
Comparison of Different QUIC Implementations

Salim Hertelli, Benedikt Jaeger∗, Johannes Zirngibl∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: hertelli@in.tum.de, jaeger@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—QUIC is an encrypted and multiplexed transport
protocol developed by Google and deployed on their servers
in 2012. QUIC aims to replace the commonly used TCP/TLS
stack. It was standardized on the 27th of May 2021 in the
RFC 9000 [1], which defines the core and specifications
of the protocol. QUIC is designed to be implemented in
the user space. This allows different implementations to
exist in multiple programming languages and with different
features. This paper aims to give an overview of existing
implementations and to compare them based on different
metrics, such as the used programming language, supported
versions of QUIC, handshake encryption method, and used
congestion control algorithm.

Index Terms—quic, transport protocol, http/3, quic imple-
mentaions

1. Introduction

QUIC is a connection-oriented, encrypted, and mul-
tiplexed transport protocol built on UDP as shown in
Figure 1. It was developed and deployed by Google in
2012 as a replacement for the traditionally used TCP/TLS
stack, commonly used in the HTTPS stack. QUIC aims

Figure 1: QUIC stack vs TCP/TLS stack (adapted from
[2]).

to improve on the pre-existing protocols by enhancing
security and reducing latency. It was standardized by the
IETF1 with the release of RFC 9000 in May 2021, which
was complemented by three more documents, namely
RFC 8999, 9001, and 9002.

As part of its design goal, QUIC is implemented in
the user space. This property of QUIC leads to faster
development and deployment cycles as it avoids the long
process of pushing system-wide updates [2]. This also
allowes for different congestion avoidance algorithms to
be dynamically used, which makes it easier to perform

1. Internet Engineering Task Force

experimentation using various congestion control algo-
rithms, fix bugs, and deploy changes. Since then multiple
implementations have emerged in different programming
languages and paradigms, including functional program-
ming languages such as Haskell.

In this paper, we list some of the available QUIC
implementations. Differences between them will be an-
alyzed based on various metrics and criteria, such as
the status of the projects, how well-maintained they are,
etc. Section 2 introduces some of the specifications of
QUIC. In Section 3 we discuss the methodology we used
to collect data about different projects. We then display
the results in Section 4. In Section 5 we highlight other
research that was conducted on QUIC. We then conclude
the paper in Section 6.

2. Background

QUIC was started as an experimental protocol by
Google back in 2012 to replace the existing TCP/TLS
stack used for HTTP. By being developed to be deployed
in the user space and not in the kernel of operating sys-
tems, it allows for faster development cycles. It does also
allow for critical updates to be pushed and applied faster
and gives developers much more room to experiment with
new features and improvements [2].

In 2015 a draft of QUIC was submitted and a working
group was created at the IETF with the goal of standardiz-
ing QUIC. This standardization came on May 27th, 2021
with the release of RFC 9000. It specifies the core of the
QUIC protocol and serves as a certification for QUIC’s
reliability [1].

As detailed in the RFC 9000 [1], QUIC supports
flow streams and network path migration among other
features. In addition, QUIC allows multiple streams to be
multiplexed, which prevents head-of-line blocking. This
leads to a reduced latency overall compared to TCP, as the
costs of using multiple TCP connections can be mitigated.
Handshake delays are improved as well by removing
unnecessary round trips. This allows exchanges to occur
as early as possible or even immediately, leading to 0-
RTT handshakes in some cases [2]. QUIC also improves
congestion control [2]. RFC 9000 does not specify a
particular algorithm to be used, this allows researchers
to experiment and improve on it.

QUIC fully encrypts and authenticates handshakes.
This holds for almost all the handshakes except some
of the early ones. Encryption covers the majority of a
QUIC package. The unencrypted parts are needed for

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

7 doi: 10.2313/NET-2022-07-1_02



routing purposes such as connection ID and version num-
ber among others. In addition, the authentication process
ensures that packets that have been tampered with can be
discovered, which leads to a connection failure [2].

