
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET 2022-07-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2021/2022 July 30, 2021 – February 27, 2022

Munich, Germany

Georg Carle, Stephan Günther, Benedikt JaegerEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2021/2022

Munich, July 30, 2021 – February 27, 2022

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger

Network Architectures
and Services
NET 2022-07-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Winter Semester 2021/2022

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
Boltzmannstraße 3, 85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Cataloging-in-Publication Data

Seminar IITM WS 21/22
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, July 30, 2021 – February 27, 2022
ISBN: 978-3-937201-75-7

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2022-07-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2022-07-1
Series Editor: Georg Carle, Technical University of Munich, Germany
© 2022, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/

Preface

We are pleased to present to you the proceedings of the Seminar Innovative Internet Technologies and
Mobile Communications (IITM) during the Winter Semester 2021/2022. Each semester, the seminar takes
place in two different ways: once as a block seminar during the semester break and once in the course of
the semester. Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks, supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterward present the results to the other course participants.
To improve the quality of the papers, we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar, we award one with the Best Paper Award. For this semester, the
awards were given to Jakob Weigand with the paper Position-based Routing in Flying Ad Hoc Networks
and Oliver Lemke with the paper Survey on Machine Learning-based Autoscaling in Cloud Computing
Environments .

Some of the talks were recorded and published on our media portal https://media.net.in.tum.de.

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, May 2022

Georg Carle Stephan Günther Benedikt Jaeger

III

https://media.net.in.tum.de
https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany

Advisors

Max Helm (helm@net.in.tum.de)
Technical University of Munich

Kilian Holzinger (holzinger@net.in.tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Holger Kinkelin (kinkelin@net.in.tum.de)
Technical University of Munich

Sayantini Majumdar (sayantini.majumdar@tum.de)
Technical University of Munich

Filip Rezabek (rezabek@net.in.tum.de)
Technical University of Munich

Patrick Sattler (sattler@net.in.tum.de)
Technical University of Munich

Henning Stubbe (stubbe@net.in.tum.de)
Technical University of Munich

Florian Wiedner (wiedner@net.in.tum.de)
Technical University of Munich

Lars Wüstrich (wuestrich@net.in.tum.de)
Technical University of Munich

Richard von Seck (seck@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ws2122/seminars/

V

https://net.in.tum.de/teaching/ws2122/seminars/

Contents

Block Seminar

State of the Art of DDoS Mitigation Techniques . 1
Franz Josef Ennemoser (Advisor: Patrick Sattler, Johannes Zirngibl)

Comparison of Different QUIC Implementations . 7
Salim Hertelli (Advisor: Benedikt Jaeger, Johannes Zirngibl)

Optimizations for Secure Multiparty Computation Protocols . 13
Thilo Linke (Advisor: Christopher Harth-Kitzerow)

Position-based Routing in Flying Ad Hoc Networks . 17
Jakob Weigand (Advisor: Florian Wiedner, Jonas Andre)

Seminar

Survey on Trusted Execution Environments . 21
Nicolas Buchner (Advisor: Holger Kinkelin, Filip Rezabek)

Review of Industrial Control Systems Protocols . 27
Alexandru Cruceru (Advisor: Lars Wüstrich, Patrick Sattler)

Applications of Q-Learning to Network Optimization and Graph Problems 33
Marco Dollinger (Advisor: Max Helm, Benedikt Jaeger)

Seminar Innovative Internet Technologies: Zero Knowledge Proofs 39
Sebastian Hohl (Advisor: Filip Rezabek)

SCTP: Are you still there? . 45
Zeynep Ince (Advisor: Richard von Seck)

Comparison of Different QUIC Implementations . 51
Michael Kutter (Advisor: Benedikt Jaeger)

Survey on Machine Learning-based Autoscaling in Cloud Computing Environments 55
Oliver Lemke (Advisor: Sayantini Majumdar)

Ultra-Low Latency on Ethernet Technology . 61
Atilla Nalcaci (Advisor: Florian Wiedner)

Current State of Network Support in WebAssembly . 67
Elias Nechwatal (Advisor: Kilian Holzinger)

NWCRG Closing Report . 73
Aral Toksoy (Advisor: Henning Stubbe, Kilian Holzinger)

VII

State of the Art of DDoS Mitigation Techniques

Franz Josef Ennemoser, Patrick Sattler∗ and Johannes Zirngibl∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: franzjosef.ennemoser@tum.de, sattler@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—Distributed Denial of Service (DDoS) attacks con-
tinue to be one of the biggest threats for online services. This
has created a large demand for DDoS Protection Services
(DPS) in the last decade, who use their clouds to defend cus-
tomers from larger attacks every year. Since these types of at-
tacks are launched from many different sources, preventing
or mitigating DDoS attacks requires sophisticated defence
mechanisms. The paper shows the three basic components
of a potent defence against DDoS attacks which are attack
detection, traffic classification and attack response. While
the defence mechanisms of DPS providers are proprietary,
we showcase some mechanisms that demonstrate how DPS
systems can be comprised in practice. Furthermore, we
explore the current leading vendors of DDoS protection
systems such as Akamai, which is responsible for serving
15 to 30 percent of the world wide web traffic, or the well-
known company Cloudflare, that offers unmetered DDoS
protection even for their free plans.

Index Terms—Denial-of-service, distributed denial-of-service,
distributed denial-of-service mitigation, DDOS, networks

1. Introduction

The Internet is becoming increasingly important to
society as billions of devices are now networked and more
are being added every day. This increasing importance
of accessibility means that there is also an ever greater
incentive to disrupt it. One of the most common attacks on
online services are Distributed Denial of Service (DDoS)
attacks, which have become more frequent and more
intense in the last two decades. Large attacks in Q1
2020 were again breaking records in peak bandwidth with
Amazon reporting a 2.3 Terabits/s attack on their AWS
servers [1]. Comparing this to the 5-6 Terabit/s average
bandwidth of Frankfurt’s internet exchange point DE-CIX
in Q1 2020 reveals the size of such an attack [2].

A DDoS attack tries to overload a service with various
methods with the goal of the service being unable to
answer requests of legitimate users. A DDoS attack is a
special kind of DoS (Denial of Service) attack, in which
the source of the attack is distributed over multiple devices
that cooperate to overwhelm the targeted service. The
attack devices are often botnets, which are networks of
compromised computers under the control of the attack-
ers. Creating such a network is often accomplished by
infiltrating computers through the usage of malware such
as trojans and worms.

This stealing of computing and network resources
already creates a great imbalance in expenses between

attacking and defending side. That is an invitation for
many attackers to attack their targeted web services in
order to inflict financial damage as well as harming the
public image. As defending against such sophisticated
attacks that grow in size every year is no easy task, this has
given a rise in popularity of DDoS protection provider to
hide web services behind or in their large cloud networks
[3].

In Section 2 the taxonomy of DDoS attacks is ex-
plained with basic examples. The three components of
a DDoS defence system: attack detection, traffic classi-
fication and attack response are discussed in Section 3.
Section 4 compares current leaders in the market of DDoS
protection services and outlines the increasing adoption
of such services. In Section 5 the paper is concluded and
future work is mentioned.

2. Types of Attacks

DDoS attacks can be grouped into different categories
and these diverse types of attacks call for different defence
mechanisms. Furthermore, there are attacks called multi-
vector attacks which try to combat this by combining
several attack techniques. An unfortunate property of an
online service is the fact that successfully attacking the
weakest link in the network can stop the whole network. A
strong DNS server will not help in the case the webserver
itself is overloaded with dummy requests from the attacker
[4]. While not all attacks can be categorized perfectly,
there exist three basic types of attacks:

2.1. Volume-based Attack

This is the most common type of attack. The targeted
network node is attacked with a sheer amount of dummy
requests created by the botnet controlled by the attacker
with the goal of depleting the available network band-
width. This results in legitimate traffic being unable to
pass through and the service is taken down.

Since volume-based attacks need large bitrates to be
successful, a common attack is the DNS amplification
attack. This attack abuses the fact, that DNS requests can
receive large answers compared to the size of the request.
This amplification can reach an amplification factor of
50+. Since DNS is UDP-based, the attacker uses the
victims IP address as source address, which in turn will
be targeted by a large amount of DNS packets as can be
seen in figure 1.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

1 doi: 10.2313/NET-2022-07-1_01

Figure 1: Congesting the network uplink of the victim
with a DNS-based flood attack. (Reworked from Loukas
et al. [5])

Figure 2: Depleting the resources of the victim with a
TCP-SYN attack. (Reworked from [6])

2.2. Protocol-based Attack

These attacks mainly use vulnerabilities and short-
comings of protocols in OSI layers 3 and 4 to exhaust
processing or memory resources of the target node instead
of the network bandwidth. To be able to measure and
compare the strength of these attacks, packets per seconds
(pps) are usually used as metric.

A prominent example of this is a TCP SYN attack
which exploits the way a TCP connection is established.
The attackers send requests with active SYN flags to
which the server responds with an SYN-ACK. Usually,
the client would acknowledge this but in this case the
attacker does not answer at all as it can be seen in Figure
2. Now the server has to wait for the ACK to timeout,
wasting valuable memory space. To increase the difficulty
of defending against this attack, the attacker will most
likely also spoof the source IP address of the SYN packets.

2.3. Application Layer Attack

Attacks in this category are destructive compared to
the small effort on the attacker side. They are also harder
to detect as they often closely resemble real user be-
haviour.

An example for an application layer attack is the
Slowloris attack. It abuses the HTTP protocol by sending
incomplete HTTP GET requests without termination code
and refreshes the connection just before the server would
timeout the corresponding session. Over time this will
occupy all connections the server is able to open at the
same time and consequently service is unreachable for all
users.

3. DDoS Mitigation Techniques

DDoS Mitigation can happen at various locations in
the network. While we want to be as close to the source
as possible to prevent the malicious network load from
reaching large parts of the network, the distributed aspect
of the attack makes this a challenging task. In a real-world
scenario a service operator has the choice between three
basic operating approaches. He can either run his own mit-
igation solution, outsource it to a DDoS Protection Service
(DPS) provider or use a hybrid approach combining both
solutions, each with its own benefits and downsides.

For most attacks the DPS should include the following
three components [5]:

• Detection: First step in mitigating an attack is
the simple detection of said attack. Attacks be-
came more sophisticated and therefore distin-
guishing flash events from DDoS attacks has
become harder. Detection can be grouped into
anomaly-based and signature-based detection sys-
tems. While in anomaly-based detection the DPS
has to first learn the normal user behaviour and
later on detect an abnormal deviation to that, the
signature-based detection tries to fit current obser-
vations into known patterns to detect attacks.

• Classification: As soon as an attack has been
detected, the next step is to classify the incoming
traffic into legitimate and invalid (created by the
attacker) traffic.

• Response: After the malicious traffic has been
marked the DPS needs to drop the invalid packets,
preferable at the network edge to be less affected
by the massively increased network traffic.

3.1. Detecting a DDoS Attack

The detection of the attack is the first step to be
able to act on it. While it may sound like a simple
comparison between normal traffic and the high volume
traffic of an attack, there are also legitimate events
that generate a high-volume of traffic. This could be
an announcement, a product release or a news article
linking to the specific service. In that case, dropping
packets could heavily impact the companies behind
the webservice either financially or in public reception.
Furthermore, the attacks themselves are evolving and
emerge in different shapes and sizes. Just by polling and
comparing the traffic bandwidth alone it will be difficult
to recognize an application-layer attack that does not rely
on a huge attack bandwidth.

A common way to distinguish detection methods is to
classify them either as anomaly-based or signature-based
[3]:

Signature-based detection compares current network
traffic with known attack behaviour, resulting in a high
detection ratio and low false-positive rate. This is only
true for known patterns and will be relatively ineffective
for newly emerging attacks.

Anomaly-based detection will in most cases have a
higher false positive rate, but also be effective in detecting
new types of attacks. Anomaly-based detection divides

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

2 doi: 10.2313/NET-2022-07-1_01

further into statistical analysis and machine learning based
detection. In statistical analysis the system observes met-
rics such as packet arrival rate, packet type arrival rate and
entropy of packet header fields. While it provides fast de-
tection rates, without further inspection the false positive
rate may be high. In learning-based systems, data mining
techniques highlight previously unknown connections in
the incoming traffic [3].

3.2. Classifying DDoS Traffic

A closely connected step is the classification of the
incoming traffic, to be able to separate any legitimate
traffic from the DDoS attack packets. As with detection,
the classification works in a signature- or anomaly-based
fashion and compares features to usual known traffic
patterns. Features can be real-time gathered statistical
features or even actively created by letting the user prove
their legitimacy. This task is usually done by dedicated
validity tests, which can be passive or active [5].

3.2.1. Passive Validity Tests.

Loyal clients: A very basic thought example is that a
user that requests a news site every day, can be regarded
as highly trustworthy even during times of an attack. This
works even in cases when attackers spoof the source IP
address of their packets, as it is unlikely, that they will
randomly find a trusted IP address.

Time-to-live: Even though source addresses during an
attack can and will often be invalid, the hop count of
an IP packet will give insight into how far the packet
travelled. This is done by Hop-Count filtering introduced
by Jin et al. through comparing the TTL of the incoming
packet with a table that stores known mappings between
IP-addresses and their hop-counts [7]. It might not be
a working traceback method but it can be compared to
the apparent source IP address and give hints about the
legitimacy of the packet.

3.2.2. Active Validity Tests.

Active validity tests in comparison are in direct com-
munication with the user of the incoming request and
challenge it to prove its legitimacy. This has become
an important step since sophisticated attacks started to
imitate a natural increase in bandwidth similar to exter-
nal events. Therefore, classifying this kind of traffic has
become harder. Active tests work on the premise that
legitimately increased traffic patterns will be created by
humans instead of automated programs. Famously used
for this task are Reverse Turing tests, such as CAPTCHAs
(Completely Automated Public Turing test to tell Comput-
ers and Humans Apart).

While CAPTCHAs come in different types, all of them
are based on challenges trivially solvable by a human
but hard to solve by a computer. Challenges range from
tasks like reading obscured digits and letters to classify-
ing a group of images. In 2013 Google also included a
behaviour-based analysis of the browser interactions as a
filter in its CAPTCHA service called reCAPTCHA. This
improves usability for deemed low-risk users as they are
not tasked to solve time-consuming challenges. In case the

fingerprinting does not rate the user as credible, another
verification with classic challenges is added successively.

3.3. Responding to an DDoS Attack

The DDOS attack responses are typically classified
depending on their location in the network. They are
classified in source-based, network-based and destination-
based techniques each with its own advantages and dis-
advantages as shown by Dietzel et al. [8]. Due to the
distributed aspect of DDoS attacks, the easiest position to
detect an attack is directly at the target (destination-based)
but the mitigation is less effective. Mitigating an attack
close the source would be ideal but is difficult to realise
in practice as attacks can be launched from anywhere.
The following paragraphs outline a selection of techniques
used in practice:

A destination-based mitigation technique is dropping
the packets that have been marked high-risk by the classi-
fication component. As mentioned in the last section, these
filters work time-based, history-based or hop-count-based.

Especially with volume-based attacks, filtering alone
will not alleviate the pressure on the network resources.
Even if the heuristics would allow for a good classifica-
tion, the number of incoming packets would still overload
the target network. For this reason and as an additional
mitigation step, mechanisms such as adaptive rate limiting
by Ioannidis et al. [9] or IP traceback by Adler et al. [10]
are proposed.

Adaptive Rate Limiting is based on the concept of
aggregates which are subsets of the traffic that share a
common property. These properties include the packet
destination, the type of packet and packets with a bad
checksum. If an aggregate responsible for a significant
portion of the traffic is found, the aggregate is propagated
to upstream routers to rate-limit the malicious traffic.
Traffic adhering to the rate-limit will be allowed while
other traffic will be dropped to as mentioned by Zargar et
al. [11].

IP Traceback mechanisms try to find the true sources
of the forged IP packets. Since IP routing is stateless and
routers usually only know where to forward the incoming
packet, the routers have to support the traceback method
to be able to contribute to IP traceback mechanisms.
The main categories of traceback techniques are packet
marking and link testing. In packet marking the routers
add their identification to the packet probabilistically in
order to enable the victim to identify the path of malicious
traffic after receiving enough packets. In link testing the
routers closest to the victim get iteratively tested until the
source of the attacker’s traffic can be reached [11]. The
effectiveness of IP traceback in practice is limited, since
the traceback mechanism would need to be deployed with
minimal cost in time and storage, low false positive rate
and while respecting privacy of the inspected packets [5].
Attackers can also forge their own marked packets and
therefore disturb the traceback mechanism.

Increasing the Attack Surface may sound a little
contra-productive as reducing it is an important step in
many cyber security related topics. The nature of DDoS at-
tacks however concentrate on a single point which makes
mitigating the attack almost impossible if the attack sur-
face is reduced to a certain point [3]. Therefore increasing

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

3 doi: 10.2313/NET-2022-07-1_01

the attack surface is a common strategy to help mitigate an
DDoS attack or at least soften the impact on the targeted
network. In practice this is usually achieved by using
cloud providers that hide the user either in or behind their
large networks.

An effective last resort response to a DDoS attack
is the so-called blackholing of the traffic flowing to the
victim. Blackholing is defined as dropping the traffic at
the routing level, which can be implemented at almost
any router with no additional performance impact. The
victim autonomous system announces the prefix to black-
hole to its upstream network via BGP (Border Gateway
Protocol) which nowadays means the blackholing will
atleast happen at one of the supporting IXPs (Internet
Exchange Point) [8]. Blackholing is usually the last resort
since the announced prefixes will by unreachable by both
the attackers and the legitimate users, but it will reduce
collateral damage to neighbouring devices and networks.

4. DDoS Protection Service Provider

Many web services today rent a cloud service to allow
them to cost-effectively scale their operation. Many of the
cloud service provider also offer their cloud as a DDoS
Protection Service. The traffic will be sent through the
cloud where the traffic will be cleaned from malicious
packets in so called scrubbing centers. The clean traffic
will be rerouted to the webserver responding to the re-
quests of valid users.

DDoS protection via a cloud service can either be
always-on, on-demand or a hybrid version that combines
both. The most common always-on solution is the usage
of a CDN (Content Delivery Network), which distributes
the content over many cache servers around the world to
be geographically close to the end user. CDNs are not
only used for QoS (Quality of Service) objectives, they
can also be used as DDoS protection as the distribution
of content reduces the effects of an attack [3].

In case an on-demand strategy is desired, a reactive
plan that reroutes the traffic only in the case of an attack
to the cloud is appropriate. The cloud then scrubs the
incoming packets and sends back the clean traffic to the
webserver. The routing of the traffic can either be done
by making a change in the DNS record of the victim or
by a BGP advertisement change.

4.1. DPS Provider Overview

In Forrester Research’ 2021 report of DDoS Protection
Service provider 11 significant vendors are mentioned and
compared against each other [12]. This paper focuses
on the 4 leaders in the market according to Forrester
Research which are Akamai, Cloudflare, Imperva and
Radware. While the vendors keep their filter technology
and scrubbing techniques proprietary, the mechanisms are
not significantly different compare to on-premise detection
[4].

Akamai is one of the largest cloud service providers,
with a network of over 300,000 servers in 135 countries
serving between 15% and 30% of the web traffic. This
large network size accumulates to a network capacity of
more than 175Tbps. Akamai is targeted towards enterprise
customers, as it has a minimum contract of 12 months and

does not reveal pricing information without requesting a
quote [12].

Cloudflare is another big CDN provider with a strong
focus on DDoS mitigation. In comparison to the enterprise
focused Akamai, Cloudflare offers start with a free plan
containing the option of adding additional features via
their Pro and Enterprise plans priced $20 and $200 per
domain respectively. Their basic volumetric DDoS pro-
tection is already included in the free plan, which is also
unmetered. Defence mechanisms against layer 7 attacks
have to be purchased additionally as a package [13].

Radware is an Israelian company that offers applica-
tion delivery and several cybersecurity products. In con-
trast to Akamai and Cloudflare, Radware is one of the
oldest and largest vendor for on-premise DPS devices,
but they have been transitioning towards cloud-based and
hybrid approaches in the last years. Due to their long
presence in the industry they have a deep understanding
of DDoS attacks. Therefore, they are especially suited for
difficult attack cases [12].

Imperva is another security specialists that offers
cloud-based DDoS protection services. Imperva advertised
it’s large network size in the last years but according
to [12], most of their competitors have caught up and
even surpassed the capability of Imperva’s network. The
capability to deflect even the largest attacks can currently
still be found at all large cloud providers.

4.2. DPS Adoption

The increasingly large DDoS attacks every year also
increase the pressure on web service provider to employ a
cloud-based DPS to be able to mitigate them. Jonker et al.
have proposed a methodology to check domain names for
active traffic diversion to a cloud-based DPS and used it to
analyse all .com, .net and .org TLDs containing over 50%
of the names in the global namespace with daily snapshots
over 1.5 years between March 2015 and September 2016.
While the amount of domains in that namespace grew 9%
from 140M to 152M domains, the number of domains
protected by the top 9 leading DPS provider grew 24% to
a total of about 9M domains. For 6 months they have also
been monitoring the Alexa Top 1M list as well as the .nl
TLD, whose DPS usage grew 12% and 11% during that
time respectively [14]. This shows clearly the increased
interest in the services of DPS providers.

5. Conclusion and Future Work

In this paper we provided an overview of basic DDoS
attack types and general mitigation strategies. This was
followed by an overview of leading vendors in the DPS
market. Thereafter, the ongoing trend towards cloud-only
or hybrid-based DDoS Protection Services was outlined.
They are becoming the most popular remaining option
to have a chance against these Terabits per second large
volumetric attacks, which have occurred increasingly often
in the last few months and years. Future challenges and
opportunities lie in the field of SDN (software-defined
networking) and the usage of machine learning based
detecting and filtering of malicious traffic.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

4 doi: 10.2313/NET-2022-07-1_01

References

[1] “AWS Shield - Threat Landscape Report,” May 2020.
[Online]. Available: https://aws.amazon.com/de/blogs/security/
aws-shield-threat-landscape-report-now-available/

[2] “DE-CIX Traffic Statistics.” [Online]. Available: https://www.
de-cix.net/en/locations/frankfurt/statistics

[3] I. Ozcelik and R. Brooks, Distributed Denial of Service Attacks:
Real-world Detection and Mitigation, 05 2020.

[4] E. Chou, R. Groves, and a. O. M. C. Safari, Distributed Denial
of Service (DDoS): Practical Detection and Defense. O’Reilly
Media, 2018. [Online]. Available: https://books.google.at/books?
id=G19PwAEACAAJ

[5] G. Loukas and G. Öke, “Protection Against Denial of Service
Attacks,” Comput. J., vol. 53, no. 7, p. 1020–1037, Sep. 2010.
[Online]. Available: https://doi.org/10.1093/comjnl/bxp078

[6] “SYN-Flood-Attack, Cloudflare Learning.” [On-
line]. Available: https://www.cloudflare.com/de-de/learning/ddos/
syn-flood-ddos-attack/

[7] C. Jin, H. Wang, and K. G. Shin, “Hop-Count Filtering: An
Effective Defense against Spoofed DDoS Traffic,” ser. CCS ’03.
New York, NY, USA: Association for Computing Machinery,
2003, p. 30–41. [Online]. Available: https://doi.org/10.1145/
948109.948116

[8] C. Dietzel, A. Feldmann, and T. King, “Blackholing at IXPs: On
the Effectiveness of DDoS Mitigation in the Wild,” in Interna-
tional Conference on Passive and Active Network Measurement.
Springer, 2016, pp. 319–332.

[9] J. Ioannidis and S. Bellovin, “Implementing Pushback: Router-
Based Defense Against DDoS Attacks,” 03 2002.

[10] M. Adler, “Tradeoffs in Probabilistic Packet Marking for IP Trace-
back,” Journal of the ACM (JACM), vol. 52, no. 2, pp. 217–244,
2005.

[11] S. T. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mech-
anisms Against Distributed Denial of Service (DDoS) Flooding
Attacks,” IEEE communications surveys & tutorials, vol. 15, no. 4,
pp. 2046–2069, 2013.

[12] D. Holmes, “The Forrester Wave: DDoS Mitigation Solutions, Q1
2021,” Forrester Research, March 2021.

[13] “Cloudflare Pricing and Plans.” [Online]. Available: https:
//www.cloudflare.com/plans/#overview

[14] M. Jonker, A. Sperotto, R. van Rijswijk-Deij, R. Sadre,
and A. Pras, “Measuring the Adoption of DDoS Protection
Services,” ser. IMC ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 279–285. [Online]. Available:
https://doi.org/10.1145/2987443.2987487

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

5 doi: 10.2313/NET-2022-07-1_01

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

6

Comparison of Different QUIC Implementations

Salim Hertelli, Benedikt Jaeger∗, Johannes Zirngibl∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: hertelli@in.tum.de, jaeger@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—QUIC is an encrypted and multiplexed transport
protocol developed by Google and deployed on their servers
in 2012. QUIC aims to replace the commonly used TCP/TLS
stack. It was standardized on the 27th of May 2021 in the
RFC 9000 [1], which defines the core and specifications
of the protocol. QUIC is designed to be implemented in
the user space. This allows different implementations to
exist in multiple programming languages and with different
features. This paper aims to give an overview of existing
implementations and to compare them based on different
metrics, such as the used programming language, supported
versions of QUIC, handshake encryption method, and used
congestion control algorithm.

Index Terms—quic, transport protocol, http/3, quic imple-
mentaions

1. Introduction

QUIC is a connection-oriented, encrypted, and mul-
tiplexed transport protocol built on UDP as shown in
Figure 1. It was developed and deployed by Google in
2012 as a replacement for the traditionally used TCP/TLS
stack, commonly used in the HTTPS stack. QUIC aims

Figure 1: QUIC stack vs TCP/TLS stack (adapted from
[2]).

to improve on the pre-existing protocols by enhancing
security and reducing latency. It was standardized by the
IETF1 with the release of RFC 9000 in May 2021, which
was complemented by three more documents, namely
RFC 8999, 9001, and 9002.

As part of its design goal, QUIC is implemented in
the user space. This property of QUIC leads to faster
development and deployment cycles as it avoids the long
process of pushing system-wide updates [2]. This also
allowes for different congestion avoidance algorithms to
be dynamically used, which makes it easier to perform

1. Internet Engineering Task Force

experimentation using various congestion control algo-
rithms, fix bugs, and deploy changes. Since then multiple
implementations have emerged in different programming
languages and paradigms, including functional program-
ming languages such as Haskell.

In this paper, we list some of the available QUIC
implementations. Differences between them will be an-
alyzed based on various metrics and criteria, such as
the status of the projects, how well-maintained they are,
etc. Section 2 introduces some of the specifications of
QUIC. In Section 3 we discuss the methodology we used
to collect data about different projects. We then display
the results in Section 4. In Section 5 we highlight other
research that was conducted on QUIC. We then conclude
the paper in Section 6.

2. Background

QUIC was started as an experimental protocol by
Google back in 2012 to replace the existing TCP/TLS
stack used for HTTP. By being developed to be deployed
in the user space and not in the kernel of operating sys-
tems, it allows for faster development cycles. It does also
allow for critical updates to be pushed and applied faster
and gives developers much more room to experiment with
new features and improvements [2].

In 2015 a draft of QUIC was submitted and a working
group was created at the IETF with the goal of standardiz-
ing QUIC. This standardization came on May 27th, 2021
with the release of RFC 9000. It specifies the core of the
QUIC protocol and serves as a certification for QUIC’s
reliability [1].

As detailed in the RFC 9000 [1], QUIC supports
flow streams and network path migration among other
features. In addition, QUIC allows multiple streams to be
multiplexed, which prevents head-of-line blocking. This
leads to a reduced latency overall compared to TCP, as the
costs of using multiple TCP connections can be mitigated.
Handshake delays are improved as well by removing
unnecessary round trips. This allows exchanges to occur
as early as possible or even immediately, leading to 0-
RTT handshakes in some cases [2]. QUIC also improves
congestion control [2]. RFC 9000 does not specify a
particular algorithm to be used, this allows researchers
to experiment and improve on it.

QUIC fully encrypts and authenticates handshakes.
This holds for almost all the handshakes except some
of the early ones. Encryption covers the majority of a
QUIC package. The unencrypted parts are needed for

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

7 doi: 10.2313/NET-2022-07-1_02

routing purposes such as connection ID and version num-
ber among others. In addition, the authentication process
ensures that packets that have been tampered with can be
discovered, which leads to a connection failure [2].

As mentioned previously, QUIC has many different
implementations. Different implementations may support
different versions of QUIC depending on the starting time
of the project. At the time of writing, as it is just a
couple of months after the standardization of QUIC, not
all implementations support QUIC version 1. It is however
prone to change with time.

3. Methodology
In this section, we discuss the process, tools, and

methodology used to collect data about different QUIC
implementations. As stated earlier, there exists various
QUIC projects in many programming languages [3]. The
choice of which implementation to select for this paper
was then done based on different criteria including project
age, the status of the implementation, and whether the
project is being backed up by a big company. Chromium-
quic was the first selected implementation due to the fact
that Google was the company to start the development of
QUIC and because it powers one of the most prominent
browsers, namely Google Chrome. The next selected im-
plementations are Quiche, Mvfst, and Msquic which are
backed by Cloudflare, Facebook, and Microsoft respec-
tively. Quic-go was then selected based on the debuting
time of the project, which started in early 2016. The
last two implementations are Aioquic and Haskell-quic,
developed respectively in Python and Haskell. This was
done to show diversity in the used programming languages
for QUIC projects.

The next step was to collect data about the pre-selected
projects. Project-specific properties were collected in an
automated process. Many of the selected projects are
hosted on GitHub. This allowed the usage of the GitHub
API, which can be queried using scripts to collect the
project creation date, number of pull requests, and the
number of commits. It does also provide information about
the main programming language of a project. However,
this may lack a certain level of accuracy, considering the
large number of commented lines in big coding projects.
To collect exact information about the utilized program-
ming languages, Cloc was used [4]. Cloc is an open-
source software written in Perl used to count lines of codes
in a directory. It does then present an overview of the
results, including, but not limited to the used programming
languages based on file extensions and how many lines
of code each file contains. Moreover, it separates the
commented lines from the actual code lines as well.

4. Evaluation
In this section, we display the collected results about

the different QUIC implementations. The collected data
is summarized in TABLE 1 and TABLE 2 and will be
further discussed in this section.

4.1. Chromium-quic "Quiche"

Chromium-quic is a QUIC implementation and part
of the Chromium projects, which are open-source projects

developed by Google. The project is called Quiche as an
acronym for "QUIC, HTTP/2, Etc". It is a production-
ready implementation, written exclusively in C and C++.
It powers parts of the "Google" search engine and the
"YouTube" video playing service. The project is hosted
on Google’s servers [5] as well as on GitHub and is kept
in sync. The code is well maintained and documented with
an extensive wiki and many supporting documents, such
as the RFCs. The project did go through a lot of QUIC
versions, starting from Q403 until draft-29. It supports
CUBIC for congestion control and uses QUIC-Crypto as
well as TLS to encrypt the packets being transmitted [3].

4.2. Cloudflare "Quiche"

Quiche2 is another implementation of the QUIC pro-
tocol written in Rust and hosted on GitHub [6]. It was
developed by Cloudflare, a web security and infrastructure
company, in order to enable HTTP/3 support on their
servers. Documentation for the project does provide a
guide on how to build and configure Quiche to receive,
send and handle packages. The wiki also has a listing of
the used structures, enum, and functions used in the imple-
mentation as well as short descriptions to help developers
understand their functionality.

Quiche supports the usage of two different congestion
control algorithms namely Reno and CUBIC as well as
a high-level API in order to configure the used algo-
rithm. CUBIC is deployed on Cloudflare’s production
environment. Later came the introduction of HyStart++ to
improve congestion control. HyStart++ is a modification
of the slow start phase in congestion control algorithms,
which tries to improve the performance by reducing packet
loss and preventing the overshooting of the ideal sending
rate. This is done by introducing the Limited Slow Start
phase (LSS). Before reaching the congestion threshold in
the Slow Start phase, the congestion control algorithm
switches to LSS. During the LSS phase, the congestion
window grows slower than in the congestion avoidance
phase. Upon reaching the congestion threshold, the algo-
rithm switches then to the congestion avoidance phase [7].

4.3. Mvfst

Mvfst is an implementation developed by Facebook.
It is mainly written in C/C++ and hosted on GitHub
[8]. More than 75 percent of all the network traffic
of Facebook is happening on QUIC and HTTP/3. This
includes their social networking websites Facebook and
Instagram. Mvfst makes use of Facebook’s own TLS 1.3
implementation "Fizz" to ensure the security of packet
exchanges. The implementation comes with a wiki that
explains how to build, run and test Mvfst. It does also pro-
vide samples for both client and server side. The wiki does
not mention, which congestion control algorithm Mvfast
uses. However, the header files and the implementation
for both NewReno and CUBIC are present in the source
code [9].

Moreover, Facebook does experiment with artificial
intelligence based congestion control algorithms. Mvfst-rl

2. Not to be confused with the Chromium QUIC implementation
which is also called Quiche.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

8 doi: 10.2313/NET-2022-07-1_02

TABLE 1: Listing of different QUIC implementations and metrics about the status of the projects (September 2021)

Project Language License Creation date LoC #pull requests average/day #commits average/day

Quic-go Go MIT 06/04/2016 61119 Go 1843 0.92/day 678 1.82/day

Chromium-quic
"Quiche" C / C++ BSD-3-Clause -

228 C
211574 C++
40881 C/C++ headers - -/day - -/day

Cloudflare
"Quiche" Rust / C BSD-2-Clause 29/09/2018

36920 Rust
1300 C 715 0.65/day 294 0.79/day

Aioquic Python BSD-3-Clause 05/02/2019 17337 Python 115 0.11/day 87 0.20/day

Mvfst
C / C++

Python / Rust MIT 10/04/2018

75760 C++
15927 C/C++ headers
6537 Python
1150 Rust 124 0.09/day 1,317 3.58/day

Msquic C / C++ MIT 26/10/2019

56291 C
27155 C++
39296 C/C++ headers 1,529 2.18/day 756 2.07/day

Haskell-quic Haskell / C BSD-3-Clause 11/01/2019
9741 Haskell
5503 C 10 0.01/day 481 1.30/day

TABLE 2: Different QUIC implementations and their used versions, handshake encryption methods and congestion
control algorithms (September 2021)

Project Versions Roles Handshake Congestion Control

Quic-go as the current draft library, client, server TLS 1.3 RFC NewReno, CUBIC

Chromium-quic
"Quiche"

Q043, Q046, Q050, T050
T051, draft-27, draft-29 library, client, server QUIC Crypto, TLS CUBIC

Cloudflare
"Quiche" draft-27, draft-28, draft-29 library, client, server TLSv1.3 (RFC8446)

NewReno
CUBIC + HyStart++

Aioquic draft-29, version 1 library, client, server TLS 1.3 NewReno

Mvfst draft-29 library, client, server TLS 1.3
NewReno, CUBIC

Mvfst-rl (experimental)

Msquic draft-29, version 1 client, server TLS 1.3 RFC CUBIC

Haskell-quic draft-29 library, client, server TLS 1.3 NewReno

[10] is a framework that uses asynchronous reinforcement
learning training in order to improve congestion control in
QUIC and is built on their own implementation. However,
it is still an experimental feature and is yet not ready to
be deployed in a production environment.

4.4. Msquic

Msquic is an IETF QUIC implementation written in
C and C++. The project was started by Microsoft and is
hosted on GitHub [11]. Currently, it supports both Draft-
29 and version 1 of QUIC. Msquic uses TLS 1.3 to encrypt
and authenticate all handshakes and packets. As for con-
gestion control, it supports CUBIC. The project comes
with extensive documentation to build, test and deploy
Msquic. Microsoft does also provide daily benchmark
results including single connection upload and download
rates and the average number of requests completed per
second. Msquic is a production-ready implementation. It
powers Microsoft’s HTTP/3 stack and is deployed in other
products to handle QUIC connections [12].

4.5. Quic-go

Quic-go is a QUIC implementation in the Go program-
ming language and is hosted on GitHub [13]. Currently,
it does implement the IETF draft-29. The documentation
in their GitHub repository indicates however that the

support for draft-29 will eventually be replaced by a more
recent standard. Quic-go does support both NewReno
and CUBIC for congestion control and uses TLS 1.3 to
encrypt handshakes and packages. The implementation
comes with examples for client and server instances as
well as instructions on how to run tests.

4.6. Aioquic

Aioquic is an IETF QUIC implementation in Python.
It is an open-source project hosted on GitHub [14]. The
implementation is built on Asyncio, which is a stan-
dard Python framework for asynchronous I/O. Aioquic
is implemented to be conforming with the RFC 9000.
It does support a minimal TLS 1.3 implementation for
packages and handshake encryption and it uses NewReno
for congestion control, as recommended by the RFC 9000,
which features pseudocode for NewReno. Aioquic’s wiki
explains how to test the implementations on different op-
erating systems including Windows, Linux, and MacOS.
There are also different examples, which can be used to
test different QUIC use cases.

4.7. Haskell-Quic

Haskell-quic is an implementation of IETF QUIC in
Haskell and is hosted on GitHub [15]. The main difference
of this implementation compared to the previous ones

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

9 doi: 10.2313/NET-2022-07-1_02

is that Haskell is a functional programming language.
This makes supporting new features harder, as they are
generally described in an imperative style pseudocode.
The pseudocode needs then to be transfered to functional
style in order to implement it in a functional language
like Haskell. Kazuhiko Yamamoto, the main developer
behind Haskell-quic, claims that this transformation is not
a simple task to perform [16].

