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Abstract—Network scans are an inherent element of research
within the field of Computer Networks. The basis for these
scans is a list of targets, commonly referred to as hitlist.
There are readily available hitlists and active research on
how such lists can be generated.

In this paper, we extract domain names from external
link datasets provided by the Wikimedia Foundation and
use them as the source for generating a hitlist. We assess
the general structure of the extracted domains and compare
them to the Alexa Top 1M. We find that our list has no ap-
parent structural disadvantages. We also analyze the targets
for potential biases regarding their distribution over ASes,
prefixes, and IP addresses. Our results show that 52% of the
gathered IPv6 addresses are within 30 prefixes of AS13335-
CLOUDFLARENET and that the top 10 most occurring
ASes contain 45% of all IPv4 targets. We find that 33% of
the IPv4 and 42% IPv6 addresses map to more than one
domain. Around 5.8% of our domains resolve to the same
four IPv4 addresses belonging to AS53831-SQUARESPACE
and 3.3% of domains to four IPv6 addresses in AS15169-
GOOGLE.

Index Terms—Internet measurement, Internet hitlists

1. Introduction

Network scans and their resulting measurements are
important to many stakeholders in a network, from in-
dividual clients measuring their provided service, ISPs
trying to optimize their operational costs to researchers
measuring network characteristics, evaluating their find-
ings, or deploying algorithms on a larger scale. IPv4
scanning and the generation of hitlists date back to the 90s
[1,2]. Nowadays, tools like ZMap [3] and MASSCAN [4]
enable scanning the entire IPv4 address space in feasible
time. Although possible, a full scan might not be suitable.
Not all types of scans scale well to that size [5]. We might
need domains names, e.g., for TLS scans which generally
require domain names due to Server Name Indication, we
might have limited infrastructure or have a narrow target
group. With IPv6, complete scans of the address space are
not feasible [6], so hitlists are a necessity.

Depending on the source, the list of targets might be
biased. Detecting and eliminating these biases is not trivial
and a field of active research [7,8]. To ensure some form
of quality for the list of targets, Gasser et al. [7] suggest
gathering addresses that belong to individual hosts and
have an even distribution across ASes and prefixes. At
the very least, the potential for biases should be consid-
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ered when conducting research, as a nonrepresentative or
skewed list might lead to wrong conclusions.

In this paper, we analyze a potential source for gen-
erating a hitlist. For that we extract domain names from
external links found in Wikipedia articles. According to
Wikipedia community guidelines [9], each article may
include an external link section listing the web presence
of entities relevant to the article. External links refer to
links from articles to web pages outside of Wikipedia.
Outline Section 2 briefly presents related work and termi-
nology used throughout this paper. Our methodology for
extracting the domains and resolving them to IP addresses
is outlined in Section 3. Section 4 covers some structural
properties of the extracted domain names. We inspect the
list of targets for potential biases towards ASes, prefixes,
and IP addresses in Section 5. Finally, Section 6 concludes
our paper and suggests possible future work.

2. Related Work and Background

There are many sources from which to generate
hitlists, including passive [6] and active measurements
[10], Certificate Transparency logs [11], and machine
learning [12]. As a result of continuous research, a con-
siderable amount of datasets, providing sources or targets,
have been accumulated. While some of these datasets
are restricted and proprietary [6,13], many are publicly
available [14,15]. Frequently used sources are top lists,
e.g., the Alexa Top 1 Million list [16] that rank web
domains by popularity. Scheitle et al. [17] and Pochat et al.
[18] found that some of these lists exhibit characteristics
that need to be accounted for prior to their use in research.
These include, but are not limited to, significant and
frequent churn, a nontransparent ranking mechanism, and
a weekend and clustering effect [5]. Attempts to address
some of these issues include using prefix top lists [19] or
incorporating multiple such lists [20].

To the best of our knowledge, Paul Hoffman’s [21]
work is the first to generate a hitlist using external links
from Wikipedia articles and to evaluate specific network
characteristics of the targets.

Background For the structural analysis in Section 4, we
use the notions of base domain and subdomain depth to
obtain insights into the depth and breadth of our domains
[17]. By base domain, we refer to the public suffix and
the first domain prefixing it, e.g., google.com. Each sub-
domain preceding the base domain adds a value of 1 to
the subdomain depth, e.g., www. support .google.com has
subdomain depth 2. For clarity, in this paper, the term bias
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TABLE 1: List structures. The SD, columns indicate the share of domains with subdomain depth z. SDy represents
domains with no subdomain, i.e., a base domain [17]. In the third column, 1498 TLDs correspond to 100%. The given

numbers are rounded down to the nearest tenth decimal.

