
IEEE 802.1Qcr Asynchronous Traffic Shaping with Linux Traffic Control

Christopher Pfefferle, Florian Wiedner∗, Christoph Schwarzenberg∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ga38pav@mytum.de, wiedner@net.in.tum.de, schwarzenberg@net.in.tum.de

Abstract—The widespread TSN standards, as introduced
by the IEEE 802.1 working group, provide low latency
scheduling and shaping with guaranteed packet transfers.
Until recently, they depend on a synchronized clock between
all network nodes. The newly introduced ATS standard
however revokes this dependency for software with real-time
requirements and can introduce TSN to a wider community.
This paper describes the requirements to implement the ATS
standard using the Linux TC tool for traffic shaping and
scheduling. While it is currently impossible to implement
LRQ queues or the Paternoster scheduler with TC com-
mands, a model of the UBS algorithm with TBE queues will
be presented.

Index Terms—asynchronous traffic shaping, time sensitive
network, traffic control, traffic scheduling

1. Introduction

Network standards take ever-growing steps to revo-
lutionize our daily lives. Presentations are held online
with participants scattered all around the globe and even
presentation systems in offices send slides from the pre-
senter over the local area network to the monitor. In those
scenarios a slight delay will not irritate the speaker, but
when dealing with precision machinery a delay of only
milliseconds can break fragile components. For these use
cases the IEEE 802.1 working group creates standards
for Time-Sensitive Networking (TSN) to provide commu-
nication protocols and features that can deliver precise
communication.

A major contribution was the introduction of syn-
chronization between participating devices in a network,
introduced by the IEEE 802.1BA Audio Video Bridg-
ing (AVB) standard, allowing precise traffic scheduling
and guaranteed packet deliveries [1]. However, the time
synchronization mechanism adds high complexity to net-
work setup and maintenance. The IEEE 802.1Qcr Asyn-
chronous Traffic Shaping (ATS) standard intends to bypass
the complexity of synchronization by revoking it and
allowing every network node to send traffic on its own
timing [2]. Nevertheless, it still aims to achieve determin-
istic and low transmission delays.

In order to shape and schedule traffic on Linux ma-
chines a program is required to intervene in the path of
packets from creation to the network interface. One such
tool is traffic control (TC), it comes pre-installed on Linux
distributions and provides powerful possibilities to control
the network traffic of a computer [3]. With ATS relaxing
the requirements for TSN and TC moreover providing the

necessary tools, daily used software is able to establish
real-time requirements and further facilitate in the ever-
growing impact of the internet.

This paper gives an overview over ATS and Linux
TC, presents a possible model to implement a part of
the standard with the tool and points out its current
limitations. It is structured as follows: Section 2 will give
a short history of related work while Section 3 describes
implementation details of ATS and a selective overview
over the possibilities of TC. In Section 4 the details of
how TC can be utilized to implement the requirements of
ATS will be shown, and Section 5 will conclude this work
and suggest next steps.

2. Related work

The first part of this Section will provide a brief
overview over the development of TSN and the back-
ground of the ATS standard and its latest developments.
The second part will introduce the Linux TC command
and its contributions in networking on Linux machines,
as well as its relevance.

2.1. Asynchronous Traffic Shaping

Asynchrony in network traffic has been established as
the standard in shared networks for a long time and is the
backbone of the Internet connecting millions of nodes.
Rigolio et al. proposed shaping on the Asynchronous
Transfer Mode (ATM) as early as 1991, offering control
over the bandwidth and flow exiting a given system [4].

In 2011 the IEEE 802.1BA standard for AVB was
approved, proposing the features for TSN that are still
relevant today [1]. It introduced time synchronization
between network devices and traffic shaping, to minimize
delay and jitter for distributed systems with real-time
constraints.

Ahead of the introduction as an IEEE standard, in
2016 Specht and Samii introduced the Urgency-Based
Scheduler (UBS) in [5] with two proposed algorithms:
Length-Rate Quotient (LRQ) and Token Bucket Emulation
(TBE). They are both based on Rate-Controlled Service
Disciplines (RCSDs) and therefore can provide guaran-
tees on both deterministic and statistical performance by
separating the scheduling and shaping components [6].