As mentioned previously, QUIC has many different
implementations. Different implementations may support
different versions of QUIC depending on the starting time
of the project. At the time of writing, as it is just a
couple of months after the standardization of QUIC, not
all implementations support QUIC version 1. It is however
prone to change with time.

3. Methodology
In this section, we discuss the process, tools, and

methodology used to collect data about different QUIC
implementations. As stated earlier, there exists various
QUIC projects in many programming languages [3]. The
choice of which implementation to select for this paper
was then done based on different criteria including project
age, the status of the implementation, and whether the
project is being backed up by a big company. Chromium-
quic was the first selected implementation due to the fact
that Google was the company to start the development of
QUIC and because it powers one of the most prominent
browsers, namely Google Chrome. The next selected im-
plementations are Quiche, Mvfst, and Msquic which are
backed by Cloudflare, Facebook, and Microsoft respec-
tively. Quic-go was then selected based on the debuting
time of the project, which started in early 2016. The
last two implementations are Aioquic and Haskell-quic,
developed respectively in Python and Haskell. This was
done to show diversity in the used programming languages
for QUIC projects.

The next step was to collect data about the pre-selected
projects. Project-specific properties were collected in an
automated process. Many of the selected projects are
hosted on GitHub. This allowed the usage of the GitHub
API, which can be queried using scripts to collect the
project creation date, number of pull requests, and the
number of commits. It does also provide information about
the main programming language of a project. However,
this may lack a certain level of accuracy, considering the
large number of commented lines in big coding projects.
To collect exact information about the utilized program-
ming languages, Cloc was used [4]. Cloc is an open-
source software written in Perl used to count lines of codes
in a directory. It does then present an overview of the
results, including, but not limited to the used programming
languages based on file extensions and how many lines
of code each file contains. Moreover, it separates the
commented lines from the actual code lines as well.

4. Evaluation
In this section, we display the collected results about

the different QUIC implementations. The collected data
is summarized in TABLE 1 and TABLE 2 and will be
further discussed in this section.

4.1. Chromium-quic "Quiche"

Chromium-quic is a QUIC implementation and part
of the Chromium projects, which are open-source projects

developed by Google. The project is called Quiche as an
acronym for "QUIC, HTTP/2, Etc". It is a production-
ready implementation, written exclusively in C and C++.
It powers parts of the "Google" search engine and the
"YouTube" video playing service. The project is hosted
on Google’s servers [5] as well as on GitHub and is kept
in sync. The code is well maintained and documented with
an extensive wiki and many supporting documents, such
as the RFCs. The project did go through a lot of QUIC
versions, starting from Q403 until draft-29. It supports
CUBIC for congestion control and uses QUIC-Crypto as
well as TLS to encrypt the packets being transmitted [3].

4.2. Cloudflare "Quiche"

Quiche2 is another implementation of the QUIC pro-
tocol written in Rust and hosted on GitHub [6]. It was
developed by Cloudflare, a web security and infrastructure
company, in order to enable HTTP/3 support on their
servers. Documentation for the project does provide a
guide on how to build and configure Quiche to receive,
send and handle packages. The wiki also has a listing of
the used structures, enum, and functions used in the imple-
mentation as well as short descriptions to help developers
understand their functionality.

Quiche supports the usage of two different congestion
control algorithms namely Reno and CUBIC as well as
a high-level API in order to configure the used algo-
rithm. CUBIC is deployed on Cloudflare’s production
environment. Later came the introduction of HyStart++ to
improve congestion control. HyStart++ is a modification
of the slow start phase in congestion control algorithms,
which tries to improve the performance by reducing packet
loss and preventing the overshooting of the ideal sending
rate. This is done by introducing the Limited Slow Start
phase (LSS). Before reaching the congestion threshold in
the Slow Start phase, the congestion control algorithm
switches to LSS. During the LSS phase, the congestion
window grows slower than in the congestion avoidance
phase. Upon reaching the congestion threshold, the algo-
rithm switches then to the congestion avoidance phase [7].

