
Certificate Revocation

Raphael Schmid, Juliane Aulbach∗, Patrick Sattler∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: raphael.schmid@tum.de aulbach@net.in.tum.de, sattler@net.in.tum.de

Abstract—
This paper explains the concept of certificate revocation

and how it is implemented and enforced in the real world.
It explains why certificate revocation is necessary and how
there is no agreed-on standard to execute it. It will introduce
the actors in certificate revocation and how they fulfill their
role in ensuring user security. Then the paper will explain
various approaches to optimize certificate revocation and
compare them to conclude which one is the most suitable
for usage.

Index Terms—certificate revocation, internet security, revo-
cation methods

1. Introduction

In the TLS protocol, having the ability to revoke
certificates when they become invalid before their validity
period ends is crucial. However, there is no agreed-upon
standard in the industry as to how to handle revocation.
It results in most browser clients not adequately checking
for revocation when connecting with a server. It can allow
attacks like "man-in-the-middle attacks". This paper intro-
duces the necessary background information to understand
certificate revocation in chapter 2. Then it explains how
certificate revocation works and its most used methods
in chapter 3. In chapter 4, the behavior of browsers is
explored and what their different shortcomings are when
it comes to certificate revocation. Then in Chapter 5,
it discusses which problems can arise from the server,
which must request a certificate revocation if a certificate
gets compromised. Chapter 6 explores which different
classifications there are for handling certificate revocation
and then introduces some of the most recent approaches,
concluding with a comparison of said approaches. Chapter
7 then evaluates the findings of the previous chapters and
Chapter 8 finishes with a conclusion of the paper.

2. Background

The secure exchange of data on the internet is a
big concern for many people nowadays. A widely used
standard to ensure this security is the TLS protocol. TLS
stands for Transport Layer Security. It utilizes a twofold
system. One part of this system is encryption to ensure
confidentiality and integrity of the data. The other part
is to verify the identity of a remote party using digital
certificates. [1], [2]
These digital certificates will be the main focus of this

paper. Here is a real-world example of how they work.
Say a client, e.g. a web browser, wants to connect to
a server. To verify its identity to the client, the server
sends a digital certificate to the client, which is specifically
issued for the domain of the server. This digital certificate
identifies the server to the client. But with just that, neither
the validity of the server nor the certificate is guaranteed.
This is attained using a so-called chain of trust. [1], [2]
The chain starts with a certificate authority (CA) which
presents a root certificate. A CA can issue a certificate
for any domain. The issued certificate gets signed by the
CA ensuring that the certificate can always be traced back
to the CA. If this certificate now can also issue and sign
certificates itself, it is called an intermediate certificate.
A certificate that is not able to sign another certificate is
called a leaf certificate. Leaf certificates are used by most
websites. Root certificates are assumed to be trusted by the
client. When a client now wants to verify a certificate it
has to follow this chain, starting with the root certificate,
traversing zero or more intermediate certificates until it
reaches the leaf certificate. The client has to verify every
signature of every certificate it traverses. [1], [2] This
mechanism is visualized in figure 1 below.

Figure 1: Chain Of Trust

3. Certificate Revocation

Certificates are not valid indefinitely. Every certificate
has a validity period [1]. But, there can be occasions where
the certificate is not valid anymore before the said validity
period is over. Examples for this could be that the private
key of a certificate became compromised, was generated
with a weak algorithm, or the erroneous issuance of a
certificate. [3] If that happens, the certificate must get
revoked, advertising to entities checking the certificate that
it is no longer valid [1]. Revoking a certificate, in this
case, is important. If a certificate got compromised but
not revoked, it could open some serious vulnerabilities.
For example, an attacker impersonating the identity of
the webserver or eavesdropping on private communica-
tion. [2]

There are three key actors in certificate revocation:

Seminar IITM SS 21,
Network Architectures and Services, November 2021 15 doi: 10.2313/NET-2022-01-1_04

• Web server / Server administrator [1], [2]
• Certificate authority (CA) [1], [2]
• Client (e.g. web browser) [1], [2]

