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Abstract—The Beaver-Micali-Rogaway protocol describes a
method for securely computing functions with any number
of participating parties, that builds on the principles of
Yao’s Garbled Circuits protocol for two participants. Its key
advantage over similar protocols is that it only requires a
fixed constant amount of communication rounds to build
the garbled circuits. Moreover, it is possible to apply the
FreeXOR optimization technique to the protocol in order to
simplify the evaluation of XOR gates of the garbled circuits
and thereby improve overall runtime.

Index Terms—secure multiparty computation, bmr protocol,
freexor optimization technique

1. Introduction

A simple practical scenario that requires the usage of
a Secure Multiparty Computation (SMC) protocol is to
carry out a private vote. The concrete purpose of SMC
is to provide protocols that keep computation input data
from participants private, while not requiring any trusted
third parties [1].

Yao’s Garbled Circuits protocol (YGC) for two parties,
introduced in 1983 by A. C. Yao [2], started the long
evolution of SMC protocols [1]. The GMW protocol from
O. Goldreich et al. [3] was one of the first to enable
computations with any number of participants.

This paper presents the Beaver-Micali-Rogaway pro-
tocol (BMR), introduced in 1990 by Donald Beaver,
Silvio Micali and Phillip Rogaway, which generalizes
YGC’s concepts in order to enable any number of partic-
ipants [4], [1]. Its constant number of required communi-
cation rounds for building its computation structure makes
it especially attractive for scenarios with high network
latency, like computation over the internet [5].

After providing an overview of the original BMR
protocol, we describe an optimization introduced by A.
Ben-Efraim et al. in 2016 [5], who apply the FreeXOR
technique to evaluate XOR gates of garbled circuits more
efficiently.

2. The BMR Secure Multiparty Computation
Protocol

The BMR protocol adapts the garbled circuit concept
from YGC, which cryptographically guarantees that input
values are kept secret. Before actually describing the
protocol, Section 2.1 serves as an introduction to this
concept. The following description is based on the circuit

definition from the original version of the BMR protocol
from [4]. We use symbols similar to those from the BMR
protocol adaptation from [5].

2.1. Garbled Circuits

A garbled circuit consists of wires, signals and gates.
These building blocks can be used to construct any ar-
bitrary computable function, like in an ordinary Boolean
circuit.

2.1.1. Wires. The wires can carry one of two signals and
connect the gates. Each party initially holds some data
for the circuit input wires and the combined input from
all parties is needed to execute the circuit. The values
obtainable from the circuit output wires are the result of
the computation.

2.1.2. Signals. Garbled circuits encrypt the Boolean sig-
nal values to hide them from the participating parties and
ensure input secrecy.

Like in the YGC protocol, wire ω does not carry
signals 0 or 1, but the secret random binary strings kω,0 or
kω,1, which get collaboratively generated by the parties.
The key modification of Yao’s two-party method is that
each party i of the n computing parties possesses its own
private share of the strings in form of substrings kiω,0 and
kiω,1 of the length of the cryptographic security parameter
κ [1]. The two private signals for each wire therefore are

kω,τ = k1ω,τ · · · knω,τ for τ ∈ {0, 1}. (1)

During circuit creation, each party additionally gener-
ates a secret share λiω of a random permutation bit λω for
each wire ω. The real meaning of a signal string kω,τ of
the circuit is then defined as Boolean value

λω ⊕ τ = λ1ω ⊕ · · · ⊕ λnω ⊕ τ (2)

and because nobody knows the value of λω, the hidden
Boolean signals are effectively concealed. This is the
mechanism that actually enables input privacy. [5]

2.1.3. Gates. A gate g with left and right input wires α
and β, as well as output wire γ calculates an arbitrary
Boolean function on its inputs. Since the input and output
signals are random strings that conceal their underlying
values, the gates have to work with a specific mechanism
to enable output computation.

Each gate g holds a table of four n · κ bit long gate
label strings Xa,b

g for each possible combination of inputs
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kα,a and kβ,b [4]. Informally, the labels are associated with
the signals via a truth table. More formally:

((α carries kα,a) ∧ (β carries kβ,b))←→ Xa,b
g (3)

The core of the gate label creation process is to seed a
pseudorandom generator with the gate input signal strings
and then to mask the gate output signal strings with the
result. The encrypted output signals are then used as gate
labels. Details on how this can be achieved and how circuit
evaluators use the labels to compute the output of a gate
can be found in the following section.

2.2. The Protocol

Overall, the BMR protocol computation process is
commonly divided into two phases. The first phase utilizes
SMC between the n participants to generate the garbled
circuit and inputs, while in the second phase, each party
executes the built circuit on their own to obtain the result.

