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Abstract—Real time stream processing becomes more and
more important as data arrives continuously and information
needs to be based on the latest data. To query an unbounded
data stream, sliding window queries are utilized. Naively
evaluating these queries often causes a lot of redundant
computations that unnecessarily lower the performance.
Over the years different ideas have been proposed that
capitalize on the nature of sliding window queries to reduce
redundant calculations. This paper explains the basics of
sliding window aggregation and then shows different tech-
niques that emerged. These techniques are then evaluated
and compared based on the performance studies conducted
by the researchers and restrictions they impose on the kind
of workloads they can handle.

The techniques investigated are paned and paired Win-
dows and a more general version of this called stream
slicing. Additionally Slider and Reactive Aggregator which
utilize Trees and DABA which is based on the TwoStacks
algorithm are included. As of publication of this Paper, the
general version of stream slicing fits best as efficient a drop-
in replacement without posing any restrictions.

Index Terms—sliding window, stream processing, stream
aggregation

1. Introduction

In many real time applications, data continuously ar-
rives in a stream and needs to be processed as such since
users want whatever information they query to be based
on the most recent data. Because of this, batch processing
is no longer an option. The amount of data that arrives
is potentially infinite and older data might get irrelevant
over time. To query an unbounded data stream window
queries are utilized, specifying a section of the stream to
be evaluated. This is usually the most recent part and as
new data arrives, the query should be reevaluated. The
amount of incoming data needed to trigger an update is
often way smaller than all data currently relevant, so when
computing a new output, many calculations are redundant,
leaving opportunities for optimization. Solutions presented
to capitalize on these opportunities often pose restrictions
on the type of queries or streams they can be used for.
This paper provides the basics needed to understand the
challenges those solutions faced and then presents selected
techniques, how they achieved performance gains, how
they compare to previous ideas and what restrictions they
pose.

The rest of the paper is structured as follows: Section
2 explains the basics of sliding window analysis, Section

3 defines aspects that are important when discussing the
solutions in Section 4. Section 5 gives an outlook on how
sliding window analysis might further evolve. In Section
6 related and relevant work not dealt with in detail in this
paper is mentioned and Section 7 concludes.

2. Background

To query information from a theoretically unbounded
amount of data, one uses windows. This means, giving a
cutoff to that data is considered relevant for the query.
A popular example that will be referred to repeatedly
in this paper is a trader at the stock market who has
access to a stream containing all trades for a specific stock.
The stream is made of tuples that in this example would
contain all the information about the trade they represent
e.g. the amount of shares traded, the time of the trade, the
price etc. They want to know the average price their stock
was traded for recently and now give a cutoff for trades to
still be considered. They might ask for the average price of
the last 5000 trades or the average price of all trades that
happened during the last ten minutes of them issuing the
query. With a query like this they would define a window
with a size of 5000 trades/tuples or ten minutes. The size
of the window is also known as range

So windows are a way to query data streams, but the
trader probably will issue their query more than once,
as they want to have live data all the time. Maybe they
ask for the average of the last ten minutes and want
it updated every ten seconds. For this, sliding window
queries exist. Here, additionally to the size of the window
one is interested in, one also has to provide a measure
indicating when to update the given window based on the
newest state of the stream. This update measure is also
called slide. So our trader’s query would have a range of
ten minutes and a slide of ten seconds.

Figure 1 shows visualizes the process of how a sliding
window query behaves. The query in this example has
a range of nine and a slide of three tuples respectively.
One tuple is represented by one green circle, and the
tupsles shown are the end of the stream. There might be
an arbitrary number of tuples preceding them but they are
not relevant for the query, since they are not even part
of the first window. When the query first is issued the
latest nine tuples are inside the window and aggregated.
As time passes more tuples arrive and as soon as thrre new
tuples arrived, a new aggregate is calculated (third row).
The first window actually does not exit or matter anymore
here, but it is left drawn to visualise the process. The forth
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Figure 1: An example of a sliding window query with
slide = 3 and range = 9 while tuples arrive over time

row shows the state after even more tuples arrived and the
window is updated once more.

