
Taxonomy of the Performance of P4 Targets

Irina Tsareva, Dominik Scholz∗, Sebastian Gallenmüller∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: irina.tsareva@tum.de, {scholz,gallenmu}@net.in.tum.de

Abstract—The P4 language enables abstraction and flexible
programming of the data plane for various hardware- or
software-based targets, like field programmable gate arrays
(FPGAs) or software switches for general-purpose CPUs.
Each of these targets has its own limitations in available
parallelization (e.g., multi-core), memory resources (e.g.,
RAM), or number of high bandwidth ports. Thus, one P4
program may have different latency and throughput char-
acteristics, depending on the target machine. Analyzing the
performance differences for P4 targets is crucial to identify
bottlenecks and predict the performance of any P4 program.
In this paper, we provide a comparison of performance
measurements of P4 targets and show the impact of different
P4 constructs. Hardware-based solutions have the lowest la-
tency and highest throughput. Furthermore, we describe two
model approaches to predict the performance of P4 targets:
models based on benchmarking and on stochastics. While
benchmarking-based models allow a straight performance
comparison, they are highly dependent on target-specific
information, and thus, may not be applicable to every target.
Whereas the probabilistic model is implemented to be more
general and can be further refined with information about
the target.

Index Terms—programmable data plane, P4, performance,
performance model

1. Introduction

Software-defined networking (SDN) [1,2] enables
faster deployment, centralized management, and scala-
bility through network control. This architecture decou-
ples the control and data plane physically, such that the
software-based control plane controls the data plane (e.g.,
switches, routers) over an open protocol like OpenFlow.
Consequently, to support new header fields the Open-
Flow API specification has to be extended and hardware
switches redesigned or reprogrammed (e.g., application-
specific integrated circuits (ASICs)), leading to an in-
creased complexity of the API, additional deployment
cycles, and a need for domain experts. The program-
ming protocol-independent packet processors (P4) lan-
guage aims to solve these issues by providing an abstrac-
tion layer between an API such as OpenFlow and the data
plane.

P4 [2] is a protocol-independent, target-independent,
and field reconfigurable language that can express how the
data plane has to process packets. Protocol-independent
means that there is no set of supported protocols (e.g.,

IPv4, Ethernet), and thus, this set has to be defined as de-
sired. With P4, different supported platforms (P4 targets)
can be programmed, like field programmable gate arrays
(FPGAs), ASICs, or network processing units (NPUs).
Field reconfigurable describes the property that P4 targets
can be reconfigured after they were shipped.

Various implementations of P4 targets exist; either
software- or hardware-based. Although the hardware-
based solutions provide high bandwidth ports and spe-
cialized many-core architectures, they differ highly in their
price, e.g., about 7,000$ for a NetFPGA SUME board [3],
and maintenance costs. Moreover, each implementation
uses different libraries, compilers, and optimization tech-
niques to enable different features (e.g, stateful opera-
tions), and thus, are not suitable for every network setup.
Yet, the implementation also influences the latency or
throughput of P4 programs. It is crucial to understand
and estimate the performance of P4 programs on a P4
platform correctly to have predictable execution and to
identify optimization possibilities of a given setup.

At present, two approaches for performance estima-
tion of arbitrary P4 programs exist: models based on
benchmarking and on stochastics. The goal of this paper
is to provide an overview of both approaches and their
implementations. To this end, we focus on a selection of
P4 targets (Section 2) and describe necessary performance
measurements for the benchmarking-based model (Sec-
tion 3). We present implementations of the benchmarking-
based approach and one probabilistic model and discuss
their advantages and disadvantages (Section 4).

2. Background

A device must explicitly support P4 programmability,
otherwise it is not possible to program the device via P4.
To understand the architecture of a P4 target, knowledge
about the P4 language is needed.

2.1. P4 Programming Language

A P4 program consists of three stages: the parser,
pipeline, and deparser stage. The parser is a finite state
machine that takes the arriving packets (ingress queue)
and extracts its headers into a stack. The pipeline includes
multiple match-action units that process the parsed head-
ers by performing user-defined actions such as modifi-
cations upon them. The match-type can be either exact,
ternary, or lpm. Finally, the deparser reconstructs the
packets with the modified, added, or removed headers
and sends them to the outgoing packet buffer (egress

Seminar IITM SS 21,
Network Architectures and Services, November 2021 25 doi: 10.2313/NET-2022-01-1_06



queue) or drops them. In this context, we call the parsers,
actions, and tables P4 constructs. They are the basic
blocks out of which arbitrary P4 programs can be build. A
P4 programs defines network functions (NFs), like NATs
or firewalls. [4]