Haskell-quic is based on Haskell’s lightweight threads
and uses TLS to secure handshakes. The author does
maintain a blog [17] to track the development of haskell-
quic where he discusses important milestones and future
features to be implemented. Haskell-quic uses NewReno
for congestion control as recommended by the RFC 9000.

5. Related work

The IETF QUIC Working Group maintains a listing
[3] in order to track known implementations. The listing
also keeps track of the used programming languages,
versions that are implemented, handshakes encryption
methods, and, if available, some links to public servers
that use or allow experimentation to be conducted with
the corresponding implementation.

Marx et al. [18] compare different QUIC implemen-
tations and discuss their behavioral heterogeneity. They
also discuss more behavioral aspects than those mentioned
in this paper, including multiplexing scheduling and the
0 RTT approach used. In addition, they apply different
methodologies by using the qvis and qlog tools.

Interoperability tests play an important role in internet
protocols development, including QUIC. Interoperability
tests check whether different independently developed im-
plementations interact with each other as expected. Marten
Seemann and Jana Lyengar describe it as a crucial tool to
expose weakness and ambiguities in the specifications of
QUIC. Moreover, the IETF recommends testing to be a
part of the development process [19]. One interoperability
testing framework is QUIC Interop Runner or QIR. QIR
performs different tests between all pairs of their listed
implementations. This includes testing the server as well
as the client functionalities on different scenarios such
as handshake loss and version negotiation among others
[20].

6. Conclusion

In this paper, we discussed QUIC, a transport protocol
intended as a replacement for the TCP/TLS stack and
implemented in the user space. We have shown 7 different
QUIC implementations and presented different properties
ranging from the status of the project, documentation,
supported QUIC versions, and used congestion control
algorithms. We utilized an almost automated process to
collect data about various projects using different APIs
and project analyzing software.

Although all the mentioned implementations follow
the IETF specifications, our results show a large diver-
sity in the used programming languages and supported
features. In particular, the used congestion control algo-
rithms differ from one project to another as no particular
algorithm was specified by the IETF. However, we can

notice that CUBIC and NewReno are almost always used
in production. Supported versions of QUIC are also not
the same across different implementations. This can how-
ever be linked to the age of the project. As the QUIC
standard was published just a few months before the
time of writing of this paper, not all implementations are
currently supporting version 1 of QUIC. However, it is
already supported by some of them, including Aioquic
and Msquic.

QUIC is still relatively new compared to TLS. How-
ever, it is remarkable to see that some implementations
are already production-ready and being used by different
mainstream services that are accessed by millions daily.
This protocol as well as its development process will
play an important role in defining norms for creating new
internet protocols in the future as QUIC is getting more
popular and is beginning to be universally adopted.

References

[1] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://rfc-editor.org/rfc/rfc9000.txt

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. B. Krasic, C. Shi,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. C.
Dorfman, J. Roskind, J. Kulik, P. G. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, and W.-T. Chang, “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” 2017.

[3] IETF QUIC Working Group, “QUIC Implementations,” available at
https://github.com/quicwg/base-drafts/wiki/Implementations, [On-
line. accessed September-2021].

[4] AlDanial, “Cloc,” available at https://github.com/AlDanial/cloc,
[Online. accessed September-2021].

[5] Google, “Quiche,” available at https://quiche.googlesource.com/
quiche/, [Online. accessed September-2021].

[6] Cloudflare, “Quiche,” available at https://github.com/cloudflare/
quiche, [Online. accessed September-2021].

[7] J. Choi, “CUBIC and HyStart++ Support in quiche,” available at
https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche/,
[Online. posted on 20-August-2020].

[8] Facebook, “mvfst,” available at https://github.com/
facebookincubator/mvfst, [Online. accessed September-2021].

[9] F. Engineering, “How Facebook is bringing QUIC to
billions,” available at https://engineering.fb.com/2020/10/21/
networking-traffic/how-facebook-is-bringing-quic-to-billions/,
[Online. posted on 21-October-2020].

[10] Facebook, “mvfst-rl,” available at https://github.com/
facebookresearch/mvfst-rl, [Online. accessed September-2021].

[11] Microsoft, “msquic,” available at https://github.com/microsoft/
msquic, [Online. accessed September-2021].

[12] D. Havey, “MsQuic is Open Source,” available at
https://techcommunity.microsoft.com/t5/networking-blog/
msquic-is-open-source/ba-p/1345441, [Online. posted on 28-
April-2020].

[13] L. Clemente, “Quic-go,” available at https://github.com/
lucas-clemente/quic-go, [Online. accessed September-2021].

[14] “Aioquic,” available at https://github.com/aiortc/aioquic, [Online.
accessed September-2021].

[15] K. Yamamoto, “Haskell-quic,” available at https://github.com/
kazu-yamamoto/quic, [Online. accessed September-2021].

[16] ——, “Developing QUIC Loss Detection and Congestion Con-
trol in Haskell,” available at https://kazu-yamamoto.hatenablog.jp/
entry/2020/09/15/121613, [Online. posted on 15-September-2020].

[17] ——, “The Current Plan for Haskell QUIC,” available at https:
//kazu-yamamoto.hatenablog.jp/entry/2020/10/23/141648, [Online.
posted on 21-October-2020].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

10 doi: 10.2313/NET-2022-07-1_02

[18] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementa-
tion Diversity,” 08 2020.

[19] M. Seemann and J. Iyengar, “Automating QUIC Interoperability
Testing,” in Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC, ser. EPIQ ’20. New

York, NY, USA: Association for Computing Machinery, 2020,
p. 8–13. [Online]. Available: https://doi.org/10.1145/3405796.
3405826

[20] M. Seemann, “QUIC Interop Runner,” available at
https://github.com/marten-seemann/quic-interop-runner, [Online.
accessed November-2021].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

11 doi: 10.2313/NET-2022-07-1_02

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

12

Optimizations for Secure Multiparty Computation Protocols

Thilo Linke, Christopher Harth-Kitzerow∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: thilo.linke@tum.de, christopher.harth-kitzerow@outlook.de

Abstract—The Beaver-Micali-Rogaway protocol describes a
method for securely computing functions with any number
of participating parties, that builds on the principles of
Yao’s Garbled Circuits protocol for two participants. Its key
advantage over similar protocols is that it only requires a
fixed constant amount of communication rounds to build
the garbled circuits. Moreover, it is possible to apply the
FreeXOR optimization technique to the protocol in order to
simplify the evaluation of XOR gates of the garbled circuits
and thereby improve overall runtime.

Index Terms—secure multiparty computation, bmr protocol,
freexor optimization technique

1. Introduction

A simple practical scenario that requires the usage of
a Secure Multiparty Computation (SMC) protocol is to
carry out a private vote. The concrete purpose of SMC
is to provide protocols that keep computation input data
from participants private, while not requiring any trusted
third parties [1].

Yao’s Garbled Circuits protocol (YGC) for two parties,
introduced in 1983 by A. C. Yao [2], started the long
evolution of SMC protocols [1]. The GMW protocol from
O. Goldreich et al. [3] was one of the first to enable
computations with any number of participants.

This paper presents the Beaver-Micali-Rogaway pro-
tocol (BMR), introduced in 1990 by Donald Beaver,
Silvio Micali and Phillip Rogaway, which generalizes
YGC’s concepts in order to enable any number of partic-
ipants [4], [1]. Its constant number of required communi-
cation rounds for building its computation structure makes
it especially attractive for scenarios with high network
latency, like computation over the internet [5].

After providing an overview of the original BMR
protocol, we describe an optimization introduced by A.
Ben-Efraim et al. in 2016 [5], who apply the FreeXOR
technique to evaluate XOR gates of garbled circuits more
efficiently.

2. The BMR Secure Multiparty Computation
Protocol

The BMR protocol adapts the garbled circuit concept
from YGC, which cryptographically guarantees that input
values are kept secret. Before actually describing the
protocol, Section 2.1 serves as an introduction to this
concept. The following description is based on the circuit

definition from the original version of the BMR protocol
from [4]. We use symbols similar to those from the BMR
protocol adaptation from [5].

2.1. Garbled Circuits

A garbled circuit consists of wires, signals and gates.
These building blocks can be used to construct any ar-
bitrary computable function, like in an ordinary Boolean
circuit.

2.1.1. Wires. The wires can carry one of two signals and
connect the gates. Each party initially holds some data
for the circuit input wires and the combined input from
all parties is needed to execute the circuit. The values
obtainable from the circuit output wires are the result of
the computation.

2.1.2. Signals. Garbled circuits encrypt the Boolean sig-
nal values to hide them from the participating parties and
ensure input secrecy.

Like in the YGC protocol, wire ω does not carry
signals 0 or 1, but the secret random binary strings kω,0 or
kω,1, which get collaboratively generated by the parties.
The key modification of Yao’s two-party method is that
each party i of the n computing parties possesses its own
private share of the strings in form of substrings kiω,0 and
kiω,1 of the length of the cryptographic security parameter
κ [1]. The two private signals for each wire therefore are

kω,τ = k1ω,τ · · · knω,τ for τ ∈ {0, 1}. (1)

During circuit creation, each party additionally gener-
ates a secret share λiω of a random permutation bit λω for
each wire ω. The real meaning of a signal string kω,τ of
the circuit is then defined as Boolean value

λω ⊕ τ = λ1ω ⊕ · · · ⊕ λnω ⊕ τ (2)

and because nobody knows the value of λω, the hidden
Boolean signals are effectively concealed. This is the
mechanism that actually enables input privacy. [5]

2.1.3. Gates. A gate g with left and right input wires α
and β, as well as output wire γ calculates an arbitrary
Boolean function on its inputs. Since the input and output
signals are random strings that conceal their underlying
values, the gates have to work with a specific mechanism
to enable output computation.

Each gate g holds a table of four n · κ bit long gate
label strings Xa,b

g for each possible combination of inputs

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

13 doi: 10.2313/NET-2022-07-1_03

kα,a and kβ,b [4]. Informally, the labels are associated with
the signals via a truth table. More formally:

((α carries kα,a) ∧ (β carries kβ,b))←→ Xa,b
g (3)

The core of the gate label creation process is to seed a
pseudorandom generator with the gate input signal strings
and then to mask the gate output signal strings with the
result. The encrypted output signals are then used as gate
labels. Details on how this can be achieved and how circuit
evaluators use the labels to compute the output of a gate
can be found in the following section.

2.2. The Protocol

Overall, the BMR protocol computation process is
commonly divided into two phases. The first phase utilizes
SMC between the n participants to generate the garbled
circuit and inputs, while in the second phase, each party
executes the built circuit on their own to obtain the result.

This section explains the structure and required steps
of the original protocol from [4] in order to provide a basic
foundation. There exist many subsequent descriptions,
like from [5], [6] or [7], that additionally apply various
modifications. We mention two of those enhancements in
Section 2.3.

2.2.1. Phase 1. The protocol starts by constructing the
garbled circuit and its garbled inputs. Any secure protocol
like BGW or GMW can be used for steps that require
SMC [1], [5], [6].

Signal Creation. Secret sharing is used to gener-
ate random bit strings. Essentially, each party i privately
generates random bit strings si that are called shares. The
actual value is then defined as

s =
⊕n

i=1
si. (4)

This means that the resulting value remains secret, unless
someone possesses all shares at once. [4]
The two steps to compute the signals are:

1) The parties generate the permutation bits λω for
each wire ω by creating the private λiω shares [4].

2) They additionally need to create the secret ran-
dom signal strings kω,τ for τ ∈ {0, 1} [4]. After
this step, each party holds private substrings kiω,τ
for each wire ω.

Label Creation. As we mentioned in Section
2.1.3, each gate will hold a table of four strings, called gate
labels. The original BMR design additionally associates
all wires of the garbled circuit with public labels. Because
the creation of the labels can be accomplished in parallel
and the required communication is independent of the size
of the circuit, it is very efficient [1].

To generate the labels, party i locally uses a pseudo-
random generator G, which takes each of their previously
obtained private signal substrings of length κ for wire ω
as input and transforms them to pseudorandom strings of
length κ+ 2 · n · κ. To be precise,

G(kiω,τ) = xiω,τy
i
ω,τz

i
ω,τ , (5)

where |xiω,τ | = κ, |yiω,τ | = n · κ and |ziω,τ | = n · κ. [4]

Each party has to prove via zero-knowledge-proofs
to the other parties that they truthfully calculated these
strings, as a measure to rule out malicious intent [4].

The produced strings are processed as follows:

1) The xiω,τ strings for τ ∈ {0, 1} are used to form
public wire labels xω,τ = x1ω,τ · · ·xnω,τ [4]. If a
circuit evaluator obtains signal kω,a for a wire ω
during the second phase, they can use G to calcu-
late the same wire label that the signal produced
previously in phase one. The knowledge about
which of the two publicly known wire labels they
obtain from this allows them to choose the correct
gate label to proceed (see Section 2.2.2).

2) The yiω,τ and ziω,τ strings for τ ∈ {0, 1} are used
for collaborative gate label creation and remain
private [4]. Each of these labels encrypts one
output signal string of a gate. Because G used
the input signals as seeds, they are also the keys
to decrypt the output signals. The association
between input signals and gate labels is shown
in (3).
For example, if a circuit evaluator holds signals
kα,0⊕λα and kβ,1⊕λβ for left and right input wires
α and β at AND gate g, the associated gate label
for the signals should encrypt signal kγ,0⊕λγ for
output wire γ. The following equations, adapted
from [4], that get securely and collaboratively
evaluated by the parties using SMC, ensure this:

X0,0
g =

⊕n

i=1
(yiα,0 ⊕ yiβ,0)⊕ kγ,fg(λα,λβ)⊕λγ ,

X0,1
g =

⊕n

i=1
(ziα,0 ⊕ yiβ,1)⊕ kγ,fg(λα,λβ)⊕λγ ,

X1,0
g =

⊕n

i=1
(yiα,1 ⊕ ziβ,0)⊕ kγ,fg(λα,λβ)⊕λγ ,

X1,1
g =

⊕n

i=1
(ziα,1 ⊕ ziβ,1)⊕ kγ,fg(λα,λβ)⊕λγ ,

where fg(·, ·) is the Boolean gate function, which
would be AND in the previous example. Sec-
tion 2.2.2 explains how the masked output signal
can be obtained from a gate label, if the gate
input is known to an evaluator.

Garbled Input Creation. By using SMC, the
parties decide which of the two signals for each input wire
ω gets chosen as input for the circuit. To do this, the party
who owns input bit bω for wire ω has to secretly share
it with the other participants. The input, in combination
with the already secretly shared permutation bit λω and
signal strings kω,0 and kω,1, are the required information
to choose the correct signal kω,bω⊕λω as garbled input. [4]

2.2.2. Phase 2. At first, all wire labels, gate labels, gar-
bled input signals, as well as the permutation bits of the
circuit output wires are sent to all participants [4]. After
this, they can independently evaluate the circuit and obtain
the calculation result at the output wires.

When a participant knows left input kα,a and right
input kβ,b for a gate g, they can calculate xα,a and xβ,b by
using G and compare the result with the public wire labels.
The values a and b associated with the labels are known
and thereby the evaluator now knows those same values a
and b of the signals it holds. To obtain the gate output for

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

14 doi: 10.2313/NET-2022-07-1_03

output wire γ, the party has to solve the previous equations
for calculating the gate labels for the output signal

kγ,c =

⊕n
i=1(y

i
α,0 ⊕ yiβ,0)⊕Xa,b

g , if a = 0, b = 0⊕n
i=1(z

i
α,0 ⊕ yiβ,1)⊕Xa,b

g , if a = 0, b = 1⊕n
i=1(y

i
α,1 ⊕ ziβ,0)⊕Xa,b

g , if a = 1, b = 0⊕n
i=1(z

i
α,1 ⊕ ziβ,1)⊕Xa,b

g , if a = 1, b = 1

by using G again with the input signals. [4]
When an evaluator arrives at a circuit output wire ω,

they can decrypt its signal kω,τ by using the public permu-
tation bit λω to calculate τ⊕λω, in order to reverse (2). [4]

2.3. Protocol Improvements

• Wire labels can be omitted, as has been imple-
mented by [5], because party i can simply compare
kiω,a with the shares kiω,0 and kiω,1 it owns and thus
decide which of the signals it holds.

• Recent implementations of the protocol show that
there exist more efficient alternatives for the ear-
lier mentioned expensive zero-knowledge-proofs,
without sacrificing any security [7].

2.4. Security of the BMR protocol

The BMR protocol is secure as long as honest parties,
i.e., those who supply correct values for the computation,
are in the majority [4].

Security against honest-but-curious adversaries, i.e.,
those who supply valid values but try to obtain private
information, is guaranteed as long as at least one partici-
pant remains uncorrupted [1].

Since BMR is a cryptographic protocol, the security
concept relies upon the assumption that adversaries can
only act in polynomial time [4].

3. Applying the FreeXOR Optimization
Technique to the BMR Protocol

In 2009, V. Kolesnikov and T. Schneider introduced
the FreeXOR optimization technique for the two-party
YGC protocol [8] and subsequent adaptation of it for the
BMR protocol happened in [5].

FreeXOR essentially trivializes the construction and
evaluation of XOR gates and thus can dramatically im-
prove the runtime of both phases of the protocol. To
accomplish this, garbled signal and gate layouts have to
be modified. In this section, we are explaining how [5]
did this.

The BMR FreeXOR adaptation from [5] only uses
XOR and AND gates for its circuits. Here, AND gates
are the only gates that still require gate labels and since
XOR gates are negligible, circuits using as many XOR
instead of other gates as possible are preferable.

Like many adaptations of the original BMR protocol
do, that from [5] omits the usage of wire labels (see
Section 2.3).

Note that in the following description of the modifi-
cations to the garbled circuit design, the usage of secretly
shared values, like permutation bits, implies that during
BMR protocol execution, the actual equations get securely
evaluated on the shared values using SMC to retain se-
crecy.

3.1. Signal Modifications

The key idea that enables FreeXOR is understanding
that making the values of the signal pairs of a wire
dependent on each other does not invalidate security [8].

The signal share pair of party i for gate wire ω, that
is not an output wire of a XOR gate, is created as

kiω,1 = kiω,0 ⊕Ri, (6)

where Ri is of length κ. Here, kiω,0 remains random. Ri

is party i’s substring of the global value R = Ri · · ·Rn,
called the difference string, which is created and secretly
shared between parties the same way as the signals. The
computation process of permutation bit λω remains un-
changed (see Section 2.2.1). [5]

The creation of output wire signals for XOR gates
requires special care. Core of the optimization technique
is that the computation of the output signal of a XOR gate
does not require any gate labels [8].

Let an XOR gate g have input wires α and β, as well as
output wire γ. Assume that wire α carries signal kα,u⊕λα
and wire β carries signal kβ,v⊕λβ , where u and v are
the hidden semantics of the signals. The public output
signal semantics for gate g is defined as the XOR of the
input semantics. To enable this, permutation bit λγ is not
random anymore, instead it is simply set as λγ = λα ⊕
λβ [5]. This permits that during circuit evaluation in phase
2, public output semantics can be obtained by calculating

(u⊕ λα)⊕ (v ⊕ λβ) = (u⊕ v)⊕ (λα ⊕ λβ) (7)
= (u⊕ v)⊕ λγ . (8)

As has been described in Section 2.2.2, values u⊕λα and
v ⊕ λβ are known to an evaluator of the garbled circuit,
if they hold signals kα,u⊕λα and kβ,v⊕λβ for the input
wires of a gate.

Additionally, instead of being random, the output sig-
nal pair gets computed as

kγ,0 = kα,0 ⊕ kβ,0 and kγ,1 = kγ,0 ⊕R (9)

respectively, where R is the aforementioned difference
string [5]. The purpose of this is described in Section
3.2.2.

3.2. Gate Modifications

Since output signal creation differs between gate types,
the gate design has to be modified depending on the gate
type as well.

3.2.1. AND Gates. The computation of gate labels for
AND gate g with input wires α and β, as well as output
wire γ, happens according to (11) [5]. It essentially adapts
the familiar gate label definition from Section 2.2.1 to the
new signal design. Note that output signal kγ,0 gets chosen
for all labels and let a = u ⊕ λα and b = v ⊕ λβ be the
public semantics of the input signals.

m = R · (((a⊕ λα) · (b⊕ λβ))⊕ λγ) (10)

Xa,b
g = Fkα,a,kβ,b ⊕ kγ,0 ⊕m (11)

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

15 doi: 10.2313/NET-2022-07-1_03

Here, Fkα,a,kβ,b is the processed output of a pseudoran-
dom function. Its definition from [5] does differ from that
of the pseudorandom generator in Section 2.2.1, but the
purpose remains the same.

The calculation of m in (10) is the result of the fact
that

u ∧ v = (a⊕ λα) ∧ (b⊕ λβ) (12)

is equal to the multiplication of the bit values [5]. Now,
two cases depending on parameter λγ have to be consid-
ered [5].

1) Let λγ = 0. If the result of (12) is 0, (10) yields
m = 0 as well and the gate label masks kγ,0.
Otherwise, if the result of (12) is 1, (10) yields
m = R and the gate label masks kγ,1 = kγ,0⊕ R.
These are the expected results for an AND oper-
ation.

2) Let λγ = 1. If the result of (12) is 0, (10) yields
m = R and the gate label masks kγ,1 = kγ,0⊕ R.
Since kγ,1 hides signal 0, this is as expected.
Otherwise, if the result of (12) is 1, (10) yields
m = 0 and the gate label masks kγ,0. Again, the
actual meaning of the signal kγ,0 is inverted, i.e.,
1 in this case, and the result is correct.

This shows that the AND gate correctly assigns the input
signals to the corresponding output signals. Gate eval-
uation works by the same principle as we described in
Section 2.2.2.

3.2.2. XOR Gates. XOR gates in the modified garbled
circuits do not hold any labels. Let an XOR gate have
input wires α and β, as well as output wire γ. An evaluator
of the circuit simply has to calculate

kγ,(u⊕λα)⊕(v⊕λβ) = kα,u⊕λα ⊕ kβ,v⊕λβ (13)

on their input signals to obtain the output [5]. That this
yields the correct output semantics for an XOR operation
has been shown in (8). The following equations proof that
the correct signals are calculated for all input cases [8].

kγ,0 = kα,0 ⊕ kβ,0 = (kα,0 ⊕R)⊕ (kβ,0 ⊕R)
= kα,1 ⊕ kβ,1

kγ,1 = kγ,0 ⊕R = kα,0 ⊕ (kβ,0 ⊕R) = kα,0 ⊕ kβ,1
= kα,0 ⊕ (kβ,0 ⊕R) = (kα,0 ⊕R)⊕ kβ,0
= kα,1 ⊕ kβ,0

They follow directly from the signal definitions.

4. Considerations for Using the BMR Proto-
col

In comparison to protocols like GMW and BGW,
BMR’s advantage of needing only a constant number of
communication rounds for the circuit creation makes it
a better fit for scenarios where communication between
the parties is of comparatively more concern than local
computation capabilities. For example, this is the case
when SMC over the internet is required [5].

In scenarios with low network latency, protocols re-
quiring a non-constant amount of communication rounds
but less expensive processing, like the GMW protocol,

could provide better overall performance than the BMR
protocol [5].

It has to be noted that the original unmodified design
of the BMR protocol is not suitable for real-world appli-
cations, because some details of it, like the usage of many
zero-knowledge-proofs, are not efficiently computable, as
has been noted by [7]. Since its introduction, however,
much effort has successfully been spent to overcome those
performance pitfalls. Eventually, reasonably efficient con-
crete real-world implementations of the protocol, like Fair-
playMP, introduced by A. Ben-David et al. in 2008 [6],
have been developed.

5. Conclusion

We presented an expressive description of the basic
BMR protocol for SMC, which enables the participation
of any number of parties in a malicious setting. Its char-
acteristic of requiring only a fixed constant number of
rounds to create the garbled circuit makes it interesting
for concrete real-world adaptations that use high latency
communication over the internet. These implementations
often introduce various optimizations to enhance its per-
formance. The FreeXOR technique, for example, makes
creation and evaluation expenses of XOR gates negligible
in order to substantially boost performance.

References

[1] D. Evans, K. Vladimir, and M. Rosulek, “A pragmatic introduction
to secure multi-party computation,” Foundations and Trends® in
Privacy and Security, vol. 2, no. 2-3, pp. 70–246, 2018. [Online].
Available: http://dx.doi.org/10.1561/3300000019

[2] A. C. Yao, “Protocols for secure computations,” in 23rd
Annual Symposium on Foundations of Computer Science (sfcs
1982). IEEE, 1982, pp. 160–164. [Online]. Available: https:
//doi.org/10.1109/SFCS.1982.38

[3] O. Goldreich, S. Micali, and A. Wigderson, “How to play any
mental game,” in Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing, ser. STOC ’87. New
York, NY, USA: Association for Computing Machinery, 1987, p.
218–229. [Online]. Available: https://doi.org/10.1145/28395.28420

[4] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of
secure protocols,” in Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, ser. STOC ’90. New York,
NY, USA: Association for Computing Machinery, 1990, p. 503–513.
[Online]. Available: https://doi.org/10.1145/100216.100287

[5] A. Ben-Efraim, Y. Lindell, and E. Omri, “Optimizing semi-honest
secure multiparty computation for the internet,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 578–590. [Online].
Available: https://doi.org/10.1145/2976749.2978347

[6] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: A
system for secure multi-party computation,” in Proceedings of
the 15th ACM Conference on Computer and Communications
Security, ser. CCS ’08. New York, NY, USA: Association for
Computing Machinery, 2008, p. 257–266. [Online]. Available:
https://doi.org/10.1145/1455770.1455804

[7] Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai, “Efficient
constant-round multi-party computation combining bmr and spdz,”
Journal of Cryptology, vol. 32, no. 3, pp. 1026–1069, Jul 2019.
[Online]. Available: https://doi.org/10.1007/s00145-019-09322-2

[8] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor
gates and applications,” in Automata, Languages and Programming,
L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 486–498. [Online]. Available:
https://doi.org/10.1007/978-3-540-70583-3_40

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

16 doi: 10.2313/NET-2022-07-1_03

Position-based Routing in Flying Ad Hoc Networks

Jakob Weigand, Florian Wiedner∗, Jonas Andre∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: jakob.weigand@tum.de, wiedner@net.in.tum.de, andre@net.in.tum.de

Abstract—In recent years the interest in Flying Ad Hoc
Networks (FANETs) to solve military and civil tasks in-
creased significantly. Due to FANETs being comprised of
highly mobile Unmanned Aerial Vehicles, the development
of generally efficient routing algorithms proves to be con-
siderably complex. This paper compiles a survey on routing
protocols using position information in the routing process.
Position-based routing protocols follow two main concepts,
reactive and greedy-based. When comparing two algorithms,
each following one of these concepts, different strengths and
weaknesses become apparent, resulting in different ideal
areas of application.

Index Terms—FANET, position-based, routing, protocol,
UAV, ad hoc network, MUDOR, GPMOR

1. Introduction

With increased interest in using cooperating groups
of Unmanned Aerial Vehicles (UAVs) to solve civil and
military tasks, the concept of Flying Ad Hoc Networks
(FANETs) was introduced to connect the individual UAVs
as a mesh network. The existing FANET routing proto-
cols follow two main strategies using either topology or
position information in the routing process. This paper
introduces position-based routing protocols for FANETs.
It starts with outlining the reasons for the considerable
difficulties in designing adequate routing algorithms, the
specific characteristics, in Section 2. Subsequently, Sec-
tion 3 outlines the two main approaches of position-
based routing protocols, namely reactive and greedy-
based. Thereafter, both Section 5 and Section 6 present
one algorithm following each of these two approaches.
This paper concludes with a comparison and assessment
of the two presented algorithms in Section 7.

2. Characteristics of FANETs

FANETs consist of multiple highly mobile UAVs. This
results in a specific set of characteristics, outlined and
explained here:
Network topology: As the nodes of FANETs consist of

individual UAVs, they possess a high degree of freedom
in both speed and direction of movement. This results
in a significantly reduced longevity of the network
topology, especially when compared to ground-based
networks [1], [2].

Node density: As UAVs do not require supporting infras-
tructure and are less likely disturbed by obstacles due

to being located in the air, the relative node density can
be assumed to be sparse [2].

Radio propagation model: Due to the high distances
between nodes compared to the strength of the radio
transmitters, FANETs usually require a free Line-of-
Sight (LoS) between nodes. As FANETs are located
in the air, they have a high likelihood of fulfilling this
requirement [1].

Power sparsity: The availability of power to the routing
protocol is highly dependent on the size of the used
UAVs. For large UAVs the power required for routing
calculations is insignificant compared to the power
required for movement. For smaller UAVs the power
capacity can be limited [1], [2].

3. Reactive and Greedy Routing Protocols

Position-based routing protocols in FANETs are gen-
erally separated into two distinct groups. Both of them are
outlined here:
Reactive: In routing protocols using a reactive approach,

the path discovery process is started on demand for
every packet by flooding the network with a Route
Request (RREQ) for a routing target. This is answered
by a Route Reply (RREP) when the target was found.
In comparison to proactively managing a routing ta-
ble, this comes with a significantly reduced network
overhead but usually increases the end-to-end delay.
Compared to purely topology-based reactive routing
protocols, the additional position information can be
used to flood the network in a more controlled ap-
proach, reducing overall network overhead [1], [3].

Greedy: Greedy position-based routing protocols forward
packets in the target direction without previously cal-
culating a complete path to the target node either in a
proactive or reactive manner [2], [3].

4. Related Work

Development of FANET routing protocols is a highly
active field of research and as such a variety of related
work is available. This paper provides an introduction to
the topic of position-based routing algorithms by describ-
ing and comparing two algorithms, following fundamen-
tally different approaches, in-depth. By contrast, Oubbati
et al. [4] compile a more general, higher-level survey
of position-based FANET routing protocols. Oubbati et
al. [2], Lakew et al. [3], Sang et al. [5], and Perez
et al. [6] compile generally broad surveys on routing

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

17 doi: 10.2313/NET-2022-07-1_04

algorithms in FANETs. All of them reflect on different
types of routing algorithms while dedicating chapters of
their work to position-based routing algorithms. Oubbati
et al. [2] should be highlighted in this context due to
being extraordinarily extensive even compared to the other
papers providing a general overview.

5. MUltipath DOppler Routing (MUDOR)

MUltipath DOppler Routing (MUDOR) is a reactive
position-based routing protocol proposed by Sakhaee et
al. [7] for FANETs. The main feature separating MUDOR
from other reactive routing protocols is the incorporation
of the relative node mobility to increase link stability and
reduce the flooding overhead. The relative mobility of
nodes is measured through observing the doppler shift of
the received signals. MUDOR is partly based on Dynamic
Source Routing (DSR) [8]. An optional Quality of Service
(QoS) extension for MUDOR, proposed by Sakhee et al.
[9], offers improved control over the required route per-
formance. This section is based on the original MUDOR
algorithm as proposed by Sakhaee et al. [7].

5.1. Physical Background

The doppler effect describes a perceived shift in fre-
quency between the sender of a wave compared to the
observer. As the velocity of UAVs is small compared to
the speed of light [2], according to Rosen et al. [10] the
aforementioned frequency shift can be approximated by:

fo
fs

= 1 +
v

c
(1)

With fs being the frequency at the sending node and
fo being the frequency observed by the observing node.
As fs is standardized across all nodes, c is known and
fo is observed, the relative velocity v between sender and
receiver can be calculated by solving Equation (1) for v:

v = c · (fo
fs
− 1) (2)

Nodes approaching each other have a negative relative
velocity and show a statistically higher link stability com-
pared to receding nodes as they are longer in each others
vicinity. Therefore, smaller values are superior. MUDOR
introduces the Doppler Value (DV) metric representing the
cost of each link based on this relative velocity. The DV is
just the relative velocity calculated according to Equation
(2) and weighted by −1 for approaching nodes and +2
for receding nodes:

DV =

{
−v, v < 0 (nodes approaching)
+2v, v > 0 (nodes receding)

(3)

5.2. Different Roles of Node

The MUDOR routing protocol differentiates between
two different roles of nodes: requesting and receiving
nodes. Each of the following sections describes one of
them, with the role of the receiving node being subdivided
in receiving Route Requests (RREQs) and Route Replys
(RREPs). Roles are not node exclusive, therefore one node
can have multiple roles.

TABLE 1: Format of a MUDOR RREQ as described by
Sakhee et al. [7].

Name Description

Request Id Request identifier
Target Id Target packet identifier
Hop Count Hop counts until request termination
Packet Doppler Value Largest doppler value on route
Route Addresses Cumulated node addresses on route

5.2.1. Requesting Node. The communication process
starts by the source node flooding its neighborhood with
RREQs. The format of a RREQ is outlined in Table 1.
Similar to other reactive routing protocols, a MUDOR
RREQ possesses a maximum hop count field containing
the maximum future hop counts until request termination,
a unique request identifier, and a route addresses field
cumulating the addresses of the previously visited nodes.
Differences to other routing protocols occur in the target
id and Packet Doppler Value (PDV) fields. Contrary to
other routing protocols, the target of a MUDOR RREQ is
a specific data packet, containing arbitrary data, instead of
a node. The target id field contains the respective identifier
of the target packet. The PDV field contains the largest
DV observed during a node hop on the current route.

5.2.2. Receiving Node (RREQ). Each node possesses a
request table containing all previously forwarded RREQ
ids and the Minimum Doppler Value (MDV) of the spe-
cific requests. If a node receives a request, it compares the
RREQ PDV with the observed DV in the last hop. The
larger of the two values is then written into the PDV field
of the RREQ. The following process differs depending on
whether the node offers the requested data packet and if
it has already forwarded the received RREQ.
Node offers the requested data packet: The node

sends a RREP back to the last sending node. The
RREP contains the same fields as the RREQ except for
the target id and hop count fields which are omitted in
the RREP.

Node has not already forwarded the RREQ: The
node creates an entry in its request table containing
the request id and the current RREQ PDV. Then it
apprehends its address to the RREQ route addresses,
decrements the RREQ hop count and forwards the
RREQ to all neighboring nodes.

Node has already forwarded the RREQ: The node
compares the current RREQ PDV with the PDV of
the specific RREQ in its routing table. If the RREQ
PDV is larger than the PDV in the route request table,
the node has already forwarded the same RREQ on a
superior route and the RREQ is dropped. If the current
RREQ PDV is lower than the PDV in the request
table, the newly discovered route is superior and the
request table entry is overwritten with the RREQ
PDV. Then the node apprehends its address to the
RREQ, decrements the RREQ hop count and forwards
the RREQ to all neighboring nodes. This measure
enables the system to discover multiple routes leading
through the same node while simultaneously reducing
the overhead significantly compared to having a hard
boundary of RREQs with the same id being forwarded
by each node.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

18 doi: 10.2313/NET-2022-07-1_04

5.2.3. Receiving Node (RREP). The RREQ PDV is up-
dated, as described in the previous paragraph, by com-
paring the RREQ PDV with the observed DV in the last
hop and writing the larger value in the RREQ PDV field.
The following process differs depending on whether the
receiving node is also the requesting node:
Node is not requesting node: The RREP is forwarded

by backtracking the route addresses in the correspond-
ing RREQ field.

Node is requesting node: The node waits a configurable
amount of time collecting incoming RREPs and or-
dering them by their PDV. Then it selects the path
with the smallest PDV for packet transmission. If a
selected path fails, MUDOR selects the path with the
next smaller PDV. This is the multipath approach of
MUDOR offering built-in failure recovery.

6. Geographic Position Mobility Oriented
Routing (GPMOR)

Geographic Position Mobility Oriented Routing
(GPMOR) is a greedy position-based routing protocol for
FANETs proposed by Lin et al. [11]. This section is a
summary of GPMOR as described in [11].

As outlined in Section 2, FANETs are a highly dy-
namic environment. Due to the high degree of mobility,
a connection of two nodes can be interrupted during a
packet broadcast even if they were initially sufficiently
close. As the sender might not be able to detect such a
loss of connection, this might lead to a significant amount
of packet loss. GPMOR introduces an algorithm using
the stored position and movement information to predict
the future movement of potential relay nodes. Then, a
node with a low probability of the described packet loss
scenario is selected as the next relay node.

6.1. Mathematical Background

To predict the future velocity Vn and direction of
neighboring nodes dn, Lin et al. [11] use the following
Gauss-Markov mobility model:

Vn = αVn−1 + (1− α)V̄ +
√

(1− α2)Vxn−1

dn = αdn−1 + (1− α)d̄+
√

(1− α2)dxn−1

(4)

with V̄ and d̄ being historical averages of V and d
respectively. Vxn−1

and dxn−1
are random variables from a

Gaussian distribution introducing noise into the prediction
equations. The tuning parameter α can be adjusted de-
pending on the movement model, with α = 1 representing
no change of movement in the given time period.

The predicted values are then used by Lin et al. [11]
to calculate the new position of the specific node after a
time period ∆T :

x
′

= x+ sx∆T

y
′

= x+ sy∆T
(5)

with x and y being the node coordinates and sx
and sy being the velocity components in the respective
dimensions calculated from Vn and dn.

Lin et al. [11] then use the predicted node position
to calculate the future euclidean distance between a relay
node r and the destination node d:

∆d
′

=
√

(x′r − x
′
d)2 + (y′r − y

′
d)2 (6)

If ∆d
′

is below the range threshold R of node r, r
will be able to send messages to the destination d after
the ∆T used for the prediction calculation.

