
Optimizations for Secure Multiparty Computation Protocols

Leilani Tam von Burg, Christopher Harth-Kitzerow∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: leilani.tam-von-burg@tum.de, christopher.harth-kitzerow@outlook.de

Abstract—The BGW protocol is a protocol for secure multi-
party computation based on Shamir’s secret sharing scheme.
It allows the computation of functions by representing them
as arithmetic circuits composed of addition and multiplica-
tion gates. Many steps of the protocol are quite efficient as
they do not require encryption or communication. However,
multiplication gates require communication and impact the
efficiency of the protocol negatively. Therefore, optimization
techniques improving the multiplication operation have been
developed. In this paper, we focus on the optimization
technique of Beaver triples.

Index Terms—BGW Protocol, Shamir’s secret sharing,
Beaver Triples

1. Introduction

There exist many applications where there is a need
for computations that keep the inputs secret. Examples
of this are secure auctions, voting, secure machine
learning or computations on databases that hold private
information. Secure Multiparty Computation Protocols
do exactly this. They enable a joint computation on a
group of parties without disclosing the private inputs of
the participants [1].

The idea of Secure Multiparty Computation Protocols
was first introduced by Yao in the 1980s [1], [2]. He
illustrated the necessity for this type of computation with
the two millionaires problem. Here, two millionaires
want to determine who is richer without disclosing their
individual wealth. Yao’s protocol is based mainly on
garbled circuits [2].

Later, different protocols were developed to expand
from two party to multiparty computation and improve
on efficiency. The implementation of Fairplay in 2004
is considered the first proper implementation of such a
protocol [3]. Admittedly, its scalability and performance
was very limited. Today, more efficient implementations
exist and practical uses are becoming more and more
common. This paper introduces the BGW protocol and
one possible optimization technique often implemented in
combination.

2. BGW Protocol for Secure Multiparty
Computation

The BGW protocol was introduced by Ben-Or,
Goldwasser and Wigderson [4]. It differs from other

well known protocols in that it is not based on garbled
circuits. Instead, it is based on Shamir secret sharing [5].
The protocol can compute any function f over a field
F by representing the function as an arithmetic circuit
composed of addition, multiplication and multiplication-
by-constant gates. Multiplication by a constant can be
represented by an addition and will therefore be omitted
in the further discussion. The evaluation of the circuit is
done gate-by-gate.

Since we require the computation to be secure, each
input wire is only known by one party that desires to keep
it private. Additionally, no intermediate values should be
revealed during the evaluation of the circuit. In order to
achieve the desired privacy during the evaluation of the
function, the value of each wire is kept secret by hiding it
in a polynomial of degree t which is shared between the
parties.

2.1. Shamir’s Secret Sharing

Since secret sharing is a fundamental part of the
BGW protocol, it will be shortly introduced. The idea
behind secret sharing can be illustrated by the following
example. Imagine a treasure chest which requires multiple
keys to be opened. These keys are held by different
parties. Therefore, the treasure can only be accessed
when the parties come together to unlock the chest.

The protocol can be split into two phases: a sharing
phase and a reconstruction phase. During the sharing
phase, the secret s is split into shares held by the different
parties. Firstly, the secret s must be "locked in the chest".
This is done by encrypting the secret in a polynomial of
the following form.

f(x) = atx
t + ...+ a1x+ a0 (1)

where a0 = s and at, ..., a1 are random coefficients, such
that f(0) = s. Each party Pi then receives one point
(αi, [f(αi)]) on the polynomial, which we refer to as its
share. This value can be interpreted as the "key" held by
that specific party. For clarity, we will refer to shares by
using square brackets throughout the paper.

The threshold t is chosen such that it corresponds to
the assumed maximum number of faulty parties. There-
fore, t+1 points are required to reconstruct the secret by
interpolating the polynomial. Less points will not reveal
the secret. This corresponds to the reconstruction phase.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 19 doi: 10.2313/NET-2022-01-1_05



2.2. Security scenarios for the BGW protocol

When choosing a threshold value t for the BGW
protocol, we differentiate between two different types of
faulty parties.

Semi-honest security A semi-honest adversary is
considered honest-but-curious. This means it follows
the protocol honestly but it may try to learn as much
information as possible during the execution. Therefore,
we consider it a passive adversary. This includes parties
colluding and pooling their information together in order
to learn as much as possible [1].