The naive way of answering this query would be
evaluating it without any considerations about the nature
of the problem: every ten seconds, find all trades in the
stream that arrived at most ten minutes ago and average
their price. While this might work fine for a not that
frequently traded stock, it is rather inefficient in most
cases. Considering that for each time the window slides,
i.e., ten seconds pass and the new average is computed,
most of the considered trades stay the same – the ones
that happened in the last nine minutes and fifty seconds
before the update – recomputing from scratch involves
a lot of redundant calculations. Looking at Figure 1 the
redundancy can be seen in the overlap of Window 1 and
2.

If we had computed the average of the last ten seconds
and the other nine minutes and fifty seconds separately
and then combined them, we could use that again with
the new ten seconds of data that arrive. The next time
ten seconds pass, we would have to recompute everything
again though, since we cannot easily split off another
ten second slice of the nine minute and fifty second
chunk left over. This nevertheless shows the potential for
optimization, later in the paper we will see how different
techniques capitalize on that.

3. Workload Characteristics

Before investigating the different solutions that were
developed, requirements different workloads pose to
stream processing systems will be given here to allow the
discussion of the solutions later.

3.1. Latency and Throughput

Naturally, memory usage and computation time are
two important factors when it comes to a good query
engine, but the time aspect needs to be viewed from two
points here: latency and throughput. The former describes

the time it takes a query to be answered once it is issued,
the latter the amount of data that can be handled in a
certain amount of time, which is directly dependent on
how long it takes to process an incoming tuple.

3.2. Requirements to the Aggregation Functions

In general a sliding window query provides windows
of tuples repeatedly and then performs some sort of opera-
tion on those tuples to gather an useful output from them.
These operations can be seen as aggregation functions
taking a set of tuples as input and giving the desired result
as output. In the case of our stock trader that function
would take the average price of all trades in the set given
to it. When discussing aggregation functions in the context
of stream processing, it is important to note that they are
not seen as operations on sets of tuples. Instead they are
split into three sub-functions. These sub-functions will be
explained using average() as an example: (1) The first
function takes one data tuple and converts it into a partial
aggregate. In the case of average() this would take the
input and convert it into a tuple (sum,count) with the value
of the input as sum and 1 as count. (2) The second function
takes two of those partial aggregates and combines them
into one. In our case that would be adding up the sum
and count parts of the partials respectively. (3) The last
function takes one partial aggregate and converts it into
a final output, here it would return sum/count, this would
then yield the average of all tuples that were combined
into the partial aggregate used as input for the third
function.

When discussing aggregate functions, mainly the sec-
ond function is of interest, so "average() is commutative"
means that the combination of two partial aggregates is.
This idea is crucial for many techniques presented later,
since it allows partial (pre-)aggregation. This only works
as long as the function is associative though, which is
why all ideas presented later require this to be the case.
Considering the lack of literature for cases where it is not
given and authors noting that cases where it is not given
are rare, associativity seems to be a reasonable assumption
to make [1]–[3].

Invertibility and commutativity on the other hand are
not given for every function of common interest; functions
like max and min are not invertible. As an example for
a not commutative aggregate Tangwongsan et al. name
"collect-like" functions like concatStrings [2].

3.3. Requirements to the Stream

An important requirement several solutions have is
that the tuples in the stream arrive in order. To show
why this can be crucial, we can look at the stock trading
example again. If the data about the trades does not arrive
in the order that the trades took place and we also do not
sort them on arrival, answering some queries can become
difficult. If our stream is ordered, finding an entry that is
older than ten minutes signals that up until that point, all
entries about trades are within our range of interest. If we
cannot guarantee that the stream is in order though, the
entry might just have arrived a little late for some reason,
there might be further entries of interest further behind.
Maybe the internet connection in a trading hub went
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down, and now information about a trade that happened
arrives fifteen minutes late. Under the assumption that the
stream is in order, one would now stop looking further
for relevant trades and get a skewed result. Assuming the
stream is not in order one would struggle finding a point
where it is guaranteed that no relevant trades can be found
in the rest of the stream anymore.