Here is how a certificate revocation would play out
in real life: When a certificate needs to get revoked,
first, it is the responsibility of the web administrator to
send a revocation request to the CA which signed the
certificate. The CA then must sign a statement that the
certificate got revoked and is responsible for disseminating
this information on the internet. [1], [2] A client that wants
to connect to the server managed by the web administrator
then is responsible for checking the status of a certificate
used by a server to establish a secure connection. There
are two methods most often used by CAs to dissemi-
nate revocation statuses of certificates online. CRLs and
OCSP. [1]

3.1. CRL

A Certificate Revocation List (CRL) is a file that
contains a list of all revoked certificates of a CA. Every
CRL has an expiration date and must get updated and
published periodically by the CA. To check if a certificate
got revoked, the client must download the CRL from
the CA and then check for the certificate inside the
downloaded CRL. The client can cache the CRL until its
validity expires. But still, making the client download a
whole list of revoked certificates imposes a burden on the
client and can add to latency when loading a web page.
It is especially true for bigger CRLs. Apple, for example,
had a CRL with 2.6 million revoked certificates which had
76 MB in size. [1]

3.2. OCSP

OCSP, Online Certificate Status Protocol, aims to
address this problem of high overhead. It reduces the
overhead compared to the CRLs by making the client
query for the revocation status of just a single certificate.
Using OCSP, the client generates an HTTP request to
check the serial number of a certificate. The CA then
sends the information to the client with a signed response.
But this approach introduces a new problem. It contains a
privacy issue, exposing the client’s browsing behavior to
the CA. Also, it still puts some burden on the client and
adds to latency. [1]

4. Browsers

In a real-world scenario, the client connecting to a
server is typically a browser. This section will explain
the behavior and shortcomings of browsers in certificate
revocation.
Browsers behave differently on varying devices. There is
no mobile browser that checks for certificate revocation.
The reason for this lack of security is to decrease the cost,
regarding latency and power, for the mobile devices. [1]
But, like already discussed, not checking for the revoca-
tion status of certificates opens up some serious security
vulnerabilities, which is alarming considering that 55.56%
of web traffic is generated by mobile phones [4].
When observing the behavior of desktop browsers, there

is no common behavior as to how to handle certificate re-
vocation. No browser acts the same. It is also worth noting
that even for the same browser, the behavior can change
depending on the platform and the type of certificate.
Since it is exceeding the scope of this paper to consider all
these different factors, this paper will only look at Google
Chrome and Mozilla Firefox as examples of shortcomings
of browsers handling certificate revocation. Also, only the
behavior on Microsoft Windows will be covered, since it
is the most used operating system. [5] ([1] takes an in-
depth analysis on this matter.)
Google Chrome does not check CRLs for certificate
information. Chrome uses a customized CRL to look up
revocations called the CRLSet. The CRLSet is a 250 kB
big, pre-populated list of certificates that get put together
by Google by crawling a pre-set list of CRLs. It is not
clear what Google’s criteria are for these CRLs. This list
of CRLs is already just a small subset of the CRLs existing
on the internet but Google then also applies a list of rules
to drop more revocation data. Which results in Google
covering only 75.6% of the revoked certificates that they
consider. All of this leads to Google covering only 0.35%
of all revoked certificates online in their CRLSet. [1] [2]
Mozilla Firefox uses NSS for certificate verification.
"Network Security Services (NSS) is a set of libraries de-
signed to support cross-platform development of security-
enabled client and server applications." [6] Firefox dis-
abled CRL checking and only uses OCSP requests. Ex-
tended Validation (EV) certificates are special certificates
containing additional information offering a more care-
ful verification. Firefox differentiates between EV and
non-EV certificates, checking only the leaf-certificates
for non-EV certificates. This is a behavior displayed by
many browsers. [1] Like Googles’ CRLSet, Firefox uses
OneCRL, a list of pre-stored certificates [7], [8].

