
Survey on SR-IOV performance

Maximilian Fischer, Florian Wiedner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: maximilian.fischer@in.tum.de, wiedner@net.in.tum.de

Abstract—Scalable, high performance VM networking is be-
coming increasingly important. Paravirtualized solutions like
VIRTIO are not up to the task, since the overhead in latency
and bandwidth is too high. Single-Root I/O Virtualization
(SR-IOV) is a technology which eliminates the need to em-
ulate NICs and could exceed VIRTIO and similar solutions
in terms of performance. In this paper we give an overview
over the performance of SR-IOV with ethernet, focusing on
latency since it is especially important for applications like
network function virtualization. We look at the current status
of SR-IOV, as well as some optimizations that can be applied
and how they actually impact performance and particularly
latency. We discover that latency has not been the focus
of recent research, but rather bandwidth. Additionally, the
scalability of stock SR-IOV and of the shown optimizations
is not examined enough, especially with regard to latency.
We come to the conclusion that further research is necessary.

Index Terms—SR-IOV, network function virtualzation, mea-
surement, hight-speed networks, ethernet networks

1. Introduction

As more and more services become virtualized and con-
tainerized, high performance networking becomes increas-
ingly important. An application where this is especially
critical are virtual network functions (VNF). Here the
network functions which would normally be handled by
separate devices, like a firewall, router or DNS resolver
are instead put into virtual machines (VMs), with usually
no specialized hardware. These are applications which all
other clients in the network depend on, since, depending
on the VNF, either traffic goes through the VM, e.g. a
router, or future traffic depends on it, e.g. a DNS resolver.
Low latency and high bandwidth are a must, since VNFs
can act as a network-wide bottleneck. Since multiple
VNFs can run on a single host, good scalability is also
paramount, otherwise a major advantage of VNFs is lost.

At the moment, VM networking is implemented with
different systems, depending on the hypervisor used.
When using the Kernel-based Virtual Machine (KVM), a
very popular paravirtualization standard is VIRTIO. The
hypervisor Xen also has capabilities to use paravitualized
network interfaces [1]. Unfortunately, neither KVM nor
Xen can provide performance near that of native network-
ing. Bandwidth is severely limited by the number of inter-
rupts the CPU can handle. Latency is impacted negatively
by tx batching, a technique where the hypervisor doesn’t

inform the VM about every packet that arrives, but rather
does so in batches, thus reducing the number of context
changes. When turning off tx batching, latency benefits but
bandwidth suffers due to the number of interrupts [2] [3].
A technology which could solve all of this is Single Root
I/O Virtualization (SR-IOV). An SR-IOV capable network
interface controller (NIC) can present itself as multiple
virtual PCIe devices. These devices are split into virtual
functions (VF) and one physical function (PF). The VFs
are passed through to the VMs and the PF is for the host.
The PF has the capability to configure the NIC, how many
VFs it has, the routing and much more, depending on the
NIC [2]. In theory, this greatly improves performance,
since the hypervisor doesn’t have to emulate or paravi-
tualize the NIC. There are a lot of works discussing the
praxis, unfortunately most of them focus on bandwidth.
If latency is ever talked about it is mostly in the context
of InfiniBand. That is because latency is very important
for most applications using InfiniBand, like the message
passing interface (MPI) [4].

The goal of this paper is to give an overview of the
current state of the performance of SR-IOV networking
when using ethernet, with a focus on latency. First we
will talk about the current, unoptimized state of SR-IOV.
Afterwards we will show some optimizations which can
be applied and how they actually impact the performance.
Lastly we will show what conclusions we can draw from
this.

2. Current Status

There are several works analysing and discussing the
performance of SR-IOV as is, without any optimizations.
In this section we take a look at some of them.