List Size TLDs SDg SD; SD, SD~ 3 NAlexa
Joint 3.5M 57.8% 22.2% 70.3% 6.2% 0.8% 21.0%
de 1.2M 44.1% 17.7% 76.2% 5.7% 0.5% 8.5%
en 3.3M 57.6% 23.9% 68.7% 6.5% 0.7% 20.9%
fr 981.8K 41.7% 17.9% 74.2% 6.8% 0.8% 8.5%
ceb 6.2K 9.9% 17.6% 76.9% 5.1% 0.2% 0.3%
sV 243.7K 28.1% 16.5% 75.5% 6.3% 1.5% 3.4%
nl 317.3K 31.2% 14.0% 78.9% 5.3% 1.6% 3.6%
Alexa 690.9K 52.2% 85.4% 14.4% 0.1% 0.0% 100.0%

of a hitlist refers to its propensity to certain subsets in the
IP address space.

3. Methodology

The Wikimedia Foundation, the parent company of
Wikipedia, provides a wide range of data dumps. Among
them are SQL dumps that provide information about
the external links across all articles within a given
Wikipedia language edition. As of June 2021, there are
321 Wikipedia editions. For this paper, we used the six
largest editions, based on the number of articles. These
are the English, Cebuano, Swedish, German, French, and
Dutch Wikipedias. To create the lists of domain names we
performed the following steps:

e We pulled the external link SQL dump for each
language edition on May 04, 2021.

e We extracted the individual URLSs from the dumps
and pruned those that were nonvalid URLs, had
bad syntax, used nonstandard ports, or contained
irrelevant protocols.

e We removed any unwanted prefix and suffix leav-
ing the base domain and subdomains.

o We deleted duplicate entries.

In addition, we created a Joint list by merging the in-
dividual lists, again removing duplicate entries. To resolve
the domains and collect IP addresses, we used MassDNS
[22] with an Unbound [23] resolver. We performed the
scan on May 17, 2021.

4. Structure

We check how many unique Top Level Domains
(TLDs) are used and the subdomain depth across the
domains in each list. In addition, we compute the inter-
section between our lists and the Alexa Top 1M, which
we retrieved May 26, 2021.

4.1. TLD Coverage

As of May 2021, TANA [24] reports the existence of
1498 valid TLDs. Table 1 shows the results for all lists.
The Joint and English list with 57.8% and 57.6% cover
almost the same number of TLDs, approximately 865.
There is a noticeable relation between the size of a list
and the amount of TLDs it contains. An exception is the
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Alexa Top list which at almost half the size of the German
list includes 120 TLDs more. This might be attributed to
the larger share of base domains in the Alexa list leading
to a wider range of targets. The smallest list, Cebuano,
misses over 90% of TLDs. This is a consequence of its
small number of entries, although it is the second largest
Wikipedia edition. It is the smallest list because of an
unexpectedly large number of duplicate entries in the SQL
dump, which we removed during the list’s creation.

TABLE 2: Top 5 TLDs by occurrence. Values are per-
centages of the number of domains in the respective list.

Lists
TLD de en fr ceb 3% nl
com 254 489 382 445 320 26.6
org 77 142 112 119 9.3 7.6
de 324 2.4 3.6 1.5 6.4 6.8
net 3.3 4.2 4.3 4.0 3.5 3.1
fr 1.6 07 122 29 0.8 1.5

Table 2 lists the five most frequently occurring TLDs
across the language-specific lists. Three of the most com-
monly used TLDs on the internet, com, net, and org are
present. The entries de and fr are due to an unsurprising
bias of the German and French list, the second and third
largest lists respectively, towards these TLDs. Around
420K domains in the German list have de as their TLD
and around 118K entries in the French list have TLD fr.

We would like to note that the extracted URLs con-
tained thousands of invalid TLDs, which was a point of
interest in previous research [17] when analyzing such
lists. Due to the human component in adding external
links to articles, this is to be expected and not further
elaborated on in this paper.

4.2. Subdomain Depth

Looking at the subdomain depths in Table 1, we
notice a significant discrepancy between the Wikipedia
lists and the Alexa Top list. With 590K entries, the Alexa
list almost exclusively consists of base domains, whereas
our lists comprise around 14% to 23% base domains
each. Conversely, up to 78% percent of domains in the
Wikipedia lists have subdomain depth 1, compared to
Alexa’s 14%. Worth noting is that 60-70% of these do-
mains with subdomain depth 1 have the www. prefix, which
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TABLE 3: Top 10 ASes by the number of contained domains from the Joint list.

