
An Implementation of the Babel Routing Protocol for ns-3

Malte von Ehren, Jonas Andre∗, Florian Wiedner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: malte.von.ehren@tum.de, andre@net.in.tum.de, wiedner@net.in.tum.de

Abstract—This paper introduces an implementation of the
Babel routing protocol for the discrete event simulator ns-3.
Babel is a relatively new general-purpose routing protocol
with no previously existing implementation in ns-3. This
paper motivates the need for network simulation in general
as well as Babel in particular. We also outline implementa-
tion details and validate the implementation by simulating
network setups with Babel in ns-3 and comparing them with
the expected behavior.

Index Terms—Routing protocols, Routing, Babel Routing
Protocol, ns-3, network simulation

1. Introduction and Related Work

Babel is a robust, general routing protocol, well suited
for both wired and wireless networks. It addresses the
shortcomings of other routing protocols for wireless mesh
routing. Its design makes it loop avoidant and claims to
have faster convergence than similar protocols [1].

Network simulation is an essential tool in network
research as evaluating routing performance and compar-
ing different routing setups in real-world tests is time-
consuming and expensive. Network simulation helps to
investigate the most important properties and can test a
variety of parameters quickly. In the context of routing
protocols, it is, for example, possible to evaluate how
different parameters impact bandwidth usage and conver-
gence time of a routing protocol. Network simulation is
also helpful to familiarize oneself with the operation of
a protocol since one can look at the traces of involved
nodes with little effort. The discrete event simulator ns-3
is a popular network simulator for network research [2].

While different mesh routing protocols like OLSR,
AODV, and DSDV have been compared using ns-3 and
other network simulators, no such effort has been made
with Babel [3], [4]. This is likely due to the absence of an
easily accessible Babel implementation for the simulators
used.

As far as we know there is no prior implementation
of the Babel routing protocol for ns-3. The only other
implementation for any simulation environment seems to
be an implementation for the event simulator OMNeT++
by Veselý et al. [5].

There exist various other routing protocol implemen-
tations for ns-3. Most relevant to this paper is the one
for OLSR, as it has served as a reference regarding
interactions with ns-3 and the structure of the code in
general [6].

2. Background

This section summarizes the aspects of Babel and ns-3
most relevant to this paper.

2.1. Babel

Babel was first published as an Experimental RFC
in 2011 [7] and later in January 2021 as a Standards
Track RFC [1]. Babel is a robust, proactive, loop-avoiding
distance-vector routing protocol, and is suitable for both
wired and wireless networks. Being a proactive routing
protocol implies it preemptively exchanges routing infor-
mation for all prefixes, whether there are any packets
to be routed or not. A routing loop is a phenomenon
where packets get routed in a circle, thereby using up
bandwidth while not reaching their destination. In many
routing protocols routing loops can form. However, the
Babel specification guarantees that no routing loops will
ever form if each prefix is originated by only one router.
In the case that some prefixes are originated by multiple
routers, the specification guarantees that all routing loops
quickly disappear and the same loop can never form
again [1].

Protocol Operation. In the Babel protocol, routers ex-
change packets as UDP datagrams sent to a specific
neighbor or the multicast address specified in the RFC
with a hop count of one. Each packet may contain several
messages, called TLVs (Type-Length-Value). There are 11
different types of TLVs in the RFC. However, the protocol
is extensible and allows for more types of TLVs to be
added. Additionally, most TLVs can contain sub-TLVs.

For neighbor discovery and link quality estimation,
each node periodically sends Hello TLVs. Each node
computes the receiving cost for each neighbor based on
the number of received and missed Hello TLVs from
that neighbor. There are two cost computation strategies
suggested in the RFC. For wired links, the receiving cost
is either a constant value (chosen by the implementation)
if the last k out of j Hellos were received, or infinity
otherwise. In contrast to wired links, wireless links are not
just up or down but have a larger range of link qualities.
Therefore the expected transmission count (ETX) metric
is suggested: the receiving cost is a constant divided by the
fraction of recently correctly received Hellos. This metric
has the advantage to favor short, stable links over long,
lossy links, which a hop-count-based metric favors [1],
[8]. The node regularly sends this receiving cost back to

Seminar IITM SS 21,
Network Architectures and Services, November 2021 73 doi: 10.2313/NET-2022-01-1_15



the neighbor inside an IHU TLV (I Heard You). This is
necessary since links are not generally symmetric.