A general performance overview is given by Liu [2]
with a 10 GbE connection between two servers. The half-
roundtrip latency is shown in Figure 1. The 7 µs difference
between SR-IOV and native is attributed to the interrupt
virtualization needed for SR-IOV. The very high latency of
VIRTIO can be traced back in part to tx batching. In this
approach the hypervisor, while writing incoming packets
into the buffer of the VM, does not instantly inform the
VM about them. Instead the VM is only interrupted every
few packets, which leads to a dramatically lower number
of interrupts. When disabling the tx batching of the VIR-
TIO network interface, latency improves it to around 37 µs
while negatively impacting performance under high tx
load due to more interrupts. Figure 2 shows the bandwidth
compared to the CPU usage when receving. For large
messages, the performance of SR-IOV and native is almost

Seminar IITM SS 21,
Network Architectures and Services, November 2021 43 doi: 10.2313/NET-2022-01-1_09

0

20

40

60

80

100

120

140

160

4 8 16 32 64 128 131 256 512 1024 2048 4096
Message Size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

SRIOV
Native (no-iommu)
VIRTIO
VIRTIO (no Tx batching)

Figure 2: Latency

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

B
an

dw
id

th
 (G

bp
s)

0%

50%

100%

150%

200%

C
PU

 U
til

iz
at

io
n

SRIOV Bandwidth
Native Bandwidth
VIRTIO Bandwidth
SRIOV CPU
Native CPU
VIRTIO CPU

Figure 3: Rx Bandwidth

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

B
an

dw
id

th
 (G

bp
s)

0%

50%

100%

150%

200%

C
PU

 U
til

iz
at

io
n

SRIOV Bandwidth
Native Bandwidth
VIRTIO Bandwidth
SRIOV CPU
Native CPU
VIRTIO CPU

Figure 4: Tx Bandwidth

0

200

400

600

800

1000

1200

1400

1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

M
em

or
y

A
cc

es
s

SRIOV Rx
VIRTIO Rx

Figure 5: Memory Access

0

20000

40000

60000

80000

100000

120000

140000

160000

VM Exits Host IRQs Guest IRQs

N
um

be
r o

f E
ve

nt
s

pe
r S

ec
on

d
SRIOV

VIRTIO

Figure 6: VM Exits and IRQs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SRIOV 32K VIRTIO 32K SRIOV 1K VIRTIO 1K

Pe
rc

en
ta

ge
 o

f C
PU

other
irq
vxge
qemu
copy
guest

Figure 7: Rx Cost Breakdowns

Neterion driver in the guest VM uses NAPI to reduce the
number of interrupts. A similar thing happens for VIRTIO
in its Neterion driver in the host. As can be seen in Figure 6,
due to NAPI, the numbers of host interrupts for both SR-
IOV and VIRTIO (around 50000 and 40000) are much less
than the number of frames received. Although the number of
host interrupts for SR-IOV is comparable to that for VIRTIO,
almost every host interrupt in SR-IOV results in a guest
interrupt while only a fraction of those in VIRTIO results
in guest interrupts, which leads to the fact that VIRTIO has
much fewer guest IRQs (and thus much fewer VM exits).
The main reason for this is that the Neterion driver imple-
ments a Linux network feature called general receive offload
(GRO) [30]. GRO is a optimization which is similar to GSO
except that it is implemented in software and used for Rx.
With GSO, Linux network drivers can combine multiple
frames in the same TCP stream into a large packet and pass it
to the upper layer or through the bridge. As a result, the virtio
guest network driver can operate on large packets instead
of standard Ethernet frames. The ability to receive large
GRO packets directly, together with that fact that the virtio
guest network driver also supports NAPI, gives VIRTIO the
advantage of having much fewer guest interrupts (and thus
much fewer VM exits) during network Rx processing. In
other words, a well-architected software-based approach can

process and combine networking packets in the host and let
the guest VMs handle them in batches to reduce the number
of VM exits and improve network processing efficiency.

