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Abstract—In order to make judgements on the spread of
certain congestion control algorithms a way to fingerprint
the algorithm of a host is needed. This can be done with
congestion control identification (CCI) algorithms. This work
presents the general approach of such an algorithm and
summarizes possible categorizations for CCI. It presents
Congestion Avoidance Algorithm Identification (CAAI) as an
active and DeePCCI as a passive example. In an accuracy
evaluation over a WAN connection these algorithms are
compared to each other and to a more recent approach
from 2020, Inspector Gadget (IG), which includes further
optimizations. IG shows near perfect accuracy, DeePCCIs
and CAAIs accuracies are rather humble, former with 90-
92% and latter with 41-94%, and to conclude we explore
how these results come to be.

Index Terms—congestion control, congestion control identi-
fication

1. Introduction

The biggest share of Internet traffic is under control of
the Transmission Control Protocol (TCP) which combines
concepts to provide properties like reliable and ordered
data delivery or management of the sending-rate. The most
performance significant part in data transmissions is the
latter, namely Congestion Control (CC). Historically many
TCP CC algorithms have been developed trying to find the
best balance between bandwidth utilization and congestion
in the network. While TCP Reno or TCP Cubic have been
a wide-spread standard, whether now or in the past, newer
algorithms like TCP BBR make their way into modern
operating systems. [1, Section 1] [2]

To be able to make judgements on the current
state of the Internet in topics like TCP performance,
especially inter-algorithm-performance, or stability it
is important to know the widespread adoption of each
specific CC algorithm. Further examples that depend on
this knowledge are topics like buffer sizing of routers,
active queue management, fairness tuning of new CC
variants or the creation of realistic traffic generators.
To gather this needed, wide-spread deployment data we
need a way to fingerprint the CC algorithm of a single
host, leading us into the realm of Congestion Control
identification (CCI) algorithms. [2], [3]

This paper aims to give an overview on current TCP CCI
approaches. Section 2 revises important CC terminologies
and differentiates the most important CC algorithms. Sec-
tion 3 explains the general approach of a CCI method

and presents different categories for them. Section 3.1 and
Section 3.2 explain two unique approaches to CCI. Sec-
tion 3.3 presents a more recent work with optimizations
based on the two presented previous methods. Section 4
evaluates the accuracy of the three approaches and aims
to explain the differences and pitfalls.

2. Background

Transport protocols determine the sending rate and
have to balance between full utilization of network
ressources and fairness among connections sharing a bot-
tleneck link. Uncontrolled flows that exceed the speed at
which a router can process packets leads to the build-
up of packet queues and finally to dropped packets as the
routers memory is exceeded [1, Section 2]. To accomplish
this balance the protocol has to dynamically test for avail-
able bandwidth and congestion. There are 3 types of CC
algorithms: delay-based (e.g. TCP Vegas), loss-based (e.g.
TCP Cubic) and hybrid forms (BBR-v2) [4], [5]. Delay-
based algorithms change their sending rate according to
the delay of the connection, similarly loss-based change
theirs in case of packet loss. [1], [5]

Every packet a sender transmits is acknowledged by
the receiver with acknowledgement packets (ACK). The
number of packets a sender is able to send unacknowl-
edged in each round-trip time (RTT) is called the con-
gestion window (cwnd). Every CC has three phases: 1)
slow start where the available bandwidth is estimated 2) a
steady phase aka congestion avoidance during which we
roughly stay at our calculated bandwidth limit and probe
for more slowly; and 3) loss recovery where CC reacts to
packet loss. [4], [5]

The value of the slow start threshold (ssthresh) deter-
mines the change from slow start to congestion avoidance.
In case of a loss event it is usually changed accord-
ing to sstresh = β · loss_cwnd where β denotes the
Multiplicative Decrease Parameter and loss_cwnd is the
cwnd right before a loss event or timeout. The window
growth function g(·) defines how TCP grows cwnd in
the congestion avoidance state and it makes certain CC
algorithms very recognizable, e.g. TCP Reno with linear
growth or TCP Cubic with a cubic function to have a
very sensitive growth around the loss_cwnd and a rapid
one otherwise. [2], [4]

3. Congestion Control Identification

Table 1 lists a variety of CCI methods available to this
date. Because reviewing every single one in detail would
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TABLE 1: Congestion Control Identification Overview

Method Approach Description Included TCPs Year

On Inferring TCP Behaviour (TBIT)
[6]

active trace congestion window to a given
order of events, differentiate the 5 tcp
methods based on this