3.4. Requirements to the Window

Different solutions have varying restrictions on the
windows they can handle. A good way to classify those is
presented by Traub et al. [4]. They divide windows into
three categories:
(1) Context free windows: a window is context free, if its
boundaries are already defined before it begins. The first
stock trading example (average of the last ten minutes
every ten seconds) is context free, all windows start ten
seconds apart and span ten minutes, independent of the
trades that happen.
(2) Forward context free windows: a window is forward
context free, if we can tell whether a tuple marks the
beginning or end of a window as soon as it arrives. An
example: our stock trader wants to know the amount of
trades that happened, separated each time the price of the
stock passes the $100 mark. We cannot tell when the
window will end until a trade happens that crosses the
mark, but for every trade we already know of, it is clear
whether or not it closed the preceding window.
(3) Forward context aware windows: for a forward
context aware window, we cannot tell if a tuple marks the
beginning of a window in the moment that it is processed.
The second version of the stock trading example (average
of the last 5000 trades every ten seconds) falls into this
category. Until ten seconds have passed and the window
slides, it is unclear which tuples are within the cutoff of
the 5000 tuple range we specified. This is because each
arriving tuple pushes the the cutoff further, and only after
the ten seconds are over we can be sure that no tuples
relevant for that update will arrive.

Another occurring aspect are concurrent windows. The
same or different users might issue more than one query
over the same data stream with different slide and range
parameters, forcing parallel evaluation of each of those
on their own if not taken into consideration. While this
does not impose any restrictions if the system is aware
of concurrent queries existing it can capitalize on that for
further improvements.

4. Techniques

In this section different techniques for speeding up
stream processing in comparison to from scratch recom-
putation will be presented.

4.1. Paned Windows

A first step to prevent having to recompute the whole
aggregate every time the window slides was made with the
introduction of paned windows by Jin Li et al. [5] They
split the arriving data stream up into smaller sections -
panes - of the same size, choosing the size as the greatest

common divisor of the slide and range of the window.
Using the first stock trading example this would mean
creating panes with the size of ten seconds. For each
of these panes the partial aggregate is computed, and
when the next full aggregate is needed, only these partial
aggregates need to be combined. This is beneficial in two
ways: the partial aggregate for one pane only needs to be
computed once and can be used again (remember: nine
minutes and fifty seconds of the window stay the same
each time it slides) and when the final aggregation is due,
most of the work has already been done by computing the
partial aggregates. For calculating and combining the par-
tial aggregates the associativity of the function is crucial.

Once a pane has been aggregated, the tuples making it
up are not required to stay in memory anymore, allowing
for savings here, too. Taking our example again, instead
of having to save the thousands of trades that happened in
the last ten minutes, only 60 partial aggregates are needed.

This is the first instance of a technique that will later
become known as stream slicing [4], [6]. Several other
ideas presented later pick up on the idea and improve
it, overcoming the restrictions that paned windows still
have: (1) windows need to be context free so the size of
the panes can be determined. (2) The stream needs to be
in order as arriving tuples are inserted into the currently
active pane.

While the performance evaluation conducted was not
very thorough, in the cases that are relevant for actual
applications, i.e., more than a few tuples per pane and
panes per window, they find a speedup of 5 to 10 times
when processing the query compared to recalculation. The
greater the number of tuples per pane and panes per
window, the better and as Krishnamurthy et al. noted it
is reasonable to expect those numbers to be large enough
for significant efficiency gains in real life scenarios [7].