To get more insight into how CPU cycles are spent during
the Rx and Tx processes, we have used OProfile to obtain
breakdowns of CPU cycles (normalized to percentage) and
show the results in Figures 7 and 8. We classify the CPU
cycles into 6 categories: guest (guest VM processing), copy
(host memory copy), qemu (KVM user space emulation
code), vxge (host Neterion driver processing), irq (host ker-
nel IRQ emulation and injection), and other. We can see
that copy, guest and vxge are significant costs for VIRTIO
but almost negligible for SR-IOV. On the other hand, vxge
and irq costs are non-trivial for SR-IOV but only a very
small part for VIRTIO. Overall, the majority of the network
processing for SR-IOV is done in the guest VM instead of
the host, while the opposite is true for VIRTIO.

In Figure 9, we show the aggregate Rx bandwidth for 32
KB messages as the number of VM increases. We can see
that for SR-IOV, the aggregate bandwidth does not increase
for multiple VMs because it is already close to line rate for
a single VM. In fact, the contention among the VMs leads to
slight decreases in bandwidth. For VIRTIO, using multiple
VMs does improve bandwidth from 5.89 Gbps to 8.35 Gbps
as more CPUs are involved in the network processing.

6

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 24,2020 at 13:55:05 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Latency [2]

0

20

40

60

80

100

120

140

160

4 8 16 32 64 128 131 256 512 1024 2048 4096
Message Size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s)

SRIOV
Native (no-iommu)
VIRTIO
VIRTIO (no Tx batching)

Figure 2: Latency

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

B
an

dw
id

th
 (G

bp
s)

0%

50%

100%

150%

200%
C

PU
 U

til
iz

at
io

n
SRIOV Bandwidth
Native Bandwidth
VIRTIO Bandwidth
SRIOV CPU
Native CPU
VIRTIO CPU

Figure 3: Rx Bandwidth

0

1

2

3

4

5

6

7

8

9

10

64 128 256 512 1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

B
an

dw
id

th
 (G

bp
s)

0%

50%

100%

150%

200%

C
PU

 U
til

iz
at

io
n

SRIOV Bandwidth
Native Bandwidth
VIRTIO Bandwidth
SRIOV CPU
Native CPU
VIRTIO CPU

Figure 4: Tx Bandwidth

0

200

400

600

800

1000

1200

1400

1024 2048 4096 8192 16384 32768 65536
Message Size (bytes)

M
em

or
y

A
cc

es
s

SRIOV Rx
VIRTIO Rx

Figure 5: Memory Access

0

20000

40000

60000

80000

100000

120000

140000

160000

VM Exits Host IRQs Guest IRQs

N
um

be
r o

f E
ve

nt
s

pe
r S

ec
on

d

SRIOV

VIRTIO

Figure 6: VM Exits and IRQs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SRIOV 32K VIRTIO 32K SRIOV 1K VIRTIO 1K

Pe
rc

en
ta

ge
 o

f C
PU

other
irq
vxge
qemu
copy
guest

Figure 7: Rx Cost Breakdowns

Neterion driver in the guest VM uses NAPI to reduce the
number of interrupts. A similar thing happens for VIRTIO
in its Neterion driver in the host. As can be seen in Figure 6,
due to NAPI, the numbers of host interrupts for both SR-
IOV and VIRTIO (around 50000 and 40000) are much less
than the number of frames received. Although the number of
host interrupts for SR-IOV is comparable to that for VIRTIO,
almost every host interrupt in SR-IOV results in a guest
interrupt while only a fraction of those in VIRTIO results
in guest interrupts, which leads to the fact that VIRTIO has
much fewer guest IRQs (and thus much fewer VM exits).
The main reason for this is that the Neterion driver imple-
ments a Linux network feature called general receive offload
(GRO) [30]. GRO is a optimization which is similar to GSO
except that it is implemented in software and used for Rx.
With GSO, Linux network drivers can combine multiple
frames in the same TCP stream into a large packet and pass it
to the upper layer or through the bridge. As a result, the virtio
guest network driver can operate on large packets instead
of standard Ethernet frames. The ability to receive large
GRO packets directly, together with that fact that the virtio
guest network driver also supports NAPI, gives VIRTIO the
advantage of having much fewer guest interrupts (and thus
much fewer VM exits) during network Rx processing. In
other words, a well-architected software-based approach can

process and combine networking packets in the host and let
the guest VMs handle them in batches to reduce the number
of VM exits and improve network processing efficiency.