For every n-ary function f(x1, ..., xn), there exists
a protocol for computing f with perfect security in the
presence of a semi-honest adversary controlling t < n/2
parties. This means we require an honest majority in this
case [4]. Evidently, we cannot allow any adversaries in a
two party computation. In this situation, the secret inputs
are encrypted with linear functions. Therefore, knowing
the gradient allows direct reconstruction of the secret.

Malicious security A malicious adversary is active,
which means it can take any action it desires and deviate
from the protocol. Therefore, it can provide any input it
wants as well, which can affect the honest parties inputs.
A malicious adversary can control up to t < n/3 parties
while ensuring perfect security [1].

It should be noted here, that the BGW protocol is
secure from an information-theoretic standpoint when ad-
hering to the above choices for the threshold t [4]. It
does not rely on cryptographic assumptions. This means
that the protocol is secure for adversaries with unlimited
computing power. For example, quantum computers do
not pose a threat to the security.

2.3. BGW Protocol

The BGW protocol can be subdivided into three main
phases:

1) Input sharing phase
2) Computation of the circuit gate-by-gate (addi-

tions, multiplications)
3) Output Reconstruction phase

Figure 1: Example of a function represented by an arithmetic circuit
with inputs x1, ..., xn. The input values as well as the intermediate
values are secret shared to ensure their privacy over the entirety of the
circuit.

2.3.1. Input sharing phase. The input sharing phase
of the BGW protocol follows the Shamir secret sharing
scheme. Each party Pi encrypts its input xi in a random
polynomial fi(x) of degree t, where fi(0) = xi and then
sends each party Pj a share [fi(αj)]. This way, all parties
obtain shares of the other parties inputs.

2.3.2. Computation of the circuit. At each gate, the
parties compute the shares of the output wire using the
shares of the input wires. The intermediate values stay
hidden throughout the circuit.

Addition Gates The computation of addition gates
is inexpensive since it does not require communication.
Let a and b be the input values and ga(x) and gb(x) be
the polynomials hiding the input values according to the
secret sharing scheme. ga(x) + gb(x) = ha+b(x) is the
operation at the gate and α1, ..., αn are the interpolation
points of the individual parties shares. Initially, each
party Pi holds the shares [ga(αi)] and [gb(αi)] of the
input which it can add locally. Then, each party holds
a share [ha+b(αi)] of the output ha+b(x). This share of
the output can be used directly as the input at the next
gate, since there is no need for communication during
addition operations. Computations can be done locally
on the shares throughout the circuit (as long as they are
all additions) until the final output, where the shares are
combined to recover the sum. To do so, the constant term
ha+b(0) = a + b is evaluated. The output polynomial is
still of degree t.

Figure 2: Illustration of an addition gate on the left and a multiplication
gate on the right with the secret shared wire inputs ga(x) and gb(x) of
the input values a and b.

Multiplication Gates The computation of
multiplication gates is not as straight forward. Simply
multiplying the shares locally as it is done for addition
causes two problems. Firstly, the degree becomes 2t
after a single computation. Multiple multiplication gates
cause the degree of the polynomial to become too large.
There are not enough interpolation points to recover the
result anymore. Additionally, the product of two random
polynomials is not fully random anymore. We need a
way to compute the multiplication while keeping the
polynomial at degree t and ensuring it stays random.
This is referred to as degree reduction and randomization
[4].

Degree reduction and randomization Assume input
values a and b. Degree reduction relies on following
property of polynomials:

For any polynomial h(x) with degree t < n, there exist
constants λ1, ..., λn and interpolation points α1, α2, ..., αn
such that:

h(x) = λ1[h(α1)] + ...+ λn[h(αn)]

h(0) = ab

Seminar IITM SS 21,
Network Architectures and Services, November 2021 20 doi: 10.2313/NET-2022-01-1_05



That is, we can represent the result of the multiplica-
tion by a linear combination h(x) =

∑2t
i=1 λi[h(αi)] of

the parties shares.

This can be illustrated more thoroughly by observing
the following equations. Let h(x) = h2tx

2t+...+h1x+ab
be a polynomial of degree 2t hiding the secret h(0) = ab.
In equation (2), we multiply an invertible Vandermonde
matrix with the coefficients of the polynomial. This op-
eration corresponds to the evaluations of the polynomial
h(x) on the interpolation points α1, α2, ..., αn.