Babel can carry prefixes and is, therefore, able to do
prefix-based routing. However, its design assumes that
each node has a full routing table (to all of the nodes in
the network) and is therefore well suited for mesh routing.

The protocol has specific optimizations used on sym-
metric wired links. For example, it will not resend an
update received on a point-to-point link on the same link.

To ensure the strict properties regarding routing loops
described above, Babel combines concepts from different
routing protocols. The idea Babel uses to (almost) entirely
avoid routing loops is the concept of feasibility. Each
node maintains for each source (prefix and its originating
router) a feasibility distance. This "distance" consists of
the newest seqno (sequence number) of the route and the
best distance the node has ever announced for this source
with the current seqno.

When receiving an update from an Update TLV, a
router checks whether the received route has either a
newer sequence number or a smaller metric than any it
has ever announced. If so, it can be sure not to cause a
routing loop by switching to this route. When the topology
changes, it might be the case that a router has no feasible
routes left. In that case, it sends a seqno request, triggering
the source of the route to increment its seqno. After
incrementing the seqno, the new route gets forwarded to
the router that sent the seqno request [1].

Applications. Babel routers exchange routing information
even when there is no mobility event, thus potentially
generating unnecessary traffic. Therefore Babel is not the
ideal choice for routing in some situations such as large
and stable networks and low-power networks. However,
Babel is a robust protocol and can be successfully used in
most environments. The most prominent use cases include
small home networks, heterogeneous networks, and mesh
networks [8]

Performance. For the application of mesh networks, mul-
tiple experiments conclude that Babels performance is at
least comparable - if not better - than specialized mesh
routing protocols such as OLSR and BATMAN [9]–[12].

2.2. ns-3

ns-3 is an open-source network simulator first pub-
lished in 2008 as the successor to the popular network
simulator ns2 [13]. It is one of the most widely used
network simulators serving as a tool to many network
researchers. Like most network simulators, ns-3 is a
discrete, event-based simulator: the simulation time is
stepped from one event to the next and at each step, all
necessary calculations are performed. In terms of both
memory usage and computation time, ns-3 is a highly
performant simulator capable of large-scale simulations
with hundreds or thousands of nodes. It tries to provide
a realistic simulation of all network components such as
the IP stack or network devices [14].

ns-3 is written in C++ and is structured into modules
responsible for different aspects of the simulation. Each
with its own tests, examples, and documentation.

3. Implementation

This section outlines the most important aspects of
our implementation of the Babel routing protocol for ns-
3. Since it is recommended in the Babel RFC to route all
control traffic via IPv6, the protocol is implemented as an
IPv6 routing protocol.

The implementation is written in C++ and the structure
is partially based on the OLSR module included in ns-3
[6]. We provide a new module called babel consisting
of a simple example network, a helper class to install
Babel on existing ns-3 nodes, and the implementation of
the protocol itself. The main functionality is located in-
side the ns3::babel::RoutingProtocol class, which ex-
tends ns3::Ipv6RoutingProtocol. To route IPv6 pack-
ets, the methods RouteOutput and RouteInput are called
by the ns-3 IP-stack for outbound and inbound pack-
ets respectively. The ns3::babel::PacketHeader and
ns3::babel::TLV classes are responsible for serializing
and deserializing Babel packets and the TLVs contained
inside them.

ns-3 includes a TypeId feature used by the helper class
to construct protocol instances. We can add attributes with
default values to our TypeId, which are used to initialize
the objects. This feature is essential since it allows the
creator of a simulation to set specific protocol parameters
for all nodes or individual nodes. The default values are
taken from the RFC. Tunable protocol parameters are, for
example, the time intervals used for sending scheduled
Hello, IHU, and Update TLVs, as well as the (urgent)
timeout for sending messages.