To get more insight into how CPU cycles are spent during
the Rx and Tx processes, we have used OProfile to obtain
breakdowns of CPU cycles (normalized to percentage) and
show the results in Figures 7 and 8. We classify the CPU
cycles into 6 categories: guest (guest VM processing), copy
(host memory copy), qemu (KVM user space emulation
code), vxge (host Neterion driver processing), irq (host ker-
nel IRQ emulation and injection), and other. We can see
that copy, guest and vxge are significant costs for VIRTIO
but almost negligible for SR-IOV. On the other hand, vxge
and irq costs are non-trivial for SR-IOV but only a very
small part for VIRTIO. Overall, the majority of the network
processing for SR-IOV is done in the guest VM instead of
the host, while the opposite is true for VIRTIO.

In Figure 9, we show the aggregate Rx bandwidth for 32
KB messages as the number of VM increases. We can see
that for SR-IOV, the aggregate bandwidth does not increase
for multiple VMs because it is already close to line rate for
a single VM. In fact, the contention among the VMs leads to
slight decreases in bandwidth. For VIRTIO, using multiple
VMs does improve bandwidth from 5.89 Gbps to 8.35 Gbps
as more CPUs are involved in the network processing.

6

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on August 24,2020 at 13:55:05 UTC from IEEE Xplore. Restrictions apply.

Figure 2: Rx bandwidth compared against CPU usage [2]

the same, at around 9.1 Gbit/s, while VIRTIO reaches
its maximum at 5.9 Gbit/s, with a theoretical maximum
of 10 Gbit/s. The CPU usage for SR-IOV, however, is
significantly larger for messages bigger than 4096 B, at
200 % compared to 140 % for native or VIRTIO. This
is important to note, since the CPU is often the bottle-
neck when using SR-IOV and also the point where a lot
of papers discussed later begin their optimizations. The
performance when receiving translates more or less to
transmitting, except that native and SR-IOV already start
to diverge for messages smaller than 8192 B. Also, the
CPU usage of 110 % is closer to the VIRTIO CPU usage
of 140 % than to the native of 60 %. A category in which
VIRTIO pulls ahead of SR-IOV is VM exits and interrupt
requests. The number of SR-IOV VM exits exceeds that
of VIRTIOs 18000 by nearly eightfold [2].

Lockwood et al. [4] analyse the MPI performance of
SR-IOV 10 Gbit/s ethernet on a VM compared to that of
an VM with network virtualization, native 10 Gbit/s ether-
net, SR-IOV InfiniBand on a VM and native InfiniBand.
Since we focus on ethernet in this paper, InfiniBand is not
discussed. The tests using 10 Gbit/s ethernet on a VM are
carried out using Amazon Web Services and with no other
VM running on the host. The benchmarks reveal that, as
expected, native performs better than SR-IOV, which in
turn performs better than fully virtualized networking. La-
tency stays about the same for message sizes of ≤1 KiB,
with SR-IOV having about 40 % lower latency than fully
virtualized networking. In numbers this means that fully
virtualized networking has 65 µs of latency while SR-IOV

has 40 µs. Unfortunately, this is still about two times as
high as native. For larger messages the difference in ping
between SR-IOV and fully virtualized starts to decrease,
while the absolute latency of all three variants gets bigger.
At the largest tested message size of 4 MB SR-IOV still
performs 12 % better than without SR-IOV. SR-IOV also
performs better when looking at latency variation, due to
the fully virtualized networking being influenced by other
tasks on the CPU. In numbers, that means SR-IOV has
three to four times less latency variation. The bandwidth
analysis shows that native provides nearly 6.4 Gbit/s for
unidirectional and the full 10 Gbit/s for bidirectional traf-
fic. The bandwidth of SR-IOV and fully virtualized never
gets above about 3.2 Gbit/s for unidirectional, and 4 Gbit/s
for bidirectional traffic. These differences to the previous
paper are likely to the difference in benchmarks being
used, as well as the usage of MPI in this paper [4].