To decide which node the data packet is forwarded to
if more than one node fulfills the ∆d

′ ≤ R prerequisite,
the Metric To Connect (MTC) value is calculated:

∆x = x
′
r − x

′
d a = (∆s2x + ∆s2y) ·R2

∆y = y
′
r − y

′
d b = (∆sx∆y −∆sy∆x)2

∆sy = sry − sdy c = ∆sx∆x+ ∆sy∆y

∆sx = srx − sdx

MTC =

{
c−
√
a−b
a , 0 < ∆d ≤ R√

a−b−c
a , R < ∆d

(7)

Source: [11]

The MTC value indicates the mobility relationship
between nodes. In the first case 0 < ∆d ≤ R, the nodes
r and d are in range both before and after the prediction.
This implies a strong correlation in movement and the
assigned value is negative to display this condition. In the
second case R < ∆d, r and d are only in range in the
predicted time step but not before. This signals a possible
next hop but shows a historically worse movement core-
lation as compared to the first case, the assigned value
is positive. In both cases the assigned absolute value is
relative to the distance between nodes.

The outlined equations are only defined in a two-
dimensional scenario, limiting the application area of
GPMOR significantly.

6.2. Algorithm

The node discovery process works proactively by each
node regularly sending HELLO messages to nearby nodes.
These messages contain position and velocity information
and are used by each node to maintain a node table. Any
sent data packets contain the identifier of the destination
node. Each intermittent node transmits the data packet to
the best node according to the information in its node
table. The algorithm terminates when the destination node
is reached. The next hop is selected as follows:

1) The current source node calculates the immediate po-
sition of destination and neighboring nodes according
to Equations (4) and (5).

2) The distance between destination node and all neigh-
boring nodes is calculated according to Equation (6).

3) Now there are three distinct possibilities depending
on how many neighboring nodes fulfill the ∆d

′ ≤ R
condition:
No node: The neighbors of the current source node

are not directly in range of the destination node.
An additional relay node is necessary. The neigh-
bor with the smallest ∆d

′
is selected.

One node: This node will be in range of the desti-
nation node after ∆T . It is selected as next hop.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

19 doi: 10.2313/NET-2022-07-1_04

Multiple nodes: The MTC value between the af-
fected neighboring nodes and the target node is
calculated according to Equation (7). The node
with the lowest MTC value is selected as next hop.

4) The next hop calculation algorithm is terminated and
the packet is forwarded to the selected node. The
selected node is the source node in the next iteration.

GPMOR only considers the currently best next re-
lay node without considering the global situation with
potential local but not global optima. This approach is
considered greedy.

7. Comparison and Discussion

As MUDOR and GPMOR follow fundamentally dif-
ferent architectures, they also show significantly different
characteristics. Table 2 shows an overview of these dif-
ferences.

TABLE 2: Characteristics of MUDOR and GPMOR.

TD NO BR SPAR SCAL

MUDOR - + + + +
GPMOR + - - - -

+: superior -: inferior

Transmitting delay (TD): Due to its greedy approach
GPMOR has no notable transmitting delay as trans-
mission starts instantly. By contrast, MUDOR has to
calculate at least one complete route to the target node
before being able to start transmission, leading to a
significant transmission delay.

Network overhead (NO): As GPMOR has a reactive-
based routing approach, exchanging the available net-
work nodes regularly, it has a notably larger network
overhead as compared to MUDOR.

Bandwith requirements (BR): As a consequence of its
larger network overhead, GPMOR requires signifi-
cantly more bandwidth as compared to MUDOR.

Network sparsity (SPAR): Due to its greedy approach a
GPMOR RREQ can be stuck in a local but not global
optimum. Currently GPMOR does not have any failure
recovery strategy for this problem and therefore needs
a sufficiently dense and convex network to avoid the
occurrence of this problem. By contrast, MUDOR is
not affected by sparse networks.

Scalabilty (SCAL): Due to its fundamentally proactive
approach GPMOR has to manage a node table con-
taining all available nodes in the network. This leads
to a significantly worse scaling, especially concerning
memory requirements compared to MUDOR which
does not have to manage a similar node table.
The outlined significantly different characteristics also

lead to different ideal areas of application. To have suf-
ficient doppler shift to be able to avoid significant mea-
surement errors, MUDOR is ideal for networks of fast
and linear moving nodes such as larger scale fixed wing
UAVs. Xi et al. [12] show that MUDOR does also work
with slower moving ground-based nodes but the perfor-
mance compared to other routing protocols increases with
node speed. GPMOR needs a sufficiently dense network
that does not violate its size boundaries. Compared to
MUDOR it is superior in end to end delay. Therefore, it is

optimally suited for dense networks of smaller scale UAVs
such as grid focused search and rescue operations which
also profit from its excellent end to end delay enabling
in-person operation if necessary.

8. Conclusion and Future Work

The unique characteristics of FANETs pose a sig-
nificant challenge for routing algorithms. This paper in-
troduces a promising approach to solve this challenge,
position-based routing protocols. These protocols can be
categorized into two main strategies, reactive and greedy-
based. A presentation and subsequent comparison of
two algorithms following these strategies, MUDOR and
GPMOR, shows distinct strengths and weaknesses. This
results in complementary ideal areas of application with
MUDOR showing superior characteristics for networks
of fast moving fixed wing UAVs and GPMOR for dense
networks of small scale UAVs.

Future work on the presented GPMOR algorithm
could include a more sophisticated movement prediction
model allowing the prediction of non-linear and three-
dimensional movement. Additionally, the introduction of
a route request failure recovery strategy is necessary to
overcome the problem of a route request being stuck in a
local but not global optimum.

References

[1] A. Chriki, H. Touati, H. Snoussi, and F. Kamoun, “Fanet: Commu-
nication, mobility models and security issues,” Computer Networks,
vol. 163, p. 106877, 2019.

[2] O. S. Oubbati, M. Atiquzzaman, P. Lorenz, M. H. Tareque, and
M. S. Hossain, “Routing in Flying Ad Hoc Networks: Survey,
Constraints, and Future Challenge Perspectives,” IEEE Access,
vol. 7, pp. 81 057–81 105, 2019.

[3] D. Lakew, U. Sa’ad, N.-N. Dao, W. Na, and S. Cho, “Routing
in Flying Ad Hoc Networks: A Comprehensive Survey,” IEEE
Communications Surveys & Tutorials, vol. PP, pp. 1–1, 03 2020.

[4] O. Oubbati, A. Lakas, F. Zhou, M. Günes, and M. Yagoubi,
“A Survey on Position-based Routing Protocols for Flying Ad
hoc Networks (FANETs),” Vehicular Communications, vol. 10, 12
2017.

[5] Q. Sang, H. Wu, L. Xing, and P. Xie, “Review and Comparison
of Emerging Routing Protocols in Flying Ad Hoc Networks,”
Symmetry, vol. 12, no. 6, p. 971, Jun 2020.

[6] A. Guillen-Perez, A.-M. Montoya, J.-C. Sanchez-Aarnoutse, and
M.-D. Cano, “A Comparative Performance Evaluation of Routing
Protocols for Flying Ad-Hoc Networks in Real Conditions,” Ap-
plied Sciences, vol. 11, no. 10, p. 4363, May 2021.

[7] E. Sakhaee, A. Jamalipour, and N. Kato, “Aeronautical Ad Hoc
Networks,” in IEEE Wireless Communications and Networking
Conference, 2006. WCNC 2006., vol. 1, 2006, pp. 246–251.

[8] D. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” Mobile Comput., vol. 353, 05 1999.

[9] E. Sakhaee, A. Jamalipour, and N. Kato, “Multipath Doppler
Routing with QoS Support in Pseudo-linear Highly Mobile Ad
Hoc Networks,” in 2006 IEEE International Conference on Com-
munications, vol. 8, 2006, pp. 3566–3571.

[10] J. Rosen and L. Gothard, Encyclopedia of Physical Science, ser.
Facts on File Science Library. Facts On File, 2010.

[11] L. Lin, Q. Sun, J. Li, and F. Yang, “A Novel Geographic Position
Mobility Oriented Routing Strategy for UAVs,” Journal of Com-
putational Information Systems, vol. 8, pp. 709–716, 02 2012.

[12] S. Xi and X.-M. Li, “Study of the Feasibility of VANET and
its Routing Protocols,” in 2008 4th International Conference on
Wireless Communications, Networking and Mobile Computing,
2008, pp. 1–4.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

20 doi: 10.2313/NET-2022-07-1_04

Survey on Trusted Execution Environments

Nicolas Buchner, Holger Kinkelin, Filip Rezabek∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: nicolas.buchner@tum.de, kinkelin@net.in.tum.de, frezabek@net.in.tum.de

Abstract—Confidentiality of code and data is an essential
part of modern computing. As cloud services become more
important as an easy way to use computational power, the
need for keeping the exact code of the running applications
from the companies that offer these services. A Trusted
Execution Environment (TEE) is an option to remove the
need for trusting the device the code is executed on and
hide data from other processes. In this paper, the concept
of a TEE is shown as well, as two implementations of
TEE are being analyzed. First, a general overview of TEEs
is given. Next, the functionality of Intel SGX and ARM
TrustZone is being explained. Afterwards, the features of
both implementations are shown, and the problems they have
are being analyzed. Next, there is a comparison between
the two implementations. Finally, other options to achieve
trusted execution are being shown.

Index Terms—trusted execution, privacy, security

1. Motivation

In today’s world, the need for security of the data used
every day has become a significant factor in determining
how to transport and process this data. Whilst looking at
security during communication between different devices
is common, the need to process data and execute pro-
prietary code on client devices brought a new problem.
The need to keep program code away from others has
been the main reason these problems have become of
more interest to companies. This is because the creation of
programs has become more expensive and time-intensive,
especially when Machine Learning models are a part of
the application. This leads to the following questions.
Does one trust the client’s device? How does one execute
code on data that the client’s device should not have access
to? Furthermore, is there a way to keep the client device’s
OS from accessing or influencing the execution of the
application’s code?

In recent years, research on ways to provide secure
execution of code on untrusted devices has progressed.
There are multiple ways to archieve the desired goal of
code and data confidentiality on remote devices. Trusted
Execution Environments (TEE) are one such option to
provide the secure execution of code without interference
from any other processes on the device. A TEE restricts
access to the code and data of an application inside of
it. Furthermore, it allows for verification of the TEE’s
content. A TEE requires some additional hardware on the
device as well as software to manage the interactions.
There are different implementations of TEE, and each

comes with different strengths and weaknesses, some of
which will be discussed later in this paper.

In this paper, the main components of a Trusted Exe-
cutions Environment (TEE) are shown. Furthermore, two
implementations of a TEE are being analyzed in terms of
their functionality. These implementations are Intel SGX
and ARM Trust Zone. Next, in Section 3 the features of
both Intel SGX and ARM TrustZone are being shown.
Afterwards, the problems of the respective implementation
are analyzed. Finally, Section 4 shows different frame-
works to help create applications intended for use with
TEE.

2. Trusted Execution Environments

The TEE is a Secure Operating System separated from
the original device’s Operating System (OS). Additionally,
it is supported by hardware components to provide the
functions required by the applications, which are executed
inside the TEE.

The features a TEE provides, depend on the individual
implementations. Most commonly, a TEE provides some
isolation of the processes from any process running in
the normal OS of the device and from other processes
inside the TEE. Furthermore, they allow verification of
the executed code and data.

As shown by Arfaoui et al. [1], there are different
ways to implement the hardware components of a TEE.
The first option for hardware components of a TEE in-
cludes a trusted ROM, RAM, and a trusted processing
environment. Furthermore, the TEE has its own crypto ac-
celerators and can support trusted peripherals. The second
option for the hardware components is to share the hard-
ware with the regular OS and have a state that specifies
if the currently executed process is trusted or untrusted.

The software part of a TEE is the TEE kernel, which
is an OS, that is different from the host OS [1]. It is au-
thenticated and validated during the start of the device and
takes control upon the execution of the TEE application.
Another software part is the TEE APIs. These APIs can
be differentiated into private and public APIs. The private
APIs provide a way for the Trusted Applications to use
the functions provided by the TEE. The public APIs offer
an interaction between applications running in the devices
OS and the TEE applications.

Two such implementations are being shown in the
following, and their functionality is being explained. Fur-
thermore, the requirements of each implementation are
being looked at.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

21 doi: 10.2313/NET-2022-07-1_05

2.1. Intel SGX

The first implementation of TEE looked at is created
by Intel, called Software Guard Extensions (SGX). Ac-
cording to Intel [2], SGX provides isolation of program
code and data in memory through hardware-based en-
cryption of the memory. They claim this prevents more
privileged processes, like the OS, from accessing this
information. To use Intel SGX, the device needs to have
an Intel CPU that supports SGX and have SGX enabled in
the BIOS. The Intel CPUs that support SGX are all 6th to
10th generation processors as well as the server processors
of the 11th and 12th generation. SGX is depricated in non
server versions of th 11th and 12th generations due to lack
of use cases for private users.

The hardware requirements of SGX are similar to the
second option shown in Section 2. As such, the hardware
used for SGX is primarily the original hardware, with
some minor changes required. A Memory Encryption
Engine is needed to input and output data from the TEE
safely. The Memory Encryption Engine also stores the
keys used for encryption of each secure memory area.
Furthermore, SGX requires some additional microcode.

In SGX, the encrypted memory section and the re-
spective key that belongs to it are called enclaves. Any
user process that wants to use the SGX functions can
create an enclave, as shown by Gu et a. [3]. On startup,
the enclave is verified, usually through a hash, either
on the local machine or remotely. The hash is 256 bits
long and includes the code and the initial data of the
enclave, as well as security flags and page locations within
the enclave. This hash is then signed by either Intel or
the program developer. If the developer signed the hash
himself, the public key that is needed for verification of
the signature has to be signed by Intel and added by
the executing device to SGX [4]. The untrusted process,
which the enclave belongs to, and the enclave share the
same memory address space. The difference being that the
enclave’s memory is encrypted, as described in Jauernig et
al. [5]. Any OS functionality, like memory management,
interrupt handling, and I/O is still done by the device’s
OS. Still, neither the OS nor any other process can access
or change any data or code inside the enclave’s memory.
When an enclave function is called, the encrypted memory
section that belongs to this function is loaded into the CPU
and then decrypted on the CPU for execution.

Any developer who wants to use SGX for their ap-
plication has to create two parts. As shown in Figure 1,
there is an untrusted part of the application and a trusted
part, which is the enclave. The developer decides which
functions of the application and which data require the
enclave’s security and then creates the enclave part out
of it. The enclave needs to be verifiable, so a hash of
the enclave’s contents needs to be made. This hash is
used to verify the enclave after the creation on the client
device, most likely remotely by a server belonging to
the program’s creator. The untrusted part initializes the
enclave on the client device, which is then verified. Once
the application requires the contents of the enclave, the
untrusted part calls the respective function of the enclave.
The enclave then takes over and executes the called func-
tion and returns the output of this function. Then, the
program’s normal execution continues until an enclave

function is required again. For any communication with
the enclave that contains data, a secure channel is created
by the enclave, and the enclave includes its verification
for the other process to verify the data is coming from or
going to the correct enclave [4].

Application
Untrusted Process Enclave Process

1. initializes enclave

2. calls enclave function

5. continues execution

3. executes secure function

4. returns function data

Figure 1: Application using SGX enclave

2.2. ARM TrustZone

The other implementation being analyzed is called
TrustZone. It is created by ARM [6]. Similar to SGX,
TrustZone’s hardware components are the ones described
as the second option in Section 2. In TrustZone, the
execution environment is split into two parts: the secure
world and normal world. These two worlds are not just
different terms used by ARM to describe the same thing
as untrusted and enclave parts in SGX. While the un-
trusted part is about the same as the normal world, an
enclave does not represent the same as the secure world
in TrustZone. To use TrustZone, an ARM processor with
TrustZone support is required. The ARM processors that
the Cortex-A and Cortex-M classes of their processors.

The hardware changes required for TrustZone are very
minimal. The memory controller needs to be able to
differentiate between secure and normal world processes.
The device’s OS is considered a normal world process
in this context. The CPU needs to be able to do the
same differentiation between secure and normal world.
This ability to differentiate keeps anything running in the
normal world from interfering with secure world appli-
cations. The context switch between these two worlds is
done by trusted firmware on the device [5].

On the software side, there is a separate OS that runs
in the secure world, unlike in SGX. During the device’s
boot, the image of TrustZone is verified and authenticated.
This is not done for individual application initializations
as all the applications run in the same TEE instance
for TrustZone, while in SGX, each enclave is a separate
TEE instance. Thus any program in the secure world
can influence other programs in it. In order to deal with
this problem, an application can only be added to the
TrustZone of a device if the device’s creator allows this
application’s inclusion.

A developer who wants to use TrustZone can decide
to create a secure world-only application. Developers can
also choose to develop both an application that runs in the
normal world and have an application in the secure world
for the security-relevant features.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

22 doi: 10.2313/NET-2022-07-1_05

3. Features and Problems
In the following, different implementations of TEE

are being analyzed with a focus on Intel SGX and ARM
TrustZone. The features of each implementation are being
shown, and finally, the problems of the implementation are
being analyzed.

3.1. Intel SGX Analysis

As described in Section 2.1, SGX enclaves are en-
crypted while they are in the device’s memory. Thus an
attacker can not read any of the contents of an enclave.
Furthermore, the attacker can not access the encryption
key, as it is stored on the Memory Encryption Engine.
The attacker could still change any part of the encrypted
enclave, but the enclave is verified when it is used, which
means the attack would be noticed. The enclave can be
initialized again to match the actual content the developer
intended. These features result in the fact that the pro-
gram’s developer no longer needs to trust the entire device
the program runs on. The developer’s trust must now only
be in the CPU that the code is executed on. SGX provides
separation between processes executed inside of enclaves
as well, which means the execution of one enclave can
not impact any other enclave. However, one feature is not
provided by SGX, which is support for trusted peripherals.
The fact that this feature is missing means that no device
directly connected to the client can influence anything in
the enclave or be used directly for I/O purposes.

As for the disadvantages of using SGX, the enclave
needs to be decrypted each time its functions are executed.
After execution of the enclave function, the entire enclave
needs to be encrypted again before it can be stored in
the device’s memory. Both of these operations increase
the application’s execution time on the client device.
Depending on the size of the enclave and the frequency
of calls to enclave functions, this en-/decryption time can
be a significant part of the overall execution time of the
application. Furthermore, Section 2.1 shows the need for
the developer to split the application into two parts and
also create means to verify the content, i. e. creating a
hash of it and signing the enclave. This increases the
development time of such an application.

To summarize, SGX provides an environment to exe-
cute code without the interference of other processes on
the device and guarantees the confidentiality and integrity
of both code and data, as described by Narra et al.
[7]. Furthermore, it allows for the remote verification of
the created enclave. As for the drawbacks of SGX, the
development effort is more significant than making a reg-
ular program. On the client-side, the processing overhead
increases because the enclave needs to be decrypted for
execution and the verification of the data entering the
enclave. Dinh Ngoc et al. [8] describe the preformance
overhead based on the different calls in SGX and the
amount of CPU cycles each of them takes. Finally, SGX
does not protect against side-channel attacks. Thus some
information about the program can still be inferred.

3.2. ARM TrustZone Analysis

In Section 2.2, TrustZone was shown to have the
secure world and the normal world. The secure world is

also described to be the part of TrustZone, which holds
the TEE part. In the secure world, the applications are
shielded from any influences coming from the normal
world. Thus no normal world process can read or change
the content of the memory areas belonging to any secure
world application. Neither can any normal world process
interfere in the execution of code belonging to the secure
world. Should the attacker have access to the hardware
itself though, TrustZone does not offer any protection.
This comes from the fact that the memory is not encrypted
like it is in SGX, and the context switch is done by
the trusted firmware. In TrustZone’s case, the developers’
trust needs to be put into the TrustZone firmware and
the additional hardware parts of TrustZone. However, in
contrast to SGX, TrustZone does offer support for trusted
peripherals by including the drivers for the peripherals in
the secure OS [5]. Unlike SGX, there is no en-/decryption
needed for execution, only a context switch that takes very
little time to do.

The disadvantages of using TrustZone are, as pre-
viously mentioned the fact that there is no separation
between applications running in the secure world. Addi-
tionally, TrustZone only protects against software attack-
ers and does not protect against hardware-level attackers,
as there is no encryption of the secure memory parts.
Furthermore, the developers of applications, which are
running inside the TrustZone of a device, need to trust
each other because of the missing separation. Finally,
TrustZone is only verified on boot of the device and does
not verify applications before they are executed.

In summary, TrustZone offers an execution environ-
ment for code without the influence of processes in the
normal world. The integrity of the secure world is checked
on boot, and the contents of the secure world are kept
confidential from the normal world but not from the secure
world. In terms of drawbacks, TrustZone only protects
against software attackers. Furthermore, there is no sepa-
ration between programs inside the secure world, forcing
developers to additionally trust other applications in the
device’sTrustZone. Similar to SGX, TrustZone does not
protect against side-channel attacks.

TABLE 1: SGX and TrustZone features

Intel SGX ARM TrustZone

Trusted Part CPU Firmware and
Hardware

Protection against
Hardware Attacks yes no

Separation of TEE
applications yes no

Verification of
Trusted application

remotely or locally
when called

only on system
boot (entire TEE
not individual
applications)

Trusted Peripherals no yes

4. Applications

After understanding how Intel SGX and ARM Trust-
Zone work and what they offer, we take a look at how to
create applications that use either SGX or TrustZone.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

23 doi: 10.2313/NET-2022-07-1_05

For Intel SGX, there are multiple frameworks, which
are meant to help develop an application for it. There are
two kinds of frameworks for SGX. The first of them is
intended for the creation of new applications which use
SGX. The other type of framework can make an existing
application run in an SGX environment.

Intel themselves created one framework that is of the
first kind, and it is called SGX SDK [9]. SGX SDK
is a framework that supports C and C++ programming
languages, and its development tools can be used on both
Windows and Linux operating systems. It does not only
include the libraries for SGX but also contains tools for
debugging and some examples to help understand how to
use this framework. Intel actively updates the SGX SDK.

Another framework for creating new TEE applications
is Open Enclave SDK [10]. Open Enclave is an open-
source framework for TEE applications. Same as SGX
SDK, it works with C and C++ languages and has versions
for both Windows and Linux. Unlike SGX SDK, though, it
does not only work for developing applications intended
for Intel SGX. It also allows for creating programs de-
signed for use on ARM TrustZone. Open Enclave is also
regularly updated by multiple authors.

The other kind of framework is used to make an
already existing application run in an SGX enclave. There
are multiple commercial frameworks for this purpose, like
Fortanix [11]. Furthermore, there are some open-source
frameworks like Graphene [12]. They work based on
LibOS. To use Graphene, the host it should run on needs
to support SGX SDK. The application is signed together
with the Graphene enclave part to form the enclave. Then
the created enclave is sent to the host it should run on
together with Graphene.

Both of the shown TEE implementations are also
available for use on different devices. While ARM Trust-
Zone is mainly used on mobile devices, Intel SGX is
aimed for use on client pcs and servers. Some cloud
service providers already include support for SGX on
their platform. One such Cloud service is Microsoft Azure
Confidential Computing [13]. Microsoft Azure supports
applications using SGX SDK, Open Enclave and some
other frameworks used to create SGX programs. Further-
more, it allows for remote attestation of the enclaves. On
Azure, there is also support for another kind of TEE called
AMD SEV, which was not presented in this paper.

5. Related work

There are other papers, which are looking into differ-
ent implementations of TEE. One such paper is Jauernig
et al. [5], describing five different TEE implementations
there. The implementations described are Intel SGX,
AMD SEV, ARM TrustZone, as well as the two academic
TEE implementations, Sanctum and Sanctuary. They are
described in terms of their functionality and the provided
features.

Other concepts can provide security features to a
device. One such concept is the Trusted Platform Module
(TPM). A TPM is a hardware module that contains some
data storage capacity, as well as the hardware required
to generate both symmetric and asymmetric encryption
keys and can create cryptographic hashes. Aaraj et al. [14]
explain that a TPM offers cryptographic functions as well

as protected storage to perform integrity checks on the
platform or any application that is using it. The TPM itself
is only encrypted storage for keys in a hierarchical system
of keys, some of which are bound to data on the system’s
storage, and others are just used to keep the bound keys
safe. The TPM is only a cryptographic co-processor and
cannot be used for general computation.

Another option for trusted execution is smart cards.
Smart cards are small chips protected from the physical
environment and usually break if one tries to overcome the
physical protection of the chip. A smart card has a small
connection interface, and some smart cards can even be
accessed remotely. A typical example of a smart card is a
credit card. Naccache and M’Raihi [15] explains, that the
connection interface of a smart card is standardized and
smart cards do not possess a power source of their own. In
essence, a smart card is a small computer that is powered
as long as it is connected to another device and can be
authenticated against the connected device or remote users
and then do some computation on the smart card. As a
smart card is equipped with cryptographic functions, all
of the data entering and leaving the card can be secured
as well. There are two types of smart cards, cryptographic
smart cards, that only offer cryptographic functions like
authentication or encryption. The other type of smart card
is called the java smart card. This second type of smart
card allows for more general computational use of the
computer inside.

6. Conclusion

In conclusion, we looked at what a TEE is and what
is required to implement a TEE and then analyzed two
different implementations. The requirements for a TEE
are split into hardware and software parts, and there exist
multiple ways to implement a TEE in both of these parts.
Of the implementations looked at, each has its respec-
tive advantages and disadvantages. SGX is built only to
require minimal hardware changes and relies primarily
on encrypting memory areas. These areas are decrypted
only for the CPU upon execution of the contained code
and can not be read or altered without detection. The
enclaves in SGX are also kept separate to prevent one
from influencing another.

In TrustZone, on the other hand, the separation in
different worlds is mainly achieved through the trusted
firmware performing a context switch. In Section 2.2,
we saw that TrustZone allows for secure peripherals, in
contrast to SGX, but it does not separate applications
running in the secure world.

Finally, other ways to achieve trusted execution on
untrusted devices are shown. Each of these options has its
own individual features and problems, each with slightly
different use cases. TPM offers cryptographic operations
on a coprocessor; smart cards can either be used for cryp-
tographic functions only or be a general-purpose execution
environment on a small card that needs to be connected
to another device for power.

A TEE does not guarantee that an attacker can not
gain information about the code or data executed inside
the TEE despite the features provided. The vulnerabilities
of specific implementations could be an exciting topic for
further research, as well as general problems of TEE.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

24 doi: 10.2313/NET-2022-07-1_05

Another subject for further research could be an anal-
ysis of the performance overhead of different implementa-
tions. Different implementations use different mechanisms
to achieve their features and have very different execution
times.

References

[1] G. Arfaoui, S. Gharout, and J. Traoré, “Trusted execution environ-
ments: A look under the hood,” in 2014 2nd IEEE International
Conference on Mobile Cloud Computing, Services, and Engineer-
ing, 2014, pp. 259–266.

[2] [Online]. Available: https://www.intel.de/content/www/de/de/
architecture-and-technology/software-guard-extensions.html

[3] Z. Gu, H. Jamjoom, D. Su, H. Huang, J. Zhang, T. Ma, D. Pen-
darakis, and I. Molloy, “Reaching data confidentiality and model
accountability on the caltrain,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN). IEEE, 2019, pp. 336–348.

[4] [Online]. Available: https://sgx101.gitbook.io/sgx101/
sgx-bootstrap/attestation

[5] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution envi-
ronments: Properties, applications, and challenges,” IEEE Security
Privacy, vol. 18, no. 2, pp. 56–60, 2020.

[6] [Online]. Available: https://developer.arm.com/ip-products/
security-ip/trustzone

[7] K. G. Narra, Z. Lin, Y. Wang, K. Balasubramaniam, and
M. Annavaram, “Privacy-preserving inference in machine learning
services using trusted execution environments,” arXiv preprint
arXiv:1912.03485, 2019.

[8] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schiavoni,
P. Felber, and D. Hagimont, “Everything you should know about
intel sgx performance on virtualized systems,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 3,
no. 1, pp. 1–21, 2019.

[9] [Online]. Available: https://01.org/intel-softwareguard-extensions

[10] [Online]. Available: https://github.com/openenclave/openenclave/
tree/master/docs/GettingStartedDocs

[11] [Online]. Available: https://fortanix.com

[12] [Online]. Available: https://graphene.readthedocs.io/en/latest/
oldwiki/Introduction-to-Graphene-SGX.html

[13] [Online]. Available: https://docs.microsoft.com/de-de/azure/
confidential-computing/enclave-development-oss

[14] N. Aaraj, A. Raghunathan, and N. K. Jha, “Analysis and design
of a hardware/software trusted platform module for embedded
systems,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 8, no. 1, pp. 1–31, 2009.

[15] D. Naccache and D. M’Raihi, “Cryptographic smart cards,” IEEE
micro, vol. 16, no. 3, pp. 14–24, 1996.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

25 doi: 10.2313/NET-2022-07-1_05

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

26

Review of Industrial Control Systems Protocols

Alexandru Cruceru, Lars Wüstrich∗ and Patrick Sattler∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ge54dov@mytum.de, wuestrich@net.in.tum.de, sattler@net.in.tum.de

Abstract—This paper provides an overview of the actual
state of the art of industrial control systems protocols. ICS
protocols are data transfer protocols used for the commu-
nication between devices working in an industrial control
system. The protocols are classified based on two criteria:
whether a protocol is vendor-specific or not and regarding
the industrial sector in which the protocol is used. The paper
also presents in more detail the characteristics and the design
features of some popular ICS protocols.

Index Terms—industrial control system (ICS), ICS proto-
col, process automation, building automation, power-grid
automation, meter-reading automation

1. Introduction

Industrial Control Systems (ICS) are nowadays a
highly important component of large-scale producing
companies and factories, from manufacturing lines and
building automation to power grids, water treatment fa-
cilities, and transportation systems. Critical infrastructure,
on which the comfort and wellbeing of entire cities or
regions rely, is dependent on such systems which must
operate with high precision and performance for keeping
up to the requirements needed in such industrial fields.

ICS are in use for over forty years but have evolved
and changed due to the growing requirements. The ba-
sic tasks of ICS are to gather information from remote
sensors, to evaluate the collected data, to give commands
to the singular components (e.g. valve, pump, turbine,
burner, industrial machine) of the system, and to provide a
Human-Machine Interface. As these systems grew larger
and larger and as the requirements became more complex,
remote access to ICS through the internet became a must.
Thus, there were developed industrial systems, which
work with wired and wireless connectivity using Ethernet,
Routing, and IP.

The interconnectivity and communication between
ICS devices are represented as an industrial network that
has, in general, other performance goals than usual net-
work systems used for Internet communication. Reliability
and real-time operations are critical in such industrial net-
works, low bandwidth and latency have to be aimed so that
data availability is a high standard. [1] Therefore, serial
connection and specialized protocols focusing on specific
functionality stood at the core of ICS for a long period,
Ethernet being later introduced as a need to integrate ICS
to the Internet. Migration towards Ethernet and IP exposed
ICS design vulnerabilities. The focus on time performance
pushed aside data integrity and confidentiality.

The present article discusses the ICS protocols, of-
fering classification, and exemplification in detail. The
structure of the present article is: Chapter two presents
an overview of the existing ICS protocols; Chapter three
focuses on a detailed description of four ICS protocols;
and the last part presents the conclusion of the article.

2. Overview of the existing ICS Protocols

ICS protocols have a long history. They have been
deployed starting with the first ICS devices more than
over forty years ago. ICS protocols were designed to work
with serial communication and with high real-time perfor-
mance. Since ICS devices are used in various industrial
fields, a variety of specialized ICS protocols have been
developed. While certain protocols are specialized only for
an industrial sector, other protocols can be implemented
in more than one field.

This paper focuses on two ICS protocol classification
criteria: (1) vendor-specific or widely used ICS protocols;
(2) industrial sector based.

TABLE 1: ICS Protocol Classification

Protocol Vendor-specific Sector
Modbus No PA

HART-IP No PA
Profinet/Profibus No PA

FOUNDATION Fieldbus No PA
EtherCAT No PA

EtherNet/IP No PA
CIP No PA

Siemens S7 Yes PA
Sinec H1 Yes PA

FINS Omron Yes PA
DNP3 No PA/PGA
ICCP No PGA

BACnet No BA
Niagara Tridium Fox Yes BA

ANSI C12.22 No MRA
OSGP No MRA/PGA

PA=Process Automation
PGA=Power Grid Automaton

BA=Building Automation
MRA=Meter Reading Automation

2.1. Vendor-specific or widely used ICS protocols

Vendor-specific ICS protocols are designed by com-
panies that are also ICS device manufacturers. They are
designed to work only with devices produced by the same

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

27 doi: 10.2313/NET-2022-07-1_06

company or to integrate devices from multiple manu-
facturers. Big players in the automation device market
are Tridium, Omron, Siemens, Schneider Electric, and
Rockwell Automation, all being also ICS protocol devel-
opers. Protocols like Niagara Tridium Fox were developed
for Tridium devices, OMRON FINS for Omron devices,
Siemens S7 and Sinec H1 for Siemens devices, Foxboro
for Schneider Electric devices, and CISP for Rockwell
Automation. [2]

Widely used ICS protocols are non-proprietary, so they
can be used on devices from different manufacturers and
comply with the performance standards demanded in most
of the ICS. Some of these are Modbus, BACNet, HART-
IP, EtherNet/IP, EtherCAT, ProfiNet/Profibus, DNP3, and
ICCP.

2.2. Industrial sector based

ICS are used in various industrial sectors having
specific requirements. Therefore, each ICS protocol was
developed to implement use-case-specific features and to
perform data transfer operations for a distinct industrial
field. This paper concentrates on a classification done
previously [3], to divide the ICS protocols into specific
industrial fields.

2.2.1. Process Automation. Process automation is the
broadest field in which ICS are used. It concerns the
use of automation devices in factories and firms so that
production and administration processes are controlled
and monitored using a computer infrastructure. Multiple
industries use process automation, like the automotive
industry, chemical industry, oil refining industry, gas in-
dustry, water industry, and wastewater industry. The main
benefits of process automation are to reduce personal costs
and to increase productivity. Process automation consists
of the integration of multiple input and output devices in
a centralized system. This system is then controlled using
a computer infrastructure that comes through graphical
user interfaces in contact with human administrators. The
input devices are sensors that measure different production
parameters (e.g., temperature, pressure, volume) and the
output devices are controlled units like valves, pumps,
or motors that perform different tasks. These devices are
connected to programmable logic controllers (PLC) which
receive the data from the sensors, processes it, and then
send commands to the controlled units. The PLCs are
connected with each other and also with control computers
that monitor and supervise the entire production process.
The control computers are accessed by human operators
that can coordinate the processes from here. ICS protocols
are responsible for the data transfer between all these
devices. There are many protocols developed for support-
ing this type of ICS. Widely used protocols (Modbus,
FOUNDATION Fieldbus, Profibus/Profinet, CIP - with its
implementations ControlNet, DeviceNet and EtherNet/IP),
EtherCAT and HART-IP) and vendor-specific protocols
(FINS Omron and the Siemens protocols- Siemens S7
and Sinec H1) were developed for providing data transfer
between devices that work in a Process Automation ICS.
DNP3 was originally developed for power grid automation
but is nowadays also used for process automation.

2.2.2. Building automation. Building automation de-
scribes the automated, centralized control of the HVAC
(heating, ventilation, and air conditioning), lighting, ac-
cess control, and fire detection systems of a building.
Building automation systems are used in both commer-
cial buildings as well in private homes. They consist of
multiple sensors and output devices, which work together
with the computer infrastructure. The sensors gather infor-
mation from the environment, send it to controllers which
analyze the data received and give commands to the output
devices. (In general, humans can also intervene through
an HMI.) An example is the fire extinction system. Smoke
and temperature sensors send the data to the controllers
which analyze it and determine that a fire has broken out
in a specific room. The controllers then stop the elevators,
isolate the area where the fire is burning by closing the
doors and start the watering system. Important to note is
that, in general, all these devices are built by different
manufacturers and use different software. Therefore, ICS
protocols deal with the integration of building automation
devices into one system, providing them with a standard-
ized data transfer format. BACnet and Niagara Tridium
Fox are protocols used for Building automation.

2.2.3. Power Grid Automation. Power grid automation
is used to supervise and automatically control the power
system using ICS devices. The protocols specialized in
this sector deal with communication between different
power stations and communication within one station. An
automated power system has three tasks: data acquisition
(the system acquires data through measuring devices and
stores it), supervision (administrators and engineers an-
alyze the data together with the computers and check if
everything works as expected), and control (the computers
or the operators of the system send instructions to power-
system devices). One station can also receive or send the
acquired data to another remote station so that outages
are better monitored. The power system automation super-
vises the whole process, from the generation of electrical
power to the delivery of it to the consumers. [4]

Protocols specialized in this industrial sector are
DNP3, ICCP, and IEC 61850 and IEC 60870-5 standards.