1Pv4 IPv6
AS Domains Addresses  Prefixes AS Domains Addresses  Prefixes
AS13335 - CLOUDFLARENET 442K 80K 175 AS13335 - CLOUDFLARENET 399K 75K 30
AS16509 - AMAZON-02 209K 49K 1.5K AS6724 - STRATO 49K 473 2
AS53831 - SQUARESPACE 208K 27 3 AS8560 - IONOS-AS 48K 2.8K 3
AS15169 - GOOGLE 174K 25K 266 AS16509 - AMAZON-02 29K 15K 143
AS58182 - wix_com 147K 25 4 AS8972 - Host Europe 21K 2.8K 2
AS14618 - AMAZON-AES 140K 24K 108 AS51468 - ONECOM 20K 20K 1
AS16276 - OVH 137K 37K 87 AS15169 - GOOGLE 20K 222 14
AS8560 - IONOS-AS 118K 10K 34 AS20773 - GODADDY 13K 10K 1
AS46606 - UNIFIEDLAYER-AS-1 90K 27K 129 AS16276 - OVH 12K 1.9K 5
AS26496 - GO-DADDY-COM 26K 9K 285 AS54113 - Fastly 10K 219 16

does not provide us with any more interesting targets than
base domains. Our lists do contain a considerable amount
of domains with subdomain depth 2 or greater, leading to
potentially interesting targets. In the Joint list, there are
~210 K domains with subdomain depth 2 and ~28 K with
a subdomain depth larger than 3. The Alexa Top list has
740 and 35 such domains, respectively. This suggests that
our Joint list covers domains beyond an entity’s main web
presence.

4.3. Intersection with the Alexa Top 1M

The intersection between hitlists is an important mea-
sure and was studied in previous research [17] as a large
overlap may indicate that potential biases and shortcom-
ings in one list are also present in the other. Of the
approximately 3.5 M domains in our Joint list, about 150 K
can be found on the Alexa Top list. Most of this overlap
comes from entries in the English list. All other lists have
intersections consistently below 10% and in total only
contribute 7K domains to the overlap of the Joint list. This
indicates that our lists are a more diverse source for the
generation of a hitlist that goes beyond the most popular
domains. The generally low overlap might be explained
by the fact that the broad diversity of Wikipedia articles
results in many external links pointing to niche, regional
and unknown domains.

5. Biases

In this section, we analyze our target address for
potential biases by inspecting their distribution over ASes,
prefixes, and IP addresses. We conclude the section by
checking IPv6 adoption and the use of privacy extensions
across our targets. The following analysis is based on the
addresses resolved from the Joint list only.

5.1. AS and Prefix Distribution

Table 3 shows the top 10 ASes most domains within
our list belong to. For both IPv4 and IPv6, CLOUD-
FLARENET is in first place. About 11% of all domains
resolved to an IPv4 address and 52% of IPv6 addresses
resolved to are within AS13335-CLOUDFLARENET and
175 and 30 of its prefixes respectively. Six of the
10 ASes are found on both sides, while SQUARES-
PACE, wix_com, AMAZON-AES, and UNIFIEDLAYER-
AS drop out of the top 10 when considering IPv6 ad-
dresses. With STRATO, IONOS-AS, Host Europe, and
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GODADDY, about 130K (17.1%) of all IPv6 domains are
located in a German AS and within 8 of their prefixes.
The domains are distributed over 19976 ASes (IPv4)
and 2304 ASes (IPv6), yet the top 10 ASes contain 45%
and 80% of them respectively. These results carry over
to the approximately 69 K IPv4 and 3.4K IPv6 prefixes
covered in total. All domains in the top 10 ASes are
within 2591 (3.7%) and 217 (6.2%) of all covered pre-
fixes. Figure 1 provides a graphical representation of these
results. Beyond the top 10, we find that the top 100 ASes
cover 77% and the top 250 approximately 85% of all IPv4
domains. For IPv6, it is more significant as the respective
number of top ASes contain 96% and 97% of all domains.

o o o Iy
IN o © o

o
N

Fraction of Domains in Top ASes

— IPv4
IPv6

o
o

1‘0 lll)O 2%0
ASes
Figure 1: CDF showing address distribution over top

ASes.

5.2. IP Addresses

To identify a possible bias towards a small set of IP
addresses, we check how many domains are resolved to
the same address. In total, we gathered 887 K unique IPv4
and 175K unique IPv6 addresses.

IPv4 Table 4 shows the top IPv4 addresses appearing
the most in our hitlist. Given the purpose of external
links, it is no surprise that most addresses belong to well-
known web hosters like SQAURESPACE and Wix.com.
There are no significant differences among the Top 8, with
approximately 50K occurrences each. In total, around
450K (12.8%) domains are resolved to these addresses.
Figure 2 shows the distribution over the top 5000 IPv4
addresses. We see that the top 100 addresses account for
22%, the top 1000 for 32%, and the top 4000 for 39% of
all domains. After the top ~300K addresses, we have a
one-to-one mapping between domain and address.