4.2. Sharing Paired Windows and Fragments

Krishnamurthy et al. pick up the idea of paned win-
dows and improve and extend it in the following ways:
(1) They introduce paired windows, a way to slice a
stream into fewer slices than when using paned windows,
allowing for faster final aggregation. (2) They present a
way of handling multiple sliding window queries over the
same stream efficiently. They do this by slicing the stream
so that the partial aggregates can be shared, i. e., used
by all queries. While this leads to smaller and therefore
more slices, it prevents redundant computations because
in a non-sharing case every query would calculate the
aggregates leading to the slices independently. (3) They
introduce shared Data Fragments, a way to allow different
selection predicates in concurrent queries while still taking
advantage of sharing partial aggregates [7].

So if one trader only wants to consider trades where
more than 100 shares were traded, and another one is
only interested in those where the price was at least
$4000 in total, their queries do not need to be handled
separately anymore. While this idea is not discussed in
further literature, it should be easy to include it in other
stream slicing techniques like the one described in Section
4.6. This is because the splitting in shards happens after
and independently of the slicing, so no matter what slicing
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technique is used one can split up the resulting slices
afterwards.

While their analysis shows that paired windows only
offer a minor improvement to paned ones, when sharing
partial aggregates between concurrent windows with a
regular workload, their implementation only needed 10%
of the time to calculate aggregates.

4.3. Slider

Bhatotia et al. present an idea based on the idea of
incremental computing [1]. They introduce self-adjusting
contraction trees, a set of data structures that is able
to deal with the requirements of inserting and removing
tuples constantly as sliding windows demand. The leaf
nodes of these trees are the output of applying the first
aggregation sub-function to the tuples arriving from the
stream and each inner node contains the partial aggregate
resulting from combining its children. The value in the
root node is then used to compute the final aggregate.
They implemented a system they named Slider that uses
these trees to efficiently evaluate sliding window queries.

The resulting speedup is only mediocre though; com-
pared against recomputation from scratch their tests
showed a speedup of up to four times. While they did
not include a reference implementation of the solutions
presented earlier in their tests and they use other metrics
to evaluate, results presented in other papers indicate a
better performance of those compared to Slider [1], [4],
[5], [7], [8]. Furthermore Slider does not allow concurrent
windows and one of their optimizations requires the aggre-
gation function to be commutative, which is, as explained,
not always the case. Slider accepts queries stated in Pig-
Latin [9] allowing all types of windows to be utilized
[1]. Like with the previous ideas, the stream needs to be
ordered here, too.

4.4. Reactive Aggregator

Tangwongsan et al. present a very similar approach
to Slider [3]. They create a binary tree on top of all
tuples currently in the window. For this they created
the FlatFAT data structure which stands for flat fixed-
size aggregator and the Reactive Aggregator (RA) frame-
work which uses FlatFAT to efficiently evaluate window
queries. They show that their implementation needs at
most O(m + m log(n/m)) partial aggregations for an
update of size m to a window of size n. They also only
compare their implementation against one that recomputes
everything from scratch every time and use a slide of 1
for those comparisons, showing that, in that case, their so-
lution becomes more than 10x faster than recomputation.
They reason that this slide granularity is the worst for
their implementation but the same goes for recomputation.
Because of the similarity of the ideas, the real performance
gains probably are comparable to Slider.

Traub et al. included an implementation of RA into
performance studies they made in [4], [6]. It showed ex-
cellent latency but because each new arriving tuple forced
the binary tree to be updated, the throughput suffered
compared to slicing techniques. In comparison to Slider
they do not require commutativity of aggregate functions
in any way. They also allow tuples to be evicted out of

order. While this can be useful in some cases, the way
more important case of inserting tuples out of order was
not addressed. Since RA only allows aggregation on all
tuples currently handled, it does not support concurrent
queries, but at the same time allows all types of windows
to be used.