2.2.4. Meter Reading Automation. Meter reading au-
tomation consists of automated transfer and centralized
storage of data from metering devices that measure utility
consumption of households, businesses, and institutions.
Automated utility meters measure the use of resources
and store it. They then use an ICS protocol to send the
data through a network within regular time intervals to
the data center of the utility provider. This data is then
analyzed to check if the meter works fine and to calculate
the consumption of the customer. In many situations,
the customers are also provided with access to the data
through the internet. The automation of meter reading has
multiple benefits for both providers and consumers. The
providers can reduce their personnel costs and monitor
the devices remotely, and the customers can manage their
consumption by having access to the consumption infor-
mation. The most important protocol used for this purpose
is ANSI C12.22. OSGP (Open Smart Grid Protocol) is
another protocol that operates in both Meter Reading and

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

28 doi: 10.2313/NET-2022-07-1_06

Power Grid automation and it is used in the deployment
of electrical smart meters. [5]

3. Characteristics and Design of the most
used ICS Protocols

This section includes a detailed presentation of the
design and features of the frequently used ICS protocols:
Modbus, ICCP, BACnet, and DNP3. The first three proto-
cols are each representative of a different industrial sector.
DNP3 is used in both process automation and power grid
automation.

3.1. Modicon Communication Layer

Modicon Communication Layer (Modbus) [6] is an
application layer protocol designed by Modicon (later
bought by Schneider Electrics), first deployed in 1979.
Modbus operates by using a master-slave architecture.
There are two cases: either a Human Machine Interface
(HMI) that acts as a master and multiple Programmable
Logic Controllers (PLC) acting as slaves, or a PLC acting
as a master having other devices, like sensors, motors, or
other PLCs as slaves. Master devices can be, at the same
time, slaves of other devices. The master/slave architecture
is based on a request/reply methodology, where a master
sends a request to the slaves and the slaves send a reply to
that request. Masters can send either broadcast messages
that address all slaves or individual messages that address
an individual slave. The slaves cannot send a message un-
less they received a request that was addressed to them. [1]
Modbus uses 3 distinct Protocol Data Units (PDU) for
communication: Modbus Request, Modbus Response, and
Modbus Exception Response. The master sends a Modbus
Request at the slave including a Request PDU. The slave
receives the request and responds to it either with a Data
Response in the PDU if there is no error occurred, or with
a Modbus Exception Response if an error occurred during
the transmission. [1]

Being an Application Layer protocol, Modbus can be
easily adapted to either serial or routable network proto-
cols. RS-232 and RS-485 are used on the physical layer
for serial communication. Ethernet is used on the physical
layer for networked communication while IP and TCP are
used as protocols for the Link and Transport Layer. In
time, different variants of Modbus were developed, three
of which are Modbus RTU, Modbus ASCII, and Modbus
TCP. Modbus RTU and ASCII are used in asynchronous
serial communication while Modbus TCP is used for
routable communication. Modbus TCP has two solutions
for integrating a Modbus message to the routed Internet.
It either adds a Modbus Application Protocol header,
which includes Link and Transport layer information to
the existing serial frame keeping the original address infor-
mation and error check, or it removes the original address
information and error check, keeping the Modbus PDU
and attaching the Modbus Application Protocol header to
it. The first solution is commonly implemented in legacy
devices. The second one is preferred in the implementation
of modern devices. [1]

Since Modbus was designed for serial communica-
tion and time performance, it lacks some features that

are important when using the Internet. Modbus has no
authentication procedure and uses no encryption. It also
allows, in some cases, the serial networks to be flooded
with messages due to no broadcast suppression. [1]

3.2. Inter-Control Center Communication Proto-
col

The Inter-Control Communication Protocol (ICCP) [7]
was developed by a working group founded in 1991,
tasked by the International Electrotechnical Commission
to create a standardized real-time data exchange protocol,
which should facilitate the communication between elec-
tric power utility stations. ICCP is an application layer
protocol. It was designed to support a set of data transfer
operations between electric control centers. These oper-
ations are: establishing a connection with other control
centers, reading and sending information from and to re-
mote centers, configuring and controlling remote devices,
and controlling programs on remote centers. [1]

The ICCP is based on a client-server architecture.
The server center contains data and functions which are
accessed by the client center via a request. Most of
the implementations of the ICCP allow nowadays that a
device is both a server and a client.

The transfer procedure of the ICCP uses a bilateral
table which takes the role of an access control list. The
bilateral table has the purpose of checking the access
rights of the client that requests access to data or control.
Therefore, it strictly defines what information is accessible
to which control center. To ensure that the access rights
are agreed upon by both centers, the bilateral table entry
must match on both server and client. [1]

ICCP is a wide-area network protocol. Since it oper-
ates at the application layer, it can work with different
transport and link-layer protocols and use different physi-
cal media. ISO transport on port 102/TCP over Ethernet is
mostly used for the implementations of this protocol. [1]

Like other ICS protocols, ICCP also lacks authenti-
cation and encryption, leaving this in the hand of lower
layer protocols. ICCP is highly accessible as it operates
on wide-area networks, therefore it is susceptible to denial
of service attacks. [1]

3.3. Building Automation and Control Networks

BACnet [8] stands for Building Automation and Con-
trol Networks, and it was first presented by the American
Society for Heating, Refrigerating, and Air-Conditioning
Engineers in 1987. Buildings have nowadays a lot of
facilities offered by HVAC, access control, lighting con-
trol, elevator, and fire alarm devices. All these devices
are produced by multiple manufacturers and thus use
different operating programs and protocols. BACnet was
developed for integrating all these devices into a single
control system so that building owners do not have to be
dependent on one manufacturer or do not have to use a
different management system for every device.

BACnet uses an object-oriented model for data transfer
between system devices. The Information shared between
the devices is represented as a logical object. These objects
are abstract constructs that are characterized by a set of

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

29 doi: 10.2313/NET-2022-07-1_06

properties. They describe physical inputs, outputs, or non-
physical components like software. An example for such
an object would be a logical representation of a temper-
ature measuring device which has as property the value
of the measured temperature. The use of objects organizes
the information and standardizes the data formats that can
be transmitted. BACnet defines a set of 25 standardized
object types that offer usage in a wide area of applications.
It also allows the vendors to customize these objects by
adding specific properties to them or to create entirely new
objects. [9]

Besides the objects used for data representation, BAC-
net also provides standardized services. They are respon-
sible for the interaction within the system, describing ac-
tions that can be performed by a device. BACnet provides
a wide functionality through these services, grouped into
the following categories: object access, alarm and event
management, scheduling, trending, file configuration and
transfer, and device management. [9]

BACnet offers support for a variety of network imple-
mentations. The most used ones are BACnet/Ip (which
uses Ethernet and IP) and a low-cost implementation
called MS/TP (Master-Slave Token Protocol) (which uses
RS-485 together with twisted pair cable). MS/TP networks
are used to couple devices that transmit a low volume
of data, and which do not require high transfer speeds.
BACnet/Ip is used for high-speed transmission of larger
data blocks, providing also interface for data that has to be
routed outside the current Local Area Network segment
using IP. Specialized BACnet controllers and routers are
responsible for organizing and controlling the infrastruc-
ture of a BACnet network.

3.4. Distributed Network Protocol

The Distributed Network Protocol (DNP3) [10] was
developed by Westronic in 1990. It was designed for
communication within the electric power industry, in
environments with high electromagnetic interference but
implemented in other industries as well. [1]

DNP3 is based on a master-slave architecture similar
to Modbus. In contrast to Modbus, it allows bidirectional
communication: master–slave, slave-master. In addition,
DNP3 puts a high accent on reliability. To ensure reliabil-
ity DNP3 uses many cyclic redundancy checks (CRC), one
for the link-layer header and one for every 16 payload data
bytes. If errors are identified by the receiver when check-
ing the CRC, the message is retransmitted. Besides this,
DNP3 provides an acknowledgment mechanism to prevent
the loss of frames due to physical layer errors. The sender
of the message requests the receiver to send a confirmation
that the message was received. If no such confirmation is
received by the sender, it sends the message again. These
two safety mechanisms provide high reliability but also a
higher overhead, a fact that represents a problem in some
real-time environments. [1]

DNP3 supports multiple data types: files, counters,
analog, and binary data, and other types of data objects.
The data is structured into multiple data classes. Class
0 stands for static data. This data type is used for rep-
resenting the current values that the supervised objects
gathered, providing the master with a real-time view of
the monitored system. Classes 1 to 3 stand for event data.

Event data is time-stamped and prioritized, class 1 having
the highest priority and class 3 the lowest. Event data rep-
resents old data stored in the buffer of a remote terminal
unit (RTU). Through the time-stamp, event data offers a
historical view of the system. Unsolicited reporting is an-
other feature that DNP3 has. In contrast to Modbus, DNP3
allows slave-stations to send messages without getting a
request from their masters. This feature allows slaves to
send messages immediately as an event occurs and they
do not have to wait for the master to request their data.
Unsolicited reporting makes the system more efficient but
adds overhead to the message frames. As slaves initiate
communication and the master acknowledges receiving
the message, the frames have to include both source and
destination address. [1]

DNP3 was integrated into Internet communication by
adding an IP and TCP or UDP header to the DNP3 frame.
For a more secure Internet connection, Secure DNP3
was developed. This version of the protocol provides an
authentication mechanism. Authentication is initiated by
the receiving device. When the sender tries to access data
from the receiver, the receiver requests identification of
the sender before giving him access to the data. [1]

4. Conclusion

ICS and ICS protocols represent a major topic in
the domain of distributed systems. Automation is an
important tool in the present-day industry. Due to high
product demand, productivity and efficiency become a
must. Infrastructure is continuously growing and becomes
more complex in order to satisfy people’s needs. Without
automation, the productivity of such complex systems
would be low, control and monitoring nearly impossible.
ICS protocols are essential components of automation,
being responsible for the transfer of information between
industrial devices.

ICS protocols are designed for various industries, as
such a variety of such protocols exists. They can be
either developed by ICS device manufacturers (to serve
the devices these manufacturers build) or can be designed
for the general use of any ICS devices specialized in a
certain industry. The four industrial fields that use ICS
protocols are Process Automation, Building Automation,
Power Grid Automation, and Meter Reading Automation.
Because every industry has different performance stan-
dards, protocols must be adapted to the special needs of
every industry. Therefore, ICS protocols are, in general,
specialized for an industrial sector, with few exceptions.

As seen in the third chapter, the design of ICS proto-
cols differs from one protocol to another. Client-Server ar-
chitecture, Master-Slave architecture, or an object-oriented
methodology are three examples of design choices. In gen-
eral, these protocols operate on the application layer of the
ISO/OSI model and therefore are compatible with many
implementations on lower layers. Ethernet and TCP/IP
were added to the ICS protocols as a need to integrate
the ICS devices into the Internet.

References

[1] E. Knapp and J. Langill, Industrial Network Sekurity, 2nd Edition.
Syngress, 2014.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

30 doi: 10.2313/NET-2022-07-1_06

[2] Dragos, “ICS & IT PROTOCL SUPORT,” https://www.dragos.
com/wp-content/uploads/Dragos-Supported-Protocols.pdf, 2021.

[3] A. Mirian, Z. Ma, D. Adrian, M. Tischer, T. Chuenchujit, T. Yard-
ley, R. Berthier, J. Mason, Z. Durumeric, J. A. Halderman, and
M. Bailey, “An internet-wide view of ics devices,” in 2016 14th
Annual Conference on Privacy, Security and Trust (PST), 2016,
pp. 96–103.

[4] Wikimedia Foundation, “Power-system automation — Wikipedia,”
https://en.wikipedia.org/wiki/Power-system_automation, 20
September 2021, online, accessed on 19 December 2021.

[5] ——, “Smart meter — Wikipedia,” https://en.wikipedia.org/wiki/
Smart_meter, 22 November 2021, online, accessed on 19 Decem-
ber 2021.

[6] Modbus Org., “The Modbus Organization,” https://modbus.org/,
online, accessed on 19 December 2021.

[7] “Telecontrol equipment and systems - Part 6-503: Telecontrol pro-
tocols compatible with ISO standards and ITU-T recommendations
- TASE.2 Services and protocol,” International Electrotechnical
Commission, Standard, Jul. 2014.

[8] ASHRAE, “BACnet Website,” http://www.bacnet.org/index.html,
online, accessed on 19 December 2021.

[9] D. Fisher and PolarSoft, “How BACnet is Changing Building
Automation Networking,” The Extension. A Technical Supplement
to Control Network, vol. 8, 2007.

[10] DNP Org., “DNP.org,” https://www.dnp.org/, online, accessed on
19 December 2021.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

31 doi: 10.2313/NET-2022-07-1_06

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

32

Applications of Q-Learning to Network Optimization and Graph Problems

Marco Dollinger, Max Helm, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: dollingm@in.tum.de, helm@net.in.tum.de, jaeger@net.in.tum.de

Abstract—This paper provides a theoretical overview of
Markov Decision Processes (MDP), Reinforcement Learning
(RL) in general, and (Deep) Q-Learning in particular. Fur-
thermore, we examine the application of Deep Q-Learning in
network optimization of Software-defined Satellite-terrestrial
networks and in general graph problems like the traveling
salesman problem (TSP) and a graph representation of the
boolean satisfiability problem (SAT). Furthermore, we ref-
erence the results obtained by Deep Q-Learning approaches
to the examined application areas. Moreover, we give an
overview of recent research progress in the field of Reinforce-
ment Learning and present open questions and challenges.

Index Terms—Q-Learning, Reinforcement Learning,
Software-defined Satellite-terrestrial Networks, SAT, TSP

1. Introduction

In the recent past, Reinforcement Learning has re-
ceived extensive research interest from academia as
well as industry. In particular, Reinforcement Learning
promises meaningful advances in the field of robotics,
control theory, statistics, and economics among others.
The Google DeepMind application AlphaGo, which is
based on Reinforcement Learning, was even covered by
mainstream media for beating world-class players in the
board game Go. This paper is structured as follows:
Section 2 provides an introduction to the theoretical foun-
dations of Reinforcement Learning, and in particular to Q-
Learning which is a specific type of Reinforcement Learn-
ing. Section 3 analyzes and categorizes applications of Q-
Learning to graph problems like the traveling salesman
problem and the boolean satisfiability problem as well
as applications to network optimization on the example
of Software-defined Satellite-terrestrial networks. In Sec-
tion 4, an overview of recent developments and future
challenges of Reinforcement Learning research is given.
Lastly, Section 5 concludes the paper and summarizes the
results.

2. Theoretical Foundations

In this section, an overview of the theoretical foun-
dations of Reinforcement Learning and specifically Q-
Learning is presented.

2.1. Reinforcement Learning

Reinforcement Learning is one of the three main
paradigms of modern machine learning, next to supervised

and unsupervised learning. In Reinforcement Learning, an
agent takes actions within an environment to maximize
rewards. Usually, a Reinforcement Learning environment
is modeled as a Markov Decision Process. In [1], Watkins
defined an MDP as:

• a set of actions A
• a set of states S,
• Ra(s, s

′): a reward function that rewards the agent
when transitioning from state s to state s’ using
action a

• Pa(s, s
′) = Pr(st+1 = s′|st = s, at = a): a

probability function that expresses the probability
that a certain action a which is taken at time t in
state s will result in state s’.

It is important to note that Markov Decision Processes
satisfy the Markov Property that transitions and rewards
only depend on the current state and are independent of
previous actions or states.
Further, we will only introduce finite Markov Decision
Processes with finite sets of actions and states. The model
of an MDP is the combination of transition function and
reward function. When the model of an MDP is unknown,
Reinforcement Learning is a possible technique to find
an optimal policy ("when to choose which action"). As
described by Kaelbling et al. in [2], we can divide RL
techniques into model-free approaches and model-based
approaches.

• Model-free: learn a policy without learning the
model.

• Model-based: learn the model to derive a policy.

The goal for the RL agent is to find a policy that max-
imizes the acquired rewards until a sequence of actions
leads to a final state, or the algorithm is aborted (e.g. by
a time constraint). Figure 1 shows the general framework
for Reinforcement Learning of a Markov Decision Process
as illustrated by Wang et al. in [3].
In a Reinforcement Learning process, the term "regret"

describes the performance differences between the actual
agent and a (hypothetical) optimal agent which we aim
to minimize. A common obstacle to minimizing regret
is the tradeoff between long-term rewards (exploration)
and short-term rewards (exploitation). Exploitation means
learning from previous experiences and choosing the most
optimal action as the next decision. In contrast, explo-
ration is the process of trying new policies/decisions that
can offer a smaller immediate reward but enables the agent
to learn more information about the environment [2].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

33 doi: 10.2313/NET-2022-07-1_07

Figure 1: The Reinforcement Learning Framework [3]

2.2. Q-Learning

Q-Learning is a model-free Reinforcement Learning
algorithm that learns a controller without learning transi-
tion probabilities or rewards from the environment. The
Q-function calculates the quality of a state-action combi-
nation which is a measure of how good it is to take an
action in a specific state.

Q : S ×A→ R (1)

The learning goal is to find an optimal Q-function for
each state-action pair that can be used to achieve our goal
of maximizing reinforcement rewards. At the beginning
of learning, the Q-function might be randomly initialized.
During learning, the agent will update the Q-function with
each decision step with the following formula [1]:

Qnew(st, at)←
Q(st, at) + α · (rt + γ ·max

a
Q(st+1, a)−Q(st, at))

(2)

where:

• rt is the reward that our agent receives when
moving from state s to state st+1 using action a

• the learning rate α : 0 < α ≤ 1 defines how much
we weight "new knowledge" compared to previ-
ous experiences. This is similar to many machine
learning algorithms.

• the discount factor γ : 0 < γ ≤ 1 weighs
immediate rewards against future rewards

• maxaQ(st+1, a) is an estimate of the maximum
reward that can be obtained from state st+1

When implementing the Q-Learning algorithm in an RL
agent, it would be understandable that for every action
decision, the agent should choose the action with the
highest Q-value for the current state. However, with
this approach, the agent is purely exploiting previous
knowledge and neglects the exploration aspect of the RL
task. This problem is solved by ε-greedy Q-Learning as
proposed by Wunder et al. in [4]. In ε-greedy Q-Learning,
the agent chooses the action with maximum Q-value
with the probability of (1 − (ε(k − 1)/k) and selects
one of the remaining actions with a uniform probability
distribution. With increasing ε, the agent increasingly
explores the environment rather than exploiting its
knowledge. However, ε needs to be sufficiently small
to avoid unnecessarily increasing the learning duration.

Since in basic Q-Learning (2), we calculate the Q-
function for the whole, (sparse) action-state-matrix, the

Figure 2: An illustration of DQL. DNN: deep neural
network [5]

algorithm can become very computationally expensive.
To speed up our computations we can use Quantization
which means grouping similar actions or states together at
the cost of quantization errors. Quantization can discretize
infinite spaces or decrease the cardinality of discrete
state/action spaces. Another approach to handle large
action and state spaces is function approximation. With
function approximation, the agent does not compute the
complete action/state matrix, but rather only "estimates"
the Q-function values, for example by using neural
networks. [3]

2.3. Deep Q-Learning

Deep Q-Learning (DQL) uses a neural network to
realize non-linear function approximation which enables
efficient Q-Learning in high dimensional action and state
spaces. Figure 2 shows the general Reinforcement Learn-
ing framework with a neural network agent as illustrated
by Tham et al. in [5]. The input of the neural network
represents the current environment state, whereas the max-
imum value of the output layer encodes the next action to
take by the agent.

3. Applications of (Deep) Q-Learning

This section introduces example applications of
(Deep) Q-Learning to network optimization and graph
problems. Since the examined problems are very high-
dimensional and computationally expensive, (Deep) Q-
learning promises great performance in their respective
solutions.

3.1. Network Optimization of Software-Defined
Satellite-Terrestrial Networks (SDSTN)

One goal of network optimization is the optimal net-
work resource allocation to many different actors. This
matching problem is a high-dimensional task that can be
modeled as an MDP and therefore solved with Reinforce-
ment Learning. In other words, network optimization aims
to fulfill user requirements/requests while minimizing re-
source consumption.
As Chao et al. showed in [6], Deep Q-Learning can

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

34 doi: 10.2313/NET-2022-07-1_07

improve network resource allocation in software-defined
satellite-terrestrial networks. The physical resources of
the network are categorized in the data layer as net-
working capabilities through low earth orbiters (LEO),
caching/storage space in distributed infrastructure and
computing capacity of distributed mobile edge computing
(MEC servers). Software-defined satellite-terrestrial net-
works virtualize physical resources by a logically cen-
tralized control layer that allocates the optimal resources
to user/application requests like communication or navi-
gation tasks [7]. Since the physical network resources are
distributed over many different entities, allocating specific
devices to a user request is a high-dimensional matching
problem that can be modeled by the general reinforcement
framework in Figure 1 and thus solved by Deep Q-
Learning. The data layer of the network represents the
state S(t) at time t of the RL task, in particular the posi-
tion and availability of LEOs, the cached contents, and the
idle/occupied computing capabilities. The RL agent is the
control layer that decides for a given user u request at time
t the optimal action au(t) which includes assigning an
LEO, deciding if the requested content should be cached,
and allocating a MEC server to execute the computation
task. According to He et al. in [8], the control layer needs
to pay fees to consume the physical resources, whereas the
user u pays the control layer for executing a request. The
RL reward function calculates the ratio of fees paid by the
control layer divided by the fees paid by the user. With
increasing efficiency of physical resource consumption,
while maintaining constant user fees, the respective fee
ratio increases which rewards the agent to optimize its
allocation policy [6].
To measure the performance/efficiency of the Deep Q-
Learning approach to resource allocation, Chao et al. sim-
ulated an SDSTN with three LEOs, five MEC servers, and
five content caches. Compared to a static resource-to-user
allocation strategy, the DQL-based resource allocation
achieved greater utility per resource and thus increased
the efficiency of the network. Additionally, the authors
showed that "with the increase of training episodes, the
expected utility per resource increases" [6] which proves
that the modeled reward function can be used to optimize
the agent’s policy, and therefore optimize the network’s
allocation strategy.

3.2. Graph Problems

3.2.1. Boolean Satisfiability Problem (SAT). Given a
boolean formula, the Boolean Satisfiability Problem is
the task of finding a satisfying variable configuration.
Since SAT is NP-complete, commercial solvers rely on
heuristics to speed up finding a satisfying configuration
or proving unsatisfiability. As shown by Kurin et al.
in [9], Deep Q-Learning can potentially be applied to
commercial settings and reduce wall-clock time to solve
SAT problems. In [9], Kurin et al. introduce Graph-Q-
SAT that uses Q-Learning with graph neural networks as
function approximation. Similarly to Selsam et al. in [10],
boolean formulas in conjunctive normal form (CNF) are
represented by bipartite graphs. Since boolean formulas
vary in size and the graph changes during solving by
setting variables, the DQL input must support dynamic di-
mensionality. Therefore, Graph-Q-SAT uses Graph Neural

Figure 3: Graph representation of (x1∨x2)∧ (−x2∨x3).
The annotations are Q-function values for setting variables
to true or false respectively [9].

Networks as formalized by Battaglia et al. in [11]. Be-
sides vertices and edges, Graph Neural Networks include
annotations, which change by their operations. For exam-
ple, Figure 3 shows a possible input/output of a Graph
Neural Network of the formula (x1 ∨ x2) ∧ (¬x2 ∨ x3).
To decide the next action (setting one variable to True
or False), the agent selects the highest annotation value
of all variable nodes. In the example of Figure 3, the
agent will set x1 = True. The reward function pun-
ishes the agent for each non-terminating decision which
incentivizes the agent to find a satisfying configuration as
fast as possible. For unsatisfiable formulas, Graph-Q-SAT
will try all configurations to prove unsatisfiability [9]. To
evaluate Graph-Q-SAT, Kurin et al. trained the agent with
Random 3-SAT instances from the SATLIB benchmark. It
is demonstrated that Graph-Q-SAT outperforms Variable
State Independent Decaying Sum (VSIDS) by reducing
the required iterations to solve SAT problems by 2-3
times. VSIDS is a frequently used Conflict Driven Clause
Learning (CDCL) branching heuristic which means that
for each iteration the solver chooses a variable and assigns
a binary value, similarly to Graph-Q-SAT. In particu-
lar, Graph-Q-SAT needed less than half the iterations
of VSIDS for SAT-50-218 instances (50 variables, 218
clauses). Further important characteristics to evaluate are
the generalization properties of Graph-Q-SAT. Compared
to VSIDS, "Graph-Q-SAT has no difficulty generalizing
to larger problems, showing almost 4X improvement in
iterations for a dataset 5 times bigger than the training
set" [9] which shows great generalization to other problem
sizes of Graph-Q-SAT. Another important characteristic is
the generalization to unSAT problems (unsatisfiable SAT
instances) when trained only on SAT problems. While
Graph-Q-SAT can solve unSAT problems, its performance
is worse than on SAT problems relative to VSIDS. This is
partly because unSAT differs from SAT problems, where
proving unsatisfiability requires exhausting all possible
assignments, whereas one satisfying assignment suffices
to prove satisfiability. While Graph-Q-SAT achieved great
performance overall, Kurin et al. noted that "more work is
needed to apply Graph-Q-SAT to reduce wall clock time
in modern SAT solving settings" [9].

3.2.2. Travelling Salesman Problem (TSP). Given a
weighted graph where vertices represent cities, the trav-
eling salesman problem is the task of finding the shortest

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

35 doi: 10.2313/NET-2022-07-1_07

Hamiltonian circle. Since the TSP is NP-complete, we rely
on heuristic algorithms to efficiently solve the problem for
large graphs. Introduced by Gambardella et al. in [12], the
Reinforcement Learning-based algorithm "Ant-Q" can be
applied to the TSP and achieve competitive performance
compared to other heuristic algorithms.
Ant-Q is inspired by the "ant system" (AS) as described
by Colorni et al. in [13], and the Q-Learning algorithm
[1]. Because Ant-Q is a distributed algorithm, the perfor-
mance can be further increased by additional (distributed)
computing capacity. Given an agent k located in city r,
the agent moves to city s using the following formula:

s = argmax
u∈Jk(r)

[AQ(r, u) ·HE(r, u)] (3)

where:

• Jk(r) is the list of cities that agent k has not yet
visited.

• AQ(r, u) is the equivalent to the Q-function (2)
that expresses the usefulness of moving to city u
when located in city r

• HE(r, u) is a heuristical value that is used to
prefer small distances. E.g. by multiplying the
inverse of the distance between r and u

While Ant-Q was the best performing algorithm "com-
pared to the elastic net, simulated annealing, the self-
organizing map, and farthest insertion" [12] for specific
standard sets of the symmetric TSP (symmetric weights),
Ant-Q’s polynomial time complexity makes it impossible
to apply it to large TSPs. However, for asymmetric TSPs,
which are harder than the symmetric case, Ant-Q delivered
promising results that are usually only achieved by very
specialized algorithms [12].

4. Recent Developments in Deep Reinforce-
ment Learning Research

Hardware advances, particularly GPUs, have driven
increased interest in Deep Learning over the last decade.
As mentioned in Sections 2 and 3, Deep Neural Networks
are used for function approximation in Deep Reinforce-
ment Learning. Since function approximation made it
feasible to apply Reinforcement Learning to increasingly
large action and state spaces, DRL continues to be suc-
cessfully applied to fields like robotics, control theory,
and more. Recent examples were the super-human perfor-
mance DRL agents achieved in playing Atari games [14]
or the success of DeepMind’s AlphaGo achieving world-
class performance in the board game GO [15], which is
computationally considerably more complex than chess.
Another example is the OpenAI Gym Bipedal Robot,
which successfully applies DRL to the control of robotic
joint angles which has analog, or potentially very large,
state and action spaces [15].
However, the increasing applications of DRL have also
raised further problems and open questions which con-
tinue to drive research interest. For example, how to
secure the stability of DRL, which refers to the stability
of weights of the DNN, remains a mostly open question
[16]. Another research area is the application of transfer
learning to speed up the training process. When training
a robotic DRL agent with visual input, transfer learning

enables the agent to learn from simulated data before using
real-world data which makes training more cost-efficient
and speeds up development cycles [14].

5. Conclusion

This paper provides a theoretical introduction to Rein-
forcement Learning and in particular Q-Learning as well
as the techniques to apply Q-Learning to high dimen-
sional data through function approximation. Additionally,
Section 3 summarized possible applications and results of
Deep Q-Learning (function approximation with deep neu-
ral networks) to network optimization and graph problems.
As shown in Section 3, Deep Q-Learning outperformed
static resource allocation strategies in the simulation of
Software-defined Satellite-terrestrial networks [6]. Addi-
tionally, Deep Q-Learning promises to reduce wall-clock
time in SAT-solving [9] and asymmetric TSPs [12]. Sec-
tion 4 outlined recent research activity in reinforcement
learning and raised open questions/challenges to further
apply Deep Q-Learning in fields like robotics.

References

[1] C. Watkins, “Learning From Delayed Rewards,” 01 1989.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” CoRR, vol. cs.AI/9605103, 1996. [Online].
Available: https://arxiv.org/abs/cs/9605103

[3] H. Wang, X. Chen, Q. Wu, Q. Yu, X. Hu, Z. Zheng, and
A. Bouguettaya, “Integrating Reinforcement Learning with Multi-
Agent Techniques for Adaptive Service Composition,” ACM Trans-
actions on Autonomous and Adaptive Systems, vol. 12, pp. 1–42,
05 2017.

[4] M. Wunder, M. Littman, and M. Babes-Vroman, “Classes of
Multiagent Q-learning Dynamics with ε-greedy Exploration,” 08
2010, pp. 1167–1174.

[5] M.-L. Tham, A. Iqbal, and Y. Chang, “Deep Reinforcement Learn-
ing for Resource Allocation in 5G Communications,” 11 2019, pp.
1852–1855.

[6] Q. Chao, H. Yao, F. Yu, F. Xu, and C. Zhao, “Deep Q-Learning
Aided Networking, Caching, and Computing Resources Allocation
in Software-Defined Satellite-Terrestrial Networks,” IEEE Transac-
tions on Vehicular Technology, 04 2019.

[7] B. Yang, Y. Wu, X. Chu, and G. Song, “Seamless Handover
in Software-Defined Satellite Networking,” IEEE Communications
Letters, vol. 20, 06 2016.

[8] Y. He, F. Yu, N. Zhao, and H. Yin, “Software-Defined Networks
with Mobile Edge Computing and Caching for Smart Cities: A Big
Data Deep Reinforcement Learning Approach,” IEEE Communi-
cations Magazine, vol. 55, pp. 31–37, 12 2017.

[9] V. Kurin, S. Godil, S. Whiteson, and B. Catanzaro, “Improving
SAT Solver Heuristics with Graph Networks and Reinforcement
Learning,” CoRR, vol. abs/1909.11830, 2019. [Online]. Available:
http://arxiv.org/abs/1909.11830

[10] D. Selsam, M. Lamm, B. Bunz, P. Liang, L. Moura, and D. Dill,
“Learning a SAT Solver from Single-Bit Supervision,” 02 2018.

[11] P. W. Battaglia, J. B. Hamrick, V. Bapst, and ..., “Relational
inductive biases, deep learning, and graph networks,” CoRR, vol.
abs/1806.01261, 2018. [Online]. Available: http://arxiv.org/abs/
1806.01261

[12] L. M. Gambardella and M. Dorigo, “Ant-Q: A Reinforcement
Learning Approach to the Traveling Salesman Problem.” 01 1995,
pp. 252–260.

[13] A. Colorni, M. Dorigo, and V. Maniezzo, “An Investigation of
some Properties of an “Ant Algorithm”.” 01 1992, pp. 515–526.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

36 doi: 10.2313/NET-2022-07-1_07

[14] K. Arulkumaran, M. P. Deisenroth, and ..., “A Brief Survey
of Deep Reinforcement Learning,” CoRR, vol. abs/1708.05866,
2017. [Online]. Available: http://arxiv.org/abs/1708.05866

[15] J. Shin, T. Badgwell, K.-H. Liu, and J. Lee, “Reinforcement
Learning – Overview of Recent Progress and Implications for

Process Control,” Computers & Chemical Engineering, vol. 127,
05 2019.

[16] L. Busoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko,
“Reinforcement learning for control: Performance, stability, and
deep approximators,” Annual Reviews in Control, vol. 46, 10 2018.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

37 doi: 10.2313/NET-2022-07-1_07

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

38

Seminar Innovative Internet Technologies: Zero Knowledge Proofs

Sebastian Hohl, Filip Rezabek∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: sebastian.hohl@in.tum.de, frezabek@net.in.tum.de

Abstract—In this paper the general idea and properties
of zero knowledge proofs are discussed. The modern zero
knowledge proofs zk-STARKs, zk-SNARKs (Ligero and
Sonic) and Bulletproofs are compared regarding their need
for a trusted setup, proof length, proving time and veri-
fication time. Zero knowledge proofs are (non-)interactive
proofs that yield no information to the verifier. They are
widely useable as they exist for every problem in NP . Zero
knowledge proofs are used for many applications like signa-
tures, anonymous decentralized payments on blockchains or
verifying computations.

Index Terms—zero knowledge proof

1. Introduction

How much information have to be used to perform
a certain action and how to minimize the released
information? Any information given away might be used
for attacks and other malicious activities, so information
minimization is a fundamental security principle [1].
Especially if the aim is to convince someone of
something, minimizing the released information seems to
be hard. Zero knowledge proofs provide a solution for
this problem. The idea of zero knowledge proofs (ZKPs)
shown in [2] is that they guarantee that a polynomial
time verifier gains essentially no information from a
proof.
The verifier is only convinced that the given statement is
valid. The prover does not release its secret information.
So zero knowledge is a property a proof has. This is
a way to show that a proof does not reveal too much
information. [2, 3]
As ZKPs are well suited for the use on blockchains, they
have got more attention with the recent rise of blockchain
technology [4].
In this paper a part of the general theory about ZKPs is
introduced in Section 2. Then modern ZKP systems are
considered in Section 3 and in Section 4 applications of
ZKPs are discussed. In the last Section 5 related works
are recommended.

2. What are Zero Knowledge Proofs?

This section introduces to the basics of ZKPs. They
have an extensive theory, so more advanced topics cannot
be discussed in this brief paper. After reading this section
the reader will know the meaning of every part of the term

(non-)interactive zero knowledge argument of knowledge,
therefore this section prepares the reader for the used
terms of Section 3. At first in Subsection 2.1 the parts of a
ZKP system are discussed. Then the essential properties of
every ZKP are introduced in Subsection 2.2. Furthermore,
differences between interactive and non-interactive ZKPs
and how non-interactivity is achieved are considered in
Subsection 2.3. After that the meaning of the suffix “of
knowledge” is explained in Subsection 2.4. Finally, in
Subsection 2.5 a possible use of the functionality of ZKPs
is discussed from a blackbox perspective.

2.1. Framework

The statement to be proven is a decision problem. It
consists of a language L1 and for any given input x one
has to decide whether x ∈ L. A ZKP system consists
of such a decision problem and two programs2: One is
the verifier and has typically limited resources like a
polynomial runtime limit for its calculations. The other
one is the prover that either has more computational power
or usually a witness for the problem. The used language
and the input x are known to both verifier and prover, so
the secret information is the witness allowing to prove the
membership of x efficiently. [2, 3, 6, 7]
Polynomial runtime limits in this Section 2 are taking
the size of the common input |x| as argument of the
polynomial limiting the runtime.
For interactive ZKPs the verifier and prover communicate
in alternating rounds or in the case of non-interactive
ZKPs (NZKPs) the prover creates one proof that can be
verified without further interaction (see Subsection 2.3).
The purpose of the prover is to convince the verifier that
x ∈ L is correct without revealing more information. The
task of the verifier is to check if x ∈ L is correct with
sufficiently high probability. Both prover and verifier can
use randomness, so a recording of the view of the verifier
of a proof is a random variable. [2, 3, 6, 7] This framework
is illustrated in Figure 1.

2.2. Properties of a ZKP

A ZKP system fulfills the following three properties:
Completeness:

1. A language is a set of words over an alphabet.
2. Anything like algorithms or Turing machines or equally computa-

tionally powerful is considered according to the Church-Turing Hypoth-
esis [5].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

39 doi: 10.2313/NET-2022-07-1_08

Figure 1: The prover has to convince the verifier that the
statement is valid.

Completeness means that for x ∈ L the prover having a
witness or enough computational power can/will convince
the verifier of this correct statements. This convincing can
either be successful with sufficiently high probability or in
case of perfect completeness with certainty. This assumes
that the verifier fulfills its part of the protocol3. [2, 3, 6]
Soundness:
If the statement is not correct (if x /∈ L) the verifier should
only be convinced by any program4 with a sufficiently
low probability. This means that wrong statements are not
likely accepted. Also note that this is not defined as chance
of zero to convince the prover of a wrong statement. This
property is often weakened to computational soundness
like in Section 3. In this case the soundness property
only has to hold against programs that have polyno-
mial runtime. Therefore any program with more runtime
could convince the verifier of at least one false statement
with a higher probability. Often ZKPs with computational
soundness are called zero knowledge arguments instead
of ZKPs [3, section 2.1], like the ZKPs mentioned later
in Section 3. But the term ZKPs in this work includes
zero knowledge arguments aswell. [2, 3, 6]
Zero Knowledge:
For the zero knowledge property soundness and correct-
ness are not regarded. The prover is the same as in the
ZKP system, but the verifier can be any potentially adver-
sarial program that might try to get additional information.
The idea of [2] was that the no information5 gain of any
verifier can be defined by the notion of indistinguishability
between the distribution6 of the recorded view7 of this
verifier and another distribution that is made by a simula-
tor running in expected polynomial time. This simulator
only assumes that x ∈ L and does not use the prover
at all, so that the conclusion is that this verifier cannot
gain anything new from the proof it could not compute in
(expected) polynomial time on its own. [2, 3]
There are many variants and slightly changed definitions
for this, but two common are:

• Perfect zero knowledge: Both distributions are
identical and thus indistinguishable.