This section explains the structure and required steps
of the original protocol from [4] in order to provide a basic
foundation. There exist many subsequent descriptions,
like from [5], [6] or [7], that additionally apply various
modifications. We mention two of those enhancements in
Section 2.3.

2.2.1. Phase 1. The protocol starts by constructing the
garbled circuit and its garbled inputs. Any secure protocol
like BGW or GMW can be used for steps that require
SMC [1], [5], [6].

Signal Creation. Secret sharing is used to gener-
ate random bit strings. Essentially, each party i privately
generates random bit strings si that are called shares. The
actual value is then defined as

s =
⊕n

i=1
si. (4)

This means that the resulting value remains secret, unless
someone possesses all shares at once. [4]
The two steps to compute the signals are:

1) The parties generate the permutation bits λω for
each wire ω by creating the private λiω shares [4].

2) They additionally need to create the secret ran-
dom signal strings kω,τ for τ ∈ {0, 1} [4]. After
this step, each party holds private substrings kiω,τ
for each wire ω.

Label Creation. As we mentioned in Section
2.1.3, each gate will hold a table of four strings, called gate
labels. The original BMR design additionally associates
all wires of the garbled circuit with public labels. Because
the creation of the labels can be accomplished in parallel
and the required communication is independent of the size
of the circuit, it is very efficient [1].

To generate the labels, party i locally uses a pseudo-
random generator G, which takes each of their previously
obtained private signal substrings of length κ for wire ω
as input and transforms them to pseudorandom strings of
length κ+ 2 · n · κ. To be precise,

G(kiω,τ ) = xiω,τy
i
ω,τz

i
ω,τ , (5)

where |xiω,τ | = κ, |yiω,τ | = n · κ and |ziω,τ | = n · κ. [4]

Each party has to prove via zero-knowledge-proofs
to the other parties that they truthfully calculated these
strings, as a measure to rule out malicious intent [4].

The produced strings are processed as follows:

1) The xiω,τ strings for τ ∈ {0, 1} are used to form
public wire labels xω,τ = x1ω,τ · · ·xnω,τ [4]. If a
circuit evaluator obtains signal kω,a for a wire ω
during the second phase, they can use G to calcu-
late the same wire label that the signal produced
previously in phase one. The knowledge about
which of the two publicly known wire labels they
obtain from this allows them to choose the correct
gate label to proceed (see Section 2.2.2).

2) The yiω,τ and ziω,τ strings for τ ∈ {0, 1} are used
for collaborative gate label creation and remain
private [4]. Each of these labels encrypts one
output signal string of a gate. Because G used
the input signals as seeds, they are also the keys
to decrypt the output signals. The association
between input signals and gate labels is shown
in (3).
For example, if a circuit evaluator holds signals
kα,0⊕λα and kβ,1⊕λβ for left and right input wires
α and β at AND gate g, the associated gate label
for the signals should encrypt signal kγ,0⊕λγ for
output wire γ. The following equations, adapted
from [4], that get securely and collaboratively
evaluated by the parties using SMC, ensure this:

X0,0
g =

⊕n

i=1
(yiα,0 ⊕ yiβ,0)⊕ kγ,fg(λα,λβ)⊕λγ ,

X0,1
g =

⊕n

i=1
(ziα,0 ⊕ yiβ,1)⊕ kγ,fg(λα,λβ)⊕λγ ,

X1,0
g =

⊕n

i=1
(yiα,1 ⊕ ziβ,0)⊕ kγ,fg(λα,λβ)⊕λγ ,

X1,1
g =

⊕n

i=1
(ziα,1 ⊕ ziβ,1)⊕ kγ,fg(λα,λβ)⊕λγ ,

where fg(·, ·) is the Boolean gate function, which
would be AND in the previous example. Sec-
tion 2.2.2 explains how the masked output signal
can be obtained from a gate label, if the gate
input is known to an evaluator.

Garbled Input Creation. By using SMC, the
parties decide which of the two signals for each input wire
ω gets chosen as input for the circuit. To do this, the party
who owns input bit bω for wire ω has to secretly share
it with the other participants. The input, in combination
with the already secretly shared permutation bit λω and
signal strings kω,0 and kω,1, are the required information
to choose the correct signal kω,bω⊕λω as garbled input. [4]

2.2.2. Phase 2. At first, all wire labels, gate labels, gar-
bled input signals, as well as the permutation bits of the
circuit output wires are sent to all participants [4]. After
this, they can independently evaluate the circuit and obtain
the calculation result at the output wires.