4 (Tahoe, Reno, NewReno, TCP with-
out Retransmit)

2001

Identification of different TCP ver-
sions based on Cluster Analysis [7]

passive collect packets, extract features of
cwnd based on a RTT estimate, cluster
these to identify two competing CC
variants

any 2 competing out of 14 (Reno,
Cubic, BIC, CTCP, HSTCP, H-TCP,
TCP Hybla, Scalable, Illinois, YeAH,
Vegas, Veno, Westwood)

2009

TCP Congestion Control Avoidance
Algorithm Identification (CAAI) [2]

active extracts multiplicative-decrease pa-
rameter and window growth function,
use machine learning to counter net-
work conditions

14 (Reno, CTCP, BIC, Cubic,
HSTCP, HTCP, HYBLA, ILLINOIS,
LP, STCP, VEGAS, VENO,
WESTWOOD+, YEAH)

2014

Identification of TCP Congestion Con-
trol Algorithms from Unidirectional
Packet Traces [8]

passive uses unidirectional packet trace, alge-
braic approach, approximate the whole
SEQ-number to Time function, plot
derivatives to differentiate TCP Con-
gestion Control

5 (RENO, CUBIC, Hamilton TCP, Ve-
gas, Veno)

2018

The Great Internet TCP Congestion
Control Census (Gordon) [9]

active similar to CAAI, different cwnd esti-
mation algorithm

13 (BBR, Cubic, NewReno, BIC,
HTCP, Scalable, Illinois, CTCP,
YeAH, Vegas, Veno, Westwood,
HSTCP)

2019

DeePCCI: Deep Learning based Pas-
sive Congestion Control Identification
[3]

passive only metric is packet arrival time,
machine learning based classification
with additional TCP Pacing differenta-
tion to increase identification accu-
racy, tests only in testbed

paper focused on BBR, CUBIC,
RENO but trainable on any variant

2019

Inspector Gadget: A Framework for
Inferring TCP Congestion Control and
Protocol Configurations [5]

active similar to CAAI with optimizations,
especially improved network environ-
ments with changing RTT, Window
Emptying and Sequence Check opti-
mizations

12 (BBR, Cubic, Reno, BIC, hstcp,
htcp, illinois, scalable, vegas, veno,
westwood, yeah)

2020

go way beyond the scope of this work we are going to
look at the general procedure of a CCI method and later
dive into specific examples in Section 3.1 (CAAI) and 3.2
(DeePCCI). CAAI is from 2014 and while not being the
newest active approach (see IG [5] and Gordon [9]), it
gives a good understanding of the methodology. It’s also
based on a very early active approach in form of TBIT [6]
from 2001. DeePCCI was chosen for pioneering an un-
convential approach: ignoring TCP mechanics altogether
and focusing only on packet arrival time.

Every CCI method follows a rough draft. First we
need a way to get to the packet trace of the host we are
interested in. Then we define features which enable us
to differentiate between CC algorithms. These features
are extracted from the packet trace and saved into a
datastructure. Last but not least we match this processed
representation of a host to some prepared data of each CC
to classify the target. For this general procedure this work
borrows the terminologies of Trace Gathering, Feature
Extraction and Algorithm Classification from CAAI [2].

CCI methods can be generally categorized in
two ways: TCP domain-dependent vs. TCP domain-
independent and active vs. passive approaches. The first
distinction differentiates between CCI methods that re-
quire knowledge of TCP in their implementation as they
differentiate CC variants on subtle differences and meth-
ods that do not need knowledge of TCPs inner workings.
Most methods are TCP domain-dependent but DeePCCI
is a pioneer for the latter approach. The second distinction
can be described in the following: Active approaches

directly open up connections to a host to gain knowledge
on the used CC by requesting data, manipulating the
communication and observing the behaviour on the other
side. Passive approaches do not interact with the observed
host in any way. A host can be evaluated based on packet
traces only, thus rendering this approach passive. One big
advantage with passive approaches is the ability to work
on real-world traffic. Packet traces could be captured on
vantage points of a network or the Internet and therefore
allow to identify alot of hosts without having to actively
contact each one of them. A smaller subdistinction of
passive methods can be made when looking at bidirec-
tional vs. unidirectional packet traces. Most methods use
bidirectional packet traces but for example Kato et al. [8]
focused on unidirectional traffic only in 2018. [3]

3.1. Congestion Avoidance Algorithm Identifica-
tion (CAAI)

CAAI is an active CCI method that is able to
distinguish 14 different TCP algorithms as table 1
shows. Specifically its design goals aim to identify most
default and non-default TCP algorithms while being
insensitive to the operating system, network conditions
and TCP components other than congestion avoidance of
a webserver.

