
Tracing the Execution Path in Mac80211

Pooja Parasuraman, Jonas Andre∗, Stephan Günther∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: pooja.parasuraman@tum.de, andre@net.in.tum.de, guenther@tum.de

Abstract—The purpose of this study is to trace the execution
paths of a wireless packet, traversing within the Mac80211
subsystem. Eventhough the world progresses towards build-
ing high speed wireless networks by optimizing link and rout-
ing costs, the end system’s processing capability remains a
bottleneck in limiting the efficiency of networks. As first step
in optimising per-packet processing at wireless endpoints, we
analyse the existing architecture of the Mac80211 subsystem.
We discuss the transmission path of IEEE802.11 packets
with a focus on managed mode of operation. This paper
presents the structure and design of the Linux Kernel and the
functions through which IEEE802.11 packets traverse. An
experiment is perfomed to extract real-time trace of packets
using explicit kernel logs for comparing the results obtained
from manual tracing of Linux source code.

Index Terms—Linux Kernel, Mac80211, Wireless Driver,
IEEE802.11 WLAN

1. Introduction

One of the most widely used protocols in the family of
IEEE 802 Local Area Network standards is the wireless
LAN protocol (IEEE 802.11 [1]). IEEE 802.11 standard
defines the link layer and physical layer protocols for
communication between wireless devices. This standard
needs to be followed by all driver developers in order to
facilitate interoperability.

The Linux operating system provides a generic frame-
work for wireless device drivers called the Mac80211. It
is a subsystem that interfaces between the kernel and the
device driver for various functionalities with respect to the
wireless network packets that pass through the subsystem.
An IEEE 802.11 wireless network interface card (NIC)
can operate in one or many modes [2] as discussed below.
Master : NICs in Master mode act as Access Points
(AP) and follow a hierarchy of operation. A connection to
another wireless NIC is possible only if the latter operates
in Managed mode. This mode can also be termed as AP
mode or Infrastructure mode.
Managed : Managed mode NICs act as clients (also
termed as slaves) and associates to an already created
wireless network by a master card. Managed mode is the
counter-part of Master mode. There is a strict master-slave
hierarchy and hence a client NIC can only communicate
with its own master. It is not possible for two client cards
to interact between themselves directly.

There are other less commonly used modes in which
a NIC can be configured. In Monitor mode, NICs can
sniff all radio traffic on a particular channel for wireless

network debugging and analysis. Promiscuous mode is
similar to Monitor mode but the difference is the former
mandates an association with an AP (active sniffing) while
the latter supports passive sniffing. Ad-hoc mode is used
in peer-to-peer networks. Mesh mode combines ad-hoc
mode and routing. A NIC in Repeater mode extends the
existing wireless networks for longer range of access. In
Tunnelled Direct Link Setup (TDLS) mode, a direct secure
fast path for data transfer between communicating peers
is made possible in a hierarchical network. This facilitates
faster media streaming and other data transfers.

This study is based on manual tracing using the open-
source Linux Kernel source code with focus on Managed
mode. Section 2 talks about the related research work
performed in this area. Section 3 provides an overview of
the Linux Kernel architecture with respect to the Wireless
network stack. Section 4 talks about Mac80211 subsystem
in detail. A special mode available in Mac80211 subsytem
of Linux Kernel - the Fast Xmit mode - is discussed
in Section 5. Finally, Section 6 explains the experiment
conducted to trace IEEE802.11 packets traversing the
Mac80211 subsytem.

2. Related work

Vipin et al. analyses the implementation of
IEEE802.11 network stack in the Linux Kernel and
its interaction with open source device drivers [3].
Lisovey et al. discuss about the feasibility of including
a module in the Linux Kernel to enable wireless
communication for vehicular environment. Vitalik et al.
proposes a design for portable and pluggable mode for
the Mac80211 subsystem with add-on features such as
co-operative retransmission support [4]. All these papers,
analyse the wireless network stack in the Linux Kernel
and discuss whether the design of Mac80211 framework
can be optimised and enhanced.

The work from multiple analysis, implementations and
architectural papers have been used as a base for this paper
in order to understand the architecture of the Mac80211
subsystem.