The performance of SR-IOV is compared against that
of Open vSwitch Data Plan Development Kit (OVS-
DPDK) and Fast Data input/output Vector Packet Process-
ing (FD.io VPP) for use with VNFs by Pitaev et al. [5].
The theoretical maximum interface speed is 20 Gbit/s.
When the VNFs are under a light load, just doing
IPv4 Forwarding, SR-IOV clearly pulls ahead. While the
throughput of SR-IOV scales nearly linearly with every
additional VNF added, up to about 19 Gbit/s, the through-
put of FD.io VPP and OVS-DPDK stops increasing at
two and three VNFs respectively, at about 12 Gbit/s to
16 Gbit/s. When using packet sizes of 128 B instead of
the previous IMIX, the performance difference becomes
even clearer, though the general development is the same.
Loading the VNFs with NAT, Firewall, QoS and DPI and
IMIX or 1500 B packet sizes yields much more interesting
results. SR-IOV scales nearly linearly to the maximum
bandwidth with both IMIX and 1500 B packets, while
OVS-DPDK does not reach it at all and FD.io VPP only
for 1500 B packets [5].

Xu and Davda [6] talk about SRVM, which provides
VM live migration support for SR-IOV to the VMware
ESXi hypervisor. Comparing the performance of SR-IOV
to that of the VMXNET3 driver, SR-IOV performs, as ex-
pected, better. All the tests were conducted with a 10 GbE
NIC. The average latency of the system normalized to
the native latency is 113 % for SR-IOV and 207.7 % for
VMXNET3. The minimum and maximum latency of SR-
IOV is even better than native, at 95.2 % and 66.2 %, while
that of VMXNET3 is 185 % and 636.7 % respectively.
As expected, the throughput of SR-IOV is nearly on par
with native at 99.8 % for packet sizes of 256 B, 512 B
and 1024 B, whereas VMXNET3 is at 16.2 %, 33.5 % and
49.7 % [6].

Hwang et al. [7] present NetVM, a tool which com-
petes with SR-IOV and makes use of the data plane
development kit and KVM. It consists of three parts,
NetVM manager, NetVM core engine and NetLib. NetVM
manager is the interface to the hypervisor, receiving events
from it. It then notifies NetVM core engine which actually
implements those events. NetVM core engine is also re-
sponsible for receiving packets and forwards it to the VM
via shared memory over an emulated PCI device. NetLib
provides the interface for the user application in the VM.
The test setup consists of two servers with a 10 GbE
connection between them. When comparing the roundtrip

Seminar IITM SS 21,
Network Architectures and Services, November 2021 44 doi: 10.2313/NET-2022-01-1_09

latency of NetVM and SR-IOV while forwarding packets,
both behave mostly the same for lower latencies, at about
40 µs to 50 µs. But the latency of SR-IOV starts to rise
shortly above 5 Gbit/s of load, to 70 µs, while NetVM
stays more or less the same. Although not mentioned
explicitly, this is probably due to the limitations of SR-
IOV seen in other papers discussed previously. Since here
SR-IOV is not optimized in any way, it presumably starts
to reach the limits of what the CPU can handle interrupt-
wise. Unfortunately CPU load is not measured here [7].