• Computational zero knowledge: Both distributions
cannot be distinguished by any algorithm with
polynomially bounded computation time except
with a negligible small probability difference.

Note that perfect zero knowledge implies computational
zero knowledge. Computational zero knowledge is the

3. A “troll” verifier could always reject.
4. This means not only the prover of the system, but every program

that can take its place.
5. except that the statement is true
6. It is a distribution as both programs might use randomness.
7. This includes everything it can read from and the communication.

most general and therefore often used as a synonym for
zero knowledge. [2, 3, 8, 9]
One disadvantage of this definition of no information
gain is that following these definitions every interactive
proof for a problem in polynomial time (P) is a ZKP, as
the verifier/simulator could solve it in polynomial time
on its own. So zero knowledge makes only sense for
problems that do need more than (expected) polynomial
time, therefore the name zero knowledge proof may be a
bit misleading.
There are many variants [3] and slight variations of these
definitions, here only the most basic can be mentioned.
Another more restrictive variant is honest verifier zero
knowledge [3, Section 3], which means that there only
has to exist such a simulator for the one verifier of the
ZKP system (e.g. any dishonest/cheating verifier may get
information).
A more restrictive definition is auxiliary input zero
knowledge, where the simulator and the verifier both get
access to a string of already known knowledge. This
means that no previous knowledge can be used by a
verifier to gain more information from the interaction
than it could compute with this previous knowledge by
itself. Auxiliary input zero knowledge implies that the
composition of ZKPs stays a ZKP. [10]
A less restrictive variant is that of witness
indistinguishability, where the used witness from a
set of possible ones cannot be determined. This can be
combined with witness hiding (e.g. no new witness can
be computed from the proof). [11]

2.3. Non-Interactive ZKP

Interactivity is sometimes too difficult or too costly
to achieve. This is especially important for blockchains
(or other similar structures) as very relevant use case of
non-interactive ZKPs (NZKPs), where the proofs must be
publicly verifiable. This means that the proof must be a
one-way message created by the prover, that is then saved
on the blockchain. This proof must be verifiable by any
participant of the blockchain without any interaction with
the prover, only using the blockchain data. [6] [4].
Only very limited languages like those in BPP8 have
NZKPs [10]. Therefore the used model has to be changed.
As in many ZKPs the verifier only sends randomly se-
lected challenges to the verifier, this random selection
could be done by a trustworthy public source of ran-
domness instead. So the prover and verifier would both
know the resulting random challenges, but there would
be no need for the verifier to send these questions to the
prover. The verifier would still receive all answers to these
challenges in the one-way proof of the prover. [7, 12]
An initial approach is to have a shared random bit string
per statement [13] that allows the creation of a ZKP
that can be verified non-interactively. As common random
strings do not simply exist, there are the following two
approaches. For each approach common data is generated
in an interactive setup at the start of the ZKP system.
After this setup the system can be used for non-interactive

8. In BPP are problems that can be solved with high probability in
probabilistic polynomial time.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

40 doi: 10.2313/NET-2022-07-1_08

proofs, even by non-participants of the setup.
One option is the Common Reference String model, where
from a distribution a common string can be generated
[14]. But this requires a trusted setup of the distribu-
tion. The trusted setup of a NZKP system consists of
several participants9 that each generate their own secret
and use these in an interaction that is used to create the
distribution. In the best case these individual secrets are
destroyed immediately. But if anyone gets all those secrets
(for example if all participants collude) the soundness and
the zero knowledge property are no longer guaranteed [7,
14]–[16].
Another option to get NZKPs is to use the Fiat-Shamir
heuristic from [12], which replaces the random decisions
of the verifier by a hash function over the parameters of
the proof. As this requires no trust in the confidentiality
of a setup this is called transparent setup instead [6].
This function is used instead to make the choices that
the verifier would do randomly. The hashfunction is not
selected by the prover, but it is part of the common shared
data. [12, 17, 18]
Although there is some controversy about it, this heuristic
is secure for honest verifier ZKPs according to [18] in the
Random Oracle Model.

2.4. Proof of Knowledge

Many ZKPs10 are ZKPs of knowledge. Proof of knowl-
edge [19] intuitively means that the prover proves its
knowledge about a witness usable to prove the given
problem in polynomial time. Therefore some (explicit or
extractable) knowledge is guaranteed to be possessed by
the prover. This can be formalized by defining another
probabilistic polynomial algorithm extracting the witness
using the prover as an oracle machine. [19]

2.5. Example: Blackbox Workflow of a ZKP

The properties mentioned before are about the require-
ments a ZKP should fullfill, not about how one would use
a ZKP in a concrete way. As even simple examples of
ZKPs are too long for this paper, this is now discussed
from a blackbox perspective and assumes that eventual
setups for NZKPs are already done. In Figure 2 this high-
level view is depicted for non-interactive ZKPs and to
its parts are now referred to with (1) to (8). At first
(1) the statement over the common input is transformed
into the input type usable by the zero knowledge proof
(2), in most cases this is some low level representation
like boolean or arithmetic circuits. These are circuits over
finite fields. For the circuits the satisfiability problem11

is to be proven. There are programs to transform from
higher level languages like TinyRAM (a small subset of
the programming language C) into this input format [4].
The resulting number of gates |C| of the circuit C is one
variable of the proof length and costs as shown in Section
3. This problem representation is then used by the prover

9. This group does not have to consist of everyone that ever uses the
system. It can be a reasonably sized subset balancing the trustworthiness
of the setup and setup costs.

10. including the ones presented in Section 3
11. Showing that there exists inputs to the circuit so that the specified

output (e.g. 1 for boolean circuits) is achieved.

Figure 2: A high level view of the usage of non-interactive
ZKPs.

(6) to either do an interactive proof or to generate the
non-interactive proof over the common input (3) and its
private information (4) using the proving key of the setup
data (5). The verifier checks this (non-)interactively using
(the common verification key (7) of the setup data and)
the input data of the proof (8). [4, 6, 7].
Note that for statements like that a transaction on a
blockchain 12 [20] is correct, data (either public or com-
mitted13) of that blockchain is part of the common input
of the proof, so the proof refers to that specific blockchain.
The user can formulate the statements on a higher level
language and let the ZKP system do the complex math-
ematical part. Even without deep mathematical under-
standing of ZKPs usage of a provided implementations
is possible. For such implementations see [4].

3. Examples of Modern ZKPs

In this section ZKPs are compared regarding their
capabilities. This is a limited and simplified selection
due to the complexity and extent of the topic. For this
the popular term zk-SNARKs is introduced in Subsection
3.1. Then newer ZKPs called zk-STARKs are covered in
Subsection 3.2. The popular ZKP Bulletproof and Ligero
as zk-SNARK without and Sonic as a zk-Snark with
trusted setup are discussed in the remaining Subsections.

3.1. zk-SNARKs

Zero Knowledge Succinct Non-Interactive Argument
of Knowledge (zk-SNARKs) is a common term for
NZKPs. After Section 2 only the word succinct has
to be explained, which means that the proof size and
verification time are less than linear in the input size or
even constant. Some zk-SNARKs use trusted setups like
Sonic [22], while more recently zk-SNARKs without
trusted setup (transparent setup or also interactively
useable) like Ligero [23] have been created. [4, 6, 24]

3.2. zk-STARKs

Zero Knowledge Scalable Transparent Arguments of
Knowledge (zk-STARKs) use cryptographic hashfunctions

12. or a similar system like central signature authority [12], as long
as provers and verifiers trust the integrity of the data provided by it

13. Committing data means to use a one-way hashfunction so that
the given argument cannot be changed without altering the hash, but the
hash also contains no useable information about the used argument [21].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

41 doi: 10.2313/NET-2022-07-1_08

for their security assumptions. Quantum computers cannot
find collisions for these hashfunctions efficiently [25]. For
this reason zk-STARKs are believed to be more resistant to
quantum computers than other ZKPs. For non-interactive
proofs they use the Fiat-Shamir heuristic. Scalability
means quasilinear proving time (n · polylog(n)) and
polylogarithmic verification time. In [26, 27] zk-STARKs
are defined and some are constructed. Their new feature
is the combination of scalability on both the provers and
verifiers side combined with their transparency. Thus their
prover timer outperforms zk-SNARKs (or Bulletproof)
[26, Section 1.3]. But the proof sizes of STARKs are
significantly larger for small input sizes (like validating
blockchain transactions), which make them less suitable
for this common use case on blockchains. [24, 26, 27]

3.3. Bulletproof

Bulletproof [28] is a ZKP that is used to prove that
a committed secret value v ∈ Zp is in a given range
[0, 2n − 1]. Bulletproof relies on the Discrete Logarithm
Problem as security assumption. Bulletproof has the fea-
ture to accumulate m range proofs into one bigger range
proof with a smaller total size. The size of the proof14

consists of 2(log2(n) + log2(m) + 4) elements of G and
always 5 elements of Zp. Also a multi party protocol was
proposed [28, section 4.5] that can be used for merging
multiple proofs of multiple parties while each party keeps
their secret with linear communication in the number
of proofs m and a logarithmic number of rounds in n.
Therefore the total size of the accumulated proof grows
logarithmic per additionally range proof over [0, 2n − 1].
More generally Bulletproof can be used to prove that a
given computation over an arithmetic circuit C is correct.
The computation times needed for prover and verifier are
each linear in n respectively |C| [4, table 3]. Also the non-
interactivity is achieved using the Fiat-Shamir heuristic, so
Bulletproof requires no trusted setup. [28]

3.4. Ligero

Ligero [23] is a zk-SNARK made non-interactive
with a transparent setup using the Fiat-Shamir transform.
Like zk-STARKs its security assumption is based on
cryptographic hash functions. It is used to verify for a
given arithmetic circuit C, which checks the membership
of a language L in NP , whether an input x is in L. The
sublinear proof size is in Θ(

√
|C|), therefore Ligero is

called a succinct non-interactive argument of knowledge
(zk-SNARK). Both the running times of the verifier and
prover are in O(|C| · log(C)) [4, table 3]. This protocol
can also be used with a multi-party protocol merging
multiple instances for a better amortized run time for the
verification. [23]

14. The proof size is the length of the communication between prover
and verifier in the interactive case, otherwise the length of the one-way
message.

3.5. Sonic

Sonic is a zk-SNARK with trusted setup. The proof
size is constant in regard to the input. The proving time
is in |C| log |C| as well as the costs of the universal
updatable trusted setup. Updatable means that the trusted
setup can continue indefinitely, i.e. new participants
can be later added to increase the trust in the setup.
The universal setup has not to be repeated for different
circuits, instead all circuits with circuit sizes up to a at
the setup fixed size are allowed. The verification time is
linear to the size N of the inputs of the gates and also
logarithmic in |C| [4, Table 3]. The security bases on the
Algebraic Group Model. [22]

3.6. Comparison

In Table 1 are the asymptotic runtimes and proof
sizes of the mentioned ZKPs depicted. Be aware that
for small input sizes zk-STARKs create proofs of sig-
nificantly larger sizes than Bulletproof or zk-SNARKs
(including Sonic and Ligero). Because zk-SNARKs were
introduced several years earlier than zk-STARKs, they
have more available implementations to use. As shown
these algorithms have different strengths and should be
chosen depending on the use-case. Note that this is only
a limited selection of the many ZKPs, more are listed in
[4].

4. Use Cases

It was shown in [29] and [30] that every problem in
NP 15 has computational (non-)interactive ZKPs. Also
the ZKPs in 3 all support at least all problems in NP as
input. Of this wide applicability of ZKPs some potential
use cases are discussed next.
Generally, there are a lot of applications of ZKPs
on blockchains like anonymous payments, voting,
age verification, risk assessment, or auctions [7, sec.
Zero-Knowledge Proof Applications], smart contracts,
verifying computations or delegated computing [4].

4.1. Signatures

Like shown in [12] one can create non-interactive
signatures having a zero knowledge property, issued by a
central authority that is not required for authentication.
There are interactive zero knowledge undeniable
signatures like in [31]. They cannot be verified without
the signer, making it much harder (or not possible) for
anyone but the private key owner to convince a third
party that a message is signed correctly. Besides proving
the correctness of a signed message, they can also be
used to prove (also a ZKP) that a message is not correctly
signed to protect the signer against false accusations. [31]

15. Decision problems that can be solved in exponential time and
checked with a witness in polynomial time

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

42 doi: 10.2313/NET-2022-07-1_08

Name Trusted Setup Proof Size Proving Time Verification Time
Bulletproof No O(logM) O(M) O(M)

Ligero No O(
√
|C| |C| log |C| |C| log |C|

STARK No O((log |C|)2) O(|C| (log |C|)2) O(|C|)
Sonic Yes O(1) |C| log |C| N + log |C|

TABLE 1: Table part from [4, Table 3], |C| is the number of gates of the computation expressed as arithmetic circuit,
M the number of And gates in it, N the length of the inputs and outputs of the computation [4, Table 3].

4.2. Private Transactions on Blockchains

Digital currencies like Bitcoin are pseudo-anonymous.
The transactions between all addresses are publicly visible
to verify the correctness of the transactions. If an identity
is linked to an address, the transaction history belonging
to that address is retraceable. Using a new address for
each new transaction or coin mixers makes this harder,
but does not implicitly guarantee anonymity. [32]
Digital currencies for decentralized and trustless payments
like the protocol Zerocash described in [20], solve this
problem with the use of zk-SNARKS. Such currencies
thereby offer a possibility for more anonymous (hidden
amount, origin and destination) payments. The payment
is found by scanning over the block chain using the
corresponding private key searching for a commitment to
the related address. [20]
Furthermore, for such currencies a trusted setup might be
a disadvantage. As this requires trust in the correctness of
key ceremonies with a big number of participants like
that of Zcash that are only insecure if all participants
are dishonest [16]. So instead NZKPs with a transparent
setup might solve this issue. For example the previously
mentioned Bulletproof which requires no trusted setup is
used by the crypto currency Monero to prove that the sum
of committed inputs is greater than the committed outputs
of a transaction. [28, 33].

4.3. Verifying Computations

Even for checking computations on a von Neumann
RISC architecture like vnTinyRAM in [34] verifying
the computations via generating arithmetic circuits is
possible for moderate code lengths. In this scenario both
client and server know a function F and a given input
x, the server knows or computes a secret w so that
z = F (x,w). The zk-SNARK used enables verifying the
correct computation while the server keeps its secret and
also the verification needs only very limited ressources.
The cited work tests up to 32.000 machine cycles and
10.000 instructions on a desktop computer, achieving
universality of the computations as only the time bound
of the program execution has to be known ahead of the
proof. But the work also shows that ZKPs for universal
computations are still expensive for bigger and more
complex programs. [34]

5. Related Works

A survey paper about ZPKs and the more recent
development is [35]. An extensive document about the
concepts of ZKPs is [6]. For a basic overview of some of
the theory of interactive ZKPs see [3]. A basic example of

a ZKP can be found in [29, Protocol 4]. [36] gives an good
listing of some the theory of NIZKPs and the research
history. [37] is a short overview of the use of NIZKPs in
Blockchains. The later mentioned paper about Bulletproof
[28] is also possibility to get a better understanding of a
modern NIZKPs. For an overview of some of the many
use cases and implementations of non interactive zero
knowledge proofs for blockchains see [4].

6. Conclusion

As shown ZKPs have a complex theory and wide
applicability. The aim of these algorithms is to minimize
released information that is not to be proven, but is needed
to prove something. The basic zero knowledge, soundness
and completeness properties should definitely be fulfilled
by all ZKPs. Especially the zero knowledge property
shows a way to formalize that no usefull information ex-
cept the validity of the statement to be proven is released.
ZKPs are an interesting topic and wide research field
with much theory and an important part of cryptography.
The use of this technology on blockchains is a promising
ongoing development as well as the improving NZKPs
with transparent setup removing the trust issues of trusted
setups. Also its many use cases like signatures, crypto
currency transactions or even verifying computations are
very versatile.

References

[1] C. Jackson, S. Russell, and S. Sons, Security from
First Principles. Sebastopol, CA, USA: O’Reilly Media,
Inc. [Online]. Available: https://www.oreilly.com/library/view/
security-from-first/9781491996911/ch04.html

[2] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge
complexity of interactive proof systems,” SIAM Journal on
Computing, vol. 18, no. 1, pp. 186–208, Feb. 1989. [Online].
Available: https://doi.org/10.1137/0218012

[3] O. Goldreich, “Zero-knowledge twenty years after its invention,”
01 2003.

[4] J. Partala, T. Nguyen, and S. Pirttikangas, “Non-interactive zero-
knowledge for blockchain: A survey,” IEEE Access, vol. PP, pp.
1–1, 12 2020.

[5] B. J. Copeland, “The Church-Turing Thesis,” Jan 1997,
[Online; accessed 5. Dec. 2021]. [Online]. Available: https:
//plato.stanford.edu/entries/church-turing

[6] ZKProof, “Zkproof community reference,” December 2019.

[7] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey
on zero-knowledge proof in blockchain,” IEEE Network, vol. 35,
no. 4, pp. 198–205, 2021.

[8] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian,
S. Micali, and P. Rogaway, “Everything provable is provable in
zero-knowledge,” in Advances in Cryptology — CRYPTO’ 88,
S. Goldwasser, Ed. New York, NY: Springer New York, 1990,
pp. 37–56.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

43 doi: 10.2313/NET-2022-07-1_08

[9] J. Thaler, “Proofs, arguments, and zero-knowledge,” August
2021, [Online; accessed 5. Dec. 2021]. [Online]. Available:
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

[10] O. Goldreich and Y. Oren, “Definitions and properties of
zero-knowledge proof systems,” Journal of Cryptology, vol. 7,
no. 1, pp. 1–32, Dec. 1994. [Online]. Available: https:
//doi.org/10.1007/bf00195207

[11] U. Feige and A. Shamir, “Witness indistinguishable and witness
hiding protocols,” 1990.

[12] A. Fiat and A. Shamir, “How to prove yourself: Practical
solutions to identification and signature problems,” in Advances
in Cryptology — CRYPTO’ 86. Springer Berlin Heidelberg,
1987, pp. 186–194. [Online]. Available: https://doi.org/10.1007/
3-540-47721-7_12

[13] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in Proceedings of the twentieth
annual ACM symposium on Theory of computing - STOC '88.
ACM Press, 1988. [Online]. Available: https://doi.org/10.1145/
62212.62222

[14] R. Canetti and M. Fischlin, “Universally composable commit-
ments,” in Advances in Cryptology — CRYPTO 2001, J. Kilian,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.
19–40.

[15] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers,
“Updatable and universal common reference strings with applica-
tions to zk-snarks,” in Advances in Cryptology – CRYPTO 2018,
H. Shacham and A. Boldyreva, Eds. Cham: Springer International
Publishing, 2018, pp. 698–728.

[16] “Parameter Generation - Zcash,” Aug 2019, [Online; accessed
13. Dec. 2021]. [Online]. Available: https://z.cash/technology/
paramgen

[17] R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum,
R. D. Rothblum, and D. Wichs, “Fiat-shamir: from practice
to theory,” in Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing. ACM, Jun. 2019. [Online].
Available: https://doi.org/10.1145/3313276.3316380

[18] D. Pointcheval and J. Stern, “Security proofs for signature
schemes,” in Advances in Cryptology — EUROCRYPT ’96,
U. Maurer, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 387–398.

[19] M. Bellare and O. Goldreich, “On defining proofs of knowledge,”
in Advances in Cryptology — CRYPTO’ 92, E. F. Brickell, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993, pp. 390–420.

[20] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza, “Zerocash: Decentralized anonymous
payments from bitcoin,” in 2014 IEEE Symposium on Security and
Privacy, 2014, pp. 459–474.

[21] A. Jain, S. Krenn, K. Piertrzak, and A. Tentes, “Commitments and
effcient zero-knowledge proofs from learning parity with noise,”
2021.

[22] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn, “Sonic:
Zero-knowledge snarks from linear-size universal and updateable
structured reference strings,” Cryptology ePrint Archive, Report
2019/099, 2019, https://ia.cr/2019/099.

[23] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam,
“Ligero,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, Oct. 2017.
[Online]. Available: https://doi.org/10.1145/3133956.3134104

[24] “Zero-Knowledge Proofs: STARKs vs SNARKs | ConsenSys,”
Dec 2021, [Online; accessed 11. Dec. 2021]. [On-
line]. Available: https://consensys.net/blog/blockchain-explained/
zero-knowledge-proofs-starks-vs-snarks

[25] “Defeating Quantum Algorithms with Hash Functions,”
Feb 2017, [Online; accessed 25. Feb. 2022]. [On-
line]. Available: https://research.kudelskisecurity.com/2017/02/01/
defeating-quantum-algorithms-with-hash-functions

[26] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,”
Cryptology ePrint Archive, Report 2018/046, 2018.

[27] ——, “Scalable zero knowledge with no trusted setup,” in
Advances in Cryptology – CRYPTO 2019. Springer International
Publishing, 2019, pp. 701–732. [Online]. Available: https:
//doi.org/10.1007/978-3-030-26954-8_23

[28] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and
G. Maxwell, “Bulletproofs: Short proofs for confidential transac-
tions and more,” Cryptology ePrint Archive, Report 2017/1066,
2017, https://ia.cr/2017/1066.

[29] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that
yield nothing but their validity or all languages in NP
have zero-knowledge proof systems,” Journal of the ACM,
vol. 38, no. 3, pp. 690–728, Jul. 1991. [Online]. Available:
https://doi.org/10.1145/116825.116852

[30] M. Blum, A. de Santis, S. Micali, and G. Persiano, “Noninteractive
zero-knowledge,” pp. 1084 – 1118, 1991.

[31] D. Chaum, “Zero-knowledge undeniable signatures (extended ab-
stract),” in Advances in Cryptology — EUROCRYPT ’90, I. B.
Damgård, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1991, pp. 458–464.

[32] F. Reid and M. Harrigan, “An analysis of anonymity in the bitcoin
system,” in 2011 IEEE Third International Conference on Privacy,
Security, Risk and Trust and 2011 IEEE Third International Con-
ference on Social Computing, 2011, pp. 1318–1326.

[33] “Moneropedia: Bulletproofs,” Dec 2021, [Online; accessed
13. Dec. 2021]. [Online]. Available: https://web.getmonero.org/
resources/moneropedia/bulletproofs.html

[34] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct
Non-Interactive zero knowledge for a von neumann architecture,”
in 23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, Aug. 2014, pp.
781–796. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/ben-sasson

[35] S. Kassaras and L. A. Maglaras, “Zkps: Does this make the
cut? recent advances and success of zero-knowledge security
protocols,” CoRR, vol. abs/2006.09990, 2020. [Online]. Available:
https://arxiv.org/abs/2006.09990

[36] H. Wu and F. Wang, “A survey of noninteractive zero knowledge
proof system and its applications,” TheScientificWorldJournal, vol.
2014, p. 560484, 05 2014.

[37] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey
on zero-knowledge proof in blockchain,” IEEE Network, vol. 35,
no. 4, pp. 198–205, 2021.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

44 doi: 10.2313/NET-2022-07-1_08

SCTP: Are you still there?

Zeynep Ince, Richard von Seck∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: zeynep.ince@tum.de, seck@net.in.tum.de

Abstract—Stream Control Transmission Protocol (SCTP) is
a transport layer protocol initially designed for telephony
signalling over IP networks. It is similar to Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP).
Moreover, it has some crucial differences making the pro-
tocol outstanding such as multihoming and multistreaming.
Through these features, multiple streams can be handled
simultaneously, and the transmission goes on in case of a
failure without interruption. So why is SCTP less used and
known compared to TCP and UDP? This paper will try to
answer this question in more detail by comparing SCTP with
other transport protocols and detailing the current state-of-
art of SCTP research.

Index Terms—Stream Control Transmission Protocol, mul-
tihoming, multistreaming, Transmission Control Protocol,
User Datagram Protocol

1. Introduction

Reliable communication has been provided by Trans-
mission Control Protocol (TCP) and unreliable commu-
nication has been provided by User Datagram Protocol
(UDP) for many years [1]. However, because of the
limitations they imposed, a third protocol named Stream
Control Transmission Protocol was introduced. SCTP is a
connection-oriented, message-based communication pro-
tocol in the transport layer that can handle multiple si-
multaneous streams. In 2000 it was standardized by the
Internet Engineering Task Force (IETF) and the starting
point of SCTP was to transport Public Switched Telephone
Network (PSTN) signalling messages over IP networks
[2]. TCP and UDP are the underlying concepts that made
SCTP possible in the first place by combining their best
features [3]. All the similarities aside, SCTP has some
distinct differences and these features are multihoming
and multistreaming. However, SCTP is still less known
and used compared to TCP and UDP. In this paper, we
will discuss the reason behind this situation by identifying
the current state-of-the-art of SCTP research.

The remainder of this paper is organized as follows:
First, we will take a brief look at the SCTP terminology
in Section 2 and then compare SCTP with TCP and UDP
in Section 3. Next, we will list some arguments about
why it is less known and used in Section 4. In Section
5, we will provide an overview of the current use cases
and actual specifications of SCTP and systems trying to
optimize their performances using it. Finally, we will close
with some conclusions and a brief overview in Section 6.

2. Brief Terminology of SCTP

Chunk: A unit of information that is sent within a
packet.

Association: A protocol relationship between the two
endpoints that can be uniquely identified by the transport
addresses used by them; a broader concept than a connec-
tion [2].

Heartbeat: A type of chunk to check the availability
of the idle destination addresses that are part of the
built association. If the heartbeat acknowledgement is not
returned, that particular IP address will be declared as
"down" [4].

Stream: Unidirectional logical channel established
from one endpoint towards another [3].

SACK: Selective Acknowledgment. When a message
is received by one of the endpoints, the other endpoint
should be notified back with a SACK [3]. A retransmission
is only generated when SACKs report missing chunks [5].

Multihoming: Enables the SCTP host to establish
an association with another host over multiple interfaces
identified by different IP addresses [4].

Multistreaming: The capability to transmit several in-
dependent streams in parallel, meaning that each message
sent to a data stream can have different final destinations
[6].

2.1. Four-Way-Handshake

Since connections are initialized between unreliable
hosts and over the unreliable internet communication sys-
tem, a mechanism is needed to prevent errors [7]. The
mechanism to establish an SCTP association is called
four-way-handshake. The process takes place following
these steps:

Figure 1: SCTP Four-Way-Handshake [8].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

45 doi: 10.2313/NET-2022-07-1_09

1) The client sends an INIT signal to the server to
start an association.

2) Once the server receives the INIT signal, it sends
back an INIT-ACK response to the client, which
contains a state cookie. This state cookie consists
of a timestamp, referring to the life span of it and
a Message Authentication Code (MAC), which is
created by the server, including a secret key that
only the server knows.

3) When the INIT-ACK signal is received, the client
sends a COOKIE-ECHO response to echo the
state cookie.

4) Subsequently, the authenticity of the state cookie
is verified by using the secret key the MAC
encapsulates. Before sending the COOKIE-ACK
response, the server allocates the resources and
the association’s state is now ESTABLISHED.

The server does not keep any state information until the
very end and the full handshake should be completed in
order to have an actual state maintained on the server and
no resources are allocated until the COOKIE-ECHO mes-
sage is received by the receiver [8]. Moreover, when an
endpoint decides to perform a shutdown, the association
on each one of them will stop accepting new data and
only deliver data in queue before closing [2].

3. Comparison of Features

Instead of listing the features of all protocols individ-
ually, we start by comparing them to have an overview of
how they are positioned towards each other. See Table 1
for a brief overview.

Service/Features TCP UDP SCTP
Transmission Byte-oriented Message-oriented Message-oriented
Connection management Connection-oriented Connectionless Connection-oriented
Reliability Reliable Unreliable Reliable
Data delivery Strictly ordered Unordered Partially ordered
Multistreaming No No Yes
Multihoming No No Yes

TABLE 1: Comparison of Protocols

Byte-oriented: TCP does not stream bytes over the
Internet, opposing what it can be understood from this
term. Enough bytes from the sending process are buffered
by the TCP on the source host in order to fill a packet.
This packet is then sent to its peer on the destination post.
TCP there empties the contents into a receive buffer [7].

Message-oriented: Transported sequences of mes-
sages are in groups of bytes. In SCTP, these groups are
called "chunks", as mentioned in Section 2.

Connection-oriented: Before the data is being ex-
changed, a connection should be established. In TCP this
process is called the Three-Way-Handshake and in SCTP,
as mentioned in Section 2.1, it is called the Four-Way-
Handshake.

Connectionless: The transmission from the source to
the destination starts right away, without verifying the
state of the server.

3.1. TCP and UDP

TCP was standardized in 1981 and it has been the
most widely chosen option for transmitting data ever

since [9]. It is a connection-oriented, reliable protocol
that guarantees none of the transmitted packets will get
lost: TCP can retransmit them. In this sense, packets are
sent strictly ordered and the receiver collects and reorders
these segments conveniently. When a failover situation
occurs where the data could not arrive in order, the TCP
stack will wait for the retransmission and others are held.
This is the situation that we call HOL blocking (Head of
Line blocking) because of the strict order-of-transmission
delivery of data [1].

On the other side, UDP is a connectionless protocol
and packets do not necessarily arrive in order. The connec-
tion establishment is not checked like in SCTP and TCP.
Packets can quickly go missing and the sender will not
know whether the transmission is completed either, mak-
ing UDP an unreliable protocol. The head-of-line blocking
problem does not occur in UDP as well. Furthermore, TCP
is byte-oriented while UDP is message-oriented.

3.2. UDP and SCTP

UDP is a connectionless, unreliable transport proto-
col contrary to SCTP. However, they are both message-
oriented. In SCTP, an association is established after
a four-way-handshake, but in UDP, no such process is
needed. In UDP, the transmission starts right away with-
out checking if it is received or not and there is no
retransmission process either. It is helpful for cases where
we need live real-time connections and retransmission is
unnecessary. For example, retransmitting the position of
an online game character from 5 seconds ago is not logical
since it is not valid anymore. On the other side, SCTP
can detect the loss of a packet rapidly in favor of SACK
usage. Moreover, the UDP Header is much smaller when
compared with SCTP and TCP; this makes UDP lighter
and consequently attractive for fast and efficient handling
of audio, image and video data traffic [10].

3.3. TCP and SCTP

TCP and SCTP are very similar protocols, and both
of them are reliable and connection-oriented. SCTP was
designed to push the edge of the envelope of TCP. The
useful features of TCP were inherited and new features
were added [11].

TCP uses a three-way-handshake where initial se-
quence numbers are being exchanged and SCTP uses
a four-way-handshake including a signed cookie, as de-
scribed in Section 2.1. However, the SCTP connection
process is more complex [11] and the use of a cookie
improves the vulnerability of TCP to SYN flooding [2].
Correspondingly, the security of the protocol is improved.
[8].

SCTP is message-oriented, unlike TCP, which is byte-
oriented. However, SCTP transmits its packets in chunks
and TCP buffers enough bytes to fill a packet before
sending, as described at the beginning of this section.

The two most important differences of SCTP com-
pared to TCP are the multihoming and multistreaming
features. In a traditional TCP connection, an IP address
and a port is chosen from each end and with them, packets
are sent and received. However, multihoming allows an
SCTP association over multiple interfaces. Between the

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

46 doi: 10.2313/NET-2022-07-1_09

different path options, a primary path is selected and
the availability of the rest is constantly checked with
heartbeats. If a failover situation occurs with the primary
path, one of the other options is used and the transmission
will go on without interruption [6]. Thus, the loss of a
message does not affect the rest of the deliveries and the
head-of-line blocking problem is avoided in SCTP. By
means of this, the fault tolerance [12] and the robustness
of the server is improved [8]. That is why it is a desired
functionality [6].

Moreover, TCP has a strict order-of-transmission de-
livery mechanism [4] and SCTP has reliable ordered
delivery and reliable unordered delivery services at the
same time due to the multistreaming feature. This fea-
ture makes the transmission of several independent data
streams in parallel possible. [8]. SCTP determines in
which order to present the messages to the destination
and this approach eliminates the head-of-line-blocking
delay [4] that is caused by the strictly ordered delivery
[1]. This combination of streams and unordered delivery
simultaneously is helpful for Internet applications to have
a better performance when a failover occurs, such as a
network loss. By courtesy of this the overall latency is
reduced and transmission efficiency is improved [3]. These
features make SCTP valuable for real-time data transfers
such as audio and video.

Taking into account all of these, we can say that SCTP
is more robust and secure than TCP, under the assumption
that the introduced features are used [13].

4. Why SCTP is less used

Even though all the advantages SCTP has over TCP, it
is less known and used. The main reason behind this is that
the client and server applications might need modifications
such as upgrading IP stacks to use SCTP instead of TCP
or UDP [9] and this would be too much work. In-network
devices like NAT gateways, does not support SCTP well
[14]. Moreover, TCP was first-to-market and for the most
part, TCP is sufficient and works just fine. That is why
TCP was the dominant transport protocol for a very long
time [9].

In 2009, Google introduced a new transport proto-
col called QUIC: Quick UDP Internet Connections. It
is a multiplexed low-latency transport protocol designed
to improve the web performance [15]. As the Internet
traffic increases rapidly, it is necessary to look for new
technologies [16]. The most crucial advantage QUIC has
over SCTP is that QUIC does not require changes to the
operating system and this makes QUIC easily deployable
with applications that are already in use. Briefly, QUIC
can handle multiple request/response pairs concurrently on
a single connection by using multiple streams and a packet
loss does not block the rest of the connection [17], but it
is still under active development and some specifications
are still missing. Considering the apparent dominance of
Google over the Internet, QUIC is widely used in Chrome
clients [14]. This helped SCTP remain its obscurity too.

5. Current and Possible Use Cases

Still, SCTP has some essential use cases and it helps
some systems optimize their performances. Multipath

transport layer protocols such as SCTP are gaining in-
creased attention every passing day [18]. SCTP is recently
supported by a variety of operating systems, such as AIX,
Solaris, Linux and Windows: Microsoft provides user
space for SCTP implementations in the Windows family
too [19].

5.1. Long-Term Evolution (LTE)

Diameter Protocol in LTE provides authentication,
authorization, and accounting (AAA) services. LTE is
closely related to 4th generation mobile data transfer,
which gives cause for higher data transmission. The multi-
streaming feature of SCTP is helpful at this point, making
SCTP the up-front transport protocol being used to trans-
port messages. Mobile consumers expect high-quality data
experiences and invisible high-speed access.

5.2. Concurrent Multipath Transfer (CMT)

CMT is a process of using multiple networks to trans-
fer data instead of selecting a single network interface
for transmission. Several pieces of research have been
done to test the multiple-path transmission of SCTP with
CMT [19]. However, considering the dominance of TCP
as a transport protocol, a proxy technique is needed to
translate the TCP flows into SCTP streams without being
obligated to make significant changes at end hosts or
servers. Tachibana et al. [9] claim that the multihoming
feature of SCTP would increase the aggregated throughput
and the robustness of communication.

Liao et al. [5] introduced a modification of SCTP
called cmpSCTP. With this solution, the transmission is
updated based on real-time and all of the available paths
are used simultaneously, unlike SCTP, where a chosen pri-
mary path is used. Moreover, as the states of paths change,
the transmission strategy is also changed by cmpSCTP,
and the flows between paths can be switched smoothly.
Cloud computing is one of the examples where CMT and
SCTP are used together by combining the multihoming
feature of SCTP and multipath transfer technology of
CMT [19].

5.3. Internet of Things (IoT) Sensors

The IoT is a giant network with connected devices
and these devices share the data they collect over their
sensors to help us understand and measure the planet
around us. Sensors are embedded in most physical devices
such as our smartphones and generate large amounts of
real-time data. These are collected in sink nodes and
transmitted over heterogeneous networks afterwards. It is
essential that the packet loss rate is as low as possible
and transmission quality is high. For this reason, the
transport layer protocol should be chosen wisely. A switch
of TCP and SCTP might be suitable for this case. Sun
et al. [11] compared the performances of both protocols
and proposed that SCTP is reliable, but TCP has higher
transmission stability, which brought the idea of combin-
ing only the better sides of both protocols as a method
out. This rendered the network’s state prediction possible
considering the packet loss rate. By courtesy of the multi-
streaming feature, multiple requests can be processed and

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

47 doi: 10.2313/NET-2022-07-1_09

with the multihoming feature the transmission efficiency
was improved. Considering both of these features belong
to SCTP, it can also be used in the field of IoT.

5.4. Session Initiation Protocol (SIP)

SIP is a protocol for managing communication ses-
sions such as voice and video calls over internet telephony
or mobile phone calls over LTE. Large amounts of data
are exchanged between SIP entities and the protocol is
independent of the underlying transport protocol. It can be
used with TCP, UDP or SCTP. However, choosing SCTP
as the transport protocol would provide some crucial
advantages [12].

As we have mentioned before, SCTP uses Selective
Acknowledgement (SACK) to generate the retransmission
of a missing chunk and retransmissions take place only
after SACKs report them. The loss of a SIP message is
detected immediately. Moreover, this loss does not affect
the rest of the transmissions, so if multiple transactions
are happening at the same time SCTP will handle them
with relative ease. SIP entities choose the server on the
next-hop by checking if it supports SCTP to establish an
association [12].

5.5. Satellites

Satellite links ensure some essential services we use
every day, such as navigation services, television and
telephony and without them, the Internet may not be
the same. Satellite networks have a large transmission
distance. Therefore, problems like corruption losses due
to wireless links and long propagation delays come into
sight. However, TCP was not designed for such networks
[20].