It characterizes each TCP congestion avoidance algorithm
by two features:

• Multiplicative Decrease Parameter β
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• Window Growth function g(·)

The context of these variables in TCP has been explained
in Section 2.

The reasoning for these two variables lies in the fact
that different TCP algorithms have different multiplicative
decrease parameters and congestion window growth
functions. For example RENO uses β = 0.5 and a linear
growth function of g(x, loss_cwnd) = 0.5 · loss_cwnd+x
where x denotes the number of elapsed RTTs in the
congestion avoidance phase, while CUBIC uses β = 0.7
and a window growth function that not only depends on
x but also on the duration of a RTT. [2]

Trace Gathering: In step one CAAI gathers the TCP
congestion window trace of a target in two simulated net-
work environments using Linux’ netem [10] to introduce
various network conditions. To be able to differentiate 14
different TCP versions P. Yang et al. argue one needs
different network environments in terms of the RTT. They
settled for two network environments, A and B, and
defined Environment A with a static RTT of 1.0s and
Environment B with a RTT of either 0.8s or 1.0s to more
easily distinguish RTT based cwnd changes e.g. CUBIC.
These simulated environments depend on two more vari-
ables: cwnd_threshold, which sets the boundary for the
timeout to start and should be high to help distinguish
TCPs, and mss, which sets the maximum TCP segment
size of the connection and should be low to enable a higher
maximum cwnd value. For detailed reasoning of specific
values like the chosen RTT or minor problems like Slow
Start Treshold Caching on the webservers refer to [2]. The
data transmission itself is initiated with repeated HTTP
requests in form of HTTP pipelining and a tool developed
by the authors to search for the longest webpage of a
webserver to give a long enough transmission.

As in Section 2 explained, cwnd equals to the
number of packets sent in one RTT. CAAI uses this
constellation to estimate the cwnd of the target. Packets
can be assigned to a specific RTT as the RTT value is
high enough to have a bandwidth-delay-product much
larger than mss · cwnd_treshold. This leads to the packet
trace having lots of packets at the start of each RTT
and then a gap to the next one. Further CAAI uses
the highest received sequence number in one emulated
RTT to counter lost packets that would impact the cwnd
estimation. [2]

Feature Extraction: To extract the two features from
the trace CAAI first determines the boundary RTT that
marks the change from slow start to congestion avoid-
ance. It then extracts β with β = ws/loss_cwnd where
ws is the congestion window size at the boundary RTT
and loss_cwnd denotes the window size right before the
timeout. The ssthresh formula from section 2 was essen-
tially solved after β. The second feature, window growth
function g(·), is extracted from the congestion window
sizes after the boundary RTT using two measuring points
ws+4 − ws+1 and ws+9 − ws+1. The substraction allows
values independent of loss_cwnd, e.g. RENO would have
a value of ws+4−ws+1 = 3 as it features a linear growth.
Two points are enough to distinguish the every CC, Yang
et al. argue. The values from both environments are then

saved into one feature vector.
Algorithm Classification: The problem with the gathered
data is its dependence on the congestion in the network
at the time of the trace gathering. As a countermeasure
CAAI employs a machine learning algorithm trained on
the feature vectors of the 14 different TCP variants in
different network conditions. CAAI uses random forest
in this regard as it achieved the highest classification
accuracy among the tested methods. [2]

3.2. DeePCCI

DeepCCI is a passive and TCP domain-independent
approach. Existing CCI methods have weaknesses like
1) complexity when adding new CC algorithms as
detailed knowledge about parameters and configuration
are needed, 2) assumptions of missing extern influences
like TCP pacing or static parameters, and 3) reliablity on
parsable TCP header information. One example outside
of TCP itself for problem 1) and 3) could be QUIC
which moves CC to the userspace and implements fully
encrypted transports. To counteract assumptions like these
Sander et al. developed DeePCCI which uses packet
arrival time as its only feature to distinguish CC variants
and therefore stays flexible. DeePCCI uses the packet
arrival time as any CC algorithm controls the packet
flow in terms of amount and timing Sander et al. argue. [3]

Packet traces do not need to be gathered by the tool
itself in passive methods. The packets in the trace are
sorted into same-sized bins according to their arrival time
to build a histogram X = [x0, ..., xt] of packet arrivals
with equidistant timesteps. This histogram is then fed into
a deep neural network consisting of a convolutional neural
network (CNN) and a long short-term memory (LSTM)
part. The former is regarded as the feature extraction phase
while the latter builds up memory depending on previous
behaviour and is needed to identify varying length traffic
flows as they appear in the real world. After the LSTM
layer the neural network predictions are applied for CC
classification and classification whether TCP pacing was
present in the trace to help in CC classification.