When a participant knows left input kα,a and right
input kβ,b for a gate g, they can calculate xα,a and xβ,b by
using G and compare the result with the public wire labels.
The values a and b associated with the labels are known
and thereby the evaluator now knows those same values a
and b of the signals it holds. To obtain the gate output for
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output wire γ, the party has to solve the previous equations
for calculating the gate labels for the output signal

kγ,c =





⊕n
i=1(y

i
α,0 ⊕ yiβ,0)⊕Xa,b

g , if a = 0, b = 0⊕n
i=1(z

i
α,0 ⊕ yiβ,1)⊕Xa,b

g , if a = 0, b = 1⊕n
i=1(y

i
α,1 ⊕ ziβ,0)⊕Xa,b

g , if a = 1, b = 0⊕n
i=1(z

i
α,1 ⊕ ziβ,1)⊕Xa,b

g , if a = 1, b = 1

by using G again with the input signals. [4]
When an evaluator arrives at a circuit output wire ω,

they can decrypt its signal kω,τ by using the public permu-
tation bit λω to calculate τ⊕λω, in order to reverse (2). [4]

2.3. Protocol Improvements

• Wire labels can be omitted, as has been imple-
mented by [5], because party i can simply compare
kiω,a with the shares kiω,0 and kiω,1 it owns and thus
decide which of the signals it holds.

• Recent implementations of the protocol show that
there exist more efficient alternatives for the ear-
lier mentioned expensive zero-knowledge-proofs,
without sacrificing any security [7].

2.4. Security of the BMR protocol

The BMR protocol is secure as long as honest parties,
i.e., those who supply correct values for the computation,
are in the majority [4].

Security against honest-but-curious adversaries, i.e.,
those who supply valid values but try to obtain private
information, is guaranteed as long as at least one partici-
pant remains uncorrupted [1].

Since BMR is a cryptographic protocol, the security
concept relies upon the assumption that adversaries can
only act in polynomial time [4].

3. Applying the FreeXOR Optimization
Technique to the BMR Protocol

In 2009, V. Kolesnikov and T. Schneider introduced
the FreeXOR optimization technique for the two-party
YGC protocol [8] and subsequent adaptation of it for the
BMR protocol happened in [5].

FreeXOR essentially trivializes the construction and
evaluation of XOR gates and thus can dramatically im-
prove the runtime of both phases of the protocol. To
accomplish this, garbled signal and gate layouts have to
be modified. In this section, we are explaining how [5]
did this.

The BMR FreeXOR adaptation from [5] only uses
XOR and AND gates for its circuits. Here, AND gates
are the only gates that still require gate labels and since
XOR gates are negligible, circuits using as many XOR
instead of other gates as possible are preferable.

Like many adaptations of the original BMR protocol
do, that from [5] omits the usage of wire labels (see
Section 2.3).

Note that in the following description of the modifi-
cations to the garbled circuit design, the usage of secretly
shared values, like permutation bits, implies that during
BMR protocol execution, the actual equations get securely
evaluated on the shared values using SMC to retain se-
crecy.

3.1. Signal Modifications

The key idea that enables FreeXOR is understanding
that making the values of the signal pairs of a wire
dependent on each other does not invalidate security [8].

The signal share pair of party i for gate wire ω, that
is not an output wire of a XOR gate, is created as

kiω,1 = kiω,0 ⊕Ri, (6)

where Ri is of length κ. Here, kiω,0 remains random. Ri

is party i’s substring of the global value R = Ri · · ·Rn,
called the difference string, which is created and secretly
shared between parties the same way as the signals. The
computation process of permutation bit λω remains un-
changed (see Section 2.2.1). [5]

The creation of output wire signals for XOR gates
requires special care. Core of the optimization technique
is that the computation of the output signal of a XOR gate
does not require any gate labels [8].

Let an XOR gate g have input wires α and β, as well as
output wire γ. Assume that wire α carries signal kα,u⊕λα
and wire β carries signal kβ,v⊕λβ , where u and v are
the hidden semantics of the signals. The public output
signal semantics for gate g is defined as the XOR of the
input semantics. To enable this, permutation bit λγ is not
random anymore, instead it is simply set as λγ = λα ⊕
λβ [5]. This permits that during circuit evaluation in phase
2, public output semantics can be obtained by calculating

(u⊕ λα)⊕ (v ⊕ λβ) = (u⊕ v)⊕ (λα ⊕ λβ) (7)
= (u⊕ v)⊕ λγ . (8)

As has been described in Section 2.2.2, values u⊕λα and
v ⊕ λβ are known to an evaluator of the garbled circuit,
if they hold signals kα,u⊕λα and kβ,v⊕λβ for the input
wires of a gate.