The periodic sending of Hello, IHU, and Update TLVs
is governed by Timers set to times specified by the at-
tributes. When a timer expires, we queue the required
TLVs for sending on each interface.

To aggregate multiple TLVs into one packet and to
apply randomization to the timing of messages, we keep
track of a list of queued TLVs and a timer for each in-
terface. Instead of sending a message directly, we instead
add it to the queue for later sending and set the timer if
it was not already (the timer duration is random within a
range specified by the attributes). When the timer expires,
it calls a method for sending the packet. This mechanism
also allows for the sending of "urgent TLVs" within a
shorter timeout. Upon queuing an urgent TLV, the timer
is rescheduled to be inside the "urgent timeout" (if it was
not already).

The protocol encoding optimizes the size of the pack-
ets by not sending redundant information inside each
TLV. For example, the Update TLV might not contain
the router-id of the router originating this particular route
update but relies on a Router-Id TLV preceding it. To fol-
low the encoding, we need to keep track of a parser state
for incoming and outgoing packets. Therefore, alongside
the queue and timer, we keep track of the parser state
of the outgoing packet for each interface. This allows,
for example, an Update TLV to add a Router-Id TLV if
there was no Router-Id TLV yet or the last Router-Id TLV
contained a different router-id.

To receive packets, there is a receiving UDP socket
set to listen on the specified multicast address. When
a UDP datagram arrives (either as multicast or uni-
cast), the Babel packet in the datagram is delivered

Seminar IITM SS 21,
Network Architectures and Services, November 2021 74 doi: 10.2313/NET-2022-01-1_15



by the ns-3 IP-stack to a callback method inside the
ns3::babel::RoutingProtocol class. Inside this call-
back method, we deserialize the packet and, while keeping
track of the parser state, loop over all TLVs contained
inside. If there are any TLVs that require the selected
routes to be recomputed, this is done once after all TLVs
are processed. The recomputation of the routes may lead
to the queuing of new Update TLVs.

The nodes compute their receiving cost using the
ETX algorithm outlined in Section 2.1 as the strategy for
wireless links.

When routing packets, we need to find the route for
the longest matching prefix of the destination address. The
route table is a map with the prefix as the key, To allow
for fast lookups of routes based on their prefix. Since we
do not know the length of the longest prefix and looping
over all 128 possible could be costly, we maintain a list
of all the prefix lengths we currently store and loop over
it instead. A further optimization would be to maintain a
tree structure for finding the longest matching prefix or
cache route lookups.

Furthermore, we may know of multiple routes for one
prefix and, although only one is selected, it is necessary to
keep track of the other ones as fallback routes. Maintain-
ing (for each prefix) a list of routes with a pointer to the
currently selected one solves this problem while keeping
fast access to the selected route.

During the simulation setup in ns-3, when installing
the Babel routing protocol on a node using the Babel
helper class, it is possible to exclude interfaces from the
Babel protocol. This way, a network of Babel nodes can
link to the other nodes, possibly using another routing
protocol. All Babel nodes originate all of their global
addresses as well as the prefixes of the excluded interfaces.
To illustrate, consider the network in Figure 1, where R
and A are Babel nodes and S is another server.

S R A
2001:1::/64 2001:2::/64

Figure 1: Network Topology

During the setup of R, its left interface (to S) has been
excluded from Babel routing. Therefore, R originates the
prefix of this network (2001:1::/64) along with its global
addresses.

3.1. Capabilities

Our implementation is a working IPv6 routing proto-
col for ns-3. Considering the only other routing protocol
for IPv6 is currently ns3::Ipv6StaticRouting, just hav-
ing a non-static routing protocol might already be helpful
in some [15] scenarios.

The main point of the implementation, and hence its
most relevant capability, is to accurately depict the behav-
ior of Babel inside ns-3. This is achieved by following the
specification and further demonstrated in Section 4.

The use of ns-3 attributes makes it easy to tune proto-
col parameters to meet the needs of a specific simulation.
A performance comparison with different protocol param-
eters is also possible.

Since ns-3 has the option to trace all packets to a
file and we serialize all packets as described by the
specification, it is possible to use a tool such as Wireshark
to inspect Babel packets exchanged during a simulation.