4.3. Mvfst

Mvfst is an implementation developed by Facebook.
It is mainly written in C/C++ and hosted on GitHub
[8]. More than 75 percent of all the network traffic
of Facebook is happening on QUIC and HTTP/3. This
includes their social networking websites Facebook and
Instagram. Mvfst makes use of Facebook’s own TLS 1.3
implementation "Fizz" to ensure the security of packet
exchanges. The implementation comes with a wiki that
explains how to build, run and test Mvfst. It does also pro-
vide samples for both client and server side. The wiki does
not mention, which congestion control algorithm Mvfast
uses. However, the header files and the implementation
for both NewReno and CUBIC are present in the source
code [9].

Moreover, Facebook does experiment with artificial
intelligence based congestion control algorithms. Mvfst-rl

2. Not to be confused with the Chromium QUIC implementation
which is also called Quiche.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

8 doi: 10.2313/NET-2022-07-1_02



TABLE 1: Listing of different QUIC implementations and metrics about the status of the projects (September 2021)

Project Language License Creation date LoC #pull requests average/day #commits average/day

Quic-go Go MIT 06/04/2016 61119 Go 1843 0.92/day 678 1.82/day

Chromium-quic
"Quiche" C / C++ BSD-3-Clause -

228 C
211574 C++
40881 C/C++ headers - -/day - -/day

Cloudflare
"Quiche" Rust / C BSD-2-Clause 29/09/2018

36920 Rust
1300 C 715 0.65/day 294 0.79/day

Aioquic Python BSD-3-Clause 05/02/2019 17337 Python 115 0.11/day 87 0.20/day

Mvfst
C / C++

Python / Rust MIT 10/04/2018

75760 C++
15927 C/C++ headers
6537 Python
1150 Rust 124 0.09/day 1,317 3.58/day

Msquic C / C++ MIT 26/10/2019

56291 C
27155 C++
39296 C/C++ headers 1,529 2.18/day 756 2.07/day

Haskell-quic Haskell / C BSD-3-Clause 11/01/2019
9741 Haskell
5503 C 10 0.01/day 481 1.30/day

TABLE 2: Different QUIC implementations and their used versions, handshake encryption methods and congestion
control algorithms (September 2021)

Project Versions Roles Handshake Congestion Control

Quic-go as the current draft library, client, server TLS 1.3 RFC NewReno, CUBIC

Chromium-quic
"Quiche"

Q043, Q046, Q050, T050
T051, draft-27, draft-29 library, client, server QUIC Crypto, TLS CUBIC

Cloudflare
"Quiche" draft-27, draft-28, draft-29 library, client, server TLSv1.3 (RFC8446)

NewReno
CUBIC + HyStart++

Aioquic draft-29, version 1 library, client, server TLS 1.3 NewReno

Mvfst draft-29 library, client, server TLS 1.3
NewReno, CUBIC

Mvfst-rl (experimental)

Msquic draft-29, version 1 client, server TLS 1.3 RFC CUBIC

Haskell-quic draft-29 library, client, server TLS 1.3 NewReno

[10] is a framework that uses asynchronous reinforcement
learning training in order to improve congestion control in
QUIC and is built on their own implementation. However,
it is still an experimental feature and is yet not ready to
be deployed in a production environment.

4.4. Msquic

Msquic is an IETF QUIC implementation written in
C and C++. The project was started by Microsoft and is
hosted on GitHub [11]. Currently, it supports both Draft-
29 and version 1 of QUIC. Msquic uses TLS 1.3 to encrypt
and authenticate all handshakes and packets. As for con-
gestion control, it supports CUBIC. The project comes
with extensive documentation to build, test and deploy
Msquic. Microsoft does also provide daily benchmark
results including single connection upload and download
rates and the average number of requests completed per
second. Msquic is a production-ready implementation. It
powers Microsoft’s HTTP/3 stack and is deployed in other
products to handle QUIC connections [12].