The P4 compiler consists of two parts: A generic
open-source front-end and a target-specific back-end com-
piler (provided by the vendor). The front-end compiler
transforms the P4 program into an intermediate represen-
tation (IR), which is then mapped into target-specific code
(e.g., in C or Verilog) by the back-end compiler. [4]

P4 targets implement a target-specific P4 architecture
model which describes the interface as well as fixed-
function and programmable blocks. This interface enables
the P4 constructs to be mapped onto the target. [5]

2.2. P4 Targets

We present a selection of P4 targets ordered by their
degree of flexibility (descending), specialization (ascend-
ing), and price (ascending). Although GPU-based imple-
mentations exist [6], we do not discuss them here, since
not enough performance measurement results exist.

2.2.1. Software-based. Software-based implementations
can be run on a general-purpose CPU. They can make
use of, e.g., the heap memory and available cores. They
are more flexible to implement, since there are hardly
any hardware constraints, but their behavior might be
non-deterministic due to scheduling or interrupts during
runtime [7].

Behavioral Model version 2 (bmv2) – bmv2 [8] is
the reference software switch implementation of p4.org.
This switch has only developing, testing, and debugging
purposes due to its high latency and low throughput (up
to 1 Gbit/s).

T4P4S DPDK-based – The data plane development
kit (DPDK) is a collection of user-space libraries to ac-
celerate packet processing. It includes multiple features to
accelerate software-switches. The P4 program is compiled
through T4P4S into C code that can be run on top of
DPDK. [4]

PISCES – PISCES [9] is a software switch that is
based on the virtual Open vSwitch (OVS) and uses the
DPDK fast path instead of the less performant kernel
modules. Additionally, the authors added new primitives
to support encapsulation.

BPF-based – P4rt-OVS [10] extends the OVS-DPDK
by the user-space berkeley packet filter (uBPF). These
libraries add support for runtime extensibility and stateful
operations. This implementation introduces a new front-
end P4-to-uBPF compiler.

2.2.2. NPU-based. NPUs consist of “tens of multi-
threaded purpose-built” cores that are optimized for net-
work data packet processing, and thus, they are more
specialized than CPUs. One example is the Netronome
SmartNIC. To program this NPU, the IR is compiled into
C code, and then, into firmware which is loaded onto the
P4 target. [4]

2.2.3. FPGA-based. Hardware design can be described
using a hardware descriptive language (HDL). This design

is then synthesized, placed, and routed onto a specific
FPGA. While developing the design the developer already
has to know the target FPGA so she can meet platform-
specific constraints, such as timing or available resources.
If the constraints are not met, placing and routing will
fail. In case of success, a bitstream can be generated and
flashed onto the FPGA. The advantage is that the hardware
can be optimized for an application.

P4→NetFPGA – P4→NetFPGA [11] is a workflow
on top of the Xilinx P4-SDNet compiler and NetFPGA
SUME to compile P4 code into Verilog code. The target
FPGA is the NetFPGA SUME board.

P4-to-VHDL – P4-to-VHDL [12] compiles a P4 pro-
gram into VHDL code without having an IR.

P4FPGA – P4FPGA [13] extends the p4.org front-
end compiler by a back-end that first generates Bluespec
System Verilog code. Then, this code is converted into
Verilog code that can be synthesized to either Xilinx
or Altera FPGAs. The generated code contains a P4
programmable packet-processing pipeline and a fixed-
function pipeline.

2.2.4. ASIC-based. Hardware switches that are hard-
wired for a specific application are ASIC-based. Their
function cannot be reprogrammed making them less flex-
ible, but more specialized. Intel Barefoot Tofino 1 [14]
is such an Ethernet switch. It uses static RAM (SRAM)
and ternary content-addressable memory (TCAM) for P4
tables, depending on the match types [15].

3. Performance of P4 Targets

In this section we compare the performance of a
selection of P4 targets on basic P4 constructs. Performance
metrices are latency and throughput. Typically, the latency
and throughput are best for an FPGA and ASIC, since they
have application-specific, optimized hardware. However,
hardware constraints limit their expressibility.

3.1. Latency

The overall latency depends on the amount of occur-
rences of basic P4 constructs in a P4 program. Table 1
depicts the impact of eight P4 constructs on the bmv2,
T4P4S switch, PISCES, Netronome SmartNIC, and NetF-
PGA SUME (compiled via P4→NetFPGA).