4.5. DABA

The De-Amortized Banker’s Aggregator or DABA is
an algorithm developed by Tangwongsan et al. [8] It
guarantees worst case constant time for each window
operation, without requiring the aggregation function to
be invertible and by this allowing for consistently low
latency. For an invertible aggregation function this is easy
to achieve: adding a tuple just means aggregating it with
what already has been accumulated and removing one uses
the inverted function with the tuple to be removed. DABA
uses a system of pointers and partial aggregates to allow
this for non-invertible functions as well. DABA is based
on an algorithm called Two-Stacks that only had amortized
constant cost, causing occasional peaks in latency. The
modifications made allow the work to be spread across
all operations made.

In their performance study these effects show: while
Two-Stacks has a lower average latency, the standard devi-
ation of latencies of single operations was about 20 times
higher compared to DABA. The overhead for spreading
out the work between all operations results in slightly
lower throughput for DABA. It still outperforms Reactive
Aggregator regarding throughput while the only restriction
compared to RA is that windows must be FIFO, but since
it is unusual for tuples to be evicted out of order, this is
usually the case.

4.6. General Stream Slicing

Traub et al. developed a generalization of stream slic-
ing techniques that removes all restrictions given except
the associativity of the aggregation function [4]. The basic
idea stays the same: the stream is split up into smaller
slices that do not need to be divided further because there
are no window borders within them. Because of that they
can be partially aggregated allowing working on slice
basis instead of tuple basis.

They present a set of decision trees that based on
properties of the windows, stream and aggregation func-
tion allow to decide, the best way to handle a query
for a specific case. One example: for an in-order stream
with forward context free windows, it is sufficient to only
keep the partial aggregates of slices in memory, allowing
tuples to be discarded after they were handled and by this
reducing memory usage.

They implemented an eager and a lazy version; the
eager one computes a tree based on Reactive Aggregator,
but with the slices as leaves instead of tuples. By doing
this it provides great latency while not suffering from as
massive drawbacks in throughput as RA compared to the
lazy version since the tree is way smaller.

The results from their experiments show great poten-
tial, general stream slicing matches or outperforms other
techniques they compared it to even if the conditions for
those were optimal.
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5. The Future
While work in the past mainly was focused on finding

new ideas that allow for more efficient stream processing
than naively recomputing everything when needed and
lowering restrictions those ideas posed, we now arrived at
a state where a general approach has been found. It already
incorporated different concepts from before but there is
still room for improvement. As Tangwongsan et al. lately
suggested, DABA could be used in general stream slicing
if the stream is in-order [10]. So instead of improving
each technique on its own or coming up with new ones,
combining the different strengths of different approaches
seems promising.

6. Related Work
Cutty [6] was another step towards general stream

slicing that picked up on some aspects introduced by
RA. Scotty [11] is an open-source implementation of
general stream slicing. FiBA [2] uses finger trees to allow
efficient handling of out-of-order tuples, showing excellent
results on its own and being another attractive candidate
to include in general stream slicing to improve the out-of-
order case [11]. Zhang et al. analyzed different techniques
that focus on utilizing hardware as well as possible for fast
stream processing [12].

7. Conclusion
Optimizing sliding window aggregation poses differ-

ent challenges that can prevent optimizations to reduce of-
ten occurring redundant computations from being used in
general stream processing systems. With the introduction
of paned windows came the idea of stream slicing, i.e., the
realization that one can take partial aggregates of several
tuples as a new smallest unit and still compute everything
needed. This came with a rather strict set of restrictions
though. Later this concept was generalized lifting those
restrictions. This general version already performs well
and on top of that offers opportunities to include other
specialized optimizations like DABA, RA or FiBA to fur-
ther increase the speed of the different cases that need to
be handled. After a lot of ideas that rather were a proof of
concept than really applicable, with this there now exists
an efficient alternative to conventional, recomputing-based
solutions that can be used as a drop-in replacement with
potential to increase performance even further with more
research done.
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