1 α1 α2
1 ... α2t

1

1 α2 α2
2 ... α2t

2
...
1 αn α2

n ... α2t
n







ab
h1
...
h2t


 =




h(α1)
h(α2)

...
h(αn)


 (2)

However, since our goal is to compute our secret ab with
each parties shares [h(αi)], we must invert the matrix. A
simple way to invert the Vandermonde matrix is explained
in [6]. For example, a Vandermonde matrix

V =



1 c1 c21 c31
1 c2 c22 c32
1 c3 c23 c33
1 c4 c24 c34


 (3)

has the inverse V −1=

This shows that in our case, the entries of the inverted
matrix depend only on αi, the points where the function is
evaluated and which are public. We introduce the values
λi corresponding to each of the individual entries of the
first line of the inverted matrix.




ab
h1
...
h2t


 =



λ1 . . . λn
...
. . .







h(α1)
h(α2)

...
h(αn)


 (4)

We are only interested in the first line of (3) since
the only coefficient of interest is the secret ab. This
corresponds exactly to the linear combination introduced
earlier.

The protocol followed to compute the multiplication
is the following.

• Each party Pi computes its share

[h(αi)] := [ga(αi)][gb(αi)] (5)

locally.

• [h(αi)] is then secret shared with the other parties
using a degree t polynomial Hi(x)

• Now, each party holds a share
[H1(αi)], ..., [Hn(αi)] of each other parties
polynomial Hi(x). Each party can compute the
output

[H(αi)] = λ1[H1(αi)] + ...+ λn[Hn(αi)] (6)

locally.

• Each party Pi now holds a share [H(αi)] of
H(x) := λ1H1(x) + ...+ λnHn(x).

It is important to note that, because each
H1(x), ...,Hn(x) is of degree t, H(x) is again of
degree t. Additionally, each H1(x), ...,Hn(x) is random
since they are created by following the secret sharing
scheme where all coefficients are random. Therefore,
H(x) is also random, since the addition of random
functions is still random.

We have achieved a dimensionality reduction
and ensured the randomness of the polynomial as
desired. Unfortunately, the protocol for the computation
of multiplications requires communication. This is
inefficient. Therefore, optimization techniques such as
Beaver triples have been developed to alleviate the
communication costs. This will be further explained in
the next section.

Output Reconstruction phase The output of a mul-
tiplication can be computed by evaluating

H(0) = λ1H1(0) + ...+ λnHn(0)

= λ1[h(α1)] + ...+ λn[h(αn)]

= ab

3. Beaver Triples as Optimization Technique

The majority of the cost of the BGW protocol is
caused by the communication required for multiplication
operations. Ideally, a portion of the cost would be moved
to the pre-processing phase. Unfortunately, the operations
are dependent on the circuit inputs, which only become
available during the online phase. Beaver triples allow
for a way to move the majority of the communication to
the pre-processing phase given even these circumstances.
The basic idea is that the parties produce shared data
during the offline phase that does not require information
on the inputs [1].

A Beaver triple, also known as multiplication triple
is a triple of three secret shared values [a], [b], [c] where
a, b are uniform random values unknown to all parties
and c = ab.

3.1. Generation of the triples

There are different ways of generating the
multiplication triples. A first option is trusted party
generation. This protocol requires an honest third party
that samples the triple (a, b, c) and distributes shares to
the parties participating in the computation. The third
party does not participate in the actual computation at all
and does not have to be trusted with the actual inputs.
However, it must compute the triples correctly and refrain
from sharing their values. A second option is based on
oblivious transfer which shall be shortly introduced.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 21 doi: 10.2313/NET-2022-01-1_05



Oblivious Transfer A sender S holds two secrets
x0, x1 and a receiver R holds a choice bit b ∈ {0, 1}.
The receiver learns xb while staying oblivious to the
other secret x1−b and the sender does not learn anything
about if or what information was transferred.

In the following, an example of generating triples
based on oblivious transfer is illustrated. Say Alice
and Bob want to generate a beaver triple. Firstly, Alice
randomly samples values (xA, yA) and rA and Bob
randomly samples values (xB , yB) and rB .

Next, Alice acts as the sender in an oblivious transfer
with the input pair (rA, xA⊕rA). Bob acts as the receiver
using yB as the selection bit. If yB = 0, he learns rA,
else, he learns xA ⊕ rA. In total, he learns xAyB ⊕ rA.
The same thing is done in the other direction, so Alice
learns xByA ⊕ rB .

Now, Alice computes

zA ← rA ⊕ xAyA ⊕ xByA ⊕ rB (7)

and Bob computes

zB ← rB ⊕ xByB ⊕ xAyB ⊕ rA (8)

This results in

zA ⊕ zB = (xA ⊕ xB)(yA ⊕ yB) (9)

. Therefore, (xA, xB), (yA, yB), (zA, zB) correspond to a
Beaver triple.