For instance, modifying header fields has a negligible
impact on the T4P4S switch, Netronome SmartNIC, and
NetFPGA SUME board since they write the complete
header, even if a single field is changed [4]. Since whole
headers are emitted in the P4 deparser syntax [4] we
expect to see a similar behavior for bmv2 and PISCES.

Comparing the targets listed in Table 1, the NetFPGA
SUME board has the lowest overall latency for each P4
construct, while bmv2 has the highest. The T4P4S switch
has comparable latency to the Netronome SmartNIC with
packet sizes of 256 Bytes (B); for packets larger than
1000B or 1500B the Netronome SmartNIC has a better
latency by 3ns-7ns (depending on the amount of the
occurrence of P4 constructs). However, the Netronome
SmartNIC scales the worst with increasing pipeline and
action complexity. [4]

Seminar IITM SS 21,
Network Architectures and Services, November 2021 26 doi: 10.2313/NET-2022-01-1_06



P4 constructs Impact on Targets

bmv2 [7] T4P4S
Switch [4] PISCES [7] Netronome

SmartNIC [4]

NetFPGA
SUME

(P4→NetFPGA) [4]

Parsing Headers - - O(n2) + - O(n) - - - O(n)
Modifying Header Fields n.a. + n.a. + +
Operation Executions - - O(n) n.a. - - O(n) + n.a.
Modifying Headers n.a. + n.a. - - O(n) +
Copying Headers n.a. + n.a. - +
Removing Headers n.a. + + n.a. - - O(n) + +
Adding Headers n.a. - n.a. - - O(n2) -
Adding Tables - - O(n2) + + - - O(n) - O(n)

TABLE 1: Latency impact of P4 constructs on P4 targets (median values). (- - significant degradation (2.5µs – >30.3µs),
- degradation (1.5µs–2.5µs), + no or a slight impact (0µs–1.5µs), ++ improvement (0.1µs–2µs), n.a. no value available)

Osiński et al. [10] show that the latency of P4rt-OVS
increases lineary for increasing number of match-action
tables and is constant for varying number of table entries.

Vörös et al. [16] demonstrate that their implementa-
tion of T4P4S has comparable latency as PISCES. How-
ever, they do not compare it to isolated P4 constructs.

On the other hand, compiler and hardware design
optimizations further decrease the overall latency. For
example, P4rt-OVS [10], PISCES [9] and P4FPGA [13]
implement post-pipeline editing, which postpones the
modification of packets to the deparser. This reduces
the performance at the deparser stage. PISCES merges
multiple match-action pipelines into one, which leads to
non-changing latency for increasing number of tables. P4-
to-VHDL [12] introduces offset width and multiplexer
optimizations. However, the authors do not provide per-
formance comparisons with other P4 targets which is why
we cannot classify its performance relative to the listed P4
targets. Zhou et al. [17] reduce the latency of Netronome
SmartNIC and bmv2, by chaining NFs, reducing redun-
dant functions, and bypassing undesired functions.

3.2. Throughput

Parallelism, like introduced by FPGAs, may signif-
icantly increase the throughput. P4FPGA outperforms
PISCES also in terms of throughput. Moreover, through-
put may depend on the complexity of the P4 program:
If the number of headers increases, the throughput of
P4FPGA (on NetFPGA SUME) and PISCES (on a CPU)
decreases. [13]

PISCES [9] (optimized) has a smaller throughput by
2% compared to OVS. If new protocols are added, the
throughput decreases, e.g., about 35% from 51.1Gbps to
33.2 Gbps if post-pipeline editing is activated.

Osiński et al. [10] show for three network functions,
that the throughput of P4rt-OVS is comparable to PISCES
and OVS for packet sizes of 128B and 256B; For 512B
the throughput is larger than for PISCES.

P4-to-VHDL [12] can parse traffic with a complex
protocol structure with 100 Gbps. The optimized Intel
Barefoot Tofino 1 [14] can achieve a bandwidth of 100
Gigabit Ethernet per port.

4. Performance Models

Evaluating each possible P4 application and combina-
tion of P4 constructs for each P4 target is neither feasible

nor desirable. A performance model should describe the
estimated performance of an arbitrary complex P4 pro-
gram for every or a specific P4 target. Next, we describe
two approaches to model estimation and discuss their
advantages and disadvantages.