One year later UBS and the then newly introduced
Paternoster scheduler, which is based on Cyclic Queuing
and Forwarding (CQF) [7], were approved as an official
standard by the IEEE TSN working group within the

Seminar IITM SS 21,
Network Architectures and Services, November 2021 11 doi: 10.2313/NET-2022-01-1_03

IEEE P802.1Qcr ATS amendment. Zhou et al. have com-
piled a detailed insight into ATS together with a perfor-
mance evaluation in various simulated environments [8].

Because of its recent publication there are not many
works incorporating it yet; performance evaluations are
given by Specht and Samii in [9] and by Zhou et al.
in [10], and Mohammadpour et al. provides computed
worst-case bounds for latency and backlog in [11]. Le
Boudec analyzes a more generalized approach of UBS
in [12] and Grigorjew et al. propose an addition to increase
jitter control in [13]. Also new introduced standards take
ATS into account, the IEEE P802.1Qdd Resource Alloca-
tion Protocol standard incorporates support for ATS [14].

The most recent performance assessment of ATS was
released by Fang et al. in November 2020, taking various
released standards of the TSN working group into account,
revealing performance advantages of ATS especially in
heavy-load cases [15].

2.2. Linux traffic control

The Linux TC tool was introduced in 2001 with the
Linux kernel version 2.2, within the iproute2 package. An
influential work is done by Hubert, combining definitions
and application examples in a well-arranged document
and continuing updated support on his online HOWTO
document [16].

TC is a powerful tool for distributing and shaping
network traffic, allowing the user to define detailed rules.
It is used to rule over multiple services communicating
through a network with restricted capabilities, examples
like the work done by Vila-Carbo et al. in [17] show
that its qualities are capable to define rules for real-time
transmissions.

The introduction of an implementation of the Credit-
Based Shaper (CBS) for TC [18], as defined by the
IEEE 802.1Q-2014 standard, further shows the potential
of TC for TSN applications and is used to implement
synchronous traffic shaping on computers using Linux-
based operating systems.

3. Architecture Details

Here, a short selective overview over the architecture
of the ATS standard and Linux TC will be given. Particu-
larly the later is a powerful tool to work with and has an
accordingly large documentation. The focus will therefore
lay on a subset of the traffic shaping capabilities needed
to compare the possibilities of TC with the requirements
of ATS in Section 4.

3.1. ATS algorithms

This Section is mainly based on [8]. The idea behind
ATS is the independent clock of every connected device
in a network, discarding the problems that arise when
distributed devices have to agree on a synchronized timer.
Its main requirement are queues that support asynchrony.
A shaper is bond to each which assigns eligibility times
to the frames in the queue, and on this information a
transmission selection algorithm decides when frames are
transmitted. This algorithm can be described as a simple

gate control, taking the eligibility times into consideration.
These initial shaped queues are simple FIFO queues and
they ensure the processing of high-priority flows is not
affected by malicious or other interfering flows.

The shaped queues need to follow the queue allocation
rules, direct quoted from [8]:

QAR1:
frames from different transmitters are not al-
lowed to be stored in the same shaped queue.

QAR2:
frames from the same transmitter but not be-
long to the same priority in the transmitter are
not allowed to be stored in the same shaped
queue.

QAR3:
frames from the same transmitter with the
same priority in the transmitter, but not be-
long to the same priority in the receiver are
not allowed to be stored in the same shaped
queue.

After shaping the eligible frames, they are sent from
the shaped queues and stored in shared queues. These are
managed by one of the shapers described below which se-
lects and forwards them to the network interface releasing
them into the network.

The ATS standard proposes two scheduling algo-
rithms which can be used to realize asynchronous shaping
queues, the foremost introduced UBS algorithm and the
Paternoster algorithm.

The UBS scheme allows two types of shaped queues to
be used: LRQ and TBE, respectively based on the frame-
by-frame leaky bucket algorithm and token-based leaky
bucket algorithm [6].

LRQ disregards the incoming flow pattern and shapes
with a stabilized transmitting/leaking rate, by calculating
the eligibility time of a packet as "the quotient between the
size of the previously transmitted frame and the reserved
link rate of the particular class" [8].

TBE allows some level of bursty traffic transmitting
while maintaining an average rate, it uses the accumu-
lation time of "tokens" in a "bucket" to calculate the
eligibility time of a packet. In comparison to LRQ, it
provides a better utilization of the given bandwidth on
a lighter load.