SCTP is recommended for running over satellite net-
works because of many reasons. In a satellite environment,
multiple segment losses are incidental and with SACKs, it
is possible to react rapidly. The multihoming feature de-
rives satellite networks to be fault-tolerant and reliable and
the multistreaming feature eliminates the HOL blocking
by reducing the receiver buffer size requirements [18].

5.6. Datagram Transport Layer Security (DTLS)

A datagram provides a connectionless communica-
tion service across packet-switched networks and DTLS
is a communications protocol that maintains security to
datagram-based applications. In this sense, using DTLS
over SCTP means providing a secure channel to applica-
tions that are using SCTP as their transport protocol. By
courtesy of this, eavesdropping is prevented, where infor-
mation gets stolen while being transmitted—this way the
confidentiality, authenticity and integrity of the network is
ensured. Using DTLS over SCTP reinforces preservation
of message boundaries, ordered and unordered delivery of
SCTP user messages and a large number of unidirectional
and bidirectional streams [21].

6. Conclusion

This paper has compared SCTP with other transport
protocols and listed the current use cases. SCTP is a

message-oriented, connection-oriented and reliable proto-
col and most importantly it can deal with multihomed
hosts and manage multiple streams at the same time.
However, TCP has been the dominant protocol for many
years and SCTP was not as known and used compared
to the other protocols. The main reason for that is TCP
being first to the market. There are fewer client and
server applications supporting SCTP, but many applica-
tions support TCP. Furthermore, TCP is sufficient in most
cases. The introduction of QUIC by Google that is easily
deployable without any changes and is similar to SCTP,
let the protocol remain unknown.

SCTP is currently being used in LTE technology,
Concurrent Multipath Transmission, IoT sensors, Session
Initiation Protocols, satellites, Datagram Transport Layer
Security and cloud computing. SCTP has a usage area in
the telecommunications industry that it is sufficient for, but
it might be the case that QUIC will be preferred for other
industries in the future. It is similar to SCTP and will keep
getting better since it is still under active development.

References

[1] R. Stewart, M. Tüxen, and P. Lei, “Sctp: What is it, and how to use
it?” in Proceedings of BSDCan: The Technical BSD Conference.
Citeseer, 2008.

[2] R. R. Stewart, “Stream Control Transmission Protocol,” RFC 4960,
Sep. 2007. [Online]. Available: https://rfc-editor.org/rfc/rfc4960.txt

[3] “Sctp and diameter parameters for high availability in lte
roaming,” Ph.D. dissertation, accessed: 17.12.2021. [Online].
Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-163254

[4] R. Stewart and C. Metz, “Sctp: new transport protocol for tcp/ip,”
IEEE Internet Computing, vol. 5, no. 6, pp. 64–69, 2001.

[5] J. Liao, J. Wang, and X. Zhu, “cmpsctp: An extension of sctp to
support concurrent multi-path transfer,” in 2008 IEEE International
Conference on Communications. IEEE, 2008, pp. 5762–5766.

[6] S. Y. Shahdad, G. Amin, and P. Sarao, “Multihoming and multi-
stream protocol in computer networks,” 2014.

[7] J. Postel et al., “Transmission control protocol,” 1981.

[8] G. Camarillo, H. Schulzrinne, and R. Kantola, “Signalling transport
protocols,” 03 2002.

[9] A. Tachibana, Y. Yoshida, M. Shibuya, and T. Hasegawa, “Imple-
mentation of a proxy-based cmt-sctp scheme for android smart-
phones,” in 2014 IEEE 10th International Conference on Wire-
less and Mobile Computing, Networking and Communications
(WiMob), 2014, pp. 660–665.

[10] H. Mohamad Tahir, M. A. Abu Seman, S. Shelen, M. S. Selan,
S. H. Abdi et al., “Performance comparison of sctp and udp
over mobile ad hoc networks,” International Journal of Computer
Science Issues, vol. 9, no. 4, pp. 443–448, 2012.

[11] W. Sun, S. Yu, Y. Xing, and Z. Qin, “Parallel transmission of
distributed sensor based on sctp and tcp for heterogeneous wireless
networks in iot,” Sensors, vol. 19, no. 9, p. 2005, 2019.

[12] J. Rosenberg, H. Schulzrinne, and G. Camarillo, “The stream
control transmission protocol (sctp) as a transport for the session
initiation protocol (sip),” Internet Engineering Task Force, Tech.
Rep. RFC, vol. 4168, 2005.

[13] R. R. Stewart and Q. Xie, “Stream control transmission protocol
(sctp): a reference guide,” 2001.

[14] A. Joseph, T. Li, Z. He, Y. Cui, and L. Zhang,
“A Comparison between SCTP and QUIC,” Internet
Engineering Task Force, Internet-Draft draft-joseph-quic-
comparison-quic-sctp-00, Mar. 2018, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-joseph-quic-
comparison-quic-sctp-00

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

48 doi: 10.2313/NET-2022-07-1_09

[15] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings
of the conference of the ACM special interest group on data
communication, 2017, pp. 183–196.

[16] P. Megyesi, Z. Krämer, and S. Molnár, “How quick is quic?” in
2016 IEEE International Conference on Communications (ICC).
IEEE, 2016, pp. 1–6.

[17] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Stein-
metz, “Multipath quic: A deployable multipath transport protocol,”
in 2018 IEEE International Conference on Communications (ICC).
IEEE, 2018, pp. 1–7.

[18] J. Deutschmann, K.-S. Hielscher, T. Keil, and R. German, “Mul-
tipath communication over terrestrial and satellite links,” in 2018

IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN). IEEE, 2018, pp. 119–121.

[19] L. Zheng, X. Zhang, S. Zhang, and X. Chen, “Research on multi-
path network in cloud computing based on sctp,” in 2021 8th IEEE
International Conference on Cyber Security and Cloud Computing
(CSCloud)/2021 7th IEEE International Conference on Edge Com-
puting and Scalable Cloud (EdgeCom), 2021, pp. 30–35.

[20] S. Fu, M. Atiquzzaman, and W. Ivancic, “Sctp over satellite net-
works,” in 2002 14th International Conference on Ion Implantation
Technology Proceedings (IEEE Cat. No. 02EX505). IEEE, 2003,
pp. 112–116.

[21] M. Tuexen, R. Seggelmann, and E. Rescorla, “Datagram trans-
port layer security (dtls) for stream control transmission protocol
(sctp),” Request for Comments, vol. 6083, 2011.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

49 doi: 10.2313/NET-2022-07-1_09

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

50

Comparison of Different QUIC Implementations

Michael Kutter, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: michael.kutter@tum.de, jaeger@net.in.tum.de

Abstract—While the QUIC protocol was finalized by the
IETF back in May 2021, the standard still leaves some design
choices up to the developer. Especially for features like con-
gestion and flow control, multiple streams, retransmission,
packet size and 0-RTT, different approaches need to be con-
sidered. We give an overview of some of the considerations
done by the developer and evaluate the performance of some
implementations. We argue that future work needs to analyze
the effect of the design choices on performance more in detail
to find out which choice works best.

Index Terms—QUIC, implementation, design choices, perfor-
mance

1. Introduction

The QUIC protocol specifications were finalized on
May 2021 after nearly five years of development [1].
It is built on top of UDP, which enables support for
middleboxes, as no new transport layer protocol is defined.
The goal of this protocol was to improve performance for
HTTPS connections, while also achieving high security
[2]. This is realized in multiple ways. QUIC exchanges
cryptographic information during the connection estab-
lishment, thus reducing the round-trip times (RTT) and
amount of packets during the initial handshake (1-RTT).
When reconnecting to a server, it utilizes the already share
keys to directly send data during the handshake (0-RTT).
It uses connection IDs to identify connections after an IP
address changed, thus allowing immediate reconnection
to the server. To avoid the head-of-line blocking problem,
QUIC uses multiple independent data streams.

During the five years of developing the specifications,
different implementations have evolved. In this paper, we
compare QUIC implementations and outline the different
approaches they use. We focus on features which are up to
the developer, like congestion and flow control, multiple
streams, retransmission, packet size and 0-RTT [1] based
on the study done by R. Marx et. al in [3]. We also
try to compare the performance of some QUIC and TCP
implementations based on the test results of the paper by
A. Yu and T. A. Benson in [4].

In chapter 2 we list all the implementations we choose
for this analysis. Chapter 3 then outlines all the different
design choices considered by the developers. Afterwards
in chapter 4, we evaluate the performance.

TABLE 1: QUIC implementations

Name Developer Language Version

aioquic [5] Jeremy Laine Python RFC 9000
lsquic [6] LiteSpeed Technologies C RFC 9000
ngtcp2 [7] Tatsuhiro Tsujikawa C RFC 9000
quic-go [8] Lucas Clemente et. al Go RFC 9000
mvfst [9] Facebook Inc. C++ draft-29
picoquic [10] Private Octopus Inc. C draft-34

2. List of Implementations

The QUIC implementations taken for analysis are
shown in table 1.

3. Design Choices

When implementing the QUIC standard, different de-
sign choices can be considered. In the following sections
we outline design choices made by the listed implemen-
tations.

3.1. Congestion Control

Sending packets as fast as possible can lead to over-
loading the network and result in routers dropping packets.
These packets then need to be retransmitted, which leads
to a longer transmission time. To avoid this, congestion
control algorithms are used. These algorithms limit the
number of inflight packets, by controlling the congestion
window.

The QUIC standard defined by the IETF provides an
exemplary congestion control algorithm which is similar
to the TCP New Reno algorithm [11]. Therefore, it is up
to the implementation side to choose the algorithm. The
most used algorithms are New Reno, CUBIC and BBR.
Compared to the implementation for TCP they slightly
differ but the concepts stay the same.

New Reno: This algorithm is based on the Reno algo-
rithm but improves during retransmission [12]. It begins
with a “slow-start” phase, where it increases the conges-
tion window by one for each acknowledged packet, result-
ing in exponential growth. Once multiple duplicate ACKs
were received, or a packet was not acknowledged (re-
transmission timeout), it enters the “fast-recovery” phase.
During this phase, it immediately retransmits the lost
segments. When the retransmission was fully acknowl-
edged it keeps the current congestion window. But if the
retransmission was only partially acknowledged, it halves

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

51 doi: 10.2313/NET-2022-07-1_10

the current congestion window. After that it exits the “fast-
recovery” phase and linearly increases the congestion
window until the next packet was lost where it enters the
“fast-recovery” phase again. This algorithm is a loss-based
algorithm.

CUBIC: This algorithm is also a loss-based algorithm
and also similar to the Reno algorithm [13]. It starts with
the same “slow-start” phase. When a segment is lost it
also enters the “fast-recovery” phase, where it retransmits
the lost segments and halves the congestion window. The
main difference is after the “fast-recovery” phase. Here, it
uses a cubic function to increase the congestion window.
In the beginning it increases the congestion window very
slowly but increases it very fast later on. Compared to the
Reno algorithm, it recovers faster from packet loss while
not running into the next packet loss immediately. This
algorithm is also the default congestion control algorithm
in the Linux kernel for TCP.

BBR: This algorithm is called Bottleneck Band-
width and Round-trip propagation time (BBR) and is a
congestion-based algorithm developed by Google [14].
Compared to loss-based algorithm, it handles congestion
based on the round-trip time. The algorithm tries to oper-
ate at the optimal point which is defined by the Bandwidth
Delay Product BDP = bandwidth · RTT . However, it
is not possible to measure the bandwidth and the RTT at
the same time, therefore estimated values are used [14].
The main advantage of this algorithm is that it does not
fill the buffer of intermediate network nodes because this
would lead to a bigger RTT.

Of the analyzed implementation New Reno is imple-
mented by aioquic, ngtcp2, quic-go, mvfst and picoquic.
CUBIC is implemented by lsquic, ngtcp2, quic-go mvfst
and picoquic. BBR is implemented by lsquic, ngtcp2
mvfst and picoquic. We can see that a lot of implemen-
tations leave it to the user which algorithm to choose.
This is escpecially beneficial for networks using different
congestion control algorithms because some algorithms
might outperform other algorithms which can lead to a
sender barely sending any data due to a small congestion
window [13].

3.2. Flow Control

While congestion control is about preventing the net-
work from being overloaded, flow control is responsible
for not overloading the receiver buffer. This is needed
because the application might not be able to read data
in the same speed the network delivers it, or the data was
not received in the correct order. In TCP, each ACK packet
provides the current receive window, which indicates the
current available space in the receiver buffer [15]. Com-
pared to TCP, QUIC allows multiple parallel data streams,
therefore the QUIC protocol additionally applies flow con-
trol for each stream. The abstraction between stream level
and connection level flow control is needed to prevent a
single stream consuming the entire receivers buffer. This
limitation is done through the MAX_STREAM_DATA
(stream level) and the MAX_DATA (connection level)
parameters [1]. Here, multiple approaches are possible to
implement, and the following are most common.

Figure 1: Flow control of mvfst and aioquic [3]

Static Allowance: With static allowance, the receive
buffer has a fixed size, while the maximum allowance rate
is increased linearly [3]. Typically, when the application
has handled 50% of the received data in the buffer, the
receive window is updated by adding the current buffer
size. The downside of this method is that it can cause the
sender to stop sending, when the updates of the receive
window are delayed. This method is used by most of the
analyzed implementations (lsquic, ngtcp2, quic-go, mvfst,
picoquic), as it is easy to implement.

Growing Allowance: Growing allowance works sim-
ilar to the static allowance method, but allows the receiver
buffer to grow over time. This reduces the problem that
this sender may stop sending, due to delayed receive
window updates. Of the analyzed implementations, only
aioquic used this method.

A detailed example of these approaches can be found
in Figure 1 with mvfst (static allowance) and aioquic
(growing allowance).

Regardless of the above mentioned methods, the most
important aspect in regards to performance, is the size
and the frequency of the receive window updates, as too
small receive windows or too few updates can lead to a
stalling sender. Flow control in QUIC remains an open
issue, therefore, further study is required to identify the
best possible approach.

3.3. Multiple Streams

TCP offers a single reliable in-order stream to transmit
data. When transmitting independent resources, this is vul-
nerable to head-of-line blocking. This occurs when a sin-
gle resource prevents other resources from being received,
which happens when TCP loses a packet. The QUIC pro-
tocol defines multiple data streams to get around this prob-
lem [1]. In order to handle and multiplex these streams,
a scheduler is required. Therefore, two approaches can be
used to divide the bandwidth between the resources.

Sequential: When using a sequential scheduler, all
data of one stream is send first before sending data of
another stream. This is expected to work best for loading
Web pages, as the application can prioritize which data
should be sent first. However, this can lead to head-of-
line blocking again e. g. when the data of a single stream
is too big. Aioquic, ngtcp2 and picoquic are using this
scheduler approach.

Round-Robin: When using a Round-Robin scheduler,
the bandwidth is equally distributed between all resources.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

52 doi: 10.2313/NET-2022-07-1_10

However it is important to avoid sending data of multiple
different streams inside one packet because this could
lead to head-of-line blocking again. The typical approach
is to send a few packets of data of the same stream
before switching to another stream. The downside of this
approach is that it can take longer to receive all data of
a single stream. lsquic, quic-go and mvfst are using this
approach.

We can see that stream multiplexing can have a
significant impact on performance. Therefore, the QUIC
standard additionally requires the implementations to have
a prioritization system, which the application can use to
prioritize streams [1]. With this system, the impact of
the scheduler approach becomes less important, as higher
priority streams will be sent first. However, this is only
relevant if the application supports prioritization of re-
sources. We think that the round-robin scheduler is a more
general approach because it avoids head-of-line blocking
regardless of the data size and it could also simulate a
sequential scheduler when using the prioritization system.

3.4. Packet Size

The QUIC protocol requires a minimum UDP payload
size of 1200 bytes, but to further improve throughput,
a bigger packet size is required [1]. When using big-
ger packets, the chance of dropping a packet, due to
an intermediate network node not supporting this size,
highly increases. Therefore, it is recommended to either
use Path MTU Discovery (PMTUD) or Data Packetization
Layer Path MTU Discovery (DPLMTUD)1, to find out the
maximum packet size supported by all network nodes [1].
These methods works by sending a large packet to the
destination. If the corresponding ICMP error message is
received, we know that the MTU was too large and and
intermediate network node dropped the packet. Therefore,
we repeat the process by reducing the packet size until
successful transmission. This feature is currently only sup-
ported by lsquic, quic-go and picoquic. The other imple-
mentations use a fixed packet size. Therefore, they are not
allow to exceed the minimum UDP payload of 1200 bytes
to ensure compatibility of intermediate network nodes.

3.5. Client Validation of 0-RTT

A new feature in the QUIC protocol is the 0-RTT
connection establishment, where it is possible to send data
before receiving any response from the server. This is
made possible by reusing the preshared encryption keys
of the session ticket, which were negotiated in the first
connection. This feature is vulnerable to replay attacks
and amplification attacks. Therefore, the QUIC protocol
specifies that the server is not allowed to send back more
than three times the data it received from the client until
the address of the client is validated [1]. The validation
can be done in two ways.

Approach 1: After the client requested data during
the 0-RTT connection establishment, the server answers

1. https://blog.litespeedtech.com/2020/10/19/
improve-performance-with-dplpmtud/

Figure 2: Client validation of 0-RTT [3]

directly within the 3x limit. It then waits until the ac-
knowledgment of the client. When the acknowledgment
was received the address can be considered validated and
the server can send the rest of the data. The disadvantage
of this method is that the server can only respond in the
beginning with small packets inside the 3x limit. However,
it is possible to increase this limit by adding some padding
to the initial data request. This approach is currently used
by aioquic and ngtcp2.

Approach 2: During the first connection establishment
(1-RTT), the server sends an encrypted NEW_TOKEN
frame to the client, which can be used by the client
during the 0-RTT connection establishment to validate
its address. The server then can ignore the 3x limit and
directly send large amounts of data to the client, if the
token matches. This is done by lsquic, quic-go, mvfst and
picoquic.

A detailed diagram about these approaches can be
found in Figure 2.

4. Performance

A. Yu and T. A. Benson measured the performance of
different QUIC implementations and compared them to
different TCP implementations in their paper “Dissecting
Performance of Production QUIC“ [4]. Compared to most
other papers, they focused more on already deployed
implementations, instead of testing it on a local setup. This
approach in benchmarking resembles a more real world
scenario. In their analysis, they also tried to diffentiate, if
the results were due to the protocol specifications or due
to the design of the implementation.

For their benchmarking, they use public available end-
points by Google, Facebook and Cloudflare on the server
side. On the client side they choose to use cURL, Google
Chrome, Facebook Proxygen and ngtcp2. All these im-
plementations are using the HTTP/2 (H2) stack for TCP
and HTTP/3 (H3) stack for QUIC. With the Network Link
Conditioner, they simulate different network conditions. It
is also worth mentioning, that they setup the flow control
mechanism to not have any impact on the performance.

When transmitting a single resource, we and the au-
thors excpect similar results between QUIC and TCP. For
a small file size the QUIC implementations did outperform

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

53 doi: 10.2313/NET-2022-07-1_10

the TCP implementations. This is due to the improved
handshake of the QUIC protocol. For larger files the im-
pact of the improved handshake minimizes. Consequently,
the performance between all the implementations are sim-
ilar. However, when adding packet loss to the network,
the Cloudflare H3 endpoint worsens compared to H2. The
authors identified that this is due to different congestion
control algorithms between H3 (CUBIC) and H2 (BBR).
The other endpoint which stands out is Facebook. Their
H3 endpoint performed significantly worse when adding
extra delay. It was identified that this is due to a bug
in the congestion control algorithm. We can see that the
choice of the congestion control algorithm can have a huge
impact on the performance as already outlined in chapter
3.1.

When transmitting multiple resources, we and the
authors expect QUIC to perform better as TCP, due to
QUIC’s protocol design with the introduction of multiple
data streams. However, the results were similar compared
to transmitting a single resource. For small files, the H3
endpoints performed better, which could be traced back
to QUIC’s handshake design again, and for larger files
the performance was similar. The only exception was the
Cloudflare endpoint. Here, H3 also outperformed H2 for
larger resources. The authors traced this issue back to
different application configurations which favored the H3
implementation. The authors also analyzed the effect of
the different scheduling approaches. Cloudflare is using
a sequential scheduler, while Facebook and Google are
using a round-robin scheduler. Here, the different sched-
uler did not have any effect on the performance due to
the prioritization system by the H3 stack. This is also the
same, which we concluded in section 3.3.

The authors concluded that most performance discrep-
ancies are a result of the developers design or the operators
configuration. These results can also be verfied by other
papers [16], [17].

5. Conclusion and future work

In this work, we have discussed multiple design
choices which needs to be considererd when implementing
the QUIC protocol. We saw that there are multiple differ-
ent approaches to implement congestion and flow control,
multiple streams, packet size and client validation of 0-
RTT. While not all aspects will have high impact on the
performance and some might be application dependent,
we concluded that further research is needed to find out
which approach works best in practice.

We also analyzed the tests performed by A. Yu and
T. A. Benson, where they compared the performance of
different QUIC implementations with TCP over public
available endpoints. We saw that in gerneral the QUIC im-
plementations had the advantage when transmitting small
resources due to the improved handshake design of the
protocol. For larger files, the performance balances out
because the impact of the handshake minimizes. However,
we saw some discrepancies to this behavior. Most of these
performance differences could be traced back to the devel-
opers design of the implementations or the configuration
of the operators.

We feel that future analysis is needed to compare
the performance of the different implementations. It is

espacially important to focus on which design choices
impacts the performance of the protocol.

References

[1] J. Iyengar and M. Thomson, “Rfc 9000,” https://datatracker.ietf.org/
doc/rfc9000/, May-2021, [Online; accessed 26-February-2022].

[2] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Sweet, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamil-
ton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The QUIC Transport
Protocol: Design and Internet-Scale Deployment,” August-2017.

[3] R. Marx, J. Herbots, W. Lamotte, and P. Quax, “Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementa-
tion Diversity,” August-2020.

[4] A. Yu and T. A. Benson, “Dissecting Performance of Production
QUIC,” April-2021.

[5] J. Laine, “aioquic,” https://github.com/aiortc/aioquic, [Online; ac-
cessed 26-February-2022].

[6] L. Technologies, “Litespeed quic (lsquic) library,” https://github.
com/litespeedtech/lsquic, [Online; accessed 26-February-2022].

[7] T. Tsujikawa, “ngtcp2,” https://github.com/ngtcp2/ngtcp2, [Online;
accessed 26-February-2022].

[8] “A quic implementation in pure go,” https://github.com/
lucas-clemente/quic-go, [Online; accessed 26-February-2022].

[9] Facebook, “mvfst,” https://github.com/facebookincubator/mvfst,
[Online; accessed 26-February-2022].

[10] “picoquic,” https://github.com/private-octopus/picoquic, [Online;
accessed 26-February-2022].

[11] J. Iyengar and I. Swett, “Rfc 9002,” https://datatracker.ietf.org/doc/
rfc9002/, May-2021, [Online; accessed 26-February-2022].

[12] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “Rfc 6582,”
https://datatracker.ietf.org/doc/html/rfc6582, April-2021, [Online;
accessed 26-February-2022].

[13] M. Geist and B. Jaeger, “Overview of TCP Congestion Control
Algorithms,” May-2019.

[14] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Ja-
cobson, “BBR Congestion-Based Congestion Control,” Septemper-
2016.

[15] I. S. I. U. of Southern California, “Rfc 793,” https://datatracker.
ietf.org/doc/html/rfc793, Septemper-1981, [Online; accessed 26-
February-2022].

[16] S. Endres, J. Deutschmann, K.-S. Hielscher, and R. German, “Per-
formance of QUIC Implementations Over Geostationary Satellite
Links,” Feburary-2022.

[17] M. Moulay, F. D. Munoz, and V. Mancuso, “On the Experimental
Assessment of QUIC and Congestion Control Schemes in Cellular
Networks,” June-2021.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

54 doi: 10.2313/NET-2022-07-1_10

Survey on Machine Learning-based Autoscaling in Cloud Computing
Environments

Oliver Lemke, Sayantini Majumdar∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: oliver.lemke@tum.de, sayantini.majumdar@tum.de

Abstract—Modern cloud computing systems have demon-
strated great aptitude for providing accessible, cheap, and
scalable computing infrastructure to businesses and the
public at large. However, the computing model comes with a
variety of challenges for cloud service providers. Especially
the task of automated distribution of computing resources,
called autoscaling, has proven difficult so solve. A variety
of different approaches have been proposed, chief among
them machine learning-based algorithms. Thus, this paper
aims to give an overview of recent developments in the
field of machine learning-based autoscaling. In particular,
we compare and contrast two approaches: MLScale, a su-
pervised learning-based solution utilizing neural networks
and multiple linear regression, and RLPAS, employing an
algorithm based on SARSA reinforcement learning. We come
to the conclusion that RLPAS’ ability to predict required
resource spikes and provision resources proactively, puts it
at a decisive advantage compared to the reactive MLScale.
However, as RLPAS is much more algorithmically complex,
we propose that further research is required to show safe
and effective scaling for more complex, real-world problems.

Index Terms—cloud computing, autoscaling, machine learn-
ing

1. Introduction

Cloud computing (CC) is an architecture that enables
on-demand network access to a pool of computing re-
sources, such as networks, servers, storage, applications,
or other services [1]. Hardware resources are owned and
managed by a cloud service provider (CSP), allowing
customers remote access. Besides eliminating capital ex-
penditure for users, the consolidation of resources also
reduces operating expenses due to higher resource utiliza-
tion [2, Chapter 1]. Combined with the offer of constant
availability and pay-as-you-go pricing options [3], this
service model is thus considered an attractive option,
especially for small- and medium-sized businesses [4] [5].

In order to reliably supply a service that can handle
large variations in requested operations, e.g. due to sudden
user demand, CSPs have to be able to automatically scale
the resources distributed to a specific application. This
allocation is a highly complex and important process,
as both under- and oversupplying resources will result
in major costs to the provider, in the form of contract
violations and excess operating expenses respectively [6,

Chapter 7.4]. Yet, major CSPs like Oracle still rely on
manually set autoscalers which base scaling decisions
purely on simple thresholds [7] that are unable to adapt
adequately to fluctuating user demand.

We reason that machine learning (ML), a field which
particularly excels in complex and dynamic environments,
represents the most promising approach vector towards
solving this problem. Thus, this paper aims to give
an overview of recent advances, especially comparing
MLScale [8] and RLPAS [9], proposals utilizing super-
vised (SL) and reinforcement learning (RL) respectively.
We show that while the papers differ considerably in their
approach, both demonstrate a substantial improvement
over manual threshold-based autoscalers. In addition how-
ever, we point out reactiveness as a prohibitive weakness
of the MLScale algorithm and identify safe and effective
scaling as an area requiring further research to achieve
industry-wide adoption of an RL-based solution.

In order to do so, the paper is structured as follows:
We will explain requisite theoretical knowledge in Section
2 and discuss related works in Section 3. Section 4 intro-
duces and contrasts the two algorithms in detail, closing
with a conclusion and an outlook on future development
in Section 5.

2. Background

In this section, the scientific concepts underlying this
paper will be discussed. Specifically, we will focus on the
current applications of cloud computing, as well as the
theory behind two central paradigms of ML: supervised
and reinforcement learning.

2.1. Cloud computing

The main advantage of cloud computing lies in the
ability for the provider to easily and swiftly split com-
puting resources, supplying a large amount of individual
customers [1]. In order to simplify this process and allow
division at a more granular level, CSPs utilize virtual
machines and a process known as autoscaling.

2.1.1. Virtual machines. A virtual machine (VM) is
a software-based emulation of the runtime environment
provided by a physical computer. In contrast to a real
computer however, the resources the VM has access to,
such as the CPU cores or memory, can be varied by
the underlying program. As a piece of software, multiple
instances of VMs can be run on a single server, each of

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

55 doi: 10.2313/NET-2022-07-1_11

which can be used independently and thus provided to a
different customer [10, Chapter 1]. This virtualization is
most common for servers, but has started to be increas-
ingly applied to networking appliances, such as routers,
switches or firewalls. Each instance of such virtualization
applied to a networking service is called a virtual network
function (VNF) [11].

2.1.2. Autoscaling. The virtual nature of the implemen-
tation allows for the easy up- and downscaling of the
computing resources provided to a particular service as
required by demand. This property is known as elasticity.
Doing so automatically, or using automated policies, is
called autoscaling. Applications can be scaled horizontally
(in and out), representing the removing and adding of
instances, as well as vertically (up and down), representing
the addition or removal of an existing instance’s resources
[6, Chapter 8.2]. Autoscaling policies are geared towards
a variety of different goals, such as improving resource
utilization or decreasing operating expenses. Most notably,
they aim to minimize service level agreement (SLA) vi-
olations, a type of contract stipulating the conditions of
the service provided by the operator [12]. As Zhang et al.
point out in [13, Section 6.1], in contrast to these complex
targets, they often rely on rather simplistic metrics, such
as throughput, response time, or amount of user requests,
further increasing complexity.

2.2. Machine learning

Machine learning is a field of computer science fo-
cused on training an algorithm through the use of ex-
periences and data, without programming explicit rules
[14]. This approach is especially useful in environments
where the ruleset is either particularly complex or not
explicitly known by humans, such as natural language
processing [15], computer vision [16], autonomous driving
[17] or board games like Go [18], among a large variety
of other use cases. There exist three basic paradigms
of machine learning: supervised, unsupervised, and rein-
forcement learning. We will first focus on SL using neural
networks and multiple linear regression, while the final
section will introduce RL using SARSA and present an
optimization technique called function approximation.

2.2.1. Supervised learning with neural networks. In
contrast to the other two paradigms, in supervised Learn-
ing the algorithm is trained using data which includes
the desired solutions [19, Chapter 1]. One such algorithm
is called a neural network (NN). At a basic level, this
algorithm tries to predict a set of m outputs (the solution),
based upon a set of n inputs (the data). It consists of a
set of simple processing units called neurons or nodes,
which are organized into l layers. Each neuron ν can hold
one value y. In a simple fully connected, feed-forward
network each node νi,j of layer i ∈ {1, 2, ..., l − 1} is
connected to every node νi+1,k of layer i+1, along with an
individual adaptive weight wi,j,k ∈ [0, 1] associated with
the connection from neuron j in layer i to neuron k in
layer i+1. The first layer is called the input layer, as every
node is initialized with one of the n inputs. Consequently,
it consists of n neurons. Similarly, the last (lth) layer
is called the output layer, where each of the m neurons

corresponds to one output. All layers in between are the
hidden layers. Given all values yi,1, ..., yi,p of layer i, the
value of the kth neuron in layer i + 1 can be calculated
using

yi+1,k = fi+1(wi,0,k +

p∑

j=1

wi,j,kyi,j), (1)

where fi+1 represents a non-linear function called the ac-
tivation function and wi,0,k represents a weighted bias for
layer i and neuron νi+1,k. f is often varied on a per-layer
basis. To train the NN, the individual connection weights
wi,j,k and biases wi,0,k can be adjusted through a process
called backpropagation until the prediction achieves good
accuracy when compared to a target output (vector). To
make a prediction, after initializing the input layer, we can
consecutively calculate the values for successive layers,
until the output layer is reached [19, Chapter 10] [20,
Chapter 2].

2.2.2. Supervised learning with multiple linear re-
gression. Prediction based on multiple linear regression
(MLR) uses a set of data points in order to fit a linear
function

Ŷ = a+

n∑

i=1

biXi. (2)

X1, ..., Xn represent a set of n inputs called explanatory
variables along with associated weights b1, ..., bn. Ŷ rep-
resents the predicted output called the response variable,
and a is the bias [21].

2.2.3. Reinforcement learning. Reinforcement learning
is a subcategory of machine learning, where an agent
interacts with an environment [19, Chapter 1]. The states
the world can be in, the actions that can be taken in it, as
well as its time, are discretized into states s ∈ S, actions
a ∈ A and time steps t. Thus, at time time t, the agent
can transition from states St to St+1 using actions At.
Accordingly, the process can be modelled as a markov
decision process (MDP) [22] [23, Chapter 3.1].

The agent is further awarded a positive or negative
reward Rt+1, based upon which it aims to construct an
optimal action-value function

q?(s, a) = E[Gt | St = s,At = a]. (3)

q? : S ×A→ R reflects the expected total reward Gt, or
in other words the value of an action given a certain state.
Deriving from q?, the algorithm creates the optimal policy
π? : S → A, mapping every state to the action that will
lead to the highest expected value. π? is the final decision-
making function [23, Chapter 4]. This approach to RL is
called model-free, as it does not require an explicit model
of the environment to learn, instead simply observing the
rewards in relation to the given states and taken actions.

SARSA. The state-action-reward-state-action algo-
rithm is one such model-free approach that aims to con-
verge to q?. This estimate is denoted by Q. In order to
do so, it starts with an initial function Q and updates the
function every time an action is taken:

Q(St, At) := Q(St, At)

+ α[Rt+1 + γQ(St+1, At+1)−Q(St, At)].
(4)

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

56 doi: 10.2313/NET-2022-07-1_11

It is proven that Q converges to q? [23, Chapter 6.4] [24].
Function approximation. Whereas for smaller state

spaces it can be enough to iteratively apply SARSA and
update the policy function π, a process called policy itera-
tion, this can become computationally infeasible even for
comparatively simple tasks. The upper bound for greedy
policy iteration is considered to be O(k

n

n) [25], where n is
the number of states, and k the number of available actions
per state. Instead of using a tabular representation of Q,
function approximation utilizes a differentiable function

Q̂ : S ×A× Rd → R : (s, a,w) 7→ y, (5)

where w := (w1, w2, ..., wd)
T represents a vector of

weights and y represents the calculated value. Applying
stochastic gradient descent [26], w is updated after every
action so that Q̂(s, a,w) approximates Q(s, a) [23, Chap-
ter 9]. However, as d < |S|, Q can often not be exactly
approximated. This approach converges in O(n3) [27].

2.2.4. Parallel learning. In order to speed up conver-
gence, N agents can interact with the environment at the
same time and independently of each other [28]. In the
implementation used by Benifa et al. [9], each agent j
keeps track of its own local action-value function Qlj .
Periodically, every agent shares its local estimate Qlj
with every other agent, receiving the other local estimates
(Qg1 , Qg2 , ..., QgN−1

) known as global estimates. To com-
pute a final estimate Qfj every agent calculates a weighted
average

Qfj =
1

2
(Qlj +

∑N−1
i=1 wiQgi

N − 1
). (6)

This process is repeated until the final estimates for each
agent converge to a single value [9, Section 3.1].

3. Related work

Given the wide applicability of a given solution, an
extensive selection of related work is available. Singh
et al. [29] and Qu et al. [30] provide a comprehen-
sive analysis of autoscaling web applications in a cloud
environment. Additionally, they introduce an expansive
taxonomy further distinguishing between metrics, type,
policy, and pricing, among other factors. Garì et al. [31]
present an extensive survey of reinforcement learning-
based autoscalers in particular, differentiating between
model-free and model-based, sequential and parallel, as
well as deep reinforcement and fuzzy logic learning. They
conclude with a classification of the different approaches
and provide a taxonomy based on their findings.

However, to the best of our knowledge, no survey ex-
ists which addresses and compares approaches in different
machine learning paradigms specifically.

4. Comparison between MLScale and RL-
PAS

In the following chapter we will compare two contrast-
ing approaches to autoscaling in cloud computing environ-
ments. The first paper, "MLscale: A Machine Learning
Based Application-Agnostic Autoscaler" by Wajahat et al.
[8], presents an algorithm that predicts key metrics, such

as the response time, using simple application-independent
inputs and makes autoscaling decisions based on the
output. The prediction utilizes a simple neural network,
combined with multiple linear regression for the decision
making process. The second paper, "RLPAS: Reinforce-
ment Learning-based Proactive Auto-Scaler for Resource
Provisioning in Cloud Environment" by Benifa et al. [9],
defines a SARSA-based parallel reinforcement learning
algorithm that tries to predict future workload, based upon
which it scales the applications proactively.

4.1. MLScale: Autoscaling using Neural Net-
works and Regression

The algorithm introduced by Wajahat et al. consists of
two different prediction algorithms: neural networks and
multiple linear regression. In order to build the MLScale
algorithm, Wajahat et al. split the program into 3 phases.
Initially, the authors trained a neural network on a set
of 8 application-independent input metrics m1, ...,m8,
such as RR: number of requests received per second, or
CPU : average CPU usage, in order to predict a single
performance metric RT : the response time. The network
consists of 8 input nodes, one 4-node hidden layer, and
one output node. The activation function is f(x) = 1

1+e−x

and is only applied in the hidden layer.
To automatically scale any given application, MLScale

continuously monitors all input metrics m1, ...,m8 and
predicts RT . Should the response time exceed the target
or even cause an SLA violation, MLScale will try to
provision resources accordingly. To calculate the size of
the additional resources, the program has to anticipate
how this scaling will affect the new response time R̂T .
Thus, another prediction is necessary. Deriving from 2, the
authors employ a simple multiple linear regression model
predicting the new value m̂i for every metric mi after
scaling:

m̂i = a+ b1mi
w

w + k
+ b2mi

k

w + k
. (7)

w ∈ N represents the currently deployed workstations,
while k ∈ Z represents the additional workstations. Pos-
itive k is to be understood as a scale-out and negative k
as a scale-in. MLScale can not scale vertically.

Using the same network presented above, the predicted
metrics m̂1, ..., m̂8 are then used to calculate the new
R̂T after the scaling operation has concluded, based upon
which the size of the scaling operation is decided.

