https://www.intel.de/content/www/de/de/
architecture-and-technology/software-guard-extensions.html

[3] Z. Gu, H. Jamjoom, D. Su, H. Huang, J. Zhang, T. Ma, D. Pen-
darakis, and I. Molloy, “Reaching data confidentiality and model
accountability on the caltrain,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN). IEEE, 2019, pp. 336–348.

[4] [Online]. Available: https://sgx101.gitbook.io/sgx101/
sgx-bootstrap/attestation

[5] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution envi-
ronments: Properties, applications, and challenges,” IEEE Security
Privacy, vol. 18, no. 2, pp. 56–60, 2020.

[6] [Online]. Available: https://developer.arm.com/ip-products/
security-ip/trustzone

[7] K. G. Narra, Z. Lin, Y. Wang, K. Balasubramaniam, and
M. Annavaram, “Privacy-preserving inference in machine learning
services using trusted execution environments,” arXiv preprint
arXiv:1912.03485, 2019.

[8] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni,
P. Felber, and D. Hagimont, “Everything you should know about
intel sgx performance on virtualized systems,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 3,
no. 1, pp. 1–21, 2019.

[9] [Online]. Available: https://01.org/intel-softwareguard-extensions

[10] [Online]. Available: https://github.com/openenclave/openenclave/
tree/master/docs/GettingStartedDocs

[11] [Online]. Available: https://fortanix.com

[12] [Online]. Available: https://graphene.readthedocs.io/en/latest/
oldwiki/Introduction-to-Graphene-SGX.html

[13] [Online]. Available: https://docs.microsoft.com/de-de/azure/
confidential-computing/enclave-development-oss

[14] N. Aaraj, A. Raghunathan, and N. K. Jha, “Analysis and design
of a hardware/software trusted platform module for embedded
systems,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 8, no. 1, pp. 1–31, 2009.

[15] D. Naccache and D. M’Raihi, “Cryptographic smart cards,” IEEE
micro, vol. 16, no. 3, pp. 14–24, 1996.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

25 doi: 10.2313/NET-2022-07-1_05