The scheduling is achieved using the ATS algorithm
based on a Leaky Bucket approach. Frames are processed
with respect to their eligibility times, their arrival time, the
size of the last frame, and the current system clock allow-
ing to drop overdue frames. Therefore, the ATS scheduler
acts as the final shaper for the available bandwidths.

The Paternoster queuing and scheduling algorithm is
a cyclic approach. It utilizes four queues, which in every
epoch pass through one of the four states prior, current,
next and last as depicted in Table 1. In each epoch, frames
are enqueued into the current queue, if it is full they are
passed through to the next or last queue or get dropped,
and are only dequeued from the current queue. The epoch
length will influence the delay and has to stay consistent
within the network. [8]

Seminar IITM SS 21,
Network Architectures and Services, November 2021 12 doi: 10.2313/NET-2022-01-1_03

TABLE 1: Queuing in Paternoster, adapted from [8]

Queue Queue0 Queue1 Queue2 Queue3
Epoch
Epoch 0 prior current next last
Epoch 1 last prior current next
Epoch 2 next last prior current
Epoch 3 current next last prior
. . .

3.2. TC for traffic shaping

This Section is largely based on the information com-
piled by [16]. Every network packet, which can either be
produced by a local program or is being forwarded, has
to pass through the TC architecture.

The main components are Queuing Disciplines
(qdiscs), i.e., specified queuing algorithms. They can be
either classless or classful, the later supporting an inter-
nal division into classes that again contain configurable
qdiscs. Hence, they are arranged in a tree structure, with
the Linux kernel interacting (enqueuing and dequeuing
of network packets) with the root node only. A qdisc
can perform three actions on packets queued into it:
(1) scheduling, i.e., prioritization of packets over others,
(2) shaping, i.e., delaying or even dropping packets to
satisfy maximum traffic rate requirements, and (3) polic-
ing (if used on incoming traffic), i.e., dropping packets to
satisfy internal requirements on incoming traffic.

If a qdisc may delay packets for the purpose of main-
taining a constant transmission rate it is considered to
be non-work-conserving. If it, on the other hand, sends
out packets as soon as they are available, it is considered
work-conserving.

Finally, a filter can be assigned to each class, it holds
conditions with which packets can be classified. If a filter
matches a packet, it will be forwarded to the qdisc of the
respective class. In the following the qdiscs addressed in
this paper are explained:

pfifo_fast
The default qdisc, a classless shaper with
three FIFO queues, one for each priority level
as defined by the Type of Service (TOS)
flag of network packets. Packets are dequeued
starting from the highest priority queue.

Token Bucket Filter (TBF)
A classless shaper that supports a set maxi-
mum rate with short bursts.

Stochastic Fairness Queuing (SFQ)
A classless scheduler that dequeues packets
in a round-robin fashion through flows, which
mostly correspond to a TCP/IP connection.

PRIO
A classful scheduler similar to pfifo_fast, but
it supports enqueuing with filters and sub-
classes other than simple FIFO queues. De-
queuing is done the same way, starting at the
defined first qdisc.

Hierarchical Token Bucket (HTB)
A classful shaper that allows to precisely limit
the bandwidth of its child qdiscs with a pos-
sibility to borrow unused resources.

Clark-Shenker-Zhang algorithm (CSZ)
A complicated classful scheduler proposed
by the three eponymous researchers in [19],
providing guaranteed service for real-time ap-
plications along with best-effort queues, re-
ducing delay and jitter by deliberately not
shaping.

Credit-Based Shaper (CBS)
A classless shaper that implements the CBS
algorithm as introduced in the IEEE 802.1Qav
standard, relying on set bandwidths.

Earliest TxTime First (ETF)
A classless shaper that is constructed to sup-
port shaping in TSN, dequeuing packages on
a configurable timer.

4. Implementation of ATS with TC

With the requirements and available tools introduced,
a possible implementation of the ATS standard with the
UBS scheme and TBE queues is presented. Section 4.2
will then explain the problems encountered when trying
to implement LRQ queues or the Paternoster scheme.
Both Subsections refer to details of the ATS algorithm
as requirements and the functionalities of TC as capabil-
ities to implement the former. For detailed descriptions
and definitions refer to Section 3 and the corresponding
Subsections.