3.2. Limitations

The goal of the current implementation is to provide a
working version of Babel for simulations of the protocol
behavior in different environments. As of now, it is lacking
some features and does not yet comply with all aspects of
the RFC. Most aspects of non-compliance are not an issue
since they are not strictly required for the protocol, and
our protocol instances only communicate with other nodes
inside ns-3 using the identical implementation. In other
words, for simulations inside ns-3, no interoperability with
other protocol implementations is needed.

Most notably, the routing protocol is currently an
IPv6 routing protocol and only supports IPv6 traffic.
The recommended way to use Babel is to have a single
protocol instance that routes IPv4 and IPv6 traffic but
communicates exclusively using IPv6 [1]. Such behavior
can most likely be achieved in ns-3. However, since most
simulations use either IPv4 or IPv6 it would be desirable
to have a standalone IPv4 implementation as well.

There is currently no recognition of Sub-TLVs, Uni-
cast Hellos, Acknowledgments, Acknowledgment Re-
quests and some encoding methods as defined in the RFC.
As mentioned before, if this implementation does not need
to interoperate with others this is not a problem.

4. Tests

To demonstrate the functionality of the implementa-
tion, we devised a test scenario. The setup consists of 6
nodes connected on six point-to-point links as shown in
Figure 2. Nodes R, A, B, C, and D are Babel routers. After
allowing the protocol a brief initialization time, nodes A,
B, C, and D start emitting 20 UDP packets per second to
S. At 35 seconds into the simulation they stop sending
the packets. At 20 seconds, the link between R and A gets
cut. To route packets to S, the routers use their routes to
2001:6::/64, a prefix originated by R.

R

A B

CD

S 2001:6::/64

Figure 2: Network topology under test

Node S tracks the number of packets arriving, and its
results are shown in Figure 3. While this graph illustrates
the routes leading to S, the protocol also tracks all other
routes, which are not visualized here. For clarity, the
packets from C and D are not shown since they are not
affected by the link being cut and all packets arrive as
expected.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 75 doi: 10.2313/NET-2022-01-1_15



0 10 20 30 40
0

2

4

6

8

10

Time [s]

Pa
ck

et
s

re
ce

iv
ed

pe
r

0.
5s

from A
from B

Figure 3: Packets Received at S

Just before cutting the link, node B has two routes
to 2001:6::/64 (and therefore S). One route via C and
another via A. When A detects the link is cut, it sends
a route retraction for all routes it would forward to R.
When receiving this retraction, B switches to its route
via C and sends an update. A can, however, not switch
to this route via C, as it is not feasible. Essentially, A
has no way of knowing that adopting this route would
not create a routing loop. Left with no routes, A sends a
seqno request, which gets forwarded by B, C, and D, until
it reaches R. R increments its seqno and sends an update
with the new seqno, which is quickly forwarded back to
A. After receiving an update with the new seqno, A can
now switch to a route via B. During the time it takes the
seqno request and updates to go around the network, A
has no route to 2001:6::/64 (and therefore S). This can
be seen in Figure 3 as the drop in packets received from
A. The increased number of packets traveling to S via D
is still below the capacity of the links, so there is no drop
in the packets received from the other nodes.

And the end, the route table of A for routes to
2001:6::/64 looks as follows (advertised metric is the
metric announced by the neighbor. The cost of a route
is the advertised metrix plus the cost of the link to the
neighbor):

• next hop: fe80::200:ff:fe00:4;
advertised metric: 768; seqno: 0x8001

• next hop: fe80::200:ff:fe00:1;
advertised metric: 0; seqno: 0x8000

fe80::200:ff:fe00:4 is the link-local address of an
interface of B. This is the selected route with a seqno
one higher than the other route. fe80::200:ff:fe00:1
is the link-local address of an interface of R. Although
the advertised metric is 0, the metric overall is infinity
since the link cost from A to R is infinity.

5. Conclusion and Future Work

This paper introduced an implementation of the Babel
routing protocol for the discrete event simulator ns-3. This
implementation can be used to help research applications
and the performance of Babel using ns-3.