4.5. Quic-go

Quic-go is a QUIC implementation in the Go program-
ming language and is hosted on GitHub [13]. Currently,
it does implement the IETF draft-29. The documentation
in their GitHub repository indicates however that the

support for draft-29 will eventually be replaced by a more
recent standard. Quic-go does support both NewReno
and CUBIC for congestion control and uses TLS 1.3 to
encrypt handshakes and packages. The implementation
comes with examples for client and server instances as
well as instructions on how to run tests.

4.6. Aioquic

Aioquic is an IETF QUIC implementation in Python.
It is an open-source project hosted on GitHub [14]. The
implementation is built on Asyncio, which is a stan-
dard Python framework for asynchronous I/O. Aioquic
is implemented to be conforming with the RFC 9000.
It does support a minimal TLS 1.3 implementation for
packages and handshake encryption and it uses NewReno
for congestion control, as recommended by the RFC 9000,
which features pseudocode for NewReno. Aioquic’s wiki
explains how to test the implementations on different op-
erating systems including Windows, Linux, and MacOS.
There are also different examples, which can be used to
test different QUIC use cases.

4.7. Haskell-Quic

Haskell-quic is an implementation of IETF QUIC in
Haskell and is hosted on GitHub [15]. The main difference
of this implementation compared to the previous ones

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

9 doi: 10.2313/NET-2022-07-1_02



is that Haskell is a functional programming language.
This makes supporting new features harder, as they are
generally described in an imperative style pseudocode.
The pseudocode needs then to be transfered to functional
style in order to implement it in a functional language
like Haskell. Kazuhiko Yamamoto, the main developer
behind Haskell-quic, claims that this transformation is not
a simple task to perform [16].

Haskell-quic is based on Haskell’s lightweight threads
and uses TLS to secure handshakes. The author does
maintain a blog [17] to track the development of haskell-
quic where he discusses important milestones and future
features to be implemented. Haskell-quic uses NewReno
for congestion control as recommended by the RFC 9000.

5. Related work

The IETF QUIC Working Group maintains a listing
[3] in order to track known implementations. The listing
also keeps track of the used programming languages,
versions that are implemented, handshakes encryption
methods, and, if available, some links to public servers
that use or allow experimentation to be conducted with
the corresponding implementation.

Marx et al. [18] compare different QUIC implemen-
tations and discuss their behavioral heterogeneity. They
also discuss more behavioral aspects than those mentioned
in this paper, including multiplexing scheduling and the
0 RTT approach used. In addition, they apply different
methodologies by using the qvis and qlog tools.

Interoperability tests play an important role in internet
protocols development, including QUIC. Interoperability
tests check whether different independently developed im-
plementations interact with each other as expected. Marten
Seemann and Jana Lyengar describe it as a crucial tool to
expose weakness and ambiguities in the specifications of
QUIC. Moreover, the IETF recommends testing to be a
part of the development process [19]. One interoperability
testing framework is QUIC Interop Runner or QIR. QIR
performs different tests between all pairs of their listed
implementations. This includes testing the server as well
as the client functionalities on different scenarios such
as handshake loss and version negotiation among others
[20].

6. Conclusion

In this paper, we discussed QUIC, a transport protocol
intended as a replacement for the TCP/TLS stack and
implemented in the user space. We have shown 7 different
QUIC implementations and presented different properties
ranging from the status of the project, documentation,
supported QUIC versions, and used congestion control
algorithms. We utilized an almost automated process to
collect data about various projects using different APIs
and project analyzing software.