4.1. A TC model of UBS/TBE

The root qdisc of the TC scheme does not necessarily
need any shaping capabilities, shaping will be achieved
by further qdiscs. But to contain further classes it needs
to be classful. Its purpose is the separation of packets
into queues with regards to their priorities, so packets
with the same priority are handled by the same queue.
This enforces the separation of the different priorities as
required by QAR2. As the distribution of packets into
classes can be controlled by filters, the focus lies on the
correct dequeue strategy. The root qdisc must abide to the
ATS scheduling algorithm. Potential candidates as root
nodes include a PRIO qdisc that achieves a strict prioriti-
zation, the CSZ algorithm that provides guaranteed service
for high-prioritization packets while possibly neglecting
lower-prioritization ones, and HTB which is a generally
good competitor that provides no strict prioritization and
acts as a shaper, which may introduce delay and jitter.
The ATS algorithm on one hand performs shaping, which
would render the HTB as the best option, but on the other
hand it also performs strict prioritization which would
require a PRIO qdisc. As a solution, both will be used
to account for the requirements of the ATS algorithm.

Each class assigned to a priority level has to imple-
ment the requirements of the TBE queue. A viable option
is the TBF shaper applying nearly the same token/bucket
technique, but as it is a classless qdisc its application at
this point would violate QAR1.

The only qdisc realizing both QAR1 and QAR3 is
the classless SFQ scheduler which permits to split the
packages by conversations. As it does not support shaping,
a separate shaper is needed.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 13 doi: 10.2313/NET-2022-01-1_03

+----------------+
| root qdisc HTB |
+----------------+

|
+---------+
| class 1 |
+---------+

|
+------------+
| qdisc PRIO |
+------------+

/ | \
+-------------+ +-------------+ +-------------+
| class prio1 | | class prio2 | | class prio3 |
+-------------+ +-------------+ +-------------+

| | |
+-----------+ +-----------+ +-----------+
| qdisc SFQ | | qdisc SFQ | | qdisc SFQ |
+-----------+ +-----------+ +-----------+

Figure 1: Proposed TC scheme for ATS

The solution that is presented in this paper is the usage
of a HTB root node with only one subclass, a PRIO qdisc.
With this setup, as shown by Figure 1, a SFQ qdisc can
be inserted per priority level to ensure all three queue
allocation rules are met.

4.2. Limitations

LRQ queues cannot be realized with the qdiscs pro-
vided by TC, because it heavily relies on the calculation of
eligibility times and their propagation through the scheme.
ETF is currently the only qdisc to allow the calculation
of eligibility times. Because it is classless, it lacks the
requirements to be used as a root node by itself, and as
the calculated times cannot be used in further schedulers a
new qdisc would be required to account for the scheduling
done by the ATS algorithm considering the timer of ETF.

Similarly, Paternoster is not realizable with the avail-
able tools. It requires en- and dequeuing into and from
different queues depending on the current epoch, which
can neither be accomplished with the current qdiscs nor
with filters.

5. Conclusion and future work

The IEEE 802.1Qcr ATS standard was introduced to
increase the real time capabilities of networks that have
no synchronized timer available for every node, reducing
the requirements while still providing guarantees for time
sensitive applications. Using the TC tool this paper shows
a possible model to realize this standard, in particular the
UBS scheme with TBE queues, on Linux machines. Using
only the HTB, PRIO, and SFQ qdiscs it is possible to
comply to the conditions of ATS.

It further highlights the problems that arise when
working on the other possible schemes of the standard,
namely UBS with LRQ queues and the Paternoster queu-
ing/scheduling algorithm. With most of the requirements
met, TC currently lacks key features like the usage of
eligibility times or dynamically changing the roles of
queues. However, it seems possible to add these features
in future updates.

The next step would be an implementation of the
proposed scheme to analyze its practicability and perfor-
mance. Even though TSN standards are only applied in a
specialized field, if this approach turns out feasible it may
allow more general applications in Smart Homes or the
Internet of Things.

References

[1] “IEEE 802.1BA-2011 - IEEE Standard for Local and Metropolitan
Area Networks--Audio Video Bridging (AVB) Systems,” https:
//standards.ieee.org/standard/802_1BA-2011.html, 2011, [Online;
accessed 25-March-2021].