5. Servers

Server administrators are responsible for issuing revo-
cation requests to their respective CA. A human compo-
nent in the process of certificate revocation opens some se-
curity vulnerabilities. This showed in the aftermath of the
Heartbleed event in 2014, a "vulnerability in OpenSSL’s
implementation of the Heartbeat Extension" which caused
a mass revocation of digital certificates. [9] It exposed that
even after 3 weeks 10% of vulnerable websites still had
not addressed the issue. And also showed the number of
revocations went down on the weekend, probably because
there was no server administrator monitoring the security
of the server during that time. And finally, of the certifi-
cates that were reissued because of Heartbleed 4.1% of
certificates were reissued with the same private key. [9]
This raises the question of whether an important task like
revoking certificates, should be done manually and be
prone to human error.

6. Methods of revocation validation

There are three different types of approaches to revo-
cation validation.
When utilizing a pull-based approach, the client requests
the revocation status of a certificate when needed [10].

Seminar IITM SS 21,
Network Architectures and Services, November 2021 16 doi: 10.2313/NET-2022-01-1_04

CRLs and OCSP classify as pull-based approaches.
Second is the push-based approach, where the client peri-
odically downloads revocation information. This approach
does not reveal the client’s traffic patterns, while most of
the pull-based approaches do. [8]
Last is the network-assisted approach. The idea is to
change the ecosystem of TLS in a way that makes it
unnecessary for the client to request the revocation status
of a certificate. [1], [8], [10]

6.1. CRLite

CRLite is a push-based approach. The idea is to
push all certificate revocations to the browser periodically
utilizing a two-part system. [11] The first part happens
on a server, where all known TLS certificates are getting
crawled on the web. All of the revoked certificates get
hashed into a bit-vector. If the bit assigned to a certificate
is 1, the certificate got revoked. To avoid the risk of
false positives, confusing a non-revoked certificate with
a revoked one, this mechanism gets repeated with a set
of all revoked certificates and all non-revoked certificates
until no false positives are left. The filter used is called
a bloom filter and this technique of cascading down
many filters to eliminate false positives is a bloom filter
cascade. Avoiding false positives is crucial to allow the
client to hard-fail. [11] The second part is on the client-
side, downloading the filters and using them to check
for the revocation of observed certificates. [11] CRLite
aims to maximize the efficiency of checking for revoked
certificates. Only 10 MB are needed for roughly 30 million
certificates. Once downloaded they can be updated on a
daily basis averaging about 580 kB. CRLite can be de-
ployed by simply installing a plug-in on the browser. [11]
However, when CRLite was proposed the bloom filter
cascade was only 10 MB. But already a year after the
proposal the filter used up 18.1 MB of space [10]. This
is because between January 2017 and January 2020 the
number of live certificates went up from 30 million to
over 434 million. This is because of services like Let’s
Encrypt which enables automatic issuing for certificates,
as well as efforts to normalize using only encrypted web
traffic. [8]

6.2. Let’s Revoke

Let’s Revoke is an approach based on CRLite. But
compared to CRLite, Let’s Revoke needs 28% of network
bandwidth. It utilizes a push-based model with a focus on
minimizing network bandwidth consumption while main-
taining a global revocation coverage. [8] To achieve this
Let’s Revoke invented a method using so-called Certificate
Revocation Vectors (CRV), Revocation Numbers (RN),
and Revocation IDs (RID). CRVs are dynamically-sized
bit vectors. Each bit in the vector represents the revocation
status of one specific certificate. The bits in the vector are
mapped to their respective certificates with the RN. To
limit the size of the vectors and ease the use, they are
separated by date of expiration. RIDs are then used to
identify which CRV a certificate belongs to. To deploy
Let’s Revoke, it is necessary to make adjustments on the
client as well as on the CA side. Incremental deployment
is also possible. [8]