4.2. RLPAS: Autoscaling using Parallel Rein-
forcement Learning

In contrast, Benifa et al. [9] attempt to construct an au-
toscaler using reinforcement learning. To define the MDP,
the authors utilize a state set S = {Ureq, UVM, URT, UTHR},
representing the number of requests, percentage of allo-
cated VMs, response time, and throughput. Additionally,
the action set A = {Ascale_up, Ascale_down, Ano_change} is
considered, each A(VMn,VMtype) describing an amount
VMn and type VMtype ∈ {small, medium, large} to be

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

57 doi: 10.2313/NET-2022-07-1_11

scaled. VMn represents horizontal scaling, while VMtype
represents vertical scaling. The reward

Rt =
PerfVM

UVM
(8)

is computed utilizing

PerfVM =
RTSLA

RTobs
+

THRobs

THRSLA
−PenaltyRT−PenaltyTHR. (9)

The agent is thus rewarded for low RT and high through-
put compared to the target. Meanwhile, the Penalty terms
are applied when the agent exceeds the SLA thresholds.
They are calculated based on the amount the SLA was
violated by, as well as a manual weight. This ensures
SLA-compliant behaviour, but also allows the operator to
manually tune how severely a violation is to be punished,
and thus, how close to the target the agent operates. 8
ensures that the agent does not overprovision VMs. As
it covers all functionality laid out in Section 2.1.2, we
believe this to be a sensible choice of reward function. In
addition, 9 allows easy extension for other metrics.

The authors use a function approximation based on the
gradient descent algorithm shown in Section 2.2.3, as well
as parallel learning to considerably speed up convergence
[9, Figure 9]. Because q? is estimated by taking into
consideration all future rewards as shown in 3, RLPAS
can account for possible future developments of the input
metrics. As such, this makes it a proactive algorithm, able
to scale applications in preparation for incoming changes
in request rate.

4.3. Discussion

Both approaches show very promising results for solv-
ing the problem of autoscaling according to user demand.
Yet, in both solutions we were able to identify weaknesses
which will require further research to address.

Utilizing easily obtainable input metrics, a small feed-
forward NN, and MLP, MLScale [8] provides a prediction-
based reactive autoscaling algorithm. In essence, Wajahat
et al. present an ML-based approach to the traditional
manual threshold-based autoscaling, allowing for an au-
tomated solution utilizing more metrics than would be
possible by hand. For comparison, manual thresholds of-
ten rely on as little as one or two metrics [29, Section
5.2], compared to MLScale’s 8. It’s main advantage lies
in this relative simplicity, as the architecture of the neural
network can be trained in a few seconds. As the authors
mention in [8, Section 3.1], the labeled training data can
be acquired by sampling only a few hours worth of normal
application behaviour, ideally including a wide variety of
workload and scaling actions.

However, this simplicity also leads to its largest de-
ficiencies. For one, the paper only considers a single
target metric: response time. Yet, in order to achieve the
complex goals set for the algorithm, other performance
indicators such as CPU utilization, throughput, or power
consumption should also be taken into consideration.
While the authors argue in [8, Section 3.1] that the NN
could be easily extended to account for these metrics, we
expect this to increase both complexity and training time.
In addition, the presented method represents a reactive
autoscaler, meaning the algorithm does not predict future

workloads and can only react to them once they occur.
As shown by Wajahat et al. in [8, Section 5], MLScale
incurs a substantial (up to 5.9%) amount of SLA violations
especially during large and sudden request spikes, also
tending to overprovision resources in response. While this
still represents an improvement in comparison to tradi-
tional scalers and achieves near optimal performance for
workloads less prone to spiking [8, Table 5], the problem
remains near impossible to solve using reactive methods.

In contrast, the algorithm presented by Benifa et al. [9]
is of a proactive nature. As the authors are able to show in
[9, Section 4.4] and especially [9, Figure 7], after an initial
phase of fluctuation, RLPAS is able to achieve very steady
performance metrics even for rapidly changing workloads.
Unfortunately the authors do not quantify the number of
SLA violations, which would allow a more direct compar-
ision to MLScale. However, as the measurements suggest
highly stable target metrics, we have no reason to believe
any substantial amount of violations occurred. In addition,
this approach is able to outperform competitors in a vari-
ety of different measurements, including RT, throughput,
and CPU utilization. Importantly, RLPAS can scale both
horizontally and vertically, while MLScale is restricted
to horizontal scaling. This increases the flexibility of the
algorithm and enhances its ability to find a good solution.

However, in comparison with the simple mechanisms
used by MLScale, RLPAS is a more algorithmically
complex solution. As Sutton points out in [23, Part II],
major weaknesses of reinforcement learning tend to be
two-fold: (1) poor initial performance as the agent be-
gins to explore the environment and the Q-table values
have not yet converged and (2) long convergence time.
Especially for very large state spaces, the consequently
larger value table can result in very long training times,
thus further amplifying the first weakness (see Section
2.2.3). The authors attempt to combat this problem by
combining function approximation and parallel learning
in order to speed up convergence. Nonetheless, the paper
only demonstrates acceptable convergence for up to 16
VMs per application [9, Figure 8] as well as a limited set
of 4 state and 3 action variables [9, Section 3.1]. As this
convergence issue is a well-known problem faced by the
wider RL community, further research is required to show
acceptable performance in such situations.

5. Conclusion

In conclusion, both machine learning-based solutions
in general, and the analyzed algorithms specifically, pro-
vide a marked improvement over manual, threshold-based
autoscaling methods. However, as we have shown in the
preceding sections, the reactive nature of the MLScale
algorithm represents a major weakness preventing its
adoption in favor of more advanced, proactive algorithms,
such as RLPAS. In addition, RLPAS’ ability to predict
multiple different important metrics, as well as scale both
horizontally and vertically, gives it a further edge when
optimizing for complex scenarios. As such, we conclude
from our analysis that exploration in the direction of
reinforcement learning appears the most promising. Al-
though having already produced encouraging results, we
believe further research into the safe and effective scaling
is required to achieve industry-wide adoption.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

58 doi: 10.2313/NET-2022-07-1_11

References

[1] P. Mell and T. Grance, “The nist definition of cloud computing,”
2011-09-28 2011.

[2] M. J. Kavis, Architecting the Cloud: Design Decisions for Cloud
Computing Service Models, 1st ed., ser. SaaS, PaaS, and IaaS.
Wiley, 2014.

[3] Amazon, “Aws pricing,” accessed: 2021-12-02. [Online]. Available:
https://aws.amazon.com/pricing/

[4] “Current enterprise public cloud adoption worldwide from 2017 to
2020, by service,” Flexera Software, Mar. 2021, accessed: 2021-12-
02. [Online]. Available: https://www.statista.com/statistics/511508/
worldwide-survey-public-coud-services-running-applications-enterprises/

[5] Statista, “Cloud computing market size in europe from 2016
to 2025, by segment,” Aug. 2021, accessed: 2021-12-02.
[Online]. Available: https://www.statista.com/forecasts/1235161/
europe-cloud-computing-market-size-by-segment

[6] W. Stallings, Foundations of Modern Networking: SDN, NFV, QoE,
IoT, and Cloud, 1st ed. Addison-Wesley Professional, 2015.

[7] Oracle, “Oracle autoscaling,” 2022, accessed: 2022-02-25.
[Online]. Available: https://docs.oracle.com/en-us/iaas/Content/
Compute/Tasks/autoscalinginstancepools.htm

[8] M. Wajahat, A. Karve, A. Kochut, and A. Gandhi, “Mlscale:
A machine learning based application-agnostic autoscaler,”
Sustainable Computing: Informatics and Systems, vol. 22, pp.
287–299, 2019. [Online]. Available: https://doi.org/10.1016/j.
suscom.2017.10.003

[9] B. Benifa, J. V., and D. Dejey, “Rlpas: Reinforcement
learning-based proactive auto-scaler for resource provisioning
in cloud environment,” Mobile Networks and Applications,
vol. 24, pp. 1348–1363, 2019. [Online]. Available: https:
//doi.org/10.1007/s11036-018-0996-0

[10] R. N. Jim Smith, Virtual Machines - Versatile Platforms for Systems
and Processes, 1st ed., ser. The Morgan Kaufmann Series in
Computer Architecture and Design. Morgan Kaufmann, 2005.

[11] K. Gray and T. D. Nadeau, Network Function Virtualization. El-
sevier Science & Technology; Morgan Kaufmann, 2017.

[12] W. T. Joe M. Butler, Ramin Yahyapour, Service Level Agreements
for Cloud Computing, 1st ed. Springer-Verlag New York, 2011.

[13] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: State-of-
the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, pp. 7–18, Apr. 2010.

[14] T. M. Mitchell, Machine Learning, 1st ed., ser. McGraw-Hill series
in computer science. McGraw-Hill, 1997.

[15] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the
usages of deep learning for natural language processing,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32,
no. 2, pp. 604–624, 2021.

[16] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris,
“Deep learning advances in computer vision with 3d data: A
survey,” ACM Comput. Surv., vol. 50, no. 2, apr 2017. [Online].
Available: https://doi.org/10.1145/3042064

[17] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” Journal of
Field Robotics, vol. 37, no. 3, pp. 362–386, Apr. 2020.

[18] D. Silver et al., “Mastering the game of go without human knowl-
edge,” Nature, vol. 550, pp. 354–359, 2017.

[19] A. Géron, Hands-On Machine Learning with Scikit-Learn and
TensorFlow Concepts, Tools, and Techniques to Build Intelligent
Systems, 1st ed. O’Reilly Media, 2017.

[20] K. Gurney, An Introduction to Neural Networks. UCL Press, 1997.

[21] G. Seber and A. Lee, Linear Regression Analysis, 2nd ed., ser.
Wiley Series in Probability and Statistics. Wiley, 2003.

[22] R. Bellman, “A markovian decision process,” Indiana University
Mathematics Journal, vol. 6, pp. 679–684, 1957.

[23] R. S. Sutton, Reinforcement Learning: An Introduction, ser. Adap-
tive computation and machine learning. MIT Press, 1998.

[24] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Con-
vergence results for single-step on-policy reinforcement-learning
algorithms,” Machine learning, vol. 38, no. 3, pp. 287–308, 2000.

[25] Y. Mansour and S. Singh, “On the complexity of policy iteration,”
UAI, 01 2013.

[26] A. C. Ian Goodfellow, Yoshua Bengio, Deep Learning. MIT Press,
2016.

[27] A. Haider, G. Hawe, H. Wang, and B. Scotney, “Gaussian based
non-linear function approximation for reinforcement learning,” SN
Computer Science, vol. 2, no. 3, pp. 1–12, 2021.

[28] R. M. Kretchmar, “Parallel reinforcement learning,” in The 6th
World Conference on Systemics, Cybernetics, and Informatics.
Citeseer, 2002.

[29] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on auto-
scaling of web applications in cloud: Survey, trends and future
directions,” Scalable Computing: Practice and Experience, vol. 20,
no. 2, pp. 399–432, 2019.

[30] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applica-
tions in clouds: A taxonomy and survey,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, pp. 1–33, 2018.

[31] Y. Garí, D. A. Monge, E. Pacini, C. Mateos, and C. G. Garino, “Re-
inforcement learning-based application autoscaling in the cloud:
A survey,” Engineering Applications of Artificial Intelligence, vol.
102, p. 104288, 2021.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

59 doi: 10.2313/NET-2022-07-1_11

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

60

Ultra-Low Latency on Ethernet Technology

Atilla Alpay Nalcaci, Florian Wiedner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: atilla.nalcaci@tum.de, wiedner@net.in.tum.de

Abstract—Network latency depicts the total amount of time
for a data packet to be captured, processed and transmitted,
potentially through multiple devices, from one communica-
tion endpoint to another. This measurement of delay is a
performance characteristic among telecommunications and
cellular communication providers.

In this paper, we present our research on the implemen-
tation requirements of Ultra-Reliable Low-Latency Commu-
nication (URLLC) to the current ethernet infrastructure.
Further, we analyze commodity software and hardware on
the performance of low latency packet processing. Investiga-
tions focus on network areas and quality of service provisions
and conclude on requisites to support URLLC applications
in shared networks. Findings show that any non-specialized
network infrastructure requires fine-tuning of communica-
tion specifications that is capable of achieving maximum
transmission delay of approximately 50 ms with very high
achievable network reliability and utilization measurement.

Index Terms—5G, ultra-reliable low-latency communication,
network latency, packet processing, reliability

1. Introduction

The latency of a network describes the overall delay in
the communication, usually measured in ms (millisecond)
and the final result is typically indicated as a round trip
delay – the absolute amount of time that is spent for trans-
mitting the information to the target destination and then
back to the original sender. It is important to appertain
performance optimizations concerning the latency to test
system performance emulating under high latency in order
to optimize for users with lousy connections.

Ultra-low latency is a service category introduced
in 5G New Radio (NR) standard which allows newly
emerging services and applications to surpass and re-
solve the prospective latency and reliability requirements.
5G NR is the global standard for a robust and capa-
ble cellular network infrastructure that enables enhanced
communication between user endpoints in terms of data
delivery, reliability, and transcend user experience on a
massive scale [1]. In summary, 5G networks encapsulate
the following generic connectivity types: enhanced Mobile
Broadband (eMBB), massive Machine-type Communica-
tion (mMTC), and Ultra-Reliable Low-Latency Commu-
nication (URLLC) [2].

The conception of 5G networks is inclined to inter-
weave with the notion of “ultra-reliable” connectivity,

making the implementation process of URLLC rather
difficult and restrictive [3]. The trend of ultra-reliable com-
munication guarantees perpetual connectivity of approxi-
mately > 99.999% for a given time window [4]. URLLC
enables computer networks to process and exchange high
volume data packets with eminently low latency between
the endpoints. These networks support real-time access
and request/response to previse rapidly changing data [2].

The key feature of URLLC is low latency. This is a
crucial aspect for devices and/or gadgets which perform
over a common network of command nodes that pro-
vide query of commands on what needs to be executed
next [2]. Performance measurements that are included in
the following sections are conducted in the context of tail
latency-percentage of response times out of all responses
to the input and output requests that the system serves,
which take the longest amount of time in comparison with
the totality of its response times. With low tail latency,
networks are open to optimizations that enables the pro-
cessing of large amounts of data with minimal latency.
Since networks are required to be adaptive to dynamic
data entries and alterations, these optimizations have the
potential to increase the overall network utilization as well
as inaugurate an expeditious method of data transfer.

In this paper, we present our research and analysis
for the requirements of URLLC to the current ethernet
technology. Further, we analyze what is needed to support
URLLC applications in shared networks. The paper is
organized as follows. Section 2 represents some back-
ground and related work. Section 3 examines the current
status and evolution of the ethernet technology. Section 4
gives a brief description and potential sources of tail
latency. Section 5 presents thorough information on the
prerequisites of URLLC network infrastructure. Finally,
Section 6 concludes the paper and provides some literature
on various future work.

2. Background and Related Work

In this section, we present the work on supporting
URLLC on non-specialized networks and latency mea-
surement methodologies for low-latency systems.

2.1. Latency Measurement

Several studies exist [5]–[7] for achieving highly re-
liable connectivity with low-latency measurements. The
research carried out by Gallenmuller et al. [8] depicts a
new methodology for measuring the tail latency of Linux

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

61 doi: 10.2313/NET-2022-07-1_12

Figure 1: The effect of static latency on different applica-
tions. [9]

supported off-the-shelf hardware commodities. Further-
more, the research presents a software stack that lowers
the overall tail latency of packet processing applications.
Latency measurements are made through hardware times-
tamping for increased precision. The software stack that is
presented as a solution has attested to the occurrences of
low-latency packet processing on a consistent demeanor.
Ensuing case study proved to achieve a forwarding latency
of below 25 µs for a non-overloaded Snort IPS.

2.2. Operating System and Hardware

Identifying the software- and hardware-related latency
and jitter is one challenge of ensuring low latency while
keeping the connectivity uninterrupted, i.e. reliability of
the connection. As Stylianopoulos et al. [4] examine, the
main objective is to prevent the network interruptions that
are directly influential over the user-space applications
which are responsible for handling the packet processing
flow in its service, to the furthest extent possible. To
achieve this, certain kernel options are introduced and
later delineated to have contributions to lower and stable
network latency. Examples include preparatory configu-
rations of system-level setup options that are namely;
Thread isolation which isolates the Data Plane Devel-
opment Kit (DPDK) cores to prevent common use of
these cores by other tasks, disabling of interrupt balancing
for disabling the dynamic interrupt distribution daemon
to avoid unrelated DPDK interrupts, and disabling Intel
turbo-boost technology which introduces high variation to
packet processing latency.

2.3. Cloud-based Applications

Cloud-based applications are described as the software
which the analogous users access through a shared net-
work, commonly being the internet. The research carried
out by Popescu et al. [9] focuses on characterizing the
latency of the cloud-based applications’ performance. Ap-
plications that are used during this research are Domain
Name System (DNS), Memcached, STRADS-a scheduled
model parallelism distribution framework, and Apache
Spark. The methodology is based on devising the host to
experience different network latency values by modifying
the link that connects the Top of Rack switch (ToR) to

TABLE 1: Throughput and latency in 1G to 5G [11]

Generation Data Rate/Throughput
(Maximum)

Latency
(Minimum)

1G 9.6 kbit s−1 > 1000 ms

2G 2 Mbit s−1 600−750 ms

3G 100−300 Mbit s−1 (DL),
50−75 Mbit s−1 (UL)

< 10 ms (UP), < 100 ms (CP)
(typical values: 40−50 ms)

4G 1−3 Gbit s−1 (DL),
0.5−1.5 Gbit s−1 (UL)

∼ 5 ms (UP), < 100 ms (CP)
(typical values: 40−50 ms)

5G 1 Tbit s−1 (over 100 m)
> 20 Gbit s−1 (DL),
> 10 Gbit s−1 (UL)

≤ 1 ms

the corresponding host. Figure 1 gives an overview of the
mentioned applications that are experimented in terms of
their additive latency – x-axis is the static latency added
in microseconds for round-trip time (RTT) and y-axis is
the normalized performance. In particular, the baseline
performance of the individual applications is analogized
with the ratio of the measured performance at each latency
point to analyse the effect of static latency [9].

Experimental conclusions suggest that different injec-
tions of controlled network latency have varying impacts
on different applications. In particular, latency values are
affected to differing amounts, such that even small net-
work delays are found to be influential upon divergent
application performance, nearly tens of microseconds.

3. Current Status of Ethernet Technology

Presently, ethernet is the most widely used commodity
network system that allows the implementation of wired
computer networking technologies, most of which are
commonly being used in local area networks (LANs) and
wide area networks (WANs). Capabilities of the modern
ethernet technology allow expeditious data transfer and
hard real-time communication. Ethernet is readily scal-
able, thereby enabling thriving technologies to be eas-
ily integrated. Subsequently, as Loeser and Haertig [10]
points out, the current ethernet infrastructure is increas-
ingly moving towards the switches–network connection
devices that manage the data flow in a given network by
transmitting data packets between corresponding hosts. In
the context of media-access control, modern ethernet tech-
nology uses Carrier-sense multiple access with collision
detection (CSMA/CD) to defer data transmissions until
the predefined communication channel is not occupied by
any transmission. The aforementioned shift to network
switches allow the use of traffic shaping strategies by
means of implementing the hard real-time distributed sys-
tems on commodity networks. Nevertheless, current intu-
ition regarding the collision avoidance limitations yields
an increase in terms of processing load and bandwidth
allocation over a common network.

The evolution of network systems and their speci-
fications has been comprehensive apropos the changing
network architectures and radio access network (RAN)

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

62 doi: 10.2313/NET-2022-07-1_12

systems [12]. Throughout different generations of network
evolution, two principal parameters exist that are rudi-
mentary, namely throughput and latency. While latency
signifies the amount of time for data to travel from one
communication endpoint to another, throughput denotes
the amount of data that has moved successfully be-
tween the predetermined hosts. With the drastic evolution
of communication technologies, significant architectural
changes eventuated, introducing seamless connectivity and
mobility properties. In summary, Table 1 shows the val-
ues of different generations concerning the conjectural
throughput and latency evaluations [11].

Latest generation systems are intended to achieve ef-
ficient system development and utilization, in addition to
preserving end-to-end connection requirements. Nonethe-
less, the scope of this research does not cover deployment
and optimization fields, as the main focus is the applica-
tion of URLLC on non-specialized networks.

4. Sources of Tail Latency

The presented rationale is gathered from multiple tun-
ing guides, while also remarking the presence of various
studies that aim to overcome ambiguous extents that are
arisen from the complication of tail latency.

As already outlined, tail latency, commonly referred to
as high-percentile latency, is the percentage of response
times from which the response is received that takes the
longest amount of time in contrast to the overall response
times of the specified server. Maintaining a low margin
for tail latency is tricky, especially for large-scale appli-
cations that consist of interactive operations. Tail latency
is considered to be problematic due to numerous reasons.
As outlined by Haque et al. [13], applications with inter-
active foundations contend in terms of providing complex
user functionalities under strict latency constraints. As a
result, this creates an unavoidable setting in which tail
latency having an impact over user requests pursuant to
high degrees of parallelism—a performance metric that
indicates the number of operations that can be executed
on a server concurrently [13]. Since the totality of a
request is not finalized until the slowest sub-request is
finished, tail latency is proved to be an arduous challenge
for developers.

While tail latency might be an outcome of an
application-specific service, there are numerous reasons
where tail latency can be introduced to a network, some
examples being hardware peripherals, operating system
kernel modes or application-level configuration prefer-
ences. For instance, as Li et al. [14] points out, buffering
has an immense impact on networks that have low traffic
rates. This is considered as a primary predicament since
URLLC applications generally possess low traffic rates,
interpreting an operose situation since such conditions is
critical.

Nonetheless, there are numerous studies [10], [13],
[15] that explore and mitigate the problem of high la-
tency through modifying certain kernel operations, using
various software development tools to enable ISP and P2P
user cooperation and implementation of traffic shaping on
switched Ethernet.

5. Network Communication Requirements of
URLLC

Following explorations and analysis are gathered from
various articles that focus on network latency characteri-
zation and URLLC performance on commodity hardware.
Imperative network specifications and requirements are
listed, and use cases are denoted accordingly.

The main purpose of URLLC is to resolve newly
emerging latency-critical applications by means of han-
dling the prospective latency and reliability requirements.
In principle, network systems that support URLLC ap-
plications are capable of supporting real-time access to
rapidly changing data by design, thereby allowing the net-
work to be optimal and available to network optimizations
in the context of processing high volume data packets with
eminently low latency [4]. While the benefits of URLLC
on a network are authenticated, particular communication
requirements must be established to the network before
enabling URLLC supported applications. Preliminary re-
quirements of URLLC services that are prospective to the
network infrastructure which the URLLC will be deployed
are as follows:

a Low latency: The approximated maximum end-
to-end latency requirements for a network with
URLLC adaptation, ranging from 1 ms to 50 ms.
On average, the conception of URLLC requisites
presented by 3rd Generation Partnership Project
(3GPP) organizations is an average user-plane
radio latency of 0.5 ms, comprising uplink and
downlink together. Note that these values are not
bounded by an associated reliability value [4].

b High reliability: As stated in section 1, trend
of URLLC guarantees a perpetual connectivity
ratio of nearly > 99.999% reliability. As reported
by Stylianopoulos et al. [4], URLLC use cases
stipulate a reliability measure, ranging from
99.9% to 99.999% of reliability. Note that the
depictions are based on a network latency of 1 ms
for a transmission of packet size 32 bytes. Thence,
the network infrastructure must be capable of
sustaining a highly reliable packet delivery margin.

c Low jitter: In spite of the general network
specifications, i.e. a network infrastructure which
is verified to maintain a latency extremity that is
in the acceptable bounds of a system, a certain
deviation from the true periodicity of a network
is prospectively contingent [4]. This deviation is
commonly referred to as “jitter” which describes
the variance in latency. High values of jitter
connote inadequate network performance and
introduces packet loss to the network flow. In
particular, communications services that are based
on URLLC service category require the average
jitter to be < 50% cycle time [16].

Additionally, low traffic rates are also another aspect
that is considered essential to the notion of URLLC
services. However, event-based applications which aug-
mented to function in a dynamic environment are not

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

63 doi: 10.2313/NET-2022-07-1_12

TABLE 2: Example of low latency and high reliability use
cases and their requirements [1]

Scenario End-to-end latency Reliability

Discrete automation−
motion control

1 ms 99,9999%

Electricity distribution−
high voltage

5 ms 99,9999%

Remote control 5 ms 99,999%

Discrete automation 10 ms 99,99%

Intelligent transport systems−
infrastructure backhaul

10 ms 99,9999%

Process automation−
remote control

50 ms 99,9999%

Process automation−
monitoring

50 ms 99,9%

Electricity distribution−
medium voltage

25 ms 99,9%

both latency and throughput critical. Standard use cases
of these applications foster an approximate broadband
speed of < 50 Mbit s−1, a comparatively low traffic rate
as contrasted with modern networks [1].

An example of URLLC use cases and requirements [1]
are depicted in Table 2. Examples are made with respect
to predefined industrial applications that benefit from the
utilization of a URLLC network infrastructure. As for-
merly indicated, end-to-end latency values are in the range
of 1 ms to 50 ms, in addition to the eminent reliability
percentages. Per contra, maintaining the scope on network
design and overall system performance.

6. Conclusion and Future Work

Ultra-reliable and low-latency communication is a sub-
stantial service category for providing reliable connection
segments to applications that retain stringent latency and
reliability measures. The main features of URLLC, low
latency and high reliability in particular, enables a primary
usage scenario for 5G network infrastructure. In order to
sustain a network system that supports URLLC applica-
tions, the analogous network infrastructure must be fine-
tuned in terms of sustaining high reliability for the corre-
spondent application channels and a latency measurement
of 50 ms extremity. Furthermore, certain studies exist for
enabling and testing URLLC on Wireless Access systems
and Cloud-based application data centers.

In particular, Popovski [17] provides a framework that
can be utilized for scheming ultra-reliable wireless net-
work systems, and analyzing accordingly. Previous work
of the same research depicts the building blocks for the
appliance of URLLC in wireless network access. Continu-
ally, the following research is aimed to provide further in-
formation on techniques and principles for URLLC wire-
less access. The research further annexes investigations
by introducing a detailed discussion on communication-
theoretic principles of URLLC. Subsequently, concepts of
latency and reliability are expressed as coupled, from the
perspective of an application that has a predefined latency

constraint. At length, reliability of a communication is
defined under the probability that the measured latency
does not exceed this predefined latency constraint.

Additionally, Popescu et al. [9] present quantitative
results regarding test benchmarks of cloud-based applica-
tions. Results suggest that applications that are of different
complexity and distance to the corresponding data centers
are affected by network latency to differing amounts.
Findings are auspicious with respect to sustaining a cloud-
based ultra-low latency network environment for the up-
coming future studies that are fundamental to this area.

References

[1] Z. Li, H. Shariatmadari, B. Singh, and M. A. Uusitalo,
“5G URLLC: Design Challenges and System Concepts,” pp.
1–5, 2018, accessed: 2021-12-08. [Online]. Available: http:
//dx.doi.org/10.1109/ISWCS.2018.8491078

[2] P. Popovski, C. Stefanovic, J. J. Nielsen, E. de Carvalho,
M. Angjelichinoski, K. F. Trillingsgaard, and A. S. Bana,
“Wireless Access in Ultra-Reliable Low-Latency Communication
(URLLC),” vol. 67, no. 8, pp. 5783–5786, 2019, accessed: 2021-
11-18. [Online]. Available: http://dx.doi.org/10.1109/TCOMM.
2019.2914652

[3] P. Popovski, J. J. Nielsen, C. Stefanovic, E. de Carvalho,
E. Strom, K. F. Trillingsgaard, A. S. Bana, R. Kim, D.
M. Kotaba, J. Park, and R. B. Sorensen, “Ultra-Reliable
Low-Latency Communication (URLLC): Principles and Building
Blocks,” pp. 1–7, 2017, accessed: 2021-12-05. [Online]. Available:
http://dx.doi.org/10.1109/MNET.2018.1700258

[4] C. Stylianopoulos, M. Almgren, O. Landsiedel, M. Papatriantafilou,
T. Neish, L. Gillander, B. Johansson, and S. Bonnier, “Industry
Paper: On the Performance of Commodity Hardware for Low
Latency and Low Jitter Packet Processing,” pp. 1–5, 2020,
accessed: 2021-11-18. [Online]. Available: http://doi.org/10.1145/
3401025.3403591

[5] AMD, “Performance Tuning Guidelines for Low La-
tency Response on AMD EPYC 7001-Based Servers
- Application Note,” 2018, accessed: 2021-11-12. [On-
line]. Available: http://developer.amd.com/wpcontent/resources/
56263-Performance-Tuning-Guidelines-PUB.pdf

[6] J. Mario and J. Eder, “Low Latency Performance Tuning for Red
Hat Enterprise Linux 7,” 2017, accessed: 2021-11-12. [Online].
Available: https://access.redhat.com/sites/default/files/attachments/
201501-perf-brief-low-latency-tuning-rhel7-v2.1.pdf

[7] E. Rigtorp, “Low latency tuning guide,” 2021, accessed: 2021-11-
12. [Online]. Available: http://rigtorp.se/low-latency-guide/

[8] S. Gallenmüller, F. Wiedner, J. Naab, and G. Carle, “Ducked Tails:
Trimming the Tail Latency of(f) Packet Processing Systems,” pp.
1–7, Oct. 29, 2021, accessed: 2021-11-12. [Online]. Available:
http://dx.doi.org/10.23919/CNSM52442.2021.9615532

[9] D. A. Popescu, N. Zilberman, and A. W. Moore, “Characterizing
the impact of network latency on cloud-based applications’
performance,” vol. 2, no. 914, pp. 3–16, Nov. 2017, accessed: 2021-
11-12. [Online]. Available: http://dx.doi.org/10.17863/CAM.17588

[10] J. Loeser and H. Haertig, “Low-latency Hard Real-
Time Communication over Switched Ethernet,” pp. 1–
3, 2004, accessed: 2021-11-12. [Online]. Available:
http://dx.doi.org/10.1109/EMRTS.2004.1310992

[11] A. Slalmi, H. Chaibi, A. Chehri, R. Saadane, G. Jeon,
and N. Hakem, “On the Ultra-Reliable and Low-Latency
Communications for Tactile Internet in 5G Era,” vol. 176, pp.
3853–3862, 2020, accessed: 2021-12-08. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1877050920318925

[12] O. T. Eluwole, N. Udoh, M. Ojo, C. Okoro, and A. J.
Akinyoade, “From 1G to 5G, What Next?” vol. 45, Aug. 2018,
accessed: 2021-12-10. [Online]. Available: http://www.iaeng.org/
IJCS/issues_v45/issue_3/IJCS_45_3_06.pdf

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

64 doi: 10.2313/NET-2022-07-1_12

[13] M. E. Haque, S. Elnikety, Y. h. Eom, R. Bianchini, Y. He,
and K. S. McKinley, “Few-to-Many: Incremental Parallelism for
Reducing Tail Latency in Interactive Services,” pp. 1–4, 2015,
accessed: 2021-12-05. [Online]. Available: http://dx.doi.org/10.
1145/2694344.2694384

[14] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales
of the Tail: Hardware, OS, and Application-level Sources of
Tail Latency,” pp. 1–10, 2015, accessed: 2021-12-05. [Online].
Available: http://dx.doi.org/10.1145/2670979.2670988

[15] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can ISPs and
P2P Users Cooperate for Improved Performance?” vol. 37, no. 3,

pp. 31–34, 2007, accessed: 2021-11-12. [Online]. Available:
http://dx.doi.org/10.1145/1273445.1273449

[16] L. Xia, X. Hou, G. Li, Q. Li, L. Sun, W. Rui, J. Erfanian,
S. Tatesh, B. Liu, A. Chan, B. Tossou, A. G. Serrano, B. Sayrac,
G. Wannemacher, A. Kadelka, A. Frisch, J. Sachs, D. Patel, and
R. Sabella, “5G E2E Technology to Support Verticals URLLC
Requirements,” Nov. 18, 2019, accessed: 2021-12-14.

[17] P. Popovski, “Ultra-Reliable Communication in 5G Wireless
Systems,” pp. 1–4, 2014, accessed: 2021-11-20. [Online].
Available: http://dx.doi.org/10.4108/icst.5gu.2014.258154

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

65 doi: 10.2313/NET-2022-07-1_12

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

66

Current State of Network Support in WebAssembly

Elias Nechwatal, Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: nechwata@in.tum.de, holzinger@net.in.tum.de

Abstract—WebAssembly is a binary code that is system in-
dependent. Many programming languages can be converted
into WebAssembly (Wasm) and run on a browser or in
a runtime outside the browser. However, some programs
need networking support. Compiled into a Wasm module,
these needs have to be mapped to the according resources
that are accessible from the specific underlying system. This
paper mainly focuses on this mapping with the goal to
understand how networking functions can be reached. For
a browser environment this would be the Web APIs, an
interface provided by the browser, that grants access to
system resources. Outside the browser there is an API called
WASI that defines methods for system access that need to be
implemented by the runtime. Currently, networking directly
from WebAssembly fails on multiple aspects:
- Web APIs: Wasm can not access the Web APIs currently
- WASI: WASI can be accessed, however, there is currently
only few networking functionality defined
- Runtimes: If WASI defined enough networking functional-
ity, runtimes still needed to implement it which is currently
not the case.
A few options to network in Wasm, despite of these problems,
is either to do it in JavaScript in a browser or to include
a library that allows delegating http requests to a different
program for experimental use outside the browser.

1. Introduction

In the past, several attempts were made to compile
arbitrary code to JavaScript (JS). This seemed necessary
because JS is an extremely popular programming lan-
guage that is natively supported on the web [1]. The
toolchain Emscripten [2] made it possible to compile some
programming languages, such as C and C++, to asm.js,
a JavaScript subset. However, asm.js reached its limits
in terms of performance improvement, portability and
security. That is because major changes and adding new
features often would result in also changing JavaScript [1].
That is why asm.js was left behind and WebAssembly was
invented. WebAssembly is an advanced portable binary
format that several programming languages can compile
to. Also known as Wasm, it surpassed the old project
asm.js in all design goals. That is because Wasm has its
own binary and can add features without having to depend
on other languages unlike asm.js [1].

WebAssembly wants to make it possible, that code for
many different purposes can be run in Wasm runtimes.
However, programs that are compiled into Wasm could
need all kinds of interfaces towards the system resources.

In this paper we specifically focus on the possible ways
to access network support from Wasm. Therefore we, on
the one hand, look at the browser environment and its
interfaces. On the other hand, from Section 5 on, we
address Wasm outside the browser and how it is currently
possible to network from there.

2. WebAssembly Design

For the understanding of how Wasm networking
works, the fundamentals of WebAssembly are important.
In that respect, a short summary of important aspects of
wasm follows.

2.1. Binary Encoding

"The binary encoding is a dense representation of
module information that enables small files, fast decoding,
and reduced memory usage" [3]. Although Wasm is a
binary encoding, Wasm can be also represented in a
human readable text format called ’.wat’ [4]. Given a .wat
file, binary encoding generates a .wasm binary file through
formal grammar translation mechanisms. Wat modules
have a tree like structure, as "a module is represented as
one big S-expression" [4]. The nodes and the whole tree
is formed by parentheses. Every command has its opcode
and they are often similarly named as for instance the x86
assembly language. Nevertheless, coding in the text based
.wat format is more comfortable, due to the simplified
function declarations and import/export of modules.

2.2. Modules

A module consists of multiple sections, for instance an
import section, to declare imported modules, or a function
section, where all function signatures are declared. Writ-
ing text based WebAssembly by hand is rather unusual.
However, when writing own modules and functions, one
needs to be aware of Wasm code being designed to run
on a stack based virtual machine. That means, a function
pops its arguments from the operand stack and pushes the
return value. It is shown that using a stack machine, files
are smaller and decoding gets simpler than using a register
machine [1] [5].

In WebAssembly, modules are used for any possible
functionality. APIs and self written functionality are all
included as modules.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

67 doi: 10.2313/NET-2022-07-1_13

2.3. Portability and Runtimes

WebAssembly is portable, as it "does not specify any
APIs or syscalls" [6]. However, every access to the system
resources that a module requests, has to go through APIs.
Without these, the module would not be able to run.

For instance, assume a C code converted into Wasm
using memory allocation on the heap. This code could
not run in a web environment without a WebStorage API
or some sort of access to memory. WebAssembly lets the
host choose the APIs, so that he can restrict usage of
resources. Modules that were compiled to Wasm have to
rely on the compiler, to map their interface calls to the
available APIs [6].

Networking would also come as an API, the host
runtime needs to offer. How exactly the implementation
of an API looks like does differ from runtime to runtime
and also for each opeating system. That is caused by the
portable design of Wasm. It is not enough to compile
the .wat textfile into different binary files for different
machines to interact with (That is the way C code is
compiled). That approach would prevent the portability
of the generated .wasm file. To be able to run the Wasm
binary code on any operating system, the runtime has
to differ for each system. In that way, the runtime can
delegate the general Wasm system calls to the special
underlying system. The neccessary abstraction for the
Wasm binary code is provided [7].

2.4. Security

Even though being associated with assembly lan-
guages, WebAssembly is considered as secure [8]. Not
being able to run on a system directly, Wasm modules
can only interact with the environment over well defined
APIs. All modules run in their own sandbox and can only
communicate with each other via imports. Unlike in C,
Control-Flow-Integrity is always checked during runtime.
To achieve this, a table, built during compilation, lists all
functions that could possibly be called in the program
which are compared with the functions that actually get
called [8]. There are also measures against other possible
attacks which will not be discussed further.