4.1. Models Based on Benchmarking

This approach combines performance measurements
of isolated P4 constructs obtained through benchmarking
with the occurrences of P4 constructs obtained through
P4 program analysis. Since the benchmarks do not test
for real-world workloads but for core features of P4, they
are called synthetic benchmarks. Each feature is tested
in isolation with varying parameters, e.g., incrementally
increasing number of packet headers and fields in the
parser.

WhipperSnapper [7] was the first benchmarking suite
for the P4 language. It contains latency, throughput, and
memory usage measurements against five features: Pars-
ing, processing, state accesses, packet modification, and
action complexity. Additionally, WhipperSnapper includes
target-dependent benchmarks, that test specifically for the
hardware support and usage of ASICs and FPGAs as well
as the latency and throughput of CPUs and NPUs with
reduced scheduling and locking impact.

Harkous et al. [4,5] continue this idea and focus
on eight features related to parsing, processing, packet
modification, and action complexity (see P4 constructs
in Table 1). Yet, their benchmarks focus only on latency.
They explain and validate their model examplary for the
Netronome SmartNIC, NetFPGA SUME board (compiled
via P4→NetFPGA), and T4P4S switch. Each of these has
target-specific latency measurement results. The slopes of
the measurement results for each feature can be (piece-
wise) interpolated and stored in a target-profile-vector.
This vector is calculated only once for each target since it
does not change. Next, the P4 program has to be analyzed
and the occurence of P4 constructs determined. The esti-
mated average latency of a network function is then the
sum of the prior measured latencies of the (isolated) P4
constructs with respect to their amount of occurrences.

Scholz et al. [15] suggest to derive models based
on the weaknesses of a target. In the case of software
switches, the weakness is their significantly varying la-
tency due to different implementations of P4 elements
(e.g., the match types) and the underlying memory access
pattern. Whereas the resource utilization is a weakness of

Seminar IITM SS 21,
Network Architectures and Services, November 2021 27 doi: 10.2313/NET-2022-01-1_06



ASICs since their available memory limit the complexity
of P4 programs. The authors derive cost functions for
varying properties of the match-action pipeline (e.g., table
entry size and varying table key width lengths) for the
T4P4S switch and Intel Barefoot Tofino 1.

All described models require target specific informa-
tion (e.g., memory resources, software implementation)
to accurately estimate the performance. For instance, the
model of Harkous et al. [4] has an accuracy of more than
94% and is especially accurate for the NetFPGA SUME.
It is less accurate for the Netronome SmartNIC due to its
high dependency on the P4 pipeline. Moreover, latency
measurements of isolated P4 constructs are not always
additive; the measured latency of combined P4 constructs
may be smaller due to e.g., reduced memory access [5].
Therefore, summing the latency of isolated P4 constructs
may reduce the accuracy, too.

Due to the highly target-dependent nature of these
models, the performance measurements for isolated P4
constructs could be made publicly available by researches,
and hence, facilitate and accelerate performance predic-
tion. The P4 program analysis can be done by the com-
piler. [4]

4.2. Models Based on Stochastics

While the previously described approach requires
benchmarking to derive target-specific parameter values
for cost functions, this approach is based on a more
generic probabilistic model (cf. Bayesian network). The
match-action tables of a P4 program are converted into a
control flow graph (CFG). The CFG depicts all possible
execution paths of the program: a node depicts the line
number the program counter points to, while an edge
is a possible transition to the next event; each node is
associated with an execution cost. Thus, the expected ex-
ecution cost of a P4 program is the sum of the conditional
expected costs of an execution path. For instance, if a path
is not executed, it has cost of 0. [18]

The advantage of this framework is that it is generic
enough to be used for every target. To get more accurate
results, additional information about the target (e.g., hard-
ware configuration, runtime environment) can be added in
a modular way. [18]

5. Conclusion and Future Work

The P4 language allows abstraction and programma-
bility of the data plane. Due to its target-independence,
multiple targets can be programmed using the same set
of P4 constructs. However, the performance differ signif-
icantly for each target due to hardware constraints and
software implementations.

In this paper we summarized studies comparing and
analyzing the impact of different P4 constructs on the
latency, throughput, and memory usage. These bench-
marks in addition with information about the target im-
plementation and the control flow can be used to de-
rive performance models. Another approach is to use a
probabilistic model based on expected execution costs.
These performance models can estimate the performance
for arbitrary complex P4 programs, and thus, help create
predictable networks.