The testbed to train the neural network consists of
two main topologies with different network conditions in
terms of amount of TCP senders, link latency, bottleneck
link bandwidth and bottleneck queue sizes. A bottleneck
link is central for changing these variables. Topology 1
is a single-host network with one TCP sender connected
to a router which is connected via a bottleneck link to
another router followed by the receiving host. Topology
2 is a little more complex with 3 hosts on each side. The
training data in the latter topology consists of all possible
combinations of the 3 CC algorithms (RENO, CUBIC,
BBRv1) that DeePCCI focused on. In each setting
traffic is captured before and after the bottleneck link.
If other senders exist they start sending 2 s prior to the
sender we are interested in and it sends traffic for 60 s. [3]

The previously mentioned variables and other mea-
surements decisions have an impact on the distinction
of CC which will be discussed now. Bandwidth: DeeP-
CCI was able to distinguish delay-based (BBRv1) and
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loss-based CC very well for bandwidths above 10 Mbps.
Bandwidths ≥ 10 Mbps and delays ≥ 5 ms resulted in F1
scores above 90% in the multi-host scenarios and with
F1 scores above 55% in the more unrealistic scenario
with one TCP sender. By including smaller bandwidths
also, the minimum F1 scores drop to 55% (multi-host)
and 40% (single-host) respectively. As a general trend
we see that larger bandwidths, larger delays and multiple
simultaneous traffic flows are beneficial for the result.

A higher bandwidth results in a higher maximum con-
gestion window and therefore more steps of e.g. CUBIC
are executed leading to an easier distinction from linear
behavior as with RENO. Delay: One effect of the delay
can be accounted to the bin size. A low delay makes it
harder to distinguish CC variants as the change in packet
arrival time would be too fast for a distinguishable differ-
ence in the histogram bin sub-sampling. The CCs would
have a less unique histogram composition. It also influ-
ences the decision whether TCP pacing was used, with a
low delay too many packets fall into the same bin, with or
without pacing, impacting the decision negatively. Lastly,
the multi-host scenario increases the queuing delays and
leads to more congestion and therefore a competition for
packets in the queue. This effect counteracts the effect
of a low bandwidth and delay as 1) the delay increases
with competing flow and 2) competing flows influence the
cwnd of our target host, identifying his CC easier as we
are not that dependant on alot of steps as explained before.
[3]

3.3. Inspector Gadget

Inspector Gadget (IG) is a more recent work from
2020 that aims to identify a whole webserver’s network
stack configuration ranging from new default values like
initial window size to whole new CC protocols. Its ap-
proach is active, TCP domain-dependent and it evalu-
ates self-captured, bidirectional packet traces. The work
additionally surveyed individual network operators from
six distinct content delivery networks to find out about
their approach to tuning their network stacks and the root
cause of configuration heterogenity. Also the tool itself
was tested on the Alexa top 5k websites and the work
discussed TCP related anomalies in form of a measure-
ment study of different Linux implementations in the wild.
While the work of IG covers alot of topics, in the context
of this paper we are mostly interested in CCI itself which
is covered in IV.B: Behaviour Parser Module.

To seperate IG from the two previously shown
methods we first look at the differences. Unlike DeePCCI
with 3 CC algorithms, IG originally supports a broader
range of algorithms. In contrast to CAAI it’s also
interoperatable with TLS/SSL, offers more optimizations
to tackle domain-specific problems like pacing and puts
an emphasis on delay variations to fingerprint delay-based
CC algorithms. [5]

Similar to CAAI IG manipulates the RTT through
delaying ACKs, enabling a set RTT of 0.8 s. As mentioned
before it is also varied to fingerprint delay-based CC. To
inject loss-events IG, just like CCAI, provokes timeouts.
The cwnd estimation bears the first bigger change. Esti-
mating the window by counting the packets received in

Figure 1: from [5]; Comparison of CAAI, DeepCCI, In-
spector Gadget and Gordon

one RTT is prone to errors as this assumes that TCP
is synchronous and ordered. Synchronous in the sense
that at the start of a RTT the packets are sent in batch
and the same for the ACKS at the end of a RTT. Also
in the real world it can be observed that packets from
one cwnd are spread over multiple RTTs due to e.g.
pacing. Packet duplication and loss further worsen this
scenario. To capture the cwnd accurately IG deploys two
optimizations called Sequence Check (SC) and Window
Emptying (WE).