Although the current state of our work suffices to
simulate the operation of Babel, it is desirable to finish
the implementation to comply with the RFC (see Section
3.2).

To fulfill the goal of providing an easy way to simulate
the behavior of the Babel protocol, the behavior inside

the simulation must match the behavior in the real world.
Therefore, it is vital to validate the results from the
simulation with results obtained in the real world. This
requires either carrying out hardware tests or recreating
an existing test setup inside the simulator.

An interesting idea, which would be easy to test now,
is writing an extension to optimize protocol performance
in fast-moving mobile ad-hoc networks by relaying posi-
tion information through the protocol. A similar idea using
a custom OLSR implementation shows promising results
in [16], and it is interesting to see how that compares to
a Babel version.

References

[1] J. Chroboczek and D. Schinazi, “The babel routing protocol,”
Internet Requests for Comments, RFC Editor, RFC 8966, January
2021.

[2] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,
“Network simulations with the ns-3 simulator,” SIGCOMM demon-
stration, vol. 14, no. 14, p. 527, 2008.

[3] D. Bhatia and D. P. Sharma, “A comparative analysis of proactive,
reactive and hybrid routing protocols over open source network
simulator in mobile ad hoc network,” International Journal of
Applied Engineering Research, vol. 11, no. 6, pp. 3885–3896,
2016.

[4] R. K. Jha and P. Kharga, “A comparative performance analysis
of routing protocols in manet using ns3 simulator,” International
Journal of Computer Network and Information Security, vol. 7,
no. 4, pp. 62–68, 2015.

[5] V. Veselý, V. Rek, and O. Ryšavý, “Babel routing protocol for
omnet++ - more than just a new simulation module for inet
framework,” 2016.

[6] “Optimized Link State Routing (OLSR) — Model Library - NS-
3,” https://www.nsnam.org/docs/models/html/olsr.html, accessed:
2021-06-12.

[7] J. Chroboczek, “The babel routing protocol,” Internet Requests for
Comments, RFC Editor, RFC 6126, April 2011.

[8] ——, “Applicability of the babel routing protocol,” Internet Re-
quests for Comments, RFC Editor, RFC 8965, January 2021.

[9] D. Murray, M. Dixon, and T. Koziniec, “An experimental com-
parison of routing protocols in multi hop ad hoc networks,” in
2010 Australasian Telecommunication Networks and Applications
Conference, 2010, pp. 159–164.

[10] M. E. Villapol, D. Pérez Abreu, C. Balderama, and M. Colombo,
“Comparación del rendimiento de los protocolos de enrutamiento
para redes malladas en una red experimental con restricciones de
ancho de banda en el enrutador del borde,” Revista de la Facultad
de Ingeniería Universidad Central de Venezuela, vol. 28, no. 1, pp.
7–13, 2013.

[11] M. Abolhasan, B. Hagelstein, and J.-P. Wang, “Real-world per-
formance of current proactive multi-hop mesh protocols,” in 2009
15th Asia-Pacific Conference on Communications. IEEE, 2009,
pp. 44–47.

[12] J. Pramod, K. Sahana, A. Akshay, and V. Talasila, “Characteriza-
tion of wireless mesh network performance in an experimental test
bed,” in 2015 IEEE International Advance Computing Conference
(IACC). IEEE, 2015, pp. 910–914.

[13] “ns-2 and ns-3,” https://www.nsnam.org/support/faq/ns2-ns3/, ac-
cessed: 2021-06-10.

[14] E. Weingartner, H. Vom Lehn, and K. Wehrle, “A performance
comparison of recent network simulators,” in 2009 IEEE Interna-
tional Conference on Communications. IEEE, 2009, pp. 1–5.

[15] “Ipv6 - model library - ns-3,” https://www.nsnam.org/docs/models/
html/ipv6.html, accessed: 2021-06-10.

[16] S. Sharma, “P-OLSR: Position-based optimized link state routing
for mobile ad hoc networks,” in 2009 IEEE 34th Conference on
Local Computer Networks. IEEE, 2009, pp. 237–240.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 76 doi: 10.2313/NET-2022-01-1_15