Additionally, instead of being random, the output sig-
nal pair gets computed as

kγ,0 = kα,0 ⊕ kβ,0 and kγ,1 = kγ,0 ⊕R (9)

respectively, where R is the aforementioned difference
string [5]. The purpose of this is described in Section
3.2.2.

3.2. Gate Modifications

Since output signal creation differs between gate types,
the gate design has to be modified depending on the gate
type as well.

3.2.1. AND Gates. The computation of gate labels for
AND gate g with input wires α and β, as well as output
wire γ, happens according to (11) [5]. It essentially adapts
the familiar gate label definition from Section 2.2.1 to the
new signal design. Note that output signal kγ,0 gets chosen
for all labels and let a = u ⊕ λα and b = v ⊕ λβ be the
public semantics of the input signals.

m = R · (((a⊕ λα) · (b⊕ λβ))⊕ λγ) (10)

Xa,b
g = Fkα,a,kβ,b ⊕ kγ,0 ⊕m (11)
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Here, Fkα,a,kβ,b is the processed output of a pseudoran-
dom function. Its definition from [5] does differ from that
of the pseudorandom generator in Section 2.2.1, but the
purpose remains the same.

The calculation of m in (10) is the result of the fact
that

u ∧ v = (a⊕ λα) ∧ (b⊕ λβ) (12)

is equal to the multiplication of the bit values [5]. Now,
two cases depending on parameter λγ have to be consid-
ered [5].

1) Let λγ = 0. If the result of (12) is 0, (10) yields
m = 0 as well and the gate label masks kγ,0.
Otherwise, if the result of (12) is 1, (10) yields
m = R and the gate label masks kγ,1 = kγ,0⊕ R.
These are the expected results for an AND oper-
ation.

2) Let λγ = 1. If the result of (12) is 0, (10) yields
m = R and the gate label masks kγ,1 = kγ,0⊕ R.
Since kγ,1 hides signal 0, this is as expected.
Otherwise, if the result of (12) is 1, (10) yields
m = 0 and the gate label masks kγ,0. Again, the
actual meaning of the signal kγ,0 is inverted, i.e.,
1 in this case, and the result is correct.

This shows that the AND gate correctly assigns the input
signals to the corresponding output signals. Gate eval-
uation works by the same principle as we described in
Section 2.2.2.

3.2.2. XOR Gates. XOR gates in the modified garbled
circuits do not hold any labels. Let an XOR gate have
input wires α and β, as well as output wire γ. An evaluator
of the circuit simply has to calculate

kγ,(u⊕λα)⊕(v⊕λβ) = kα,u⊕λα ⊕ kβ,v⊕λβ (13)

on their input signals to obtain the output [5]. That this
yields the correct output semantics for an XOR operation
has been shown in (8). The following equations proof that
the correct signals are calculated for all input cases [8].

kγ,0 = kα,0 ⊕ kβ,0 = (kα,0 ⊕R)⊕ (kβ,0 ⊕R)
= kα,1 ⊕ kβ,1

kγ,1 = kγ,0 ⊕R = kα,0 ⊕ (kβ,0 ⊕R) = kα,0 ⊕ kβ,1
= kα,0 ⊕ (kβ,0 ⊕R) = (kα,0 ⊕R)⊕ kβ,0
= kα,1 ⊕ kβ,0

They follow directly from the signal definitions.

4. Considerations for Using the BMR Proto-
col

In comparison to protocols like GMW and BGW,
BMR’s advantage of needing only a constant number of
communication rounds for the circuit creation makes it
a better fit for scenarios where communication between
the parties is of comparatively more concern than local
computation capabilities. For example, this is the case
when SMC over the internet is required [5].

In scenarios with low network latency, protocols re-
quiring a non-constant amount of communication rounds
but less expensive processing, like the GMW protocol,

could provide better overall performance than the BMR
protocol [5].

It has to be noted that the original unmodified design
of the BMR protocol is not suitable for real-world appli-
cations, because some details of it, like the usage of many
zero-knowledge-proofs, are not efficiently computable, as
has been noted by [7]. Since its introduction, however,
much effort has successfully been spent to overcome those
performance pitfalls. Eventually, reasonably efficient con-
crete real-world implementations of the protocol, like Fair-
playMP, introduced by A. Ben-David et al. in 2008 [6],
have been developed.

5. Conclusion

We presented an expressive description of the basic
BMR protocol for SMC, which enables the participation
of any number of parties in a malicious setting. Its char-
acteristic of requiring only a fixed constant number of
rounds to create the garbled circuit makes it interesting
for concrete real-world adaptations that use high latency
communication over the internet. These implementations
often introduce various optimizations to enhance its per-
formance. The FreeXOR technique, for example, makes
creation and evaluation expenses of XOR gates negligible
in order to substantially boost performance.
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