Packet reordering and duplication is a problem as
the amount of packets in-flight differs from the actual
congestion window. So instead of simply counting the
number of packets in-flight IG uses SC to account for
the TCP sequence number to identify and eliminate these
cases.

Reasons like TCP pacing could also lead to a dif-
ference between packets in-flight and the real congestion
window. Through the WE optimization ACKs are stored
and sent batched at the end of a RTT. This ensures an
empty sender window when sending the ACKs and a more
accurate representation of the CC.

The cwnd trace is stored into the vector ν with each
phase (Slow Start, Loss Recovery, Congestion Avoidance)
seperated. Similar to Congestion Avoidance Algorithm
Identification (CAAI) the values are saved as an offset,
in this case from the first cwnd of each phase. For clas-
sification a decision tree with CART algorithm classifier
was chosen. [5]

ν = (

l∑

i=1

Wi−W1,

x∑

i=1

Wl+i−Wl+1,

y∑

i=1

Ws+i−Ws+1)

(1)
As we see it is quite similar to CAAI but offers some
optimizations. How these are impacting the result will be
evaluated in section 4.

4. Evaluation

To compare these works with each other, we will first
look at the impact of the SC and WE optimization in IG.
Then we will analyse a comparison of these three CCI
methods and elaborate on the results and differences.

IG Optimizations. Excluding all improvements in IG
yields an accuracy loss of 62% in the worst case. The WE
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optimization had the biggest impact. Upon removal Gong
et al. observed a false-positive rate of up to 31%. As a
reminder, WE is responsible for synchronizing each RTT
through ACK batching. In its abscence the SC feature
has a higher probability to disregard packets as being
not in the current window. This inaccurate trace leads
to an inaccurate classification. Meanwhile a missing SC
optimization leads to a minor drop to 92% from 100%. [5]

Accuracy Comparison. Gong et al. compared IG
directly to CAAI, DeePCCI and Gordon, which we did not
cover in this work except shortly in the CCI overview. To
make results comparable, they extended CAAI’s unmain-
tained source code with support for HTTPS and added
a bottleneck to their setup to enable traffic capture on
both sides for DeePCCI. The comparison with DeePCCI
is somewhat restricted as it came with only 3 pre-trained
CCs in form of Cubic, Reno and BBR. The environment
itself consists of a server with the 4 CCI methods and
webservers in an AWS Cloud to provide realistic network
dynamics. The Linux traffic control tool was used to
emulate different network conditions and each CC was
fingerprinted 30 times for each network condition up to
at least 4000 packets.

The results can be seen in figure 1. IG shows almost
perfect identification across the different CC algorithms.

The re-implementation of CAAI featured accuracies
between 41% and 94%. Even more disappointing is the
poor result with major CC variants, for example BBR or
Cubic with accuracies of 78% and 64% respectively. The
reason for this may lie in the fact that CAAI emulates
only two network conditions. Gong et al. argue that these
two are not enough to capture small differences among
certain CC algorithms, for example between Veno and
Reno. In the original work of Yang et al. CAAI reached
accuracies of 96.98% in their testbed but suffered of 53%
invalid traces in Internet tests measuring 63124 popular
webservers [2]. This number exists in the fact that CAAI
could 1) not find a long enough webpage on a webserver
to keep the connection up or 2) a webserver only accepts
one or few HTTP requests in the same TCP connection
and thus leading to slow start determining most of the
data transmission [2].

Section 3.2 presented a first glance at the accuracy of
DeePCCI under different testbed variables (e.g. amount
of hosts, delay). It provides good results with accuracies
above 96% in networks with client and server within the
same area. But once WAN is introduced, as is the case
in usual connections to webservers on the Internet, the
accuracy drops to 90–92% in the tests of Gong et al. The
main reason for this limitation might be the training with
testbed generated data. Further DeePCCI might need to be
retrained for CC variants across different kernels as they
slightly differ. [5]

5. Conclusion

This work shed a light on CC fingerprinting. It re-
iterated on CC with its most important mechanics, phases
and variables, and not only gave an overview on CCI al-
gorithms, their methodology and possible categorizations
but also reviewed three concrete examples with a finishing
comparison in terms of accuracy under realistic WAN

conditions. Furthermore an overview of CCI methods in
form of table 1 has been provided.
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