3. Linux Kernel and Mac80211

The Linux Kernel network stack is designed in a
modular way with a clear separation between multiple
entities. Figure 1 depicts how the wireless network stack is
layered in the Linux Kernel and how interaction between
the layers takes place. The core understanding of this
architecture is obtained from [5] and [6].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 53 doi: 10.2313/NET-2022-01-1_11



Figure 1: Kernel Wireless Stack

In order to better understand the architecture, we
analyse each component using a top-down approach. The
user space is composed of applications, such as Hostapd
and WPA supplicant, that use wireless as their underlying
technology. Hostapd facilitates configuration and control
of Access Points, whereas WPA supplicant is a control
interface to manage wireless clients. User space applica-
tions interact with the Linux Kernel using config80211
subsystem [7]. Config80211 is a configuration API acting
as a bridge between user space applications and the un-
derlying driver via the Mac80211 subsystem. Interaction
between user space and the config80211 happens via the
802.11 netlink interface called nl80211 [8].

The Mac80211 subsystem [9] is a generic frame-
work provided by the Linux Kernel. Wireless drivers use
the Mac80211 framework to register callbacks for all
packet processing functionalities. These are available in
kernel space and they interact using config80211 ops and
ieee80211 ops [8], which are the wireless configuration
operations. Every wireless interface has its own set of
configuration operations which is called from user space.

4. Mac80211 TX Path

This section provides a detailed schema of the
Mac80211 subsystem [9] with respect to managed mode.
Understanding of the information in this section is ob-
tained by manual tracing backed by the experiment dis-
cussed in Section 6.

Figure 2 shows the path (functions) taken by a wireless
packet from user space to the driver. These functions
correspond to handling packets when the sending interface
operates in managed mode.

A packet is originated by a user space application and
sent to the kernel. The packet then passes through various
OSI layers [10] of the kernel stack to add layer specific
information. Packets are carried within a data structure
called skb (socket buffer) [11] and are passed onto every
layer in the kernel.

All the relevant information required for the higher
layer OSI headers [10] is added to the skb by the
Linux Kernel. The kernel then hands the skb to the
Mac80211 subsystem along with the information of
the interface via which the packet must be sent (out-

Figure 2: Mac80211 Control Flow

bound). This is achieved by a registered callback function
(ndo_start_xmit()).

The corresponding registered function for
ndo_start_xmit() with respect to managed mode
is ieee80211_subif_start_xmit(). This function is
responsible for the actual MAC layer processing and
adding MAC and PHY information into the skb. After
the required information is filled in, it is passed onto the
ieee80211_xmit() function which handles the adjustment
of skb headroom and sets the QoS header, if required.
The skb is then passed onto the ieee80211_tx() function.
Every interface has its own transmission (TX) queue.
In order to transmit the skb into the correct interface,
corresponding transmission queue of the outbound
interface is selected. The skb is put into the outbound
interface’s TX queue. The skb will be dequeued and sent
to the final point in the Mac80211 subsystem (drv_tx())
by a kernel tasklet named ieee80211_tx_pending. At
the end of drv_tx() the control is transferred from the
Mac80211 subsystem to the wireless driver.

ieee802111_subif_start_xmit

The majority of the MAC layer processing happens
within the ieee80211_subif_start_xmit() function. Figure 3
shows the detailed flow diagram of control points in this
function. The Mac80211 subsystem maintains a hash table
with a list of known stations connected to the local device.
The initial step is to retrieve the target station (STA) node
from the hash using the target address from the skb data
structure. In managed mode, various parameters must be
verified to retrieve the target station node. It is checked if
the target station is a TDLS peer to the local device. If it
is a TDLS peer, then more checks are done to verify if the
target station is an authenticated peer to send or receive
data to/from the local device. If all the above conditions
are satisfied, the station node is retrieved with target mac
address as the key to the hash table. If the STA node is
found successfully, the skb is attempted to be sent via a

Seminar IITM SS 21,
Network Architectures and Services, November 2021 54 doi: 10.2313/NET-2022-01-1_11



Figure 3: Flow Diagram of ieee80211_subif_start_xmit
function

relatively faster execution path, called the fast_xmit path
[?]. This is explained in detail in Section 5.

If the station node is not found in the hash table or the
skb could not be sent via the fast_xmit path, then the skb
takes regular slow path where detailed checks are made
before sending the packet out through the interface. In this
path, checks to verify if the skb must undergo Generic
Segmentation Offloading (GSO) [12] is performed. GSO
is a software-based technique to perform packet segmen-
tation which is offloaded by wireless cards to drivers. If
a skb is subject to GSO, then it will be segmented into
multiple skbs based on the MSS segment size provided
by the wireless card using gso_size config parameter. The
segments will then be transmitted onto the interface.