As future work, it would be of interest to analyze
other P4 targets (e.g., P4rt-OVS) with respect to P4
constructs and compare these results with the existing
ones. Furthermore, more exhaustive measurements could
be done to also investigate the impact of not yet included
performance aspects, such as jitter or power draw.

References

[1] IBM, “What is Software-Defined Networking (SDN)?”
https://www.ibm.com/services/network/sdn-versus-traditional-
networking, [Online; accessed 22-March-2021].

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker, “P4: Programming Protocol-Independent Packet
Processors,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 3, pp. 87–95, Jul. 2014. [Online]. Available: https:
//doi.org/10.1145/2656877.2656890

[3] Digilent, “NetFPGA-SUME Virtex-7 FPGA Development
Board,” https://store.digilentinc.com/netfpga-sume-virtex-7-fpga-
development-board/, [Online; accessed 08-May-2021].

[4] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer, “P8:
P4 with Predictable Packet Processing Performance,” IEEE Trans-
actions on Network and Service Management, pp. 1–14, 2020.

[5] H. Harkous, M. Jarschel, M. He, R. Priest, and W. Kellerer,
“Towards Understanding the Performance of P4 Programmable
Hardware,” in 2019 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), 2019, pp. 1–6.

[6] P. Li and Y. Luo, “P4GPU: Accelerate packet processing of a
P4 program with a CPU-GPU heterogeneous architecture,” in
2016 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2016, pp. 125–126.

[7] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim,
J. Rexford, R. Soulé, and H. Weatherspoon, “Whippersnapper:
A P4 Language Benchmark Suite,” in Proceedings of the
Symposium on SDN Research, ser. SOSR ’17. Association for
Computing Machinery, 2017, pp. 95–101. [Online]. Available:
https://doi.org/10.1145/3050220.3050231

[8] p4.org, “BEHAVIORAL MODEL (bmv2),” https://github.com/
p4lang/behavioral-model, [Online; accessed 22-March-2021].

[9] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster,
N. McKeown, and J. Rexford, “PISCES: A Programmable,
Protocol-Independent Software Switch,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. Association
for Computing Machinery, 2016, pp. 525–538. [Online]. Available:
https://doi.org/10.1145/2934872.2934886

[10] T. Osiński, H. Tarasiuk, P. Chaignon, and M. Kossakowski, “P4rt-
OVS: Programming Protocol-Independent, Runtime Extensions for
Open vSwitch with P4,” in 2020 IFIP Networking Conference
(Networking), 2020, pp. 413–421.

[11] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The
P4→NetFPGA Workflow for Line-Rate Packet Processing,” in
Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’19. Association
for Computing Machinery, 2019, pp. 1–9. [Online]. Available:
https://doi.org/10.1145/3289602.3293924

[12] P. Benácek, V. Pus̆, and H. Kubátová, “P4-to-VHDL: Automatic
Generation of 100 Gbps Packet Parsers,” in 2016 IEEE 24th
Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2016, pp. 148–155.

[13] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster,
and H. Weatherspoon, “P4FPGA: A Rapid Prototyping Framework
for P4,” in Proceedings of the Symposium on SDN Research, ser.
SOSR ’17. Association for Computing Machinery, 2017, pp. 122–
135. [Online]. Available: https://doi.org/10.1145/3050220.3050234

[14] “Intel® Tofino™Series,” https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-
switch.html#tofino, [Online; accessed 22-March-2021].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 28 doi: 10.2313/NET-2022-01-1_06



[15] D. Scholz, H. Stubbe, S. Gallenmüller, and G. Carle, “Key Proper-
ties of Programmable Data Plane Targets,” in Teletraffic Congress
(ITC32), 32nd International, 2020, pp. 1–9.

[16] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel, and S. Laki,
“T4P4S: A Target-independent Compiler for Protocol-independent
Packet Processors,” in 2018 IEEE 19th International Conference
on High Performance Switching and Routing (HPSR), 2018, pp.
1–8.

[17] Y. Zhou, J. Bi, C. Zhang, M. Xu, and J. Wu, “FlexMesh: Flexibly
Chaining Network Functions on Programmable Data Planes at
Runtime,” in 2020 IFIP Networking Conference (Networking),
2020, pp. 73–81.

[18] D. Lukács, G. Pongrácz, and M. Tejfel, “Performance guarantees
for P4 through cost analysis,” in 2019 IEEE 15th International
Scientific Conference on Informatics, 2019, pp. 305–310.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 29 doi: 10.2313/NET-2022-01-1_06