Bauer et al. [8] compare the performance of SR-IOV
software function chaining (SFC) using a single PF to that
of SFC using VFs. When just comparing the performance
of the ixgbe and the ixgbevf drivers, latency over an Open
vSwitch OvS bridge is also examined. For bandwidths
≤500 Mbit/s both are around 104 µs. Above that, ixgbe
is at about 0.8× 107 µs, while ixgbevf is at 0.8× 106 µs.
This is presumably due to the tasks which would normally
be performed by the OS now being performed by the
NIC directly, which is especially beneficial for SFCs,
since the forwarding between two SFs can be offloaded
onto the NIC. When looking at interrupts, VF and PF
mostly behave the same for loads below 700 Mbit/s.
Above that, the number of interrupts for PF decreases
drastically, from 104 Interrupts/s to 102 Interrupts/s, while
the interrupt numbers for VF stay mostly the same at
104 Interrupts/s. As already seen previously, this is due to
the lack of a number of features concerning the controlling
of interrupts, like dynamic interrupt throttle rate. When
comparing the scalability of SCFs using SR-IOV to that
of SFCs using virtual ethernet (vEth) interfaces, the results
show that using vEth yields higher throughput for the
tested chain lengths from 1 to 5 SFs. This is explained
with VFs having less efficient drivers and that there are
more I/O operations required. Examining the throughput
chains of length one, two and four with varying load,
vEth performs better initially. For chains with length two
and four, SR-IOV still takes back the lead after a certain
threshold. Due to the software nature of vEth, as soon as
all resources are taken up, the whole system suffers. Since
with SR-IOV, a big part of the processing is offloaded onto
the NIC, this is not a problem [8].

3. Optimizations

There are several different optimization options. A lot of
them focus on decreasing the CPU load on high through-
put, though there are of course others. In this section we
discuss several of them.

Dong et al. [3] explore the performance of SR-IOV
together with the hypervisor Xen. Three major optimisa-
tion methods are proposed and tested, all concentrating on
interrupts and the minimisation of performance hits from
them. One of them being the moving of message signalled
interrupts (MSI) from the device model in userspace into
the hypervisor. The emulation of a virtual end of inter-
rupt (EOI) is also identified as a hotspot and simplified
massively. Thirdly, an adaptive interrupt coalescing (AIC)
method is developed, which adjusts the interrupt rate dy-
namically based on a set of equations to reduce load on the
CPU. This optimization presumably has the most impact
on latency, though unfortunately this is not measured. A
9.6 % drop in TCP throughput is observed when using

an interrupt frequency of 1 kHz, which is attributed to
TCPs latency sensitivity, though it is mitigated by the AIC
optimisation. Since the bandwidth is at its maximum of
around 1 Gbit/s per guest even before the optimizations, it
is barely affected by them. As is expected, overhead of the
CPU is heavily reduced, together the optimizations reduce
it from 499 % to around 227 %. This mostly affects the
host, but some improvements are also made in the CPU
overhead of the guests. When testing the scalability of
the three optimizations no major issues are detected, even
at 60 VMs, although it might be important to mention
that there are still only a total of 10 1 Gbit/s connections
available [3].

Li et al. [9] explore the method of throttling the
frequency of these interrupts on the fly to increase the
throughput. The method of using a fixed interrupt rate
(FIR) implemented in some device drivers is used as
a baseline for measurements with the baseline fixed at
8000 Interrupts/s. Two new approaches of regulating inter-
rupts are proposed. Course grained interrupt rate control
(CGR) classifies the traffic into four categories, depending
on the packet size. Based on that, the interrupt rate is set,
higher for smaller packets and lower for larger packets.
Packets with sizes from 64 B to 300 B are classified as
latency sensitive traffic and the interrupt rate is set to
20 kInterrupts/s. Packets smaller than 64 B are classified
as latency critical traffic, the interrupt rate is set to
100 kInterrupts/s. How this actually translates to praxis
is not measured. The idea behind Adaptive interrupt rate
control (AIR) is that there is always an optimal interrupt
rate, depending on the currently used bandwidth and av-
erage packet size, which can be calculated. It is set based
on the current bandwidth, average packet size, number of
packets received on each interrupt and the current interrupt
rate. Comparing these three approaches using netperf TCP
and UDP stream, it becomes clear that for 4 VMs or
less the CPU overhead is large enough that the CPU
performance is worse using AIR and CGR compared to
FIR. When using TCP stream, a packet size of 1472 B
and four VMs, the CPU usage for AIR, CGR and FIR
is ~500 %, ~400 % and ~395 % respectively. That said,
the throughput when using AIR and CGR is consistently
on par or higher than when using FIR, for higher VM
numbers higher than 8 AIR even outperforms CGR [9].