If a skb does not require GSO, the skb must undergo
linearization which is a process in which, a paged skb is
converted to a linear skb [11]. A paged skb is used when
the data that needs to be sent is larger than the MSS.
One predominant use case of a paged skb is when a file
system file content needs to be sent over a socket. Once,
the skb is linearized, it is checked if the wireless card
has offloaded the checksum [13] operation to the driver.
The flag CHECKSUM_PARTIAL specifies if checksum
needs to be verified in the software. If the flag is set,
then the transport header offset is adjusted such that there
is enough space for the checksum to be inserted. The
checksum is calculated and copied into the skb after
the header size is modified. With this, all the necessary
processing is done and the TX statistics are updated for
TX packet count and TX byte count for the interface. The
skb is then sent to the ieee80211_xmit() function which
is explained above.

5. Fast Transmit Path

This section discusses one of the interesting features of
the Mac80211 subsystem - Fast Transmit Path [14]. The
understanding of information provided in this section is
based on manual code analysis with the open-source Linux

Figure 4: Flow Diagram of Fast Transmit Path

distribution [8]. The Fast Transmit feature requires support
from hardware. Figure 4 shows the list of functions a
packet takes in Fast Transmit mode.

Fast Transmit is used as an optimization technique so
that packets do not need to go through a long list of checks
as discussed in Section 4. Before a packet is sent for fur-
ther processing, the function ieee80211_check_fast_xmit()
checks if the target station and the local device’s un-
derlying wireless card provide Fast Transmit support in
their hardware. If Fast Transmit is possible, further checks
to determine if the target station is an authorized peer
are done to proceed with Fast Transmit. Once these
checks are passed successfully, the 802.11 header and
other information for packet processing is cached inside
the STA node data structure, which is required during
TX packet processing. This function is called whenever
a new station is added or any state change happens at
the station. Explicit calls to this function must be made
to reset the information in case the fast_xmit path is no
longer applicable for the station.

During TX packet processing, the STA node retrived
from hash table is verified for the fast_xmit information. If
the information exists (not NULL), then the skb is capable
to be sent via the fast_xmit path, else the skb follows
the regular path as discussed in Section 4. Once the skb
enters the fast_xmit path, the protocol of the packet is
checked. If the skb is a Wi-Fi Status message, then the
skb is sent to be processed via the regular path, else it is
further processed as a Fast Transmit packet.

The final packet is constructed using the previously
cached 802.11 header information. Once the packet is
ready to be sent out of the interface, a TX queue slot for
the outbound interface is fetched and the packet is put into
the queue. As discussed earlier, the ieee80211_tx_pending
tasklet takes care of dequeuing the skb and passing it onto
the driver.

6. Packet Tracing with Kernel Logs

We performed an experiment to trace IEEE802.11
packets passing through the Mac80211 subsystem in the

Seminar IITM SS 21,
Network Architectures and Services, November 2021 55 doi: 10.2313/NET-2022-01-1_11



Linux Kernel. Figure 5 shows the setup used for the
experiment. The setup includes Raspberry Pi 4 and an
external RT5572 Wireless adapter. The Raspberry Pi 4 is
configured as an ethernet backhaul extender. A backhaul
is an interface through which a device can connect to
another existing network. This means that the Raspberry
Pi 4 is now acting as a bridged wireless access point within
our already existing local Ethernet network. The external
RT5572 Wireless adapter is attached to the Raspberry Pi
4 and is considered as the Access Point in our experiment.
The backhaul interface of the Raspberry Pi 4 is connected
to a D-Link Router. We use an Android mobile phone
as our client device which is connected to the RT5572
wireless adapter.

Figure 5: Experimental Setup

Explicit kernel logs were added to the open source
Mac80211 subsytem source code to help us trace the
packets within the Linux Kernel. We sent ICMP echo
messages [15] from the Raspberry Pi to the Android
phone. Figure 6 shows a sample trace captured during the
experiment. The trace shows list of functions traversed by
a single IEEE802.11 TX packet from the Raspberry Pi 4.

Figure 6: Packet Trace

As first step discussed in Section 4, the kernel hands
over the TX packet to mac80211 subsytem. Then check to
find if the target station is available in the cached memory
(hash table) is done. The kernel log "Found RA STA"
denotes that the station is already known to the local
device and its information is available in the hash table.
Now, the Mac80211 subsystem checks if the packet can
take Fast Transmit path. Both the RT5572 adapter and the
client device did not exhibit support for Fast Transmit.
Hence the kernel log "No Hardware Fast Xmit support"
appears in our trace. Hence, The Tx packet follows the
regular slow path.