[2] “P802.1Qcr – Bridges and Bridged Networks Amendment: Asyn-
chronous Traffic Shaping,” https://1.ieee802.org/tsn/802-1qcr/,
2018, [Online; accessed 20-March-2021].

[3] B. Hubert, “iproute2 - TC (8),” Linux man page (8), 2001.

[4] G. Rigolio, L. Verri, and L. Fratta, “Source Control and Shaping in
ATM Networks,” in IEEE Global Telecommunications Conference
GLOBECOM ’91: Countdown to the New Millennium. Conference
Record, vol. 1, 1991, pp. 276–280.

[5] J. Specht and S. Samii, “Urgency-Based Scheduler for Time-
Sensitive Switched Ethernet Networks,” in 2016 28th Euromicro
Conference on Real-Time Systems (ECRTS), 2016, pp. 75–85.

[6] H. Zhang and D. Ferrari, “Rate-Controlled Service Disciplines,”
Journal of High Speed Networks, vol. 3, no. 4, pp. 389–412, 1994.

[7] “P802.1Qch – Cyclic Queuing and Forwarding,” https://1.ieee802.
org/tsn/802-1qch/, 2016, [Online; accessed 25-March-2021].

[8] Z. Zhou, M. S. Berger, S. R. Ruepp, and Y. Yan, “Insight into
the IEEE 802.1 Qcr Asynchronous Traffic Shaping in Time Sensi-
tive Network,” Advances in Science, Technology and Engineering
Systems Journal, vol. 4, no. 1, pp. 292–301, 2019.

[9] J. Specht and S. Samii, “Synthesis of Queue and Priority Assign-
ment for Asynchronous Traffic Shaping in Switched Ethernet,” in
2017 IEEE Real-Time Systems Symposium (RTSS), 2017, pp. 178–
187.

[10] Z. Zhou, Y. Yan, M. Berger, and S. Ruepp, “Analysis and Modeling
of Asynchronous Traffic Shaping in Time Sensitive Networks,” in
2018 14th IEEE International Workshop on Factory Communica-
tion Systems (WFCS), 2018, pp. 1–4.

[11] E. Mohammadpour, E. Stai, M. Mohiuddin, and J.-Y. Le Boudec,
“Latency and Backlog Bounds in Time-Sensitive Networking with
Credit Based Shapers and Asynchronous Traffic Shaping,” in 2018
30th International Teletraffic Congress (ITC 30), vol. 02, 2018, pp.
1–6.

[12] J.-Y. Le Boudec, “A Theory of Traffic Regulators for Deterministic
Networks with Application to Interleaved Regulators,” IEEE/ACM
Transactions on Networking, vol. 26, no. 6, pp. 2721–2733, 2018.

[13] A. Grigorjew, F. Metzger, T. Hossfeld, J. Specht, F.-J. Götz,
F. Chen, and J. Schmitt, “Asynchronous Traffic Shaping with Jitter
Control,” 2020.

[14] “P802.1Qdd – Resource Allocation Protocol,” https://1.ieee802.
org/tsn/802-1qdd/, 2018, [Online; accessed 20-March-2021].

[15] B. Fang, Q. Li, Z. Gong, and H. Xiong, “Simulative Assessments of
Credit-Based Shaping and Asynchronous Traffic Shaping in Time-
Sensitive Networking,” in 2020 12th International Conference on
Advanced Infocomm Technology (ICAIT), 2020, pp. 111–118.

[16] B. Hubert, “Linux Advanced Routing & Traffic Control,” in Pro-
ceedings of the Ottawa Linux Symposium, 2002, pp. 213–222.

[17] J. Vila-Carbo, J. Tur-Masanet, and E. Hernandez-Orallo, “An Eval-
uation of Switched Ethernet and Linux Traffic Control for Real-
Time Transmission,” in 2008 IEEE International Conference on
Emerging Technologies and Factory Automation, 2008, pp. 400–
407.

[18] V. C. Gomes, “tc-cbs (8),” Linux man page (8), 2017.

[19] D. D. Clark, S. Shenker, and L. Zhang, “Supporting Real-Time Ap-
plications in an Integrated Services Packet Network: Architecture
and Mechanism,” ser. SIGCOMM ’92. Association for Computing
Machinery, 1992, pp. 14–26.

Seminar IITM SS 21,
Network Architectures and Services, November 2021 14 doi: 10.2313/NET-2022-01-1_03