Huang et al. [10] talk about optimizing SR-IOV with
the AIR also discussed by Li et al. [9] as well as an
approach using multi-threaded NAPI. New API (NAPI) is
an API in the Linux kernel allowing the driver using it to
mask some of the interrupts produced by incoming pack-
ets. It normally is single-threaded, which makes it more
and more of at bottleneck with increasing VM counts,
since they all are limited by the capacity of this single
thread [11]. A multi-threaded NAPI is proposed, consist-
ing of a dispatcher and n worker threads. This increases
the throughput but also the CPU usage. For example
when using TCP with a packet size of 1472 B, throughput
increased by 38 %, from ~5.8 Gbit/s to ~8 Gbit/s, but CPU
usage also increased by 73 %, from ~100 % to ~175 %. For
smaller packets, the performance gain is barely noticeable,
it is up to about 0.6 Gbit/s from 0.5 Gbit/s. The increase
in CPU usage is similarly small, from 60 % to 65 %. UDP
performance is behaves similar, but it is lower in general,
due to UDP [10].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 45 doi: 10.2313/NET-2022-01-1_09

4. Analysis

In some works, the latency of SR-IOV is very close to that
of native networking, in others it is not. In some it is not
compared to native. The absolute numbers differ greatly
as well, by up to 20 µs. Liu [2] measures an absolute
latency of 24 µs for SR-IOV and 17 µs for native with
packet sizes ≤1 KiB. Normalized to the latency of native
networking that equates to 141 % for SR-IOV. For the
same packet sizes Lockwood et al. [4] measure the latency
of SR-IOV at 40 µs, which is nearly twice as much. When
normalizing the latencies, SR-IOV is at about 200 % to
250 % compared to that of native. These numbers do not
at all match those measured by Liu [2]. Even though the
setups seem similar at first, they differ in many aspects,
not even the benchmarks used to measure the latency are
similar. This means that even though the numbers seem
comparable, they actually are not.

Since the impact of the previously mentioned opti-
mizations is also often not measured, we try to make some
educated guesses on how it could behave The MSI and the
EOI optimizations proposed by Dong et al. [3] presumably
have little to no impact on latency. This is because both
do not really touch when an incoming packet is processed
but rather how it is processed. Since both optimizations
do not massively change what actually happens when a
packet arrives, we can assume that the latency stays about
the same. The optimizations with the presumably largest
impact on latency are the various interrupt coalescing
optimizations. Since they reduce load on the CPU by
coalescing interrupts together, an arriving packet might not
immediately get processed. This could lead to increased
latency, with the severity depending on the intricacies of
the optimization. It is even touched upon by Dong et al.
[3] where the degraded TCP performance after applying
the AIC optimization is attributed to the higher latency
sensitivity of TCP. We can assume that the other coalesc-
ing optimizations behave similarly. The CGR and AIR
optimizations mentioned by Li et al. [9] and Huang et al.
[10] are very similar to the previously mentioned interrupt
coalescing optimizations, but they adjust the interrupt rate
on the fly based on the traffic. This could mean that latency
sensitive traffic is still delivered fast enough and large
traffic volumes are not bottlenecked by the CPU. Though
due to the way the current interrupt rate is calculated, the
latency sensitive traffic would have to dominate either in
number of packets or in used bandwidth. This could mean
that the applications running on the machine have to be
carefully chosen and matched to not interfere with each
other.

5. Conclusion

As mentioned previously, the very few latency measure-
ments which are provided paint a very inconclusive pic-
ture. The measurements which are provided can only be
generalised to a certain point. We did make some educated
guesses about how the optimizations mentioned before
could impact latency, but those are only guesses and do not
replace actual measurements. More latency measurements
are definitely needed, with and without optimizations.