The next step is to check if the hardware has offloaded
segmentation to the driver. The RT5572 adapter takes care
of segmentation in the hardware and hence GSO path is
not triggered. Alternately, the skb undergoes linearization.
We introduced kernel logs to find if the Mac80211 sub-
system is responsible for handling checksum. Since those
logs did not appear in our packet trace, it is understood
that the hardware takes care of calculating checksum
before sending the packet into the network. In the final
step of processing, the TX statistics are updated for the
TX packet which is seen from the log "TX stats updated".
From this point, the underlying IEEE802.11 device driver
takes care of sending the packet to the target station.

The prepared skb is enqueued in the TX queue of the
outbound interface by the device driver. After this, the
tasket handler discussed in Section 4 dequeues the skb

and transmits the packet onto the interface which is seen
in the packet trace. With this the entire lifetime of a packet
within the Mac80211 subsystem is traced.

7. Conclusion and Future Work

This paper provides a detailed walkthrough of the
Mac80211 subsystem and its architecture focussing on
packet processing in managed mode of operation. This
papers also analyses the fast_xmit mode of transmission
which helps in drastically reducing the per-packet pro-
cessing overhead. An experiment to back the information
obtained from manual tracing is performed and the com-
plete packet trace is presented. Future work can include
finding possible areas of optimizations and analysing the
remaining features of the mac80211 subsystem in order to
create a simpler and a pluggable version of the mac80211
subsystem. Furthermore, the IEEE802.11 driver can be
examined and a detailed study can be made on how
packets traverse through wireless drivers.

References

[1] G. Hiertz, T. Denteneer, L. Stibor, Y. Zang, X. Costa-Pérez, and
B. Walke, “The ieee 802.11 universe,” Communications Magazine,
IEEE, vol. 48, pp. 62 – 70, 02 2010.

[2] “Monitor mode,” https://en.wikipedia.org/wiki/Monitor_mode,
[Online: accessed 06-June-2021].

[3] M. Vipin and S. Srikanth, “Analysis of open source drivers for
ieee 802.11 wlans,” in 2010 International Conference on Wireless
Communication and Sensor Computing (ICWCSC), 2010, pp. 1–5.

[4] V. Nikolyenko and L. Libman, “Coop80211: Implementation and
evaluation of a softmac-based linux kernel module for coopera-
tive retransmission,” in 2011 IEEE Wireless Communications and
Networking Conference, 2011, pp. 239–244.

[5] D. C. Mur, “Linux wi-fi open source drivers,” http://www.
campsmur.cat/files/mac80211_intro.pdf, [Online: accessed 06-
June-2021].

[6] J. M. Berg, “Mac80211 overview,” https://wireless.wiki.kernel.org/
_media/en/developers/documentation/mac80211.pdf, 2009, [On-
line: accessed 06-June-2021].

[7] “Linux 802.11 driver developer’s guide,” https://www.kernel.org/
doc/html/v4.12/driver-api/80211/index.html, [Online: accessed 06-
June-2021].

[8] “Linux kernel developer documentation,” https://wireless.wiki.
kernel.org/en/developers/documentation, [Online: accessed 06-
June-2021].

[9] P. Salvador, S. Paris, C. Pisa, P. Patras, Y. Grunenberger, X. Perez-
Costa, and J. Gozdecki, “A modular, flexible and virtualizable
framework for ieee 802.11,” in 2012 Future Network Mobile Sum-
mit (FutureNetw), 2012, pp. 1–8.

[10] J. Day and H. Zimmermann, “The osi reference model,” Proceed-
ings of the IEEE, vol. 71, no. 12, pp. 1334–1340, 1983.

[11] “How skbs work,” http://vger.kernel.org/~davem/skb_data.html,
[Online: accessed 06-June-2021].

[12] “Segmentation offloads in the linux networking stack,”
https://www.kernel.org/doc/Documentation/networking/
segmentation-offloads.txt, [Online: accessed 06-June-2021].

[13] T. C. Maxino and P. J. Koopman, “The effectiveness of checksums
for embedded control networks,” IEEE Transactions on Depend-
able and Secure Computing, vol. 6, no. 1, pp. 59–72, 2009.

[14] “Fast transmit,” https://elixir.bootlin.com/linux/latest/source/net/
mac80211/tx.c#L2908, [Online: accessed 06-June-2021].

[15] “Internet Control Message Protocol,” RFC 792, Sep. 1981.
[Online]. Available: https://rfc-editor.org/rfc/rfc792.txt

Seminar IITM SS 21,
Network Architectures and Services, November 2021 56 doi: 10.2313/NET-2022-01-1_11