Another option for the generation of the triples is
based on homomorphic encryption [7], a way of com-
puting on encrypted data without having to decrypt it.

3.2. Computing multiplications with Beaver
triples

During the online step, the beaver triples are
used during computation to diminish the necessary
communication. Assume we generated a triple (a, b, c)
using one of the generation methods. Additionally, we
have the two input values α, β that we would like to
securely multiply with each other. The parties hold secret
shares of the input values. We define these as [vα] and
[vβ ]. The computation with the beaver triples follows the
following protocol [1].

1) Each party computes [vα − a] and [vβ − a]
locally. Then, all parties publicly announce their
shares in the form d = vα − a and e = vβ − b
(the secret values vα and vβ are hidden by a and
b).

2) Following equality holds:

vαvβ =(vα − a+ a)(vβ − b+ b)

=(d+ a)(e+ b)

=de+ db+ ae+ ab

=de+ db+ ae+ c

A share of [vαvβ ] = de + d[b] + e[a] + [c] is
computed locally by each party.

Therefore, each party must only broadcast two values d
and e per multiplication. This is much more cost effec-
tive than the communication required in plain BGW to
compute multiplications.

4. Efficiency of BGW Protocol

Since, the BGW protocol uses secret sharing to hide
its inputs, it does not rely on encryption. Generally,
this is considered more efficient than a cryptographic
approach. But as we have seen, certain operations involve
complications and communication that strongly impact
the efficiency.

The BGW protocol is very efficient for arithmetic
circuits containing mostly additions [8]. Unfortunately, it
is not ideal for functions requiring many multiplications.
As a rule of thumb, we assume communication is much
more expensive than computation and decryption. This
means that tasks like matrix multiplications are difficult
to solve with the BGW protocol. This would require
many multiplication gates and a very large cost related
to communication. For example, neural networks require
extensive matrix multiplications and are not ideal for the
BGW protocol.

Additionally, certain operations are expensive to rep-
resent as arithmetic circuits. Arithmetic circuits operate
over a finite field F that must be set in advance and be
large enough to prevent overflow [9]. In order to compute
operations such as comparisons, bit-shifts and equality
tests, a bit-decomposition is required. This conversion is
expensive. Therefore, these are also operations that should
be avoided with the BGW protocol.

5. Conclusion

This paper provided insight into the functionality of
the BGW protocol for secure multiparty computation. Per-
haps the most interesting component of this protocol is the
degree reduction step, necessary to allow the computation
of multiplication gates in a secure way. Unfortunately, this
step also has significant negative impact on the efficiency
of the protocol. This is why optimization techniques have
been implemented to alleviate this impact, such as the
Beaver triples introduced in this paper. All in all, the BGW
protocol is often more efficient than protocols relying on
a cryptographic approach. This depends on the type of
function being evaluated. In general, operations based on
many multiplications might be more efficiently computed
with a different protocol.

References

[1] D. Evans, V. Kolesnikov, and M. Rosulek, A Pragmatic Introduction
to Secure Multi-Party Computation, 2018, vol. 2, no. 2-3. [Online].
Available: http://dx.doi.org/10.1561/3300000019

[2] A. C. Yao, “Protocols for secure computations,” pp. 160–164, 1982.

[3] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay — a secure
two-party computation system,” 06 2004.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 22 doi: 10.2313/NET-2022-01-1_05



[4] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness the-
orems for non-cryptographic fault-tolerant distributed computation,”
in Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, ser. STOC ’88. New York, NY, USA: Association
for Computing Machinery, 1988, p. 1–10.

[5] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
p. 612–613, Nov. 1979.

[6] E. Rawashdeh, “A simple method for finding the inverse matrix of
vandermonde matrix,” 01 2020.

[7] S. University, “Cs 355: Topics in cryptography.” [Online]. Available:
https://crypto.stanford.edu/cs355/18sp/lec7.pdf

[8] T. Rabin, “Secure multiparty computation,” 2014. [Online].
Available: https://www.youtube.com/watch?v=NOtsxHoIcWQ&t=
618s&ab_channel=Technion

[9] M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “Sok:
General purpose compilers for secure multi-party computation,” in
2019 IEEE Symposium on Security and Privacy (SP), 2019, pp.
1220–1237.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 23 doi: 10.2313/NET-2022-01-1_05