6.3. CRT

A certificate revocation table (CRT) is a pull-based
revocation approach. To make it work, a server maintain-
ing a certificate working set is needed. The working set
gets updated periodically by querying OCSP responders
or CRL endpoints. The certificate information can be
accessed by the clients by either downloading a file or an
on-demand API. [10] CRT maintains a cache containing
the revocation status of certificates with a high probability
of usage. This is expected to make it more difficult for
attackers to perform an attack and allows the client to
hard-fail. CRTs can contain revoked and non-revoked
certificates. When only used for revoked certificates it
does not use a lot of bandwidth. The required bandwidth
for a CRT is easily scalable, also over the next years, since
it is only directly influenced by the number of certificates
used by the client. Even during a mass revocation event, it
would remain steady since the revocation status of every
certificate is already in the working set of the CRT no
matter if it is revoked or not. CRT allows being updated
according to the needs of the consumer. It allows for the
privacy of the client. A CRT would need to be deployed
on the server by an administrator. CRT is still new and
there are plans for improvements, which can be read about
in [10].

6.4. OCSP Must-Staple

OCSP imposes a burden on the client and exposes
the browsing behavior of the client to the CA responsible
for issuing the certificate to the server. To combat these
problems, OCSP Stapling got introduced. Using OCSP
Stapling a server must periodically query an OCSP request
to the CA and cache this signed response, proving the
validity of the certificate. When a client then wants to
establish a connection to the server, the server must send
the signed response stapled with the certificate to the client
during the TLS handshake. [3]
OCSP Stapling solves the initial problems of OCSP. How-
ever, the clients can still choose to continue connecting to
the server if the OCSP response is not provided. Connect-
ing without a signed response is called soft-failing. OCSP
Must-Staple was invented to address this problem. To
use OCSP Must-Staple certificates must include an OCSP
Must-Staple extension. Available OCSP responders, cer-
tificates that support OCSP Must-Staple, and browsers
that enforce the OCSP Must-Staple extension are required
to implement OCSP Must-Staple. Thus, a change for
every player involved in certificate revocation is necessary.
However, in an experiment conducted 36.8% of OCSP
Responders had at least one outage that lasted for hours,
only 0.02% of certificates support OCSP Must-Staple and
the only browser to implement OCSP Must-Staple so far
is Firefox. [3] Additionally, an attacker could perform
a DoS attack targeted at the OCSP responders, making
the website inaccessible during this period to clients.
Furthermore, OCSP Must-Staple had problems with CA
inconsistencies and bugs in server implementation. [10]

6.5. Comparison

To evaluate and compare the different approaches the
following section takes a look at them through six cate-

Seminar IITM SS 21,
Network Architectures and Services, November 2021 17 doi: 10.2313/NET-2022-01-1_04

CRLite Let’s Revoke CRT OCSP Must-Staple
Efficiency 18 MB & 580 kB/day 2 MB & 114 kB/day 6.71 MB & 205 kB/day 1.3 kB/TLS handshake

Privacy yes yes yes yes
Auditability yes yes yes yes
Timeliness 1-2 days 1-2 days 1-2 days 4 days

Deployability High Medium Medium High
Failure Model Hard-Fail Hard-Fail Hard-Fail Soft-Fail

TABLE 1: Comparison Of The Different Methods [8], [10]

gories of measurement [8], [10]:
Efficiency is defined by bandwidth consumption for the
client.
Timeliness Measures in which intervals the methods get
updated.
Failure Model Evaluates how the client behaves when
unable to get the revocation status of a certificate.
Privacy Does the approach ensure the privacy of the
client?
Deployability How high are the deployment require-
ments?
Auditability Is the client able to audit the result for the
revocation check?
The comparison of the different methods is in table 1.

7. Evaluation

In table 1 you can see the values for the different
methods. When looking at efficiency, the first value is the
initial download and the second value is the daily update
to maintain the set. OCSP Must-Staple is the only method
not having an initial download, but it needs 1.3 kB for
every TLS handshake performed. This would impose a
bandwidth burden on the client. Let’s Revoke seems to
be the best when it comes to efficiency, but CRT also has
the option of using only revoked certificates which would
be considerably lower with 1.92 kB & 0.21 kB/day. None
of the methods exposes the privacy of the client, and all
of them are auditable. There is also no difference in the
timeliness of the methods with OCSP Must-Staple as the
exception, which gets updated only every four days. When
it comes to deployability, both CRLite and OCSP Must-
Staple demand more change and effort being integrated
into the existing infrastructure. Let’s Revoke, and CTR
does not demand much change and can be deployed with
only demanding change from two actors in certificate
revocation less. All of the methods hard-fail. OCSP Must-
Staple also should hard-fail in theory, but that did not hold
true when it was tested in real life. Having the categories
of measurement in mind one might consider that Let’s
Revoke is the best choice. This is because of the size
of the downloadable files and the deployability. However,
when it comes to scalability and the ability to deal with
mass revocation CTR is the more sensible choice.