Although all the mentioned implementations follow
the IETF specifications, our results show a large diver-
sity in the used programming languages and supported
features. In particular, the used congestion control algo-
rithms differ from one project to another as no particular
algorithm was specified by the IETF. However, we can

notice that CUBIC and NewReno are almost always used
in production. Supported versions of QUIC are also not
the same across different implementations. This can how-
ever be linked to the age of the project. As the QUIC
standard was published just a few months before the
time of writing of this paper, not all implementations are
currently supporting version 1 of QUIC. However, it is
already supported by some of them, including Aioquic
and Msquic.

QUIC is still relatively new compared to TLS. How-
ever, it is remarkable to see that some implementations
are already production-ready and being used by different
mainstream services that are accessed by millions daily.
This protocol as well as its development process will
play an important role in defining norms for creating new
internet protocols in the future as QUIC is getting more
popular and is beginning to be universally adopted.

References

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://rfc-editor.org/rfc/rfc9000.txt

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. B. Krasic, C. Shi,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. C.
Dorfman, J. Roskind, J. Kulik, P. G. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, and W.-T. Chang, “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” 2017.

[3] IETF QUIC Working Group, “QUIC Implementations,” available at
https://github.com/quicwg/base-drafts/wiki/Implementations, [On-
line. accessed September-2021].

[4] AlDanial, “Cloc,” available at https://github.com/AlDanial/cloc,
[Online. accessed September-2021].

[5] Google, “Quiche,” available at https://quiche.googlesource.com/
quiche/, [Online. accessed September-2021].

[6] Cloudflare, “Quiche,” available at https://github.com/cloudflare/
quiche, [Online. accessed September-2021].

[7] J. Choi, “CUBIC and HyStart++ Support in quiche,” available at
https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche/,
[Online. posted on 20-August-2020].

[8] Facebook, “mvfst,” available at https://github.com/
facebookincubator/mvfst, [Online. accessed September-2021].

[9] F. Engineering, “How Facebook is bringing QUIC to
billions,” available at https://engineering.fb.com/2020/10/21/
networking-traffic/how-facebook-is-bringing-quic-to-billions/,
[Online. posted on 21-October-2020].

[10] Facebook, “mvfst-rl,” available at https://github.com/
facebookresearch/mvfst-rl, [Online. accessed September-2021].

[11] Microsoft, “msquic,” available at https://github.com/microsoft/
msquic, [Online. accessed September-2021].

[12] D. Havey, “MsQuic is Open Source,” available at
https://techcommunity.microsoft.com/t5/networking-blog/
msquic-is-open-source/ba-p/1345441, [Online. posted on 28-
April-2020].

[13] L. Clemente, “Quic-go,” available at https://github.com/
lucas-clemente/quic-go, [Online. accessed September-2021].

[14] “Aioquic,” available at https://github.com/aiortc/aioquic, [Online.
accessed September-2021].

[15] K. Yamamoto, “Haskell-quic,” available at https://github.com/
kazu-yamamoto/quic, [Online. accessed September-2021].

[16] ——, “Developing QUIC Loss Detection and Congestion Con-
trol in Haskell,” available at https://kazu-yamamoto.hatenablog.jp/
entry/2020/09/15/121613, [Online. posted on 15-September-2020].

[17] ——, “The Current Plan for Haskell QUIC,” available at https:
//kazu-yamamoto.hatenablog.jp/entry/2020/10/23/141648, [Online.
posted on 21-October-2020].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

10 doi: 10.2313/NET-2022-07-1_02



[18] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementa-
tion Diversity,” 08 2020.

[19] M. Seemann and J. Iyengar, “Automating QUIC Interoperability
Testing,” in Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC, ser. EPIQ ’20. New

York, NY, USA: Association for Computing Machinery, 2020,
p. 8–13. [Online]. Available: https://doi.org/10.1145/3405796.
3405826

[20] M. Seemann, “QUIC Interop Runner,” available at
https://github.com/marten-seemann/quic-interop-runner, [Online.
accessed November-2021].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

11 doi: 10.2313/NET-2022-07-1_02