IPv6 In Table 5, the top 10 most occurring IPv6 addresses
are listed. Structurally, the table is similar to that of the
IPv4 addresses. The top 5 addresses are resolved to from
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TABLE 4: Top 10 most frequently occurring IPv4 ad-
dresses in the target list.

Address # AS
198.185.159.144 53K SQUARESPACE
198.185.159.145 50K SQUARESPACE
198.49.23.145 50K SQUARESPACE
198.49.23.144 50K SQUARESPACE
185.230.63.171 49K  wix_com
185.230.63.107 49K  wix_com
185.230.63.186 49K  wix_com
184.168.131.241 47K GO-DADDY-COM-LLC
3.223.115.185 29K AMAZON-AES
192.0.78.24 23K AUTOMATTIC

around 4800 domains each where the top 4 belong to
AS15169-GOOGLE. In total, the top 10 addresses cover
around 39K (5.2%) of all domains. Looking again at
Figure 2, we find that the distribution over IPv6 addresses
follows a similar slope to that of the IPv4 addresses.

TABLE 5: Top 10 most frequently occurring IPv6 ad-
dresses in the target list.

Address # AS
2001:4860:4802:32::15 4886 GOOGLE
2001:4860:4802:36::15 4842 GOOGLE
2001:4860:4802:34::15 4840 GOOGLE
2001:4860:4802:38::15 4837 GOOGLE
2a05:d014:9da:8¢10:306e:3e07:a16f:a552 4650 AMAZON-02
2a01:238:202a:202:1086:: 3599 STRATO
2a01:238:20a:202:1162:: 3218 STRATO
2003:2:2:15:80:150:6:143 2840 DTAG
2606:4700:90:0:b518:199¢:8alf:d33b 2736 CLOUDFLARENET
2a01:238:202:202:1064:: 2393 STRATO

The top 100, 1000, and 4000 IPv6 addresses account
for 14%, 25%, and 29% of all domains respectively.
Here we have a one-to-one mapping between domain and
address after 74 K addresses. Interestingly another German
AS, DTAG, is the only one appearing in either address
table, which is not part of Table 3.
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Figure 2: CDF showing domain distribution over top IP
addresses.

IPv6 adoption IPv6 adoption across the internet was a
network characteristic of interest in previous research [25].
Of our ~3.5M domains, around 750 K could be resolved
to an IPv6 address. This represents an adoption of 21.7%.
We take the native IPv6 traffic google receives [26] as a
reference for the adoption on the internet, which is 31%
as of June 02, 2021. Our list falls well below that. This
again might be because of the diverse, possibly niche,
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and regional nature of external links. Additionally, we
determine how many domains can be resolved to an IPv6
address, whereas Google passively measures user traffic.

MN(31.5,15.75)
0.225 A

0.2 4
0.175 A
0.15 1
0.125 A
0.1 4

0.075

Fraction of resolved host identifiers

0.05 1

0.025 1

LT
o 10 20 30
Number of bits set to 1 in the host identifier

40

Figure 3: Bit distribution over IPv6 host identifiers.

Privacy Extensions RFC 4941 introduced privacy exten-
sions to reduce the traceability of MAC addresses due
to the use of Stateless Address Autoconfiguration. Using
privacy extensions, the interface identifier, i.e., the last
64 bits, are replaced by random bits. An approximation
for the sum of these single bit distributions is the normal
distribution NV'(31.5,15.75) [6]. We analyzed the interface
identifiers of our IPv6 addresses. The distribution for the
sum over the bits is shown in Figure 3. We see that our
sample of host identifiers does not match the normal dis-
tribution. This shows that most of our targets are not using
privacy extensions. Considering that most of our targets
are presumably web servers having no need to mask their
host identifiers for the sake of reducing traceability, this
is not too surprising.

6. Conclusion and Future Work

In this work, we analyzed external links from
Wikipedia articles as a source for creating a hitlist. We
found that our Joint list has similar TLD coverage and
higher average subdomain depth than the Alexa Top list.
Around 21% of the domains in the Alexa list are also
present in the Joint list. When evaluated for biases, our
hitlist showed a significant propensity towards a small
number of ASes and prefixes. In addition, a large portion
of domains are resolved to a small set of IPv4 and IPv6
addresses. We have seen that the IPv6 adoption of our
targets is below the general adoption and that most of
them do not use privacy extensions.

We note that this work evaluated the hitlist in isolation
without comparing it with existing alternatives. This could
be addressed in future work to determine the relative value
of this method. An attempt to eliminate found biases
might increase the quality of the hitlist. Other potential
aspects for future work include assessing possibilities to
manipulate external links, monitoring the change of the
domain names over a longer period of time, considering
further network characteristics, checking for additional
biases, and incorporating additional Wikipedia language
editions.
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