8. Conclusion

This paper introduced certificate revocation and an
overview of today’s status quo for revocation validation
and potential methods to improve the said standard. First,
it was assessed how well the three different actors involved
handle certificate revocation. The conclusion was that
there is no established standard and revoked certificates

get completely ignored by mobile browsers and there
is no certainty for desktop browsers. Mozilla Firefox
and Google Chrome both abandoned CRL and started
deploying their CRLs: OneCRL and CRLSet. However,
these only cover a tiny fraction of the present revoked
certificates. Server administrators must manually revoke
certificates which is not a fail-proof system and opens
up time-frames of vulnerabilities. In the last years, ap-
proaches and methods of handling this problem were pro-
posed. We looked at a few of them and assessed which one
is best for real-life deployment. There are three different
types of approaches: Pull-based, push-based, and network-
assisted. The methods introduced were: CRLite (push-
based), CRT (pull-based), Let’s Revoke (push-based) and
OCSP Must-Staple (network-assisted). Comparing these
approaches led us to the conclusion that Let’s Revoke is
the most suitable method for real-life deployment at the
moment. However, CRT is still in active development and
might be more suitable in the future

References

[1] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs,
A. Mislove, A. Schulman, G. Wilson, Christo Eason, B. Noble,
and I. N. Sneddon, “An End-to-End Measurement of Certificate
Revocation in the Web’s PKI,” IMC ’15: Proceedings of the 2015
Internet Measurement Conference, pp. 183–196, 2015.

[2] K. Kiyawat, “Do Web Browsers Obey Best Practices When Vali-
dating Digital Certificates?” 2014.

[3] T. Chung, J. Lok, B. Chandrasekaran, D. Choffnes, D. Levin, B. M.
Maggs, A. Mislove, J. Rula, N. Sullivan, and C. Wilson, “Is the
web ready for ocsp must-staple?” IMC ’18: Proceedings of the
Internet Measurement Conference 2018, pp. 105–118, 2018.

[4] “What percentage of internet traffic is mobile?” https://www.
oberlo.com/statistics/mobile-internet-traffic, accessed: 2021-03-22.

[5] “Usage share of operating systems,” https://en.wikipedia.org/wiki/
Usage_share_of_operating_systems, accessed: 2021-03-22.

[6] “Network security services,” https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/NSS, accessed: 2021-03-22.

[7] “Ca:revocationplan,” https://wiki.allizom.org/CA:RevocationPlan,
accessed: 2021-03-22.

[8] T. Smith, L. Dickinson, and K. Seamons, “Let’s Revoke: Scalable
Global Certificate Revocation,” Xu, Sadeghi (Hg.) 2020 – Proceed-
ings 2020 Network and Distributed, 2020.

[9] L. Zhang, D. Choffnes, D. Levin, T. Dumitras, A. Mislove,
A. Schulman, and C. Wilson, “Analysis of SSL certificate reissues
and revocations in the wake of heartbleed,” IMC ’14: Proceedings
of the 2014 Conference on Internet Measurement Conference, pp.
489–502, 2014.

[10] L. Dickinson, T. Smith, and K. Seamons, “Leveraging locality of
reference for certificate revocation,” ACSAC ’19: Proceedings of
the 35th Annual Computer Security Applications Conference, pp.
514–528, 2019.

[11] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove,
and C. Wilson, “CRLite: A Scalable System for Pushing All TLS
Revocations to All Browsers,” 2017 IEEE Symposium on Security
52017, pp. 539–5556, 2017.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 18 doi: 10.2313/NET-2022-01-1_04