2.5. Use Cases

In general, WebAssembly is used whenever it comes
to time critical calculations inside the browser [9]. Se-
curity also plays a role for developers that decide to
use WebAssembly for implementations. Currently, many
examples of existing code bases that are brought to the
web can be found [10].

The usual way to implement Wasm is to code the
website in JavaScript and outsource computation intensive
tasks into Wasm, using the Web Embedding API and the
JavaScript API of WebAssembly. In non-web environ-
ments, Wasm is often used as a secure way to mediate
between a program and the host system as Wasm delivers
another abstraction from the real system [11]. (Further
explanation in Section 5)

3. Browser Environment

In the browser, WebAssembly needs to reach the host
systems resources in order to perform networking. This is
done with APIs explained in the following.

3.1. APIs for Web Embedding

In Figure 1, it is modeled how WebAssembly (in
the browser) interacts with various other components of
a website. Every arrow is an API one has to use, to
access the other language/format. WebAssembly, for the
browser, is just another document to receive from the web-
server amongst the usual JS, CSS or html files. JavaScript
can access the html file. This programming interface to
the html document is called DOM (Document Object
Model). Furthermore JS has an API to WebAssembly
(JS API/WebEmbedding API), which is used in Websites
that stick to JS, but want to have fast calculations in
WebAssembly. However, looking at the WebAssembly’s
APIs there is no such arrow to the DOM. (This problem is
further explained in Section 3.3). The workaround that al-
lows to still access the DOM via Wasm is straightforward.
By using the JavaScript Interface to access the DOM, the
problem is solved.

As Wasm runs on the browser, there are many interfaces
towards the resources that the host system offers. These
are called Web APIs and are offered to websites and
applications by the browser. Providing indirect access to
system functions, such as memory allocation, networking
and much more, they are essential for WebAssembly code
[13].

3.2. Web Interface Description Language Bind-
ings

However, accessing Web APIs, WebAssembly can not
get along without JavaScript. In reality every Web inter-
face access of WebAssembly gets executed by Javascript
and not directly by Wasm. The reason for this problem
are the limited types that WebAssembly provides. On the
one side is an API coded in all possible programming
languages and on the other side Wasm with only a very
limited amount of data types (only integer and float).
Mediating is difficult here. To deal with the different types
of Web APIs, there is a standardization for structure of
those types, called Web Interface Description Language.
For JavaScript, there is a mapping from the JS types to
the Web IDL types. Every time a function of the Web
API is called, the JS parameter gets translated to a Web
IDL type. The return type of the function also has to be
converted in this manner. [14] That is where the problem
for Wasm lies. "Currently, there is no mapping between
WebAssembly types and Web IDL types. This means that,
even for simple types like numbers, your call has to go
through JavaScript." [14]. The translation of the types
is also called bindings. In case of Javascript this is the
ECMAScript Binding. It is obvious, that this process is
time intensive. It takes time to get the parameters from
WebAssembly, convert them to JavaScript types with JS
gluecode and convert these types to the Web IDL format
with the ECMASript Binding. This process also has to be

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

68 doi: 10.2313/NET-2022-07-1_13

4a 04 ef 40 16 da 83
92 ac 80 bd 91 53 d8
cf 09 91 5d e9 3c 9e
86 81 c9 5f 17 0c b1
f9 c0 f5 3b 06 5e 69
27 e3 a0 41 7e 5f 96
fe a8 49 05 81 69 14
f0 e2 3f a4 e1 f8 f3 f1
57 f6 08 68 da 0e a0
b8 27 94 e0 2f d1 08
c9 1a 43 62 92 83 c4
b0 82 1d ca 7e 20 f7
48 32 d8 b7 5e ad f0
4f 55 90 c8 aa b4 23

let main = await WebAssembly
 .instantiateStreaming(fetch('main.wasm'))

let x = main.instance.exports.add(5, 10)
let y = main.instance.exports.subtract(10,5)

.p{
 display: none
}
.p:hover{
 diplay block
}

<html>
 <head></head>
 <body></body>
</html>

DOM

WebApi

JS Api

CSSOM

site.css index.html

app.js

main.wasm

Figure 1: APIs in a browser [12]

reverted for the return value [15]. Another aspect is the
memory usage, as the parameters have to be copied from
the Wasm memory to JS heap to the renderer’s heap.

Currently, this is the only way to access these Web
APIs from Wasm. However, web developers are aware of
this problem and try to create a mapping directly from the
Wasm types to the IDL types. Nevertheless, this problem
will not be solved soon as there are many difficulties
mapping the types. "To have a straightforward mapping
between WebAssembly types and Web IDL types, we’d
need to add some higher-level types. And we are doing
that — with the GC proposal" [14], another Problem
explained next.

3.3. Garbage Collection in WebAssembly

WebAssembly has no Garbage Collection (GC) im-
plemented nor any memory management tools. That is
no problem for compiling languages into WebAssembly,
that do not have GC either and clean their memory usage
in the code. However, languages that are used to more
support than just a linear piece of memory are struggling
to compile to Wasm. "Currently, languages that require a
GC have no other option than to compile the GC to .wasm
and ship that as part of the binary" [16] which is not very
efficient and increases the legth of the .wasm binary file.
"However, the option of integrating with the host’s GC
will not only make it easier to compile numerous high-
level languages to WebAssembly (Java, C#, Elm, Scala), it
will also make it easier to interoperate with objects created
by the host, which are often garbage collected, as well."
[16]

4. Networking in Browser WebAssembly

API calling, for instance the JS API, often utilizes the
memory of the wasm module to transfer information. In
that way other APIs or system resources can be accessed.

4.1. Memory in WebAssembly

The memory is basically an array, whose indexes are
the memory addresses. Memory is addressed via "[...]33
bit effective address that is the zero-based index [...]" [17]
of the memory cell. Access to the memory contains, for
instance, the ability to load or store bytes or grow the

memory size to a certain amount of pages. (WebAssembly
page size is 64Ki) [18]

4.2. How Modules Access APIs

A module does not have access to anything but its
own memory and sandboxed runtime. To link modules
together, "An embedder can instantiate multiple modules
and use exports from one as imports to the other" [1].
Thus, a module can gain access to the functionality and
memory of other modules.

APIs, for instance all browser APIs, libraries and de-
vices, are nothing more than modules whose functionality
can be accessed by importing them. Once imported, func-
tions of the API can be called. However, WebAssembly
still only supports arguments passed to these functions,
that consist of the "[...] fundamental WebAssembly data
types (i32 | i64 | f32 | f64 ; as the interface types and multi-
value Wasm proposals get implemented, runtimes would
also be able to exchange additional types, for example
strings, and return more than one such value)." [18] The
JS API, however, tries to convert strings into numbers
so that they can be passed as arguments and interpreted
[14].

Another way of passing arguments to the host run-
time is by memory. Arguments are passed by invoking
the module’s function, passing a memory pointer. The
function itself also returns a pointer to its memory so that
information can be copied to and from both memories.
In this case, both modules have to export parts of their
memory to make it accessible. The function converting
strings to integers and passing them through memory is
also called Gluecode in the JS API [14].

4.3. Problems of Networking in WebAssembly

As mentioned in Section 3.2, networking directly from
Wasm is hardly possible due to difficulties communicating
with Web APIs. Another problem is, that even outside the
browser an interface to directly support sockets for the
Wasm module, making it possible to communicate with
the web, still is not supported by most runtimes [19].
Even the WASI (Section 5) provides only little support
for sockets. Being able to only call sockrecv, socksend,
and sockshutdown is not enough to provide a proper TCP

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

69 doi: 10.2313/NET-2022-07-1_13

connection. These methods are shown in the WASI snap-
shot of Wasmtime [19], but still unimplemented. However,
there are multiple proposals to solve this problem. Hard
design choices are currently keeping contributors from
deciding on a proposal [20]. The two things that runtimes
would have to do in order to make sockets available for
modules are:

Firstly, define an API for networking (simply add a
function definition to WASI);

Secondly, implement the functionality into their run-
time [21].

4.4. Networking using the JS Interface

As mentioned in section 3.1, WebAssembly offers an
API to JS. To circumvent the lack of bindings from Wasm
to Web APIs, one could just leave all the networking to
JavaScript. Although this method is a bit slower, due to
the interfaces that have to be passed, there are not many
more secure options.

In a browser, a Wasm module can be instantiated by
with the method instantiateStreaming(). The instantiated
Wasm module is a JS object and a WebAssembly.Memory
object can be passed to it. JavaScript has full access to this
memory, so passing arguments and reading return values
from it is less complicated [22].

5. WASI

Until now, WebAssembly was only explained as an
assembly language running in a browser environment.
However, Wasm has proven its applicability and advan-
tages, so developers tried to implement it outside the
browser as well. Therefore an environment for Wasm to
run on is needed. As mentioned in section 2.3, the runtime
for Wasm allows a general and portable execution of
modules as it creates an abtraction to specific operating
system. Another ingredient that is needed is a way to
communicate with the system. In a browser this was the
Web API that offered an interface for system access. For
outside the browser, this is exactly what WASI is. A Web
Assembly System Interface [7].

5.1. WASI Structure

WASI is standardized to have one main core that
most programs will need. For instance, this interface will
provide access to functionality, such as random numbers,
files or networking. Additional to this main WASI core,
a system can decide whether it needs more special inter-
faces, such as crypto, 3D Graphics or processes. All in all
WASI is supposed to be modular and every host can grant
its Wasm programs only the functionality that he wants to
provide.
If a module needs access to a specific interface, "the
runtime that is running the code passes the wasi-core
functions in as imports" [7]. This way the host system can
decide for each module, if it wants to grant the requested
interface.

6. WebAssembly Gateway Interface

As already mentioned Section 4.3 WASI itself does
provide a snapshot for the most basic socket interfaces.

These, however, are hardly implemented by runtimes.
The main idea of WAGI is to circumvent the lack of

networking support in wasm and hand requests, that a
wasm module wants to send, to a different program.

• The module writes the request to stdout,
• WAGI reads the request and sends it
• The response gets passed to the stdin file of the

wasm module [21]

For this matter, "WAGI provides an HTTP server imple-
mentation that can dynamically load and execute WASM
modules" [23]. The headers are accessed via environment
variables, that are provided by WASI. Payloads are simply
sent by using stdout and received in stdin.

6.1. WAGI Network Support

WAGI has to fill the networking gaps in WASI. To do
so, WAGI provides a library for WASI that makes use of
the idea explained above. The wasm runtime has to allow
the module to use the specific API and mediate between
the interface and the module. The WAGI HTTP server
needs to have a list of all domains that the modules are
allowed to access. An empty list indicates that modules
are not allowed to request at all. There are also many
possibilities to change the modules requests dynamically
and execute different functions of the modules [23].

7. Conclusion

WebAssembly is an important innovation that im-
proves the ability to bring all kinds of code to the web.
Even outside the Browser it provides a stable and so-
phisticated language, that most programming languages
profit compiling to, by means of security, portability and
speed. Nevertheless, WebAssembly is not yet applicable
for all use cases. Especially the network support lacks
functionality. Even though WAGI seems to work around
this problem, it can not provide a stable solution that
is more than just experimental. (Users are warned to
not use their approach other than just for experimenting)
WebAssembly in the browser however, proved its appli-
cability and advantage. This can be seen in many projects
that bring, for instance, games and all kinds of software
to the web. In the future, WebAssembly developers will
try to implement a GC and solve many recent problems
with that. Networking and all other kinds of support will
follow. This will be the foundation for new APIs, bindings
and a better compilation of programs dooming this project
that emerged from asm.js, to success.

References

[1] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing
the web up to speed with webassembly,” ACM SIGPLAN
Notices, no. 6, p. 185–200, 2017. [Online]. Available: https:
//dl.acm.org/doi/pdf/10.1145/3062341.3062363

[2] Emscripten Contributors, “About Emscripten,” https://emscripten.
org/docs/introducing_emscripten/about_emscripten.html, 2015,
[Online; accessed 16-November-2021],[Also good information on
github].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

70 doi: 10.2313/NET-2022-07-1_13

[3] “Binary encoding,” 2015, [Online; accessed 16-November-
2021],[also on Github]. [Online]. Available: https://github.com/
WebAssembly/design/blob/main/BinaryEncoding.md

[4] MDN contributors, “Understanding WebAssembly text
format,” https://developer.mozilla.org/en-US/docs/WebAssembly/
Understanding_the_text_format, 2020, [Online; accessed 16-
November-2021].

[5] Y. Shi, K. Casey, M. A. Ertl, and D. Gregg, “Virtual machine show-
down,” ACM Transactions on Architecture and Code Optimization,
no. 4, p. 1–36, 2008.

[6] WebAssembly contributors, “Portability,” https://webassembly.org/
docs/portability/, 2021, [Online; accessed 16-November-2021].

[7] L. Clark, “Standardizing WASI: A system interface to run
WebAssembly outside the web,” 2019, [Online; accessed 16-
November-2021]. [Online]. Available: https://hacks.mozilla.org/
2019/03/standardizing-wasi-a-webassembly-system-interface/

[8] WebAssembly contributors, “Security,” https://webassembly.org/
docs/security/, 2021, [Online; accessed 16-November-2021].

[9] Sander Tunge Aspøy, Helene Larsen, “Diversification for HotStuff
through WebAssembly,” Master’s thesis, University of Stavanger,
Stavanger, 2021.

[10] Aaron Turner (torch2424) with help from James Milner, Jonathan
Beri (beriberikix) and Contributors. Additional input from Alex St.
Louis, “Made with WebAssembly,” https://madewithwebassembly.
com/all-projects, 2019, [Online; accessed 16-November-2021].

[11] L. Clark, “Memory in webassembly (and why it’s safer
than you think),” 2017, [Online; accessed 16-November-
2021]. [Online]. Available: https://hacks.mozilla.org/2017/07/
memory-in-webassembly-and-why-its-safer-than-you-think/

[12] G. Royse. An introduction to webassembly. Youtube. [Online].
Available: https://www.youtube.com/watch?v=3sU557ZKjUs

[13] Chrome Developers, “Web APIs,” 2021, [Online; accessed 16-
November-2021]. [Online]. Available: https://developer.chrome.
com/docs/extensions/api_other/

[14] L. Clark, “WebAssembly Interface Types: Interoperate with
All the Things!” 2019, [Online; accessed 16-November-
2021]. [Online]. Available: https://hacks.mozilla.org/2019/08/
webassembly-interface-types/

[15] L. Wagner. Webassembly: status, webidl bindings,
and roadmap. Youtube. [Online]. Available:
https://www.youtube.com/watch?v=iwFsZdib8l4;https://www.
w3.org/2018/12/games-workshop/slides/08-web-idl-bindings.pdf

[16] C. Eberhardt, “What Is WebAssembly?” https://www.oreilly.com/
library/view/what-is-webassembly/9781492076902/ch04.html,
2019, [Online; accessed 16-November-2021].

[17] A. Rossberg, N. Z. An, B. Smith, and A. Yasui,
“Instructions,” 2017, [Online; accessed 16-November-2021],[also
on Github]. [Online]. Available: https://webassembly.github.io/
spec/core/syntax/instructions.html

[18] Radu Matei, “A practical guide to WebAssembly memory,”
https://radu-matei.com/blog/practical-guide-to-wasm-memory/
#webassembly-memory, 2021, [Online; accessed 16-November-
2021].

[19] WASI contributors, “Wasi_Snapshot_Preview1,”
https://github.com/bytecodealliance/wasmtime/blob/
6db24fd08fa6f675e1b4ef818f8684602fd58730/crates/
wasi-common/src/snapshots/wasi_snapshot_preview1.rs#
L808-L828, 2020, [Online; accessed 16-November-2021].

[20] N. McCallum, “WASI: Expand Networking Functions,” https:
//github.com/bytecodealliance/wasmtime/issues/70, 2019, [Online;
accessed 16-November-2021].

[21] Radu Matei, “Wasi-Experimental-Http,” https://radu-matei.com/
blog/wagi-updates/, 2021, [Online; accessed 16-November-2021].

[22] MDN Contributors, “Using the WebAssembly JavaScript API,”
2021, [Online; accessed 16-November-2021].

[23] Matt Butcher, Itowlson, “Architecture of WAGI,” https://github.
com/deislabs/wagi/blob/main/docs/architecture.md, 2021, [Online;
accessed 16-November-2021].

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

71 doi: 10.2313/NET-2022-07-1_13

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

72

NWCRG Closing Report

Aral Toksoy, Henning Stubbe∗, Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: aral.toksoy@tum.de, stubbe@net.in.tum.de, holzinger@net.in.tum.de

Abstract—Network Coding Research Group (NWCRG) is
concluding itself after 8 years of research. Throughout the
years, as a part of the Internet Research Task Force (IRTF),
the NWCRG has been exploring the concept of Network
Coding, which is a networking technique, where a content
of a packet is coded at a network node in a packet network.
NWCRG also summarizes the research results and practical
implementations related to Network Coding.

This paper gives an overview and most important con-
cepts of Network Coding and summarizes the efforts under-
taken by the NWCRG in Network Coding.

Index Terms—Network Coding, NWCRG, IRFT, IEFT,
IRSG, Internet Draft, Request For Comments

1. Introduction

The history of Network Coding dates back to its initial
introduction in the seminal paper [1] by Ahlswede et al.
and the popularity of Network Coding has been ascending
since. Taking notice of the potential power and benefits,
researchers commenced to do a research about Network
Coding and its possible practical implementations. Fol-
lowing several publications regarding and applications
with the usage of Network Coding, the incentive to es-
tablish a research group in the IRTF was born.

Since its establishment, the NWCRG has accom-
plished numerous important works such as researching the
principles of Network Coding, summarizing the existing
publications and applications, and proposing new ideas.
After having fulfilled their main objectives, the NWCRG
is coming to an end in 2022 after 8 years of a journey,
leaving various contributions to Network Coding.

In this following paper, the most important aspects of
Network Coding will be covered and the Network Coding
Research Group as well as the efforts undertaken by this
group will be showcased. We firstly mention the theory
and history behind the Network Coding and its benefits in
Section 2. Moreover in Section 3, the history and the ini-
tial motivation of the NWCRG and their accomplishments
will be explained. Finally, having analyzed the topics of
interest, we draw a conclusion of the mentioned topics in
Section 4.

2. Network Coding

Considering that Network Coding has had multiple
definitions since its birth, it can be challenging to describe
the concept with a particular interpretation.

The very first and most general definition of the
Network Coding was framed in the seminal paper [1] in
year 2000. The authors Ahlswede et al. stated that they
will “refer to coding at a node in a network as network
coding”. The meaning behind coding in this paper was
an arbitrary mapping of a data at intermediate network
nodes.

According to Ho et al. in their book, Network Coding
is a technique, where a content of a packet is coded at a
network node in a packet network (a network, in which a
data is broken down into packets). The network nodes can
take multiple packets, combine them, and output a result-
ing packet to send it to the next node in the network [2].

2.1. History of Network Coding

In the seminal paper [1], the authors spoke of the
potential power and benefits of Network Coding, however,
did not disclose the design methods [3].

After 3 years from the first paper on Network Coding,
Li, Yeung, and Cai published a new paper [4], which
was more about the practical implementation of Network
Coding. They showed that applying Network Coding on
networks can rely on mathematical functions and suffices
to achieve the optimum potential [3].

In the same year, Koetter and Medard issued a pa-
per [5], in which an algebraic framework for analyzing
coding approaches was introduced [3].

In 2005 and 2006, two important design algorithms
were reported. In the first paper [6] from 2005, the authors,
Jaggi et al., introduced polynomial time algorithms and
randomized algorithms for Network Coding. In the second
paper [7] from 2006, the authors Jaggi et al. expressed
that randomly chosen network codes are also convenient
for multicast networks [3].

2.2. Benefits of Network Coding

Especially in comparison with traditional routing net-
works, Network Coding can improve the throughput, com-
plexity, robustness, latency, and security of a network.
Therefore, in this part, we will go through the most
important improvements along with the famous networks
such as butterfly network and diamond network.

Increased throughput is one of the easiest-to-
demonstrate benefits of Network Coding [2]. In the semi-
nal paper [1], the potential gain in throughput is explained
with a butterfly network. As in the paper, we will use s
for the source, and t1, t2,..., tn, the sinks of a graph. In
both Figures 1a and 1b, the source s transmits two packets

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

73 doi: 10.2313/NET-2022-07-1_14

(a) Routing with Multicast (b) Network Coding

Figure 1: Butterfly Network

(a, b) to the sink nodes t1 and t2 and the capacity of each
edge is one packet per unit time.

With routing, the edge (3, 4) of Figure 1a poses a
bottleneck, and it can carry either the packet a or b per
unit time. Hence, it must be used twice so that both sinks
can get the packets a and b. As seen in the Figure 1a,
it is not possible to feature a multicast from one source
node to two sink nodes simultaneously.

Through the medium of Network Coding, the node 3
in the Figure 1b is coded and takes both packets, a and
b, combines them by taking the xor operation and sends
out the new packet. The sink nodes t1 and t2 can decode
the missing packets by taking the xor operation again
with the two received packets. In this case, t1 performs
the xor operation between packets a and a ⊕ b and
receives the missing packet, b. Likewise, t2 performs the
xor operation between packets b and a ⊕ b and receives
the missing packet a . Thus, we see that using Network
Coding in the butterfly network saves one transmission
by coding an intermediate node and therefore increases
the throughout [2].

Network Coding can reduce the complexity of a net-
work in certain cases. In article [2], Ho and Lun state that
although routing can gain comparable performance as Net-
work Coding, Network Coding can reduce the complexity
and consequently provides better performance in the fields
such as Gossip-data dissemination protocol and Wireless
Ad Hoc Network (WANET) [2], [8].

Figure 2: Diamond Network

Network Coding can have both advantages and disad-
vantages in terms of network security. On the one hand,
Network Coding can make a network more vulnerable
to attacks like Pollution Attacks or Byzantine Attacks.
Mixing packets at the intermediate nodes can result in
packet pollution and one polluted packet can easily spread
the pollution to many other packets. Considering that this
pollution attack is one of the dangerous attacks against a
network, it may cause a failure of the decoding at the sink
nodes [9].

However, on the other hand, Network Coding can
ensure a secure communication within a network by pre-
venting eavesdropping. For example, in the Figure 2, the
source node s wants to transmit a packet p to the sink
node t , but it is aware that one of the 4 intermediate
nodes in the network is malicious and operated by an
eavesdropper. With routing, there is a 1/2 chance that the
eavesdropper obtains the packet. With Network Coding,
s can split the packet s into 4 equal packets p1, p2, p3
and p4 and then combine these packets again by taking
the xor operation:

c1 = p1 ⊕ p2 , c2 = p3 ⊕ p4 (1)
c3 = p1 ⊕ p4 , c4 = p2 ⊕ p3 (2)

Then, s sends these combined packets c1 and c2 over node
1 and the other packets c3 and c4 over node 2. If the
malicious node cannot calculate the content of at least one
coded packet, decoding the packet p is impossible [2], [8].

3. Network Coding Research Group

Network Coding Research Group (also known as
Coding for efficient NetWork Communications Research
Group) is one of the 14 active and chartered research
groups of the IRTF.

Before going into the particulars of the NWCRG, we
would like to refer briefly to the IRTF and its significance.

3.1. Internet Research Task Force

IRTF is an organization that is administered by the
IRTF-Chair in deliberation with the Internet Research
Steering Group (IRSG) and targets research-issues con-
nected to the Internet such as Internet protocols, applica-
tions, architecture, and technology, by establishing long
term research groups working on these fields [10]. The
roles of research groups can be listed as [11]:

• Finding new ideas about their field
• Exploring new academic and industrial areas with

global Internet potential
• Expert-supporting the Internet Engineering Task

Force (IETF)

On the contrary, the parallel organization IETF focuses
on issues of engineering and standards making in the short
term [10].

The IRTF also organizes the Applied Networking Re-
search Workshop and the Applied Networking Research
Prize in collaboration with the Association for Computing

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

74 doi: 10.2313/NET-2022-07-1_14

Machinery (ACM) and Internet Society (ISOC), where
the applied networking research results are reviewed and
discussed by the researchers, vendors, and many other
operatives in the field [12].

3.2. History of NWCRG

Following the first introduction of the concept of Net-
work Coding in the article [1], the interest in the field
increased consistently. After taking action on practical
implementations and design algorithms throughout the
years, the involvement in pursuing an IRTF activity came
on stage.

In November 2012, researchers from Lincoln Labora-
tory, MIT, Caltech, and many other institutions from all
around the globe were invited to constitute an IRTF re-
search group led by Victor Firoiu from BAE Systems, and
Brian Adamson from U.S. Naval Research Laboratory. By
the end of 2012, the research group was formed and had
planned a meeting at the IETF-86 Meeting in Orlando
in order to introduce the research group’s objectives and
plans for the future. Succeeding the primary meeting, the
group decided to plan a second meeting in the next IETF-
87 Meeting in Berlin. Having reintroduced the research
group and its objectives in IETF 87 and IETF 88 Meetings,
the IETF chair officially chartered the research group,
and the Internet Architecture Board (IAB) approved the
charting on the 13th of November 2013 [13].

One year after laying the foundation for a research
group, the Network Coding Research Group was officially
one of the chartered research groups of the IRTF.

3.3. Initial Motivation

As industrial and commercial applications enhanced
their interest in Network Coding after few years of re-
search, the Network Coding Research Group was estab-
lished as mentioned. According to the presentation of
Firoiu and Adamson in their first IETF Meeting, one of the
initial motivations of the NWCRG was to analyze the re-
search advancements, proved performance improvements
and the practical algorithms in the publications [14]. For
instance, analyzing the achievements of multicast with
Network Coding on Max-flow Min-cut problem in the
seminal paper of Ahlswede et al. [1] as well as analyzing
the coding schemes for reliable communication from the
article of Lun et al. [15].

Additionally, one of the initial motivations of the
research group was to do a research regarding the practical
applications of Network Coding as the studies on Network
Coding expanded and developed over the years and began
to appear on manifold platforms [14].

3.4. Objectives

Every research group affiliated with the IRTF is
founded based on a peculiar requirement and has a specific
objective. As declared in the charter [16], the main goal
of the Network Coding Research Group is to analyze
principles and utilities of Network Coding in order to
improve the Internet communication. NWCRG examines
the research results on Network Coding and aims to

advance its practical applications. In addition, the group
also focuses on the existing practical implementations
and targets to achieve the standardization of the Network
Coding enabled communication [16].

3.5. Interest Areas of the NWCRG

As stated above, the two main interest areas of the
Network Coding Research Group are Network Coding
Research and Practical Applications of Network Coding.
In these sections, we will see the primary subjects, in
which the NWCRG is interested.

NWCRG is mainly devoted to the following topics in
Network Coding Research [16]:

• Performance and efficiency: Analyzing perfor-
mance improvements, computational complexity
of Network Coding, trade-offs between different
Network Coding techniques.

• Security, privacy, and robustness: Evaluating the
advantages and disadvantages of Network Coding
in network security, analyzing the interactivity of
Network Coding and encryption.

• Application Layer: Exploring the interactions be-
tween Network Coding and application-specific
Coding.

• Data Link Layer: Searching for the interaction
between Network Coding and data link protocols
such as optical, wireless, and satellite links.

• Costs of Network Coding: Determining the ways
to price services, for instance, network usage or
information rate.

NWCRG is mainly interested in the following matters
in Network Coding practical application [16]:

• Architectural Considerations: Analyzing different
design techniques and requirements for extensive
networks.

• End-to-end vs. hop-by-hop: Evaluating the two
different transport principle.

• Intra-flow and inter-flow: Researching the two dif-
ferent protocols Intra-flow Network Coding and
Inter-flow Network Coding.

• Service Paradigms: Analyzing the service
paradigms such as best effort and time bounded
utility.

• Encoding – Decoding algorithms, packet formats:
Examining the benefits of Network Coding in
common encoding and decoding algorithms and
packet formats.

3.6. Achievements

Since its establishment in 2013, the Network Coding
Research Group has made many contributions to Network
Coding by encouraging studies on Network Coding and
improving network performance, developing codes, and
coding libraries, offering new protocols to promote the
usage of Network Coding in existing and future systems.
The group published many Internet-Drafts (I-Ds) and Re-
quest For Comments (RFC) over the years [17].

Before going into the details of the most important
achievements and proposed protocols of the NWCRG, we

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

75 doi: 10.2313/NET-2022-07-1_14

will briefly clarify the terms Internet-Drafts (I-Ds) and
Request For Comments (RFC).

An Internet-Draft is a short-lived working document of
the Internet Engineering Task Force (IETF). It is the pri-
mary input with technical standards and research findings
which then may be approved as a Request For Comments.
Since I-Ds are ongoing documents and do not embody any
formal status, they should not be cited or acknowledged
as authoritative sources [18], [19].

On the other hand, a Request For Comments is a pub-
lication with technical specifications and organizational
notes, which poses more formality. Furthermore, an RFC
can have different IETF statuses based on the maturity
level [18], [20].

Immediately below, we will introduce one Internet-
Draft and one RFC of the Network Coding Research
Group.

Network Coding for Content-Centric Networking /
Named Data Networking: Considerations and Challenges
is one of the three Internet-Drafts of the NWCRG. The I-D
was sent to Internet Research Steering Group (IRSG) in
March 2021 and currently, this group is still in the process
of approval and taking a poll on whether the document
fulfills the requirements to be published [21].

The first version of the I-D was approved in Oc-
tober 2018. In this document, the authors Matsuzono,
Asaeda and Westphal summarize the current research in
Network Coding for Content-Centric Networking (CCN)
Named Data Networking (NDN) and technical issues and
challenges when applying Network Coding to the CCN
and NDN such as content naming, transport, congestion
control and security. Matsuzono et al. state that, the appli-
cation of Network Coding in CCN and NDN can help with
large-scale content/information dissemination effectively.
Combining Network Coding and CCN/NDN may also
cause security issues such as malevolently requesting or
injecting network packets and thereby resulting in ampli-
fication attacks [21].

The RFC Taxonomy of Coding Techniques for Efficient
Network Communications [22] is the first RFC of the
Network Coding Research Group which was approved by
the IRSG and was published in 2018. The purpose behind
this RFC was to create a Network Coding terminology
which would assist the future research on Network Cod-
ing, and instead of proposing specific solutions offering
the common Network Coding concepts, constructs and set
of terms. It was the first document to be published about
the taxonomy of Network Coding and 14 researchers from
the NWCRG contributed to this RFC.

In this RFC, the general definitions and concepts of
the Network Coding such as Packet Erasure Channel, End-
to-End Coding, Source Node, Coding Node and surely
the Network Coding are clarified. The authors refer to
Network Coding as: “A system where coding can be per-
formed at the source as well as at intermediate forwarding
nodes (all or a subset of them).” [22]. The different coding
types and the technical details are also discussed in the
document.

In substance, the RFC Taxonomy of Coding Techniques
for Efficient Network Communications summarizes the
recommended terminology for Network Coding and the
most common definitions of Network Coding that many

of the researchers use and come across while researching
or developing practical applications [22].

3.7. Current Situation

After 8 years of doing research, developing practical
applications, positing new questions, and publishing many
I-Ds and RFCs, the Network Coding Research Group
organized their last meeting at the online IETF 111, led
by the co-chairs Marie-Jose Montpetit and Vincent Roca.

The group has 3 active I-Ds at the moment. The I-Ds,
Coding and congestion control in transport and Network
Coding for CCN / NDN: Considerations and Challenges,
are sent to the IRSG and the latter is currently in IRSG
poll and will be published according to the results of the
poll. The third I-D, BATS Coding Scheme for Multi-hop
Data Transport, which analyzes and discusses the BATS
coding schemes for multi-hop networks communications,
has not been sent to the IRSG [21]–[23].

After sending all I-Ds to the IRSG, and publishing
these I-Ds as RFCs, the Network Coding Research Group
will be closed in 2022, after 9 years of the establishment.

4. Conclusion

To conclude this paper, we have provided an overview
of Network Coding theory and its most important bene-
fits. We have also shown that the Network Coding Re-
search Group has complied with its initial motivations
and accomplished their fundamental objectives by making
research concerning the Network Coding, summarizing
publications and applications, and proposing newfangled
ideas.

Furthermore, the prospective individual research and
implementations on Network Coding from the researchers
of the NWCRG can be of interest in the future.

References

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. 46, no. 4,
pp. 1204–1216, 2000.

[2] T. Ho and D. Lun, Network Coding: An Introduction. USA:
Cambridge University Press, 2008.

[3] M. Effros, M. Médard, and R. Koetter, “A Brief History
of Network Coding,” https://www.scientificamerican.com/article/
history-of-network-coding/, 2007.

[4] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE
Transactions on Information Theory, vol. 49, no. 2, pp. 371–381,
2003.

[5] R. Koetter and M. Medard, “An algebraic approach to network
coding,” IEEE/ACM Transactions on Networking, vol. 11, no. 5,
pp. 782–795, 2003.

[6] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial Time Algorithms for Multicast Network
Code Construction,” IEEE Transactions on Information Theory,
vol. 51, pp. 1973 – 1982, 07 2005.

[7] S. Jaggi, “Design and Analysis of Network Codes,” Ph.D. disser-
tation, California Institute of Technology, USA, 2005.

[8] G. Carle, S. Günther, W. Utschick, and M. Riemensberger,
“Network Coding,” https://www.net.in.tum.de/pub/nc2014/slides.
pdf, 2014.

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

76 doi: 10.2313/NET-2022-07-1_14

[9] P. Ostovari and J. Wu, Toward Network Coding for Cyber-Physical
Systems: Security Challenges and Applications. John Wiley &
Sons, Ltd, 2017, ch. 11, pp. 223–242. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/9781119226079.ch11

[10] “Internet Research Task Force,” https://irtf.org/, 2021.
[11] A. Mankin, “IRTF Overview,” https://datatracker.ietf.org/meeting/

99/materials/slides-99-edu-sessd-irtf-overview-01.pdf, p. 15,
2017.

[12] “Applied Networking Research Workshop,” https://irtf.org/anrw/,
2021.

[13] “IETF Mail Archive,” https://mailarchive.ietf.org/arch/browse/
nwcrg/, 2021.

[14] B. Adamson and V. Firoiu, “Introduction and Overview Net-
work Coding Research Group,” https://www.ietf.org/proceedings/
86/slides/slides-86-nwcrg-0.pdf, pp. 4, 5, 2013.

[15] D. Lun, M. Médard, R. Kötter, and M. Effros, “On coding for
reliable communication over packet networks,” Physical Commu-
nication, vol. 1, pp. 3–20, 09 2005.

[16] “Charter - Network Coding Research Group,” https://datatracker.
ietf.org/doc/charter-irtf-nwcrg/, 2014.

[17] M.-J. Montpetit and V. Roca, “Coding for effi-
cient NetWork Communications Research Group
(NWCRG),” https://datatracker.ietf.org/meeting/111/materials/
slides-111-nwcrg-00-nwcrg-ietf111-chairs-00/, 2021.

[18] “What are Internet Drafts and Requests for Comments (RFCs)?”
https://kb.iu.edu/d/agkj, 2018.

[19] “Internet-Drafts,” https://www.ietf.org/standards/ids/, 2021.

[20] “RFCs,” https://www.ietf.org/standards/rfcs/, 2021.

[21] K. Matsuzono, H. Asaeda, and C. Westphal, “Network Coding
for Content-Centric Networking / Named Data Networking:
Considerations and Challenges,” Internet Engineering Task Force,
Internet-Draft draft-irtf-nwcrg-nwc-ccn-reqs-08, Nov. 2021, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-irtf-nwcrg-nwc-ccn-reqs-08

[22] B. Adamson, C. Adjih, J. Bilbao, V. Firoiu, F. Fitzek, S. A. M.
Ghanem, E. Lochin, A. Masucci, M.-J. Montpetit, M. V. Pedersen,
G. Peralta, V. Roca, P. Saxena, and S. Sivakumar, “Taxonomy
of Coding Techniques for Efficient Network Communications,”
RFC 8406, Jun. 2018. [Online]. Available: https://rfc-editor.org/
rfc/rfc8406.txt

[23] S. Yang, X. Huang, R. W. Yeung, and D. J. K. Zao,
“BATS Coding Scheme for Multi-hop Data Transport,” Internet
Engineering Task Force, Internet-Draft draft-irtf-nwcrg-bats-03,
Dec. 2021, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-irtf-nwcrg-bats-03

Seminar IITM WS 21/22,
Network Architectures and Services, May 2022

77 doi: 10.2313/NET-2022-07-1_14

ISBN 978-3-937201-75-7

9 783937 201757

ISBN 978-3-937201-75-7
DOI 10.2313/NET-2022-07-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	State of the Art of DDoS Mitigation Techniques
	Comparison of Different QUIC Implementations
	Optimizations for Secure Multiparty Computation Protocols
	Position-based Routing in Flying Ad Hoc Networks
	Survey on Trusted Execution Environments
	Review of Industrial Control Systems Protocols
	Applications of Q-Learning to Network Optimization and Graph Problems
	Seminar Innovative Internet Technologies: Zero Knowledge Proofs
	SCTP: Are you still there?
	Comparison of Different QUIC Implementations
	Survey on Machine Learning-based Autoscaling in Cloud Computing Environments
	Ultra-Low Latency on Ethernet Technology
	Current State of Network Support in WebAssembly
	NWCRG Closing Report