One question that is still left completely unanswered
by any of the surveyed papers is how latency behaves

with a growing number of VMs. Scalability is touched
upon by Dong et al. [3] and Bauer et al. [8], but not
in regards to latency. Bauer et al. [8] show what is to
be expected, above a certain number of VFs the CPU
becomes a bottleneck due to the huge amount of interrupts
that need to be handled. Since they did not use VMs, but
only VFs used by applications directly, this effect would
presumably get worse since the interrupts not only need
to be handled but then also virtualized. These problems
could maybe be mitigated by the optimizations proposed
by Dong et al. [3]. Their optimizations make VMs with
SR-IOV scale nearly perfectly, at least bandwidth- and
CPU-wise. Unfortunately latency is measured by neither.
Either way, unfortunately, more data is also absolutely
necessary.

Although we tried to focus on latency in this pa-
per, bandwidth still needs to be talked about. There is
some conflicting data regarding this. While most of the
mentioned papers come to the conclusion that bandwidth
does not seem to be a problem for the tested systems
(mostly 10 GbE), Lockwood et al. [4] discover that SR-
IOV cannot quite keep up with native. Though in this case,
it could be due to the fact that MPI bandwidth is tested,
not “normal” bandwidth. In most cases, SR-IOV can keep
up with native, even at speeds up to 20 Gbit/s [5].

References
[1] “Xen Networking,” https://wiki.xenproject.org/wiki/Xen_

Networking, Last Accessed: 2021-06-07.
[2] J. Liu, “Evaluating standard-based self-virtualizing devices: A per-

formance study on 10 GbE NICs with SR-IOV support,” in 2010
IEEE International Symposium on Parallel Distributed Processing
(IPDPS), 2010, pp. 1–12.

[3] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan, “High
performance network virtualization with SR-IOV,” in HPCA - 16
2010 The Sixteenth International Symposium on High-Performance
Computer Architecture, 2010, pp. 1–10.

[4] G. K. Lockwood, M. Tatineni, and R. Wagner, “SR-IOV: Perfor-
mance Benefits for Virtualized Interconnects,” in Proceedings of
the 2014 Annual Conference on Extreme Science and Engineering
Discovery Environment, 2014.

[5] N. Pitaev, M. Falkner, A. Leivadeas, and I. Lambadaris, “Charac-
terizing the Performance of Concurrent Virtualized Network Func-
tions with OVS-DPDK, FD.IO VPP and SR-IOV,” in Proceedings
of the 2018 ACM/SPEC International Conference on Performance
Engineering, 2018, pp. 285–292.

[6] X. Xu and B. Davda, “SRVM: Hypervisor Support for Live Migra-
tion with Passthrough SR-IOV Network Devices,” SIGPLAN Not.,
vol. 51, no. 7, pp. 65–77, 2016.

[7] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High
Performance and Flexible Networking Using Virtualization on
Commodity Platforms,” in Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation, 2014,
pp. 445–458.

[8] S. Bauer, D. Raumer, P. Emmerich, and G. Carle, “Intra-Node
Resource Isolation for SFC with SR-IOV,” in 2018 IEEE 7th
International Conference on Cloud Networking (CloudNet), 2018,
pp. 1–6.

[9] J. Li, S. Xue, W. Zhang, R. Ma, Z. Qi, and H. Guan, “When I/O
Interrupt Becomes System Bottleneck: Efficiency and Scalability
Enhancement for SR-IOV Network Virtualization,” IEEE Transac-
tions on Cloud Computing, vol. 7, no. 4, pp. 1183–1196, 2019.

[10] Z. Huang, R. Ma, J. Li, Z. Chang, and H. Guan, “Adaptive and
Scalable Optimizations for High Performance SR-IOV,” in 2012
IEEE International Conference on Cluster Computing, 2012, pp.
459–467.

[11] “NAPI,” https://wiki.linuxfoundation.org/networking/napi, Last
Accessed: 2021-07-30.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 46 doi: 10.2313/NET-2022-01-